
28

Balanced Parentheses Strike Back

HSUEH-I LU AND CHIA-CHI YEH

National Taiwan University

Abstract. An ordinal tree is an arbitrary rooted tree where the children of each node are ordered.

Succinct representations for ordinal trees with efficient query support have been extensively studied.

The best previously known result is due to Geary et al. [2004b, pages 1–10]. The number of bits

required by their representation for an n-node ordinal tree T is 2n + o(n), whose first-order term is

information-theoretically optimal. Their representation supports a large set of O(1)-time queries on T .

Based upon a balanced string of 2n parentheses, we give an improved 2n +o(n)-bit representation for

T . Our improvement is two-fold: First, the set of O(1)-time queries supported by our representation

is a proper superset of that supported by the representation of Geary, Raman, and Raman. Second, it is

also much easier for our representation to support new queries by simply adding new auxiliary strings.

Categories and Subject Descriptors: E.1 [Data Structure]: —Trees; E.4 [Coding and Informa-
tion Theory]: —Data compaction and compression; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems—Computations on discrete structures; G.2.2

[Discrete Mathematics]: Graph Theory—Graph algorithms, Trees; H.3.1 [Information Storage
and Retrieval]: Content Analysis and Indexing—Dictionaries, indexing methods

General Terms: Algorithm, Design, Theory

Additional Key Words and Phrases: Succinct data structures, XML document representation

ACM Reference Format:
Lu, H.-I., and Yeh, C.-C. 2008. Balanced parentheses strike back. ACM Trans. Algor. 4, 3, Ar-

ticle 28, (June 2008), 13 pages. DOI = 10.1145/1367064.1367068 http://doi.acm.org/10.1145/

1367064.1367068

1. Introduction

An ordinal tree (see, e.g., Geary et al. [2004b] and Benoit et al. [2005]) is an

arbitrary rooted tree where the children of each node are ordered. All trees in this

This research was supported in part by NSC Grants 94-2213-F-002-126, 95-2221-E-002-077, and

96-2221-E-002-033.

H.-I. Lu is the corresponding author and is also affiliated with the Graduate Institute of Networking

and Multimedia and the Graduate Institute of Biomedical Electronics and Bioinformatics, National

Taiwan University.

Authors’ address: Department of Computer Science and Information Engineering, National

Taiwan University, 1 Roosevelt Road, Section 4, Taipei 106, Taiwan, Republic of China, e-mail:

{hil; r93048}@csie.ntu.edu.tw.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along with the

full citation. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute

to lists, or to use any component of this work in other works requires prior specific permission and/or

a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,

New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1549-6325/2008/06-ART28 $5.00 DOI 10.1145/1367064.1367068 http://doi.acm.org/

10.1145/1367064.1367068

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 28, Publication date: June 2008.

28:2 H.-I LU AND C.-C. YEH

FIG. 1. Three representations for the same tree.

article are ordinal. The number of distinct n-node trees is 22n−�(log n) [Graham et al.

1989], so the information-theoretically minimum number of bits to differentiate

these trees is 2n − �(log n). There are three major types of 2n-bit representations

for an n-node tree T :

—Balanced parentheses [Munro and Raman 2001; Chuang et al. 1998; He et al.

1999; Chiang et al. 2005; Munro and Rao 2004; Bonichon et al. 2006], a folk-

lore encoding consisting of a balanced string of parentheses representing the

counterclockwise depth-first traversal of T , where an open (respectively, closed)

parenthesis denotes a descending (respectively, ascending) edge traversal. For

technical reason, one usually adds a pair of enclosing parentheses to the above

2n − 2 parentheses, resulting in a representation consisting of 2n parentheses.

—Level order unary degree sequence (LOUDS) [Jacobson 1989], representing a

node of degree d as a string of d copies of 1-bits followed by a 0-bit, where these

nodes are represented in a level-order traversal of T .

—Depth first unary degree sequence (DFUDS) [Benoit et al. 2005], representing

a node of degree d as a string of d copies of 1-bits followed by a 0-bit, where

these nodes are represented in a depth-first traversal of T .

An example is shown in Figure 1.

Initiated by Jacobson [1989], succinct representations for trees with efficient

query support have been extensively studied in the literature. Jacobson [1989]

extended the LOUDS representation into a �(n)-bit encoding to support the parent

query and the rank and select queries for nodes in level-order traversal of T in

�(log n) time. Clark and Munro [Clark 1996; Clark and Munro 1996] squeezed

Jacobson’s encoding into a 3n + o(n)-bit representation, from which the above

queries and the subtree-size query can be supported in O(1) time. Later succinct

representations, all have 2n + o(n) bits, form the following trade-off between the

choices of base representations and the sets of supported O(1)-time queries:

—Based upon balanced parentheses, Munro and Raman [2001] showed that an

o(n)-bit auxiliary string suffices to support the following queries in O(1) time:

parent, depth, subtree-size, and the rank and select queries for nodes in pre-order

and post-order traversal of T . Munro et al. [2001] showed an o(n)-bit auxiliary

string to support O(1)-time query for leaf-rank, leaf-select, and leaf-size. Chiang

et al. [2005] showed an o(n)-bit auxiliary string to support O(1)-time degree

query. Munro and Rao [2004] further gave an o(n)-bit auxiliary string to support

O(1)-time level-ancestor query.

