
Monitoring Distributed Systems

JEFFREY JOYCE, GREG LOMOW, KONRAD SLIND, and BRIAN UNGER

University of Calgary

The monitoring of distributed systems involves the collection, interpretation, and display of infor-
mation concerning the interactions among concurrently executing processes. This information and
its display can support the debugging, testing, performance evaluation, and dynamic documentation
of distributed systems. General problems associated with monitoring are outlined in this paper, and
the architecture of a general purpose, extensible, distributed monitoring system is presented. Three
approaches to the display of process interactions are described: textual traces, animated graphical
traces, and a combination of aspects of the textual and graphical approaches. The roles that each of
these approaches fulfill in monitoring and debugging distributed systems are identified and compared.
Monitoring tools for collecting communication statistics, detecting deadlock, controlling the non-
deterministic execution of distributed systems, and for using protocol specifications in monitoring
are also described.

Our discussion is based on experience in the development and use of a monitoring system within
a distributed programming environment called Jade. Jade was developed within the Computer Science
Department of the University of Calgary and is now being used to support teaching and research at
a number of university and research organizations.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems--distributed applications; D.1.3 [Programming Techniques]: Concurrent Programming;
D.2.2 [Software Engineering]: Tools and Techniques-user interfaces; D.2.4 [Software Engi-
neering]: Program Verification-assertion checkers; D.2.5 [Software Engineering]: Testing and
Debugging--debugging aids; monitors; tracing; D.2.6 [Software Engineering]: Programming Envi-
ronments; D.2.7 [Software Engineering]: Distribution and Maintenance-documentation; D.4.8
[Operating Systems]: Performance-measurements; monitors

General Terms: Design, Human Factors, Measurement

Additional Key Words and Phrases: Concurrent monitoring, distributed monitoring, dynamic docu-
mentation, graphical monitoring

1. INTRODUCTION

Monitoring supports the debugging, testing, and performance evaluation of
computer programs. When a program is distributed, monitoring becomes more
difficult. The monitoring of distributed systems involves dynamically extracting
information about the interactions among processes, collecting this information,

This research has been supported by the Strategic Grants Program of the Natural Sciences and
Engineering Research Council of Canada.
Authors’ current addresses: J. Joyce, Computer Laboratory, University of Cambridge, Corn Exchange
Street, Cambridge, U.K.; G. Lomow, K. Slind, and B. Unger, Department of Computer Science,
University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N lN4.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
63 1987 ACM 0734-2071/87/0500-0121$00.75

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987, Pages 121-150.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F13677.22723&domain=pdf&date_stamp=1987-03-01

122 l J. Joyce et al.

and presenting it to users in useful formats. This paper focuses on the use of
monitoring tools to support the development of distributed systems that interact
solely via message passing. Our discussion is based on experience with the design,
implementation, and use of a monitoring system within the Jade distributed
software prototyping environment [24, 271.

1.1 Distributed Systems and Monitoring

A distributed system is a collection of processes working together to accomplish
some task. Each process is a deterministic program unit able to execute separately
from, and concurrently with, other processes. There are a number of reasons why
debugging, testing, and evaluating such systems are more difficult than the same
activities would be for sequential programs [l, 11, 151:

(1) A distributed system has many foci of control. Thus, sequential monitoring
and debugging techniques, such as tracing and breakpoints, based on a
program counter and a process state, need to be extended to be applicable to
distributed systems.

(2) Communication delays among nodes in a distributed system make it difficult
to determine a system’s state at any given time. For example, the initiation
of an attempt to determine the system’s state must be made from one node,
and other nodes will always be notified of this attempt at later, unpredictable
times.

(3) Distributed, asynchronous systems are inherently nondeterministic. This
means that two executions of the same system may produce different, but
nevertheless valid, orderings of events. Therefore it is difficult to reproduce
errors, and to test possible, but improbable, situations.

(4) Monitoring a distributed system alters its behavior. The behavior of a
sequential program is not affected by the amount of elapsed time between
the execution of two successive instructions, for example, a symbolic debugger
can interrupt a sequential process at a breakpoint without affecting the
process’s subsequent execution. In a distributed system, stopping or slowing
down one process may alter the behavior of the entire system.

(5) Interactions between the system and the system developer, the intended user
of monitoring tools, can be more complex. For example, when a terminal is
connected to each processor, the system developer may need to physically
move from terminal to terminal to start processes, set breakpoints, and
examine traces. Thus, it is necessary to provide tools that span a distributed
system and can be invoked and controlled from a single site.

One problem common to both distributed and sequential monitoring is the
need to make the large amounts of data produced during a monitoring session
intelligible to the user. All of these problems are addressed in this paper.

1.2 Approaches to Monitoring

Facilities provided by Lisp environments bear directly on the problem of coping
with large amounts of monitoring data [25]. There are three features, found in
most Lisp environments, that can be particularly useful in monitoring distributed

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

Monitoring Distributed Systems l 123

systems: The ability to debug a process by tracing its execution, interactively
setting breakpoints, and, while at a breakpoint, being able to examine the state
of the process. Also, Lisp workstations, with their bit-mapped screens, have
enabled the use of graphics to further support the user during the debugging
process. These aspects of Lisp environments assist the user in interpreting large
amounts of data.

EXDAMS [2], the EXtendable Debugging And Monitoring System, also ad-
dresses the problem of coping with large amounts of data in sequential systems
by allowing for the display of source code and variable values of a program in a
user-defined fashion. A modified compiler produces object code that generates
history files. These are used by a debugging program to reenact the execution
and to display information of interest to the user. This information may include
the flow of control from one source line to another, the updating of variables,
flowback analysis from a variable assignment to the points where other variables
involved in the assignment were last given values, and anything else the user
cares to incorporate into the debugger. EXDAMS illustrates the value of having
a monitoring system that is extensible: New features that interpret monitoring
data in different ways can be easily added.

In recent years, the proliferation of terminals with bit-mapped screens has
spurred the use of graphics in helping to show what a program is doing. This
work has developed in two directions: Using pictures to represent the progress of
an algorithm, for example, changing the color of a picture representing a node
when it is visited by a tree traversal algorithm, and using pictures to represent
the state of a program. These two approaches fall under the topics of dynamic
documentation and debugging. An example in the first category is [17]. Two
examples in the second category are Dewlap [9] and Incense [19]. These inter-
active graphical techniques, as well as those available in most Lisp environments,
all assist the user in interpreting monitoring data. The approaches to the display
of monitoring information presented in Section 3 are strongly related to this
work, particularly Dewlap (an interactive graphical Prolog debugger) and
EXDAMS.