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 28, Publication date: June 2008.

Balanced Parentheses Strike Back 28:3

TABLE I. A SUMMARY FOR CURRENT 2n + o(n)-BIT ENCODINGS FOR AN n-NODE TREE:

PARENTHESES [MUNRO AND RAMAN 2001, 2004; CHIANG ET AL. 2005; MUNRO AND RAO

2004; MUNRO ET AL. 2001], DFUDS [BENOIT ET AL. 2005], GEARY ET AL. [2004a]

Parentheses DFUDS Geary et al. new

pre-order select and rank ∨ ∨ ∨ ∨
post-order select and rank ∨ ∨ ∨
child-select and child-rank ∨ ∨ ∨
leaf-select, leaf-rank, and leaf-size ∨ ∨
lowest common ancestor ∨
subtree height ∨
subtree size ∨ ∨ ∨ ∨
level ancestor ∨ ∨ ∨
distance ∨
degree ∨ ∨ ∨ ∨
depth ∨ ∨ ∨

—Based upon the DFUDS representation, Benoit et al. [2005] gave an o(n)-bit

auxiliary string that supports the following queries in O(1) time: child-rank,

child-select, degree, subtree-size, and node-rank and node-select in the pre-order

traversal of T . However, such a choice of the base representation still does not

provide O(1)-time support for the depth and level-ancestor queries, the node-

rank and node-select queries in the post-order traversal of T , and the rank, select,

and size queries for leaves.

Recently, Geary et al. [2004b] almost resolved the above trade-off by giving a

2n +o(n)-bit encoding for T that supports in O(1) time the aforementioned queries

except those leaf-related ones [Munro et al. 2001]. Their approach differs from all

previous work achieving 2n + o(n) bits in that their encoding does not consist of

a 2n-bit base representation for the topology of T plus an o(n)-bit auxiliary string.

Instead, they decomposed T into several types of subtrees, whose topologies are

represented in a hierarchical way, where different levels are composed of mixtures

of different base representations and auxiliary strings. Such an involved structure

seriously complicates the possibility of supporting additional queries using other

stand-alone auxiliary strings. An implementation based upon a similar concept

is studied in Geary et al. [2004b]. Very recently, Delpratt et al. [2006] showed

that LOUDS-based representation can also be implemented to have competitive

practical performance.

In this article, we give new o(n)-bit auxiliary strings for the 2n-bit balanced string

of parentheses representing T . Together with previous o(n)-bit auxiliary strings for

balanced parentheses [Munro and Raman 2001; Chiang et al. 2005; Munro and Rao

2004], our 2n + o(n)-bit encoding for T supports all of Geary et al.’s queries in

O(1) time. Consisting of a base representation plus o(n)-bit auxiliary strings, our

encoding is better in the ease of supporting new queries by adding new o(n)-bit

auxiliary strings. To demonstrate such an advantage, we also show how to handle

O(1)-time queries currently unsupported by Geary et al.’s encoding, including (a)

lowest common ancestor, (b) distance, and (c) subtree height. Table I summarizes

the above discussion.

We follow the convention of unit-cost RAM model of computation with�(log n)-

bit word size [van Emde Boas 1990], which is assumed in all the previous work

except that of Jacobson [1989]. The rest of this article is organized as follows.

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 28, Publication date: June 2008.

28:4 H.-I LU AND C.-C. YEH

Section 2 gives the preliminaries. Section 3 shows our auxiliary strings for distance,

subtree height, and lowest common ancestor. Section 4 shows our auxiliary strings

for child-rank and child-select.

2. Preliminaries

Let T be the input n-node tree. Let vi denote the i th node of T in the pre-order

traversal of T . Let S be the balanced string of 2n parentheses for T . Let S[i, j]

denote the substring of S from index i to index j . Let S[i] = S[i, i]. Let �i be the

index such that S[�i] is the i-th open parenthesis in S. Let ri be the index such that

S[ri] is the closed parenthesis that matches S[�i] in S. One can easily see that the

correspondence between vi and the matched parentheses S[�i] and S[ri]: vi is the

parent of v j if and only if S[�i] and S[ri] is the closest parenthesis pair that encloses

S[� j] and S[r j]. Let w(i, j) = j − i + 1. For the rest of the paper, all logarithms

are of base 2. Let B = � log 3n�, b = �(log log n)3�, nB = � 2n
B �, and nb = � 2n

b �.

LEMMA 2.1 (SEE BELL ET AL. [1990] AND ELIAS [1975]). For any O(n)-bit
strings S1, S2, . . . , Sk with k = O(1), there is an O(log n)-bit auxiliary string
αconcat such that, given the concatenation of αconcat , S1, S2, . . . , Sk as input, the
index of the first symbol of any given Si in the concatenation is computable in O(1)

time.

Let S1 ◦ S2 ◦ · · · ◦ Sk denote the concatenation of αconcat , S1, S2, . . . , Sk as in

Lemma 2.1.

LEMMA 2.2 (SEE MUNRO AND RAMAN [2001] AND CHIANG ET AL. [2005]).

Let S be a length-2n string of balanced parentheses that represents an n-node tree
T . It takes O(n) time to compute an o(n)-bit string αaux such that the following
queries for S can be determined from S and αaux in O(1) time: (a) the parent,
degree, and depth of vi in T , (b) the parenthesis that matches S[i] in S, and (c) the
rank and select queries for open and closed parentheses in S.

By Lemma 2.2, given S ◦ αaux , indices i , �i , and ri can be determined from

one another in O(1) time. Our technique of dividing the input strings into multiple

levels of blocks, which has been widely used in many succinct data structures, is

inspired by Munro and Raman [Munro 1996; Munro and Raman 2001].

3. Distance, Subtree Height, and Lowest Common Ancestor

Let L be the 2n-element array such that each L[i] is the number of open paren-

theses minus the number of closed parentheses in S[1, i]. Therefore, if S[j] is

the i th open parenthesis in S, then L[j] is the level of vi in T . For any in-

dices i and j with i ≤ j , let indexmin(L , i, j) (respectively, indexmax(L , i, j))

denote the smallest index k with i ≤ k ≤ j such that L[k] equals the mini-

mum (respectively, maximum) of L[i], L[i +1], . . . , L[j]. As observed by Gabow

et al. [1984], the lowest-common-ancestor query can be reduced to the above

range-minima query indexmin. Similarly, our auxiliary string for supporting the

queries of distance, subtree height, and lowest common ancestor is based on

the lemma below. Observe that each L[i] can be obtained from S in O(1) time

using the auxiliary string αaux for the rank queries with respect to open and

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 28, Publication date: June 2008.

Balanced Parentheses Strike Back 28:5

closed parentheses in S. Therefore, the following lemma does not require L in the

encoding.

Let I be an array of m indices. Let kmin(I, m, i, j) (respectively, kmax(I, m, i, j))

be the smallest index k with i ≤ k ≤ j that minimizes (respectively, maximizes)

L[I [k]]. We first prove the following lemma using techniques extended from

Section 3 of Bender and Farach-Colton [2000].

LEMMA 3.1. It takes O(m log m) time to compute an O(m log 2m)-bit string
αq(I, m) from which kmin(I, m, i, j) and kmax(I, m, i, j) for any indices i and j with
1 ≤ i ≤ j ≤ m can be determined from S, αaux , and αq in O(1) time.

PROOF. For each i = 1, 2, . . . , m and j = 1, 2, . . . , � log m�, let Mmin[i][j]

(respectively, Mm[i][j]) be the smallest index k with i ≤ k < i + 2 j that

minimizes (respectively, maximizes) L[I [k]]. Let αq(I, m) = Mmin ◦ Mmax.

Observe that αq(I, m) takes O(m log 2m) bits and can be computed from L and

I in O(m log m) time using dynamic programming. Let k1 = Mmin[i][k] and

k2 = Mmin[j − 2k + 1][k], where k = � log (j − i)	. It is not difficult to see that

kmin(I, m, i, j) =
{

k1 if L[I [k1]] < L[I [k2]]

k2 otherwise.

One can compute kmax(I, m, i, j) from Mmax, I , and L analogously in O(1) time.

LEMMA 3.2. It takes O(n) time to compute an o(n)-bit string αrmq such that
indexmin(L , i, j) and indexmax(L , i, j) for any indices i and j can be computed from
S, αaux , and αrmq in O(1) time.

PROOF. First let IB be the nB-element array such that each IB[i] is the smallest

index j with (i −1)B < j ≤ i B that minimizes L[j]. IB takes O(nB log B) = o(n)

bits. Also, for each i = 1, 2, . . . , nB , let Ib[i] be the � B
b �-element array such that

each Ib[i][j] is the smallest index t with (j − 1)b < t ≤ jb that minimizes

L[(i − 1)B + t]. Ib takes O(nB� B
b � log b) = o(n) bits. Let αq1 = αq(IB, nB), and

for each i = 1, 2, . . . , nB , let αq2[i] = αq(Ib[i], � B
b �). By Lemma 3.1, both of

αq1 and αq2 take o(n) bits and can be obtained in O(n) time. Finally, let αq3 be

an O(n)-time obtainable table such that any indexmin(L , i, j) and indexmax(L , i, j)

with w(i, j) ≤ 2b can be computed from S[i, j] and αq3 in O(1) time. That is, let

αq3[S[i, i +2b−1]][j −i +1] = (indexmin(L , i, j)−i, indexmax(L , i, j)−i) for any

indices i and j with w(i, j) ≤ 2b. Since each entry takes O(log b) bits, the number

of bits required by αq3 is O(22b2b log b) = o(n). Let αrmq = αq1 ◦αq2 ◦αq3 ◦ IB ◦ Ib,

which has o(n) bits and is obtainable in O(n) time.

To answer indexmin(L , i, j) from S, αaux , and αrmq , we can always decom-

pose the interval [i, j] into two (not necessarily disjoint) subintervals [i1, j1] and

[i2, j2] whose union is [i, j]. Clearly indexmin(L , i, j) can be determined from

indexmin(L , i1, j1) and indexmin(L , i2, j2) in O(1) time. Consider the following cases.

—Case 1. w(i, j) ≤ 2b. We simply resort to S[i, j] and αq3.