Garcia-Molina et al. describe a methodology for debugging distributed systems
that relates to problems (l), (2), and (5) listed in Section 1.1 [ll]. Essential
aspects include: Debugging the system bottom-up so that individual modules are
debugged separately and then integrated, extensive use of trace files of important
events to provide process histories that can be examined to track down bugs, and
two-phase debugging. Two-phase debugging entails having the user first examine
trace files to find the source of the problem, and second, constructing an artificial
environment in which to re-create and rectify the error. Garcia-Molina et al. also
propose tools for generating and examining trace files. Trace information is kept
locally on each computer and accessed using distributed database techniques.
Breakpoint and stepping facilities are used to control the execution of a distrib-
uted system.

Snodgrass views monitoring as an information processing activity and asserts
that the relational model, typified by relational databases, is an appropriate
formalism for structuring the information generated by a distributed system [23].
He defines entities to be data structures, processes, and hardware components

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

124 . J. Joyce et al.

and relationships to be processes running on processors and messages residing
in queues. Also defined are time-varying relations between entities and relation-
s!rips. Queries on this collection of relations are translated into actions, such as
initiating the collection of information, to be performed by the monitor. This
work focuses on the database query model so that the user can specify what
information is to be collected. This approach also controls the amount of
monitoring data collected, and thus mitigates problem (4) in Section 1.1.

Harrison deals with the monitoring of a target network in a way that enables
simulation in a richer environment, that is, one with tools such as compilers,
debuggers, and editors [12]. His aim is to minimize the impact of monitoring on
the execution of the target system (i.e., problem (4)). Two tools for this are
program state analysis and dynamic traces of behavior. A dynamic trace contains
information regarding the actions of a program during its execution, such as
interactions with other processes, internal decisions, and modifications to data
structures. Harrison’s suggested technique is to run the system to an error state
on the target network and using program state analysis to find the subset of
processes where the bug lurks. Then, the system is rerun while the affected
processes are monitored to produce traces used for subsequent simulation in the
development environment.

The work presented in this paper differs most from the work of Snodgrass
because the Jade monitoring system collects all communication activity generated
by application processes, whereas Snodgrass’s method only collects information
requested by the user. Our approach incurs a larger performance penalty during
monitoring, but problem (4) is addressed directly by enabling the user to control
nondeterministic alternatives. Our approach to problems (1) and (5) is similar to
that taken in Multibug [8]; however, there are important differences in the way
these mechanisms have been implemented. Harrison’s work is directly realizable
in the Jade monitoring system, as is that of Garcia-Molina and his co-workers.

The Jade monitoring system, described in Sections 2, 3, and 4, attempts to
address all of the problems outlined in 1.1. Our approach is unique in that it
provides an interactive, animated display of an executing distributed program,
and it enables user control of nondeterminism. It is also extensible in that the
detection and collection of monitoring information is separate from the analysis
and display of this information to users. This separation permits new monitoring
tools to be easily created and integrated into the monitoring system.

1.3 Scope and Organization of this Paper

We explore monitoring in the context of the Jade programming environment. In
Section 2, the parts of Jade that are relevant to monitoring are presented,
followed by a description of the architecture for a distributed monitoring system.
A number of tools that display monitoring information to the user in different
ways have been developed. These include three ways of viewing process interac-
tions: a simple textual trace of interaction events, a graphical representation of
the system’s state that changes as state changes occur, and the display of the
evolution of a process versus that of events. These tools and the role that each
fulfills are identified and compared in Section 3.
ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

Monitoring Distributed Systems l 125

Event management and analysis is addressed in Section 4. The collection of
statistical data regarding events and the detection of deadlock are briefly de-
scribed. Next, the interactive control of nondeterminism and the collection of
information that enables the re-creation of system states are presented. Finally,
the use of protocol specifications for run-time protocol checking and for defining
abstract events is examined. Our conclusions appear in Section 5.

2. A DISTRIBUTED MONITORING SYSTEM

An extensible, distributed monitoring system has been designed, implemented,
and evaluated within the Jade programming environment. The monitoring system
supports the observation and control of message passing within a distributed
application system that consists of a set of concurrently executing processes.
First, an outline of both Jade and its interprocess communication (IPC) facility
is presented, and then the monitoring system is described.

2.1 The Programming Environment-Jade

The Jade environment supports the development of distributed software [24,27].
The key components of Jade are a multilingual IPC facility, a window system, a
hierarchical graphics package, an interactive graphics editor, and a distributed
monitoring system. The monitoring system, in conjunction with the other com-
ponents, enables a system of processes spanning multiple machines to be observed
and controlled from a single workstation.

The Jade IPC facility [20] is called Jipc (pronounced “gypsy”). Jipc is imple-
mented as a Unix1 device driver and currently runs on Vax 11/780 and Sun
Microsystem Unix 4.2/4.3 Berkeley Standard Distribution (BSD) hosts. A stand-
alone version of Jipc that incorporates a multitasking kernel runs on Corvus
Concepts, Cadlinc Suns, and several other workstations. The window system
is implemented as a distributed Jipc system, for several different types of
diskless workstations, as well as on Sun Microsystem’s window system within
Uni.x 4.2/4.3 BSD.

The Jade window system permits the user to create and manipulate windows
using a mouse and pop-up menus. A window is capable of serving as a virtual
terminal to a Unix host and as an interface to Jipc processes. This enables the
user from a single workstation to interact with processes running on different
machines. Application programs can add their own pop-up menus and are able
to obtain mouse or keyboard input from the window system. This allows system
and user-written tools to share a consistent user interface.

The Jade graphics system provides routines for creating and manipulating
hierarchical, two-dimensional pictures. Hierarchical pictures consist of both
primitives (e.g., points, lines, boxes, circles, and text) and other pictures. This
hierarchical picture structure permits a picture and all of its component subpic-
tures to be transformed (i.e., translated, scaled, or rotated) by applying a single
transformation to the node in the hierarchy that contains the picture. The
graphics system maintains an internal model of the hierarchy so that incremental

’ UNIX is a trademark of AT&T Bell Laboratories.

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

126 . J. Joyce et al.

changes to the model result in incremental changes to the display. This enables
efficient screen updating for real-time applications such as the run-time display
of monitoring and simulation information [30]. The graphics editor facilitates
the creation of pictures that can then be used to represent specific states of an
executing distributed program. These pictures can be animated, for example, via
messages sent by the monitoring system or by the application processes.