—Case 2. w(i, j) > 2b and S[i, j] is in the same length-B block of S. Since

indexmin(L , i, i + b − 1) and indexmin(L , j − b + 1, j) can be determined in O(1)

time using Case 1, it suffices to determine indexmin(L , i ′, j ′), where (a) i ′ is the

smallest index with i ≤ i ′ that is a starting index of a length-b block of S, and

(b) j ′ is the largest index with j ′ ≤ j that is an ending index of a length-b block

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 28, Publication date: June 2008.

28:6 H.-I LU AND C.-C. YEH

of S. Since i ′ and j ′ are in the same length-B block of S, indexmin(L , i ′, j ′) can

be determined from S, αaux , and αq2 in O(1) time.

—Case 3. w(i, j) > 2b and S[i, j] belongs to two or more consecutive length-B
blocks of S. Let i ′−1 be the ending index of the length-B block of S that contains

i . Let j ′ +1 be the starting index of the length-B block of S that contains j . Since

indexmin(L , i, i ′ − 1) and indexmin(L , j ′ + 1, j) can be determined in O(1) time

using Case 2, it suffices to determine indexmin(L , i ′, j ′) for the case that i ′ ≤ j ′.
Since i ′ is a starting index of a length-B block of S and j ′ is an ending index of a

length-B block of S, one can determine indexmin(L , i ′, j ′) from S, αaux , and αq1

in O(1) time.

It is not difficult to answer indexmax(L , i, j) from S, αaux , and αrmq analogously in

O(1) time.

As pointed out by an anonymous reviewer, our data structure for lowest common

ancestor is similar to that of Sadakane [2002] for suffix arrays.

THEOREM 3.3. It takes O(n) time to compute an o(n)-bit string αnew1 such
that the queries of distance, subtree height, and lowest common ancestor can be
answered from S and αnew1 in O(1) time.

PROOF. Let αnew1 = αaux ◦ αrmq . By Lemmas 2.2 and 3.2, αnew1 has o(n) bits

and can be computed from S in O(n) time.

—The height of the subtree rooted at vi is L[indexmax(L , �i , ri)] minus the depth of

vi in T .

—The lowest common ancestor vk of vi and v j with �i < � j can be determined

as follows. If ri > r j , then vk = vi . Otherwise, S[indexmin(L , ri , � j)] has to be

a closed parenthesis rx such that vx is a child of vk , as observed by Bender and

Farach-Colton [2000].

—The distance of vi and v j is exactly the depth of vi plus the depth of v j minus

two times of the depth of vk , where vk is the lowest common ancestor of vi and

v j .

By Lemmas 2.2 and 3.2, the above queries can all be answered from S and αnew1

in O(1) time.

4. Rank and Select for Children

Before solving rank and select for children, we introduce the following definition

and its property. A non-root node vi is k-far if w(�p, �i) > k and w(�i , rp) > k,

where v p is the parent of vi .

LEMMA 4.1. If vi and v j are two k-far non-root nodes with |w(�i , � j)| ≤ k,
then vi and v j are siblings.

PROOF. Without loss of generality, we assume �i < � j . Since vi and v j are

k-far non-root nodes with w(�i , � j) ≤ k, vi cannot be an ancestor or descendant of

v j . Thus, we have ri < � j . Assume for a contradiction that v p (respectively, vq)

is the parent of vi (respectively, v j) and v p �= vq . Observe that either ri < �q or

rp < � j holds. Since v j is k-far, ri < �q implies w(ri , � j) > k. Since vi is k-far,

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 28, Publication date: June 2008.

Balanced Parentheses Strike Back 28:7

rp < � j implies w(ri , � j) > k. Either case leads to a contradiction, so the lemma

is proved.

For presentational brevity, we classify non-root nodes into the following three

disjoint classes: A node is

—narrow if it is not b-far;

—medium if it is b-far but not B-far; and

—wide if it is B-far.

4.1. CHILD RANK. Let child rank(S, vk) denote the number c such that vk is

the cth child of its parent. We have the following theorem.

THEOREM 4.2. It takes O(n) time to compute an o(n)-bit string αnew2 such that
child rank(S, vk) for each node vk can be answered from S and αnew2 in O(1) time.

PROOF. Let v p be the parent of vk . If S[i, j] is a balanced string of parenthe-

ses, let sibling(S, i, j) be the number of non-enclosed parenthesis pairs in S[i, j].

Observe that

child rank(S, vk) = sibling(S, �p + 1, �k − 1) + 1

= degree(S, v p) − sibling(S, �k, rp − 1) + 1.

Therefore, it remains to support each query sibling(S, i, j) in O(1) time.

If vk is narrow, we only need to answer sibling(S, i, j) with w(i, j) ≤ b. We

simply build an O(n)-time obtainable table M1 to store the answers for any possible

inputs. That is, let M1[S[i, i + b − 1]][j − i + 1] = sibling(S, i, j) for any indices

i and j with w(i, j) ≤ b. Since sibling(S, i, j) ≤ w(i, j), each entry requires

O(log b) bits and M1 takes O(2bb log b) = o(n) bits.

If vk is medium, we cannot afford to store all the answers of sibling(S, i, j) with

w(i, j) ≤ B. We split S into length-b blocks. By Lemma 4.1, any two medium

nodes vi and v j with |w(�i , � j)| ≤ b have the same parent, so for each block we

save at most one medium node as a shortcut. Define tables M2 and M3 as follows.