2.2 The Interprocess Communication Protocol-Jipc

A Jade distributed system, or Jipc system, consists of a set of processes that
communicate using the Jipc message-passing protocol and that execute on one
or more Unix hosts and workstations [20]. Jipc defines the protocol for all
communication among processes as well as providing primitives for dynamic
process creation, destruction, and searching. Interfaces to Jipc currently exist for
the Ada, C, Lisp, Prolog, and Simula programming languages.

Jipc processes communicate by exchanging messages through the use of a
blocking protocol based on Thoth [6]. The send primitive transmits a message
from a sending process to a destination process and blocks the sender until it
receives a reply message. A process receives a message by calling either receive
(receive a message from a specified process) or receiue-any (receive a message
from any process); if no messages are waiting, the receiver is blocked until one
arrives. After receiving and processing a message, a process can either transmit
a message to the sender using the reply primitive, or it can pass this responsibility
onto another process using the forward primitive. When the reply message arrives
at the original sender, the sender is unblocked and allowed to continue executing.
Both reply and forward are nonblocking.

A Jipc message consists of a sequence of typed data items. The types supported
are integer, floating-point, character, string, process id, byte-block, and atom.
When necessary, the Jipc kernel converts values of these data types between the
representations used by the different machines and programming languages
supported within the Jade environment.

Several aspects of Jipc support the building of monitoring tools. The fact that
Jipc processes are loosely coupled and only communicate via message passing
permits interprocess events to be easily defined and detected. Typed data items
in Jipc messages enable the contents of a message to be displayed intelligibly.
Since processes can be written in different programming languages, components
of a Jipc system can be implemented in a language suited to the application, for
example, simulation components written in Simula, interactive components
written in Lisp, and real-time embedded components written in Ada [16].

A two-process example Jipc system is shown in Figures 1 and 2. Process
Sender, implemented in Lisp, sends a message to process Receiver, implemented
in Ada. Process Receiver receives the message and issues a reply to process
Sender. A textual trace for the two-process system is shown in Figure 3.

2.3 Monitoring System Architecture

Our experience with the Jade monitoring tools suggests that users nearly always
need a variety of tools during the development of an application system, and
that these tools must range from detailed, low-level tools to highly abstract,
ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

Monitoring Distributed Systems l 127

(j-enter-system “Sender”)
(setq pid (j-search-machine “vaxb” “Receiver”))
(j-puti 16)
(j-puti 17)
(j-send pid)
(setq result (j-geti))
(j-leave-system)

become a Jipc process named “Sender”
find the receiving process
put 2 integers in message

send message to “Receiver”
get the result

Fig. 1. Lisp code for sender process.

with a-jipc;
use a-jipc;
procedure Receiver is

il, i2 : integer;
pid : j-process-id;

begin
j-enter-system(“Receiver”);

pid := j-receive-any;
il := j-geti;
i2 := j-geti;
j-puti(i1 + i2);
j-reply(pid);
j-leave-system;

end Receiver;

become a Jipc process named “Receiver”
receive a message from any process
get 2 integers from message received

send sum as reply message

Fig. 2. Ada code for receiver process.

application-specific tools. To accommodate this diversity and to encourage the
implementation of new monitoring tools, the Jade monitoring system was de-
signed to be extensible. This extensibility has been achieved by separating the
task of detecting and collecting information from the task of analyzing and
displaying this information. Thus, the writer of a new monitoring tool is not
concerned with how the monitoring information is collected but only with
interpreting and presenting that information to users.

The architecture of the monitoring system is illustrated in Figure 4. Six
application processes running on two machines, vaxa and ~01, are shown. A
Channel process resides on each machine being monitored, and it collects moni-
toring information from the application processes executing on that machine. A
channel distributes this information to one or more Consoles (the consoles may
be running on different machines), and each console receives information from
one or more channels. A console examines and interprets the monitoring infor-
mation it receives and then presents it to the user. The flow of monitoring
information from application processes to consoles is transparent to application
processes and does not affect the way in which they communicate with each
other via Jipc.

2.3.1 Monitorable Processes and Events. A Jipc process can be either monitor-
able or unmonitorable depending on whether it is loaded with the version of Jipc
that incorporates monitoring. Processes loaded with the monitorable version of

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

128 l J. Joyce et al.

1. vaxb.Receiver enters the Jipc system
2. vaxb.Receiver waits to receive a message from any process
3. cvOl.Sender enters the Jipc system
4. cvOl.Sender searches vaxb for a process with the name ‘Receiver’
5. cvOl.Sender finds vaxb.Receiver
6. cvOl.Sender sends a message to vaxb.Receiver

16 17
7. vaxb.Receiver receives a message from cvOl.Sender

16 17
8. vaxb.Receiver replies with a message to cvOl.Sender

33
9. vaxb.Receiver continues after replying to a message

10. cvOl.Sender receives a reply from vaxb.Receiver
33

11. vaxb.Receiver attempts to leave the system
12. cvOl.Sender attempts to leave the system

Fig. 3. Textual trace for two-process example.

Fig. 4. Monitoring system architecture.

Appllcatlon

Processes Consoles

Channels

Jipc suffer a slight execution speed penalty. Typically, processes under develop-
ment are monitorable, whereas system processes and application processes, which
have already been tested or that are installed in a production environment, are
unmonitorable.

A monitorable event is defined as any Jipc process operation that may have an
effect outside of that process. A monitorable event occurs whenever a process
initiates or completes any of the following operations: entering or leaving a Jipc
system, creating or killing a process, searching for another process to acquire its
process identifier, and message sends, forwards, receives, and replies. An event
also occurs when one of these operations fails. The internal actions of a process,
such as local computations or the manipulation of a message buffer, are not
events.

At compilation time, an application process is loaded with either the monitor-
able version of the Jipc library or the unmonitorable version. The detection of
events is embedded in the monitorable version of the library. The processes
supporting monitoring, (channels, controllers, and consoles) are necessarily
compiled with the unmonitorable version to prevent them from monitoring
ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

Monitoring Distributed Systems l 129

themselves. Application processes may also be compiled with the unmonitorable
version for security or efficiency reasons. This approach ensures that events are
collected in a transparent and consistent manner and that source code changes
are not necessary to generate monitorable events.

When an event is detected in a monitorable process, information concerning
this event is sent to the channel process that is executing on the same machine.
The sequence of events generated by an application process forms an event
stream that is merged, by the channel, with the event streams generated by other
monitorable processes to form a channel event stream.

The events generated by the Receiver process in the two-process example of
Section 2.2 are entering the system, waiting to receive a message. from any
process, actually receiving a message from process Sender, replying to the
message, continuing after replying, and leaving the system. Similarly, the Sender
process produces the following events: entering the system, searching for process
Receiver, sending a message to process Receiver, receiving a reply to this message,
and leaving the system. These events are shown in Figure 3.

2.3.2 Communicating Monitoring Information. A problem in the design of a
monitoring system is deciding how to collect events generated by application
processes. That is, an IPC for monitoring information must be defined. One
approach is to use a different IPC mechanism than the one used by the application
processes. An alternate solution is to use the same IPC mechanism used by the
application processes. The latter approach makes the monitoring system more
portable because it relies on only one message-passing mechanism. A problem
with this approach is that the monitoring system must be able to distinguish
between messages used to pass information among application processes and
messages used to pass monitoring information.

We have adopted the second approach; the Jade monitoring system is a Jipc
system. When an event is detected in an application process, a Jipc message
containing information about the event is sent to the local channel. The moni-
toring system can distinguish between messages being used to pass monitoring
information and messages being passed among application processes because
only the former are sent from application processes to channels.

2.3.3 Controllers. When an event is about to occur in a monitorable process,
monitoring information is conveyed to the channel. Since the Jipc send is
blocking, the application process is blocked, and the event cannot occur until the
channel replies to the process. As soon as the channel replies, the event is allowed
to occur. Normally, a channel replies to a monitoring message before receiving
any other monitoring messages. However, a user can control the order of events
by introducing another monitoring process called the Controller. When a con-
troller exists, all channels forward their monitoring messages to the controller.
The controller can then postpone replying to a monitoring message, thereby
suspending the application process generating that event. It can continue to
receive other monitoring messages without causing an illegal sequence of events.
The user can interact with the controller, as described in Section 4.2.

Figure 5 shows a configuration of the basic monitoring system that includes a
controller. A system can contain only one controller; its purpose is to serve as a

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

130 - J. Joyce et al.

Appllcatlon

Processes Consoles

Controller

Fig. 5. The monitoring system with
controller.

Channels

central site through which all events reported to the channels must pass before
they are distributed to the consoles. A controller can be started or terminated at
any time without affecting the events received by running consoles.

Consoles are processes that plug into one or more channel event streams.
Consoles collect, interpret, and display event information and serve as the
interface between users and the monitoring system. Each type of console inter-
prets the channel event streams it receives and communicates the activities of
the application system to the user in a different way. The simultaneous use
of different consoles provides the user with different views of an executing
distributed program.

23.4 Consoles. When a console is started, the user supplies a list of machine
names that are to be included in the monitoring session. The underlying moni-
toring system is then responsible for either creating channels on the appropriate
machines or linking this new console to already existing channels. Consoles can
be started or terminated at any time and on any machine without affecting the
events received by other Consoles. When a monitorable process enters a Jipc
system, or is created, it is automatically included in any monitoring session active
on its host machine.

Easy prototyping and testing of new consoles was a central goal in the design
of the Jade monitoring system. This was another motivation for separating the
detection and distribution of events from the implementation of the individual
consoles. Monitoring information is collected automatically, and all consoles
receive monitoring information in a predefined format from a single controller
or from several channels. This removes data collection concerns from the devel-
opment of consoles. Consoles for displaying individual Jipc events (Sections 3.1,
3.2, and 3.5), accumulating execution statistics and detecting deadlock
(Section 4.1), re-creating previous executions (Section 4.2), and run-time, com-
munication protocol checking (Section 4.3) have been built.

3. THE DISPLAY OF MONITORING INFORMATION

A monitoring trace can be defined as the depiction of communication events
occurring in a distributed system [ll]. A major part of any monitoring system is
how a trace is presented to the user. Graphical display terminals expand the
alternatives available for the display of interprocess communication events. In
this section, approaches to the depiction of such traces, based on textual and
graphical user interfaces, are presented and compared.
ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

Monitoring Distributed Systems l 131

A simple example of a distributed banking system is used to illustrate the
different approaches to the display of monitoring information. Individual bank
accounts are held at geographically separated banks, forming a distributed
database. The banking system consists of branch computers and personal banking
machines. Transactions are initiated at personal banking machines that com-
municate with the local branch computer. If the account involved in the trans-
action is maintained at the local branch, then the transaction is handled by the
branch computer; otherwise, the transaction is forwarded to the branch where
the account is maintained.

There are two types of transactions that the user can engage in: deposits and
withdrawals. For each transaction the user must provide an account number, an
account type, and the amount of money being deposited or withdrawn. The
banking system implements these transactions with a protocol that involves the
following types of messages: connect, security check, deposit, withdrawal, discon-
nect, error, and success. Branch computers are distinguished from personal
banking machines by capitalization: Calgary is the name of a branch computer,
whereas Calgary is the name of a personal banking machine that communicates
exclusively with Calgary.

3.1 Textual Traces-A Text Console

A Text Console has been developed that reports each event in the event stream
with one or two lines of textual output. The name of the process that initiated
the event, the event type, and the name of the process that is the subject of the
event, if any, are written on the first line. If the event is one in which processes
communicate, the contents of the message are printed as the second line of
output. A textual trace for the example banking system is shown in Figure 6.

A textual trace provides little more than what would be achieved by printing
debugging information at strategic points in each process. However, the user is
not required to insert monitoring statements because events are detected and
reported automatically by the monitoring system. Thus, the possibility of intro-
ducing errors while inserting monitoring statements into each process is elimi-
nated, and consistent monitoring information is provided to consoles.

Facilities for event filtering, breakpoints, and execution histories are included
in the text console for assisting the user in dealing with the large quantities of
information produced by the monitoring system. Each of these facilities depends
on pattern matching in the event stream. There are two types of patterns: Process
patterns and event patterns. A process pattern is an expression that identifies a
process or group of processes. An event pattern identifies an event or group of
events and may include a process pattern. For the distributed banking system
some example event patterns are

EVENT PATTERN MATCHES

Calgary: send Calgary Calgary sending to Calgary
*: reply Vancouver any process replying to Vancouver
*: comm all interprocess communication events

The leftmost column entries are examples of process patterns, for example,
Calgary. Event filtering uses event-stream pattern matching to determine which
events to display: When the console receives an event that matches one of the

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

132 - J. Joyce et al.