For each t = 1, 2, . . . , nb,

—let M2[t] = (�i , sibling(S, �p + 1, �i − 1)), where �i is the smallest index, if any,

with (t −1)b < �i ≤ tb such that vi is a medium child of v p with w(�p, �i) ≤ B;

and

—let M3[t] = (�i , sibling(S, �i , rp −1)), where �i is the smallest index, if any, with

(t − 1)b < �i ≤ tb such that vi is a medium child of v p with w(�i , rp) ≤ B.

Note that M2 and M3 have nb entries, each requiring O(log B) bits, so both of

them take O(nb log B) = o(n) bits. Therefore, for any medium child vk of v p, if

w(�p, �k) ≤ B, then

sibling(S, �p + 1, �k − 1) = sibling(S, �p + 1, �i − 1) + sibling(S, �i , �k − 1)

= m + M1[S[�i , �i + b − 1]][�k − �i],

where (�i , m) = M2[� �k
b �]. Similarly, if w(�k, rp) ≤ B, then

sibling(S, �k, rp − 1) = sibling(S, �i , rp − 1) − sibling(S, �i , �k − 1)

= m − M1[S[�i , �i + b − 1]][�k − �i],

where (�i , m) = M3[� �k
b �].

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 28, Publication date: June 2008.

28:8 H.-I LU AND C.-C. YEH

FIG. 2. An O(1)-time algorithm that computes child rank(S, vk).

Similar tricks work for wide nodes, but they have to be applied in two levels.

We first split S into length-B blocks. For each t = 1, 2, . . . , nB , let M4[t] =
sibling(S, �p + 1, �i − 1), where �i is the smallest index, if any, with (t − 1)B <
�i ≤ t B such that vi is a wide child of v p. We further split each length-B block into

length-b blocks. For each t = 1, 2, . . . , nB and u = 1, 2, . . . , � B
b �, let M5[t][u] =

(� j , sibling(S, �p + 1, � j − 1) − M4[t]), where � j is the smallest index, if any, with

(u − 1)b < � j − (t − 1)B ≤ ub such that v j is a wide child of v p. Note that

sibling(S, �p + 1, � j − 1) − M4[t] ≤ B. One can easily verify that the number of

bits required by M4 is O(nB log n) = o(n) and the number of bits required by M5

is O(nB� B
b � log B) = o(n). Thus, for any wide child vk of v p, we have

sibling(S, �p + 1, �k − 1) = sibling(S, �p + 1, � j − 1) + sibling(S, � j , �k − 1)

= M4

[⌈
�k

B

⌉]
+ m + M1[S[� j , � j + b − 1]][�k − � j],

where (� j , m) = M5[� �k
B �][� �k modB

b �].

Finally, let αnew2 = αaux ◦ M1 ◦ M2 ◦ M3 ◦ M4 ◦ M5, which is an o(n)-bit

string obtainable from S in O(n) time. The O(1)-time algorithm for computing

child rank(S, vk) is shown in Figure 2.

4.2. CHILD SELECT. First, we need the following lemmas to handle the select

query for children. For any node vi , let indexc(S, �i , m, c) = � j − �i , where v j is a

sibling of vi with w(�i , � j) ≤ m such that child rank(S, v j) = child rank(S, vi)+c.

If such a v j does not exist, indexc(S, �i , m, c) = φ.

LEMMA 4.3. It takes O(n) time to compute an o(n)-bit string αb such that
indexc(S, �i , b2, c) for any node vi and index c can be computed from S and αb in
O(1) time.

PROOF. We simply build an O(n)-time obtainable table αb to store the answers

for any possible inputs. That is, let αb[S[�i , �i + b2 − 1]][c] = indexc(S, �i , b2, c)

for any node vi and index c. Since each entry takes O(log b) bits, αb requires

O(2b2

b2 log b) = o(n) bits.

LEMMA 4.4. Given a node vi , it takes O(B) time to compute an o(B)-bit string
αB(�i) such that indexc(S, �i , B, c) for any index c can be computed from S, αb,
and αB(�i) in O(1) time.

PROOF. For each t = 0, 1, . . . , � B
b � − 1, let W1[t] = indexc(S, �i , B, tb). W1

takes O(� B
b � log B) = o(B) bits. If w(W1[t], W1[t +1]) > b2, we save the answers

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 28, Publication date: June 2008.

Balanced Parentheses Strike Back 28:9

of indexc(S, �i , B, tb + z) for each z = 0, 1, . . . , b − 1 in W2. W2 takes at most

O(� B
b2 �b log B) = o(B) bits. Otherwise, by Lemma 4.3 indexc(S, �i , B, tb + z)

can be computed in O(1) time using W1[t] + indexc(S, �i + W1[t], b2, z). Let

αB(�i) = W1 ◦ W2, which has o(B) bits and is obtainable in O(B) time.

Given an array A of �m
u � positive � log u�-bit integers with m ≤ n and u =

� log 3m�, let indexsum(A, x) denote the largest index y with
∑y

t=1 A[t] < x .

LEMMA 4.5. It takes O(m) time to compute an o(m)-bit string αA(A, m) such
that indexsum(A, x) for any index x can be determined from A and αA(A, m) in
O(1) time.

PROOF. This is a special case of the search query of the searchable partial sums

problem [Raman et al. 2001; Hon et al. 2003]. Theorem 3 of Hon et al. [2003]

gave an o(m)-bit auxiliary string to support this query in O(1) time, but it is unclear

whether the preprocessing time is O(m). Let us briefly prove this lemma as follows:

Let d(x1, x2) denote indexsum(A, x2) − indexsum(A, x1). For each t =
0, . . . , �m

u � − 1, let W3[t] = indexsum(A, tu). W3 needs O(�m
u � log m) = o(m)

bits. If d(tu, (t + 1)u) > � log 2u�, for each z = 0, 1, . . . , u − 1, we save the

values of d(tu, tu + z) in W4. Because A is an array of positive integers, we have

d(tu, tu+z) ≤ z and W4 needs at most O(� m
u log 2u �u log u) = o(m) bits. Otherwise,

let

W5[A[indexsum(A, tu), indexsum(A, tu) + � log 2u� − 1]][z] = d(tu, tu + z)

for each z = 0, 1, . . . , u − 1. W5 takes O(2 log 3uu log log u) = o(m) bits and is

obtainable in O(m) time. Now, let αA(A, m) = W3 ◦ W4 ◦ W5, which requires

o(m) bits and can be obtained in O(m) time. To answer indexsum(A, x) in O(1)

time, first let t and z be the integers with x = tu + z and 0 ≤ z < u, and then

find the values of indexsum(A, tu) and d(tu, tu + z) from αA(A, m). The answer is

indexsum(A, tu) + d(tu, tu + z).

Let child select(S, v p, c) denote the index �k such that vk is the cth child of v p.

We have the following theorem.

THEOREM 4.6. It takes O(n) time to compute an o(n)-bit string αnew3 such that
child select(S, v p, c) for each node v p and c can be answered from S and αnew3 in
O(1) time.

PROOF. We say that nodes in a set D are d-disjoint [Chiang et al. 2005] if

—w(�i , ri) > d holds for any node vi in D; and

—any two nodes vi and v j in D satisfy at least one of |w(�i , � j)| > d and

|w(ri , r j)| > d.

Let X be a 2� 2n
d �-element array. For each t = 1, 2, . . . , � 2n

d �, we store vi in X [2t −
1], where �i is the smallest index, if any, with (t − 1)d < �i ≤ td such that

vi is in D; and also store v j in X [2t], where r j is the largest index, if any, with

(t − 1)d < r j ≤ td such that v j is in D. Then, every node vi in D takes at least

one slot in X , and can be easily verified using �i and ri . We simply say that X has
vi if and only if vi takes at least one of X [2� �i

d � − 1] or X [2� ri
d �]. For notational

brevity, let X [vi] denote the element taken by vi .

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 28, Publication date: June 2008.

28:10 H.-I LU AND C.-C. YEH

The preprocessing is under the following traversal procedure: first traverse each

node v p of T in prefix order, and for each v p traverse every child vi of v p in

counterclockwise order. Since selecting and matching a parenthesis on S takes

O(1) time, and each node is traversed at most two times, one as v p and the other as

vi , the whole procedure takes O(n) time. The discussion below focuses on nodes

v p and vi in each iteration of the aforementioned traversal.

—Case 1. vi is a wide child of v p. Let counter denote the number of wide nodes

discovered before each iteration. It is not difficult to see that the parents of

wide nodes are B-disjoint. Let X1 be the 2nB-element array with X1[v p] =
(beforep, first, last), where beforep is the value of counter before we get v p, and

first (respectively, last) is the rank of the first (respectively, last) wide child of

v p. Then we partition S into length-B blocks. Let Y1 be the nB-element array

with Y1[t] = (beforei , �i), where �i is the smallest index in a block such that vi
is wide, beforei is the value of counter before we get vi , and t is the first empty

entry of Y1. Both of X1 and Y1 take O(nB log n) = o(n) bits.

—Case 2. vi is a medium child of v p. First, we partition S into length-B blocks.

If w(�p, �i) ≤ B, we say that vi belongs to the � �p

B �-th block, otherwise the

� rp

B �-th block. For each t = 1, 2, . . . , nB , let counter[t] denote the number of

medium nodes belonging to the t th block before each iteration. Note that at

most B medium nodes belong to a block. Similarly, one can verify that the

parents of medium nodes are b-disjoint. Let X2 be the 2nb-element array with

X2[v p] = (beforeL , firstL , lastL , beforeR, firstR, lastR), where

—beforeL (respectively, beforeR) is the value of counter[� �p

B �] (respectively, the

value of counter[� rp

B �]) before we get v p,

—firstL (respectively, firstR) is the rank of the first medium child of v p belonging

to the � �p

B �-th (respectively, � rp

B �-th) block, and

—lastL (respectively, lastR) is the rank of the last medium child of v p belonging

to the � �p

B �-th (respectively,� rp

B �-th) block.

Note that 1 ≤ firstL ≤ lastL ≤ B and degree(S, v p) − B ≤ firstR ≤ lastR ≤
degree(S, v p). We further partition each length-B block into length-b blocks.

For each t = 1, 2, . . . , nB , let Y2[t] be the � B
b �-element array with Y2[t][u] =

(beforei , �i), where �i is the smallest index in a length-b block such that vi
is a medium node belonging to the t th length-B block, before is the value of

counter [t] before we get vk , and u is the first empty entry of Y2[t]. Observe that

X2 needs O(nb log B) = o(n) bits and Y2 needs O(nB� B
b � log B) = o(n) bits.