1. vaxc.Calgary enters the system
2. vaxc.Calgary waits to receive a message from any process
3. vaxa.Vancouver enters the system
4. vaxa.Vancouver waits to receive a message from any process
5. vaxb.Edmonton enters the system
6. vaxb.Edmonton waits to receive a message from any process
7. vaxd.Saskatoon enters the system
8. vaxd.Saskatoon waits to receive a message from any process
9. vaxd.saskatoon enters the system

10. vaxd.saskatoon sends a message to vaxd.Saskatoon
“connect”

11. vaxd.Saskatoon receives a message from vaxd.saskatoon
“connect”

12. vaxd.Saskatoon replies with a NULL message to vaxd.saskatoon
13. vaxd.saskatoon receives a NULL reply from vaxd.Saskatoon
14. vaxd.Saskatoon continues after replying to a message
15. vaxd.Saskatoon waits to receive a message from any process
16. vaxb.edmonton enters the system
17. vaxb.edmonton sends a message to vaxb.Edmonton

“connect”
18. vaxb.Edmonton receives a message from vaxb.edmonton

“connect”
19. vaxc.calgary enters the system
20. vaxc.calgary sends a message to vaxc.Calgary

“connect”
21. vaxd.saskatoon sends a message to vaxd.Saskatoon

“security code” 200
22. vaxd.Saskatoon receives a message from vaxd.saskatoon

“security code” 200
23. vaxd.Saskatoon sends a message to vaxa.Vancouver

“security code” 200
24. vaxa.Vancouver receives a message from vaxd.Saskatoon

“security code” 200
25. vaxa.Vancouver replies with a message to vaxd.Saskatoon

“success” 5
26. vaxd.Saskatoon receives a reply from vaxa.Vancouver

“success” 5
27. vaxa.Vancouver continues after replying to a message
28. vaxd.Saskatoon replies with a message to vaxd.saskatoon

“success” 5
29. vaxa.Vancouver waits to receive a message from any process
30. vaxd.saskatoon receives a reply from vaxd.Saskatoon

“success” 5
31. vaxd.Saskatoon continues after replying to a message
32. vaxd.Saskatoon waits to receive a message from any process
33. vaxd.saskatoon sends a message to vaxd.Saskatoon

“withdrawal” 200 “savings” 100
34. vaxd.Saskatoon receives a message from vaxd.saskatoon

“withdrawal” 200 “savings” 100
35. vaxd.Saskatoon sends a message to vaxa.Vancouver

“withdrawal” 200 “savings” 100

Fig. 6. Textual trace of distributed banking system.

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

Monitoring Distributed Systems l 133

filters that the user has specified, that event is displayed. This enables the user
to interactively specify the set of events to be displayed by the text console.

Breakpoints are also event patterns specified by the user. When an event
matching a breakpoint occurs, monitoring is suspended and control is given to
the user. The value of breakpoints is that they free the user from having to
constantly watch the console to detect important events. Breakpoints can also
be used to detect impossible events or events that signal error conditions. It is
easy to determine the program state of any process when stopped at a breakpoint
because a sequential debugger can be invoked from the text console.

The history mechanism allows the user to reexamine a specified number of
previous events, in the order of occurrence, for a set of processes defined by a
process pattern. The history facility is a particularly useful adjunct to textual
monitoring because it allows the user to easily determine how a process, or set of
processes, reached a specific state. It also permits events that have scrolled off
of the screen to be redisplayed. The history mechanism maintains a fixed-length
copy of the console event stream that is periodically truncated. The most recent
event generated by each process is also maintained in a separate history structure
that is not truncated, enabling the most recent action of all processes to be
obtained at any time.

When trying to understand a large distributed system, it is important for the
user to be able to focus on only those processes and events that are of immediate
relevance, without having extraneous events cluttering the display. Since both
event filtering and breakpoints can be altered while monitoring, the user can
readily change the focus of the monitoring session. The addition of these facilities
to the basic text console makes it a very useful tool, qualitatively different from
the graphical console presented next.

3.2 Graphical State Displays-The Mona Console

Mona provides the user with an animated graphical view of the event stream.
Whenever Mona receives an event, it updates a picture that represents the
current state of interprocess communication in an application system. Mona has
been implemented on the Jade window and graphics systems; an early version
was described in [14].

Each update to the picture results in the display of a new frame. A frame
describes the current state of the application system; successive frames present
successive states. The sequence of frames is called a mouie. The graphics package
only updates the portion of the picture that is actually changed, so the screen is
not completely redrawn for each new frame. Mona requires a bit-mapped screen,
along with an input device such as a mouse, for pointing to locations on the
screen. Many of the details found in the textual trace are not available with
Mona; for example, the contents of messages are not shown.

A sequence of frames from a simple example is shown in Figure 7. The first
frame (7a) shows the application system with process Receiver running on the
machine named “vaxb.” In the second frame (7b), the small circle inside the
larger circle indicates that process Receiver is waiting to receive a message. In
the next frame (7c), process Sender has entered the system running on “~~01.”
In frame 7d, process Sender has sent a message to process Receiver. The dashed

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

134 l J. Joyce et al.

a) vaxb.Receiver

0
b) voxb.Receivsr

0 0

Fig. 7. Graphical frames corresponding to textual
trace.

d) vax~;--vO~

arrow indicates that the message has been sent but not yet received by process
Receiver. The fifth frame (7e) shows that process Receiver has received the
message from process Sender; the dashed arrow turns solid, and the small circle
disappears. When process Receiver replies to process Sender (7f), the solid arrow
is removed. Finally, as each process leaves the system, it has a cross drawn over
it (7g). Figure 8 shows the frame from the distributed banking system that
corresponds to the system state after the events shown in Figure 6 have occurred.

When a process comes into existence, Mona, by default, places its icon on the
circumference of a series of concentric circles. This often results in an arrange-
ment of icons that does not reflect the structure of the system. To alleviate this
problem, Mona allows the user to reposition icons using the mouse. An arrange-
ment of icons can be saved, and subsequent invocations of Mona can use these
previously defined arrangements when deciding where to position icons.

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

Monitoring Distributed Systems l 135

voxb.edmonton

x

voxb.E monton

voxd.roskatoon

Fig. 8. Mona frame of the distributed banking system.