For each t = 1, 2, . . . , nB , let αB1[t] = αB(�i) with (beforei , �i) = Y1[t]. By

Lemma 4.4, αB1 takes o(n) bits and is obtainable in O(n) time. Let A1 be the

nB-element array such that
∑u

t=1 A1[t] = beforei with (beforei , �i) = Y1[u] holds

for each u = 1, 2, . . . , nB . Note that 0 < A1[t] ≤ B holds for any index t , so A1

takes O(nB log B) = o(n) bits. Also, for each t = 1, 2, . . . , nB , let A2[t] be the

� B
b �-element array such that

∑x
u=1 A2[t][u] = beforei with (beforei , �i) = Y2[t][x]

holds for each x = 1, 2, . . . , � B
b �. Observe that 0 < A2[t][u] ≤ b holds for any

indices t and u, so A2 takes O(nB� B
b � log b) = o(n) bits. Let αA1 = αA(A1, n),

and for each t = 1, 2, . . . , nB , let αA2[t] = αA(A2[t], B). By Lemma 4.5, both of

αA1 and αA2 take o(n) bits and are obtainable in O(n) time. At last, we construct an

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 28, Publication date: June 2008.

Balanced Parentheses Strike Back 28:11

FIG. 3. An O(1)-time algorithm that computes child select(S, v p, c).

O(n)-time obtainable table F with F[S[rp−b+1, rp]][degree(S, v p)−c] = rp−�i ,

where vi is the cth child of v p with w(�i , rp) ≤ b. Note that degree(S, v p) − c ≤ b,

so F takes O(2bb log b) = o(n) bits.

To implement child select in O(1) time, let �k = child select(S, v p, c). vk is wide

if and only if X1 has v p and first ≤ c ≤ last, where (beforep, first, last) = X1[v p].

Moreover, letting z = beforep + c − first + 1, vk is the zth wide node discovered

during the traversal procedure. Let (beforei , �i) = Y1[indexsum(A1, z)], so vk is a

sibling of vi with w(�i , �k) ≤ B such that child rank(S, vk) = child rank(S, vi) +
z − beforei . By Lemma 4.4, we can locate vk using �k = �i + indexc(S, �i , B, z −
beforei).

vk is medium if and only if X2 has v p and at least one of firstL ≤ c ≤ lastL
and firstR ≤ c ≤ lastR is satisfied, where (beforeL , firstL , lastL , beforeR, firstR,

lastR) = X2[v p]. If firstL ≤ c ≤ lastL , let t = � �p

B � and z = beforeL +c−firstL +1.

If firstR ≤ c ≤ lastR , let t = � rp

B � and z = beforeR+c−firstR+1. Then, vk is the zth

medium node belonging to the t th length-B block discovered during the traversal

procedure. Let (beforei , �i) = Y2[t][indexsum(A2[t], z)], so vk is a sibling of vi with

w(�i , �k) ≤ b such that child rank(S, vk) = child rank(S, vi) + z − beforei . By

Lemma 4.3, we can locate vk using �k = �i + indexc(S, �i , b2, z − beforei).

If vk is neither wide nor medium, it must be narrow. If indexc(S, �p+1, b2, c) �= φ,

then we have �k = �p +1+ indexc(S, �p +1, b2, c). Otherwise, �k = rp − F[S[rp −
b + 1, rp]][degree(S, v p) − c].

Finally, let αnew3 = αaux ◦αb ◦αB1 ◦ X1 ◦ Y1 ◦ X2 ◦ Y2 ◦ A1 ◦αA1 ◦ A2 ◦αA2 ◦ F ,

which takes o(n) bits and can be computed from S in O(n) time. The O(1)-time

algorithm for computing child select(S, v p, c) is shown in Figure 3.

ACKNOWLEDGMENT. We thank Kai-min Chung for helpful discussion. We also

thank the anonymous reviewers for their helpful comments.

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 28, Publication date: June 2008.

28:12 H.-I LU AND C.-C. YEH

REFERENCES

BELL, T. C., CLEARY, J. G., AND WITTEN, I. H. 1990. Text Compression. Prentice-Hall, Englewood Cliffs,

NJ.

BENDER, M. A., AND FARACH-COLTON, M. 2000. The LCA problem revisited. In Proceedings of the
4th Latin American Symposium on Theoretical Informatics (Punta del Este, Uruguay), G. H. Gonnet,

D. Panario, and A. Viola, Eds. Lecture Notes in Computer Science, vol. 1776. Springer-Verlag, New

York, 88–94.

BENOIT, D., DEMAINE, E. D., MUNRO, J. I., RAMAN, R., RAMAN, V., AND RAO, S. S. 2005. Representing

trees of higher degree. Algorithmica 43, 4, 275–292.

BONICHON, N., GAVOILLE, C., HANUSSE, N., POULALHON, D., AND SCHAEFFER, G. 2006. Planar graphs,

via well-orderly maps and trees. Graph and Combinat. 22, 1–18.

CHIANG, Y.-T., LIN, C.-C., AND LU, H.-I. 2005. Orderly spanning trees with applications. SIAM J.
Comput. 34, 4, 924–945.