3.3 Display Management in Mona

The design of a distributed system is often structured hierarchically so that a
collection of processes provides a single service or implements a single function.
Furthermore, individual processes and groups of processes are often combined to
form larger units. During application system development and debugging and the
demonstration of the system’s operation, the user will, at times, want to focus on
the internal workings of a collection of processes and, at other times, will want
to regard a collection as an indivisible unit. The display management facilities
of Mona are able to reflect the system’s structure so that its execution can be
viewed at levels of abstraction above the IPC level. These facilities support
monitoring and debugging after development has moved beyond the IPC protocol
level.

In Mona, a group is defined to be a collection of entities in which each entity
is either a group or a Jipc process. A group is created by using the mouse to
define the opposite corners of a box that physically encloses the processes and
groups that are to constitute the new group. Groups can be created, removed,
and incorporated into other groups, and a group can be repositioned as an
indivisible unit. The grouping of processes is discussed in [7] as a programming
and kernel optimization aid, whereas here it is used as a mechanism to simplify
a large, complex display.

A Mona group may be either open or closed. An open group is delimited by a
dashed-line box; the interactions among the top-level entities of an open group
are displayed. A closed group is delimited by a solid-line box. None of the internal

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

136 l J. Joyce et al.

interactions among the entities of a closed group are shown, and internal process
icons are not depicted. An open group corresponds to a collection of entities that
the user wishes to view. A closed group encapsulates entities whose internal
activities are not of current interest. The rule for displaying events in Mona is
to depict all visible events, that is, those in which the participating processes are
not in subgroups having a common closed ancestor group and those in which the
participants are both on the screen.

Zooming, the counterpart of grouping, enables the user to focus on part of an
application system. There are two types of zooming, physical and conceptual. In
a physical zoom the mouse is used to define a rectangular area of the screen. In
a conceptual zoom a group is selected. In both cases the area or group is enlarged
to fill the entire screen. Successive zoom operations are placed on a stack, so the
user can zoom in and out in a hierarchical manner. Zooming in on a closed group
causes it to be opened (the assumption being that the user is zooming in on the
group in order to see its internal activities).

Shrinking is a display management aid. When the user shrinks a group, it is
scaled into a small box. This physical operation does not change whether the
group is open or closed. Shrunken groups may be moved, opened, closed, removed,
and included inside of new groups. When a shrunken group is expanded, it regains
its former size. If a shrunken group is removed, its subcomponents are automat-
ically expanded to their previous size. A step mode also helps the user manage
the display by requesting confirmation before the depiction of the next visible
event. This alleviates the problem of events being portrayed so quickly that they
flicker past, leaving the viewer unsure of what just happened.

These ideas are illustrated in Figures 9 and 10 which show a system component
that consists of two producers, a buffer, and two consumers. Figure 9 shows the
two producers in an open group and the two consumers in an open group that
has been shrunk. Figure 10 shows the display after both the producer and
consumer groups have been closed, and the entire subsystem has been enclosed
in an open group. From here the user can choose to view the producer/consumer
subsystem as a buffer in a larger system by closing and shrinking this group.

Schwan and Matthews describe other research into graphically displaying
parallel programs [22]. They present a graphical tool that permits the user to
construct and display multiple static views of a parallel program. The tool
constructs a view by extracting information from a database through the use of
binary relationships between objects, as in [23]. These objects represent a
program component or a group of components and are similar to groups in Mona.
Schwan and Matthews’s tool is more flexible than Mona in the types of relation-
ships it can show (Mona only displays the current interprocess communication
state); however, their tool is unable to display information that shows how the
system evolves at run time.

3.4 A Comparison of the Text Console and Mona

Both the text console and Mona display an event trace. The primary difference
is that Mona shows the current state of interprocess communication, whereas
the text console shows the last N events that occurred in the system (where N is
determined by the size of the screen).

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

Monitoring Distributed Systems l 137

L----l

Fig. 9. Two open groups.

Fig. 10. Two closed groups within an open group.

When watching a system execute with the text console, all the user sees is
lines of text being written out and the screen scrolling. Usually this takes place
so rapidly that it is difficult for the user to read and make sense of the trace
while the system is running. Thus, it is very difficult to determine the current
state of an application system by watching the text console. The related problem
of recognizing particular events in the event stream is handled by using filters
and breakpoints.

In the text console, all events are initially displayed in a single place, whereas
in Mona, events are displayed all over the screen. This means that it is difficult
to know where the next event will be displayed by Mona but, at the same time,
Mona gives processes and groups an identity they do not have in the text console.
For example, since each process, or group of processes, has an identified site on
the display, the user can determine the state of a process by looking at this site.

The text console has been used primarily for debugging systems at the IPC
level. This is because the trace it produces contains all the events that have
occurred during monitoring. When this trace is combined with close scrutiny of

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

138 - J. Joyce et al.

vaxb.Z

Fig. 11. Blocked system state.

the source code, the user is provided with a complete record of the system’s
execution that can be used in finding and correcting errors.

Mona, in contrast, always presents an up-to-date view of the system state but
does not display all events and provides no indication of the sequence of events
that led to a particular state; you may not know how you got there but at least
you know where you are. For example, to determine why a particular process has
failed to receive a message sent to it, it is necessary to look back through the
textual trace to see if the process has been left blocked by a previous event.
Mona, on the other hand, provides the current state to the user with a single
picture that depicts all process interactions. This is illustrated in Figure 11. The
Mona display clearly shows that X cannot receive the message from 2 because it
is blocked on a send to Y, and Y has not yet replied to X.

Mona shows more than discrete events; general patterns of activity are com-
municated to the user. Indeed, these general patterns are often more informative
than the details of each event. For instance, an anomaly in a general pattern
may pinpoint a problem much sooner than a detailed, time-consuming analysis
of each event in a textual trace. The importance of recognizing patterns as a
debugging activity is discussed in [181.

Our use of graphics is based on an assumption that an observer employs mental
imagery to understand system activity. Thus, a line of text describing an event
is harder to understand because it must be translated into the user’s mental
model of the system. Mona’s depiction of such an event seems to be closer to the
user’s mental model and requires little or no translation. This is supported by
Model:

These facts also show that sensory information is highly organised before it reaches the
parts of the brain associated with abstraction, analysis, and other components of thought.
The significance for monitoring facilities of these information processing characteristics of
the human organism is that the pictorial, or analogical, presentation of information is often
more effective than presentation in more abstract, symbolic modes [such as text]. [X3, p. 121

Text is an inherently more sequential medium than graphics: English text
must be read left-to-right and sequentially to make sense, whereas a pictorial
representation submits to direct access and focusing on the part of the picture
that is of interest. This leads us to believe that it is easier for the user to
assimilate the information presented by Mona than to assimilate the same
information presented by the text console.

We note that some of the problems with textual traces are due to the line-by-
line style of communication with users. A display terminal allowing direct
modification of any part of the screen could be used to develop a better monitoring
ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

Monitoring Distributed Systems l 139

tool that is not necessarily graphical. For example, events for different processes
could be placed on separate portions of the screen, thus relieving some of the
problems resulting from having these events interleaved. Finally, the textual
trace, by listing one event after the other, often suggests a temporal ordering of
events when no such ordering exists or at least when the order is not significant.
This putative ordering may influence a developer to make unfounded assumptions
or to reject reasonable hypotheses.

Whereas Mona has proved to be useful as a debugging tool, we have found that
its primary value is in communicating the structure and dynamic behavior of
distributed systems. The movie produced by Mona is a more effective means of
explaining the structure of a system, the relationships among processes, and the
general pattern of process interactions than a written or verbal explanation. This
function is enhanced by the fact that the user can move and group icons
representing processes in such a way that the resulting organization better reflects
the user’s mental model of the system. For this reason, we consider Mona to be
a powerful tool for dynamic documentation.

In a discussion of pedagogical uses of computer animation, Mincy suggests
that the key to understanding is visualization and proposes computer animation
as a means of achieving this visualization [17]. We believe that Mona can be a
valuable aid in teaching distributed systems concepts to students [5]. Also see
[4], [lo], [13], and [29] for further examples of the use of animation in under-
standing the behavior of programs and simulations.

The text console and Mona were both written for the same reason: to display
a trace of the events occurring in a distributed system. We expected them to
represent two different ways of doing the same thing. In fact, Mona and the text
console fulfill different roles: Mona has been most useful in facilitating the
understanding of a system’s structure and behavior whereas the text console has
been used primarily as a postmortem debugging tool.

3.5 An Event Line Console

Neither the text console nor Mona is able to display simultaneously both the
current state of the system and the sequence of events that led to that state. In
response, we have recently developed a console that displays process evolution
versus events.

The Event Line Console displays the current state and history of each process
in a compact form and, at the same time, defines the relative ordering of events.
Figure 12 shows the display produced by the event line console after it has
processed the events listed in Figure 6. The display is divided into three sections:

(1) On the right-hand side of the display, the name of each process is listed along
with a single-letter abbreviation for that processThe abbreviation is also
repeated on the left and is used to identify the process in event descriptions.

(2) In the middle section there is one row for each process. Each event line is
divided into an equal number of event intervals. An event interval demarcates
adjacent events in the console event stream; it has no relationship to the
passage of real time. Each event interval displays an event; events are inserted
at the right of the display and scroll to the left.

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

140 l J. Joyce et al.

EVENT LINE CONSOLE Commands: Go PAUSE Step Quit

t
(RA 1 a vaxc.Calgary
(RA 1 d)-Rd------(RA b vaxa.Vancouver

Fl
(RA 1 f) _____________________ __.____.___.____________________________------------ c vaxb.Edmonton
(RA 1 e)-(Sb)-Re ------ (RA .e)-(Sb d vaxd.Saskatoon

1
Sd) 1 ------(Sd) ------------------ (Sd e vaxd.saskatoon
(SC I f vaxb.edmonton

g I E-(Sa g vaxc.calgary

EVENTS: 1 initialize (Sp . . .) send to p Cp create p
E enter-system (RP ...) receive from p Kp kill p
L leave-system (RA . p) receive-any K killed
X exit RP reply to p

Note that (and) bracket the start and end of blocking calls.

Fig. 12. Event line console trace of events listed in Figure 6.

(3) The section on the left (to the left of the vertical bar) shows the last event
to scroll off the left-hand side. This event is retained so that the current
state of a process is always available, even if a process has had all of its
events scrolled off of the middle section (because the process is blocked or
has not generated an event recently).

In the middle section, the relative ordering of events is shown by their location
on the horizontal axis. This information is lost for the events displayed to the
left of the vertical bar.

A process’s event line is blank before it enters the Jipc system or is created
and after it leaves the Jipc system or is killed. While a process is executing and
not generating monitorable events, its event line is dashed (---). A dotted (. . .)
line signifies that the process is blocked by a Jipc call. Events generated by a
process are shown on its event line using the symbols listed in the legend of
Figure 12 and the identifying letters of other processes. This event line console
could be extended in several ways: (1) a history function could be provided by
permitting the user to scroll the event lines both left and right, (2) a breakpoint
facility could be provided, (3) the user could point to an event and have the
message or parameters associated with that event displayed, and (4) the user
could move event lines vertically so that the event lines of related processes are
adjacent or grouped.

We have little experience using the event line console. Its development was
motivated by the apparent preference of most users for the text console during
debugging. With extensions such as those listed above, we anticipate that the
event line console will be more useful than the text console.

4. EVENT MANAGEMENT AND ANALYSIS

The role of monitoring in the development of distributed systems can be extended
by mechanisms that perform computations on an event stream, that enable
nondeterminism to be controlled, and that utilize application-specific information
to interpret an event stream. Mechanisms able to operate without any knowledge
about the specific application system being monitored include the analysis of

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

Monitoring Distributed Systems l 141

interprocess communication patterns and the control and re-creation of specific
execution paths. Examples of consoles that implement such mechanisms are
described in Sections 4.1 and 4.2.

During the monitoring process it is inevitable that the system developer will
need to observe behavior that is specific to the current application. Information
can be presented to a monitoring system that enables it to interpret an event
stream in a way that is relevant to a particular application distributed system.
Two approaches are presented in Sections 4.3 and 4.4.

4.1 Communication Analysis

The consoles described in Section 3 simply display a stream of events. Tools that
accept a stream of events, perform computations on this stream, and then present
computed results to a user can also be implemented as consoles. One that we
have implemented collects statistics on interprocess interactions, and another
determines whether the state of communication among a set of processes is
deadlocked.

4.1.1 A Statistics Console. The number and type of events that occur during
the execution of an application system, as well as additional information available
to the monitoring system such as message lengths, can be recorded for each
process. At any time, the Statistics Console can be interrupted and data can be
displayed either for individual processes or for the entire system. For IPC events,
the statistics can be separated into local calls (the initiating and destination
processes are on the same machine) and remote calls (the initiating and desti-
nation processes are on separate machines). The type and number of errors
generated by each process are also recorded.