CHUANG, R. C.-N., GARG, A., HE, X., KAO, M.-Y., AND LU, H.-I. 1998. Compact encodings of planar

graphs via canonical ordering and multiple parentheses. In Proceedings of the 25th International Collo-
quium on Automata, Languages, and Programming (Aalborg, Denmark), K. G. Larsen, S. Skyum, and

G. Winskel, Eds. Lecture Notes in Computer Science, vol. 1443. Springer-Verlag, New York, 118–129.

CLARK, D. R. 1996. Compact PAT trees. Ph.D. dissertation, University of Waterloo.

CLARK, D. R., AND MUNRO, J. I. 1996. Efficient suffix trees on secondary storage. In Proceedings of the
7th Annual ACM-SIAM Symposium on Discrete Algorithms (Atlanta, CA). ACM, New York, 383–391.

DELPRATT, O., RAHMAN, N., AND RAMAN, R. 2006. Engineering the LOUDS succinct tree represen-

tation. In Proceedings of the 5th International Workshop on Experimental Algorithms (Cala Galdana,

Menorca, Spain), Lecture Notes in Computer Science, vol. 4007. Springer-Verlag, New York, 134–

145.

ELIAS, P. 1975. Universal codeword sets and representations of the integers. IEEE Trans. Inf. Theory IT-
21, 194–203.

GABOW, H. N., BENTLEY, J. L., AND TARJAN, R. E. 1984. Scaling and related techniques for geometry

problems. In Proceedings of the 16th Annual ACM Symposium on Theory of Computing. ACM, New

York, 135–143.

GEARY, R. F., RAHMAN, N., RAMAN, R., AND RAMAN, V. 2004a. A simple optimal representation for

balanced parentheses. In Proceedings of the 15th Annual Symposium on Combinatorial Pattern Matching
(Istanbul, Turkey), S. C. Sahinalp, S. Muthukrishnan, and U. Dogrusöz, Eds. Lecture Notes in Computer

Science, vol. 3109. Springer-Verlag, New York. 159–172.

GEARY, R. F., RAMAN, R., AND RAMAN, V. 2004b. Succinct ordinal trees with level-ancestor queries.

In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (New Orleans,

LA), J. I. Munro, Ed. ACM, New York, 1–10.

GRAHAM, R. L., KNUTH, D. E., AND PATASHNIK, O. 1989. Concrete Mathematics. Addison-Wesley,

Reading, MA.

HE, X., KAO, M.-Y., AND LU, H.-I. 1999. Linear-time succinct encodings of planar graphs via canonical

orderings. SIAM J. Disc. Math. 12, 3, 317–325.

HON, W.-K., SADAKANE, K., AND SUNG, W.-K. 2003. Succinct data structures for searchable partial

sums. In Proceedings of the 14th Symposium on Algorithms and Computation (Kyoto, Japan), T. Ibaraki,

N. Katoh, and H. Ono, Eds. Lecture Notes in Computer Science, vol. 2906. Springer-Verlag, New York,

505–516.

JACOBSON, G. 1989. Space-efficient static trees and graphs. In Proceedings of the 30th Annual Symposium
on Foundations of Computer Science (Research Triangle Park, NC). IEEE Computer Society Press, Los

Alamitos, CA, 549–554.

MUNRO, J. I. 1996. Tables. In Proceedings of the 16th Conference on Foundations of Software Technology
and Theoretical Computer Science (Hyderabad, India), Lecture Notes in Computer Science, vol. 1180.

Springer-Verlag, New York, 37–42.

MUNRO, J. I., AND RAMAN, V. 2001. Succinct representation of balanced parentheses, static trees and

planar graphs. SIAM J. Comput. 31, 3, 762–776.

MUNRO, J. I., RAMAN V., AND RAO, S. S. 2001. Space efficient suffix trees. J. Algor. 39, 2, 205–

222.

MUNRO, J. I., AND RAO, S. S. 2004. Succinct representations of functions. In Proceedings of the 31st
International Colloquium on Automata, Languages and Programming (Turku, Finland), Lecture Notes

in Computer Science, vol. 3142. Springer-Verlag, New York, 1006–1015.

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 28, Publication date: June 2008.

Balanced Parentheses Strike Back 28:13

RAMAN, R., RAMAN, V., AND RAO, S. S. 2001. Succinct dynamic data structures. In Proceedings of the
7th International Workshop on Algorithms and Data Structures (Providence, RI), F. K. H. A. Dehne,

J.-R. Sack, and R. Tamassia, Eds. Lecture Notes in Computer Science, vol. 2125. Springer-Verlag, New

York, 426–437.

SADAKANE, K. 2002. Succinct representations of LCP information and improvements in the compressed

suffix arrays. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, (San

Francisco, CA). ACM, New York, 225–232.

VAN EMDE BOAS, P. 1990. Machine models and simulations. In Handbook of Theoretical Computer
Science, J. van Leeuwen, Ed. Vol. A. Elsevier, Amsterdam, The Netherlands, Chapter 1, 1–60.

RECEIVED DECEMBER 2005; REVISED OCTOBER 2006 AND MARCH 2007; ACCEPTED APRIL 2007

ACM Transactions on Algorithms, Vol. 4, No. 3, Article 28, Publication date: June 2008.