This console assists in optimizing a system at the interprocess communication
level. Statistics concerning which processes communicate, how often they com-
municate, and average message length can aid in making decisions about system
and process decomposition and the assignment of processes to processors.

4.1.2 A Deadlock Detection Console. The Deadlock Detector is a debugging tool
that uses the event stream to maintain a model of the state of a Jipc system. As
the deadlock detector receives each event, it updates the model and checks to see
if any cycles of blocked processes exist in the model. When deadlock is detected,
the user is informed, information regarding the current state of the deadlocked
processes is displayed, and the system’s execution is halted.

l’he advantages of the deadlock detector are (1) it actively monitors for
deadlock; Mona, however, depends on the user to recognize deadlock; (2) in a
distributed system with many processes, it can detect and identify deadlock
among a small subset of the processes even though the rest of the system is
operating normally; and (3) it requires no attention from the user until deadlock
is detected.

4.2 Controlling Nondeterminism

One of the difficult problems in developing distributed systems is their inherent
nondeterminism. Since events that are independent can occur in arbitrary order,
a correct execution of an application system corresponds to a partial ordering of
the communication events. Our monitoring system can be used to control the

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

142 - J. Joyce et al.

order of events. This control can be used to automatically re-create a specific
execution path from a recorded trace.

4.2.1 Interactive Control. As described in Section 2.3, a controller enables the
user to determine the order in which pending events occur. Whenever a Jipc
primitive is invoked by a monitorable process, a message is sent notifying the
local channel. The channel first distributes this information to all consoles and
then allows the monitored process to continue; that is, the monitored process is
blocked until it receives a reply from the channel. If a controller is used, it is able
to delay this reply to the application process, thereby preventing the monitored
process from continuing.

At any given time there will be a set of pending events that are being delayed
by the controller. The user can direct the controller to release a pending event
or to continue receiving event information from other monitored processes and
delay these events in a similar manner. At any point, the user may release a
pending event that will result in the controller distributing the event to the
consoles and then allowing the monitored process to continue. Thus, the system
executes normally, but no event can be completed until the user allows it. Using
the controller, the user is able to produce any sequence of events that the
processes could possibly generate. This permits the user to observe how a system
behaves in states that are improbable or erroneous.

A form of controller can also be used to produce an event ordering based on
logical or simulated time. A logical clock can be associated with each process.
Messages sent by a process can be time stamped with the value of this clock at
the time the message is sent [151. A process may also arbitrarily increase its own
clock to represent, for example, the passage of simulation time. The controller
can then use these time stamps to select the event with the smallest time stamp
from the set of pending events as the one that is to occur next. This mechanism
can be used during the development process to simulate the operations of
unimplemented components and the interaction of these components with pro-
cesses that are currently being debugged and evaluated [161.

4.2.2 State Re-creation. An important requirement for debugging is repeat-
ability or system state re-creation. The ability to faithfully repeat a distributed
system’s execution permits errors that only manifest themselves on selected
execution paths to be isolated and identified. This facility is implemented by a
console and a controller. The console records, in a transcript file, all events that
occur in an application system and any commands issued by the user that can
affect the system’s execution. After a system has finished executing, the controller
can use this transcript to guide the system’s reexecution so that it re-creates the
system’s original execution. It does this by taking events from the transcript and
comparing them against the actions in the system. At all times the controller
knows what event must be executed next to ensure that this execution matches
the original execution. The controller waits for this event to occur or waits until
it knows that this event cannot occur. Re-creation continues until (1) a process
does something different from what the transcription indicates; (2) the user
enters a command which would change the system’s execution; or (3) the user
turns re-creation off. In all of these cases the system can subsequently be allowed
to continue execution.
ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

Monitoring Distributed Systems l 143

MESSAGE BUFFERS:
(acctnumber) ::= (I: range 0 . . . 499)
(acct-type) ::= (S: “savings” 1 “checking” 1 “visa”)

(null) ::= ()
(error) ::= (S: “error”)
(success) ::= (S: “success”; I)

(connect) ::= (S: “connect”)
(security check) ::= (S: “security check”; acct-number)
(deposit) ::= (S: “deposit”; acct-number; acct-type; I)
(withdrawal) ::= (S: “withdrawal”; acct-number; acct-type; I)
(disconnect) ::= (S: “disconnect”; I)

(result-buf) ::= (null) 1 (success) 1 (error)
(request-buf) ::= (connect) 1 (security check) 1 (deposit) 1 (withdrawal)
(all-buf) ::= (request-buf) 1 (result-buf)

Fig. 13. Example message definitions.

A transcript can also be used to play back the execution of a distributed system
on a set of consoles. Instead of receiving events from monitored processes, the
channel takes events from a transcript file. The source of the events is transparent
to the consoles. Playback is useful when repeating a system’s execution is
expensive. These transcript and playback facilities provide a form of dynamic
documentation by allowing test runs and demonstration runs to be archived for
later use.

4.3 Run-Time Protocol Checking

When the correct patterns of interprocess communication within an application
system can be specified, this specification can be used by a monitoring system to
recognize erroneous patterns. Many techniques have been defined for specifying
communication protocols; a survey is given in [21]. We have implemented a
console in Prolog called the Protocol Checker that accepts a specification of the
allowable process interactions for a particular distributed system. The protocol
checker receives events in the same manner as any other console but, instead of
displaying the events, it checks them against the specification. If the event is
permissible, then nothing happens; otherwise, the discrepancy is reported to the
user. The user specifies Jipc level interactions to the protocol checker in three
parts: (1) the types of messages used in the system, (2) the classes of processes
in the system, and (3) the processes or process classes that interact and the types
of messages they use for each type of interaction.

The first part describes the acceptable message formats that can be used in
the system being monitored. A Backus-Naur form (BNF)-like grammar is used
to describe the messages in terms of the primitive Jipc data types (integer,
character, string, floating-point, process id, byte-block, and atom) and previously
defined messages. Besides specifying the order and type of data items in a
message, the value of a data item can also be restricted to a range of values or be
one of a list of values. Several example message definitions for the banking
system are shown in Figure 13. The second line defines the message type (acct-
number) that consists of an integer (I) in the range 0 through 499. A (withdrawal)

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

144 - J. Joyce et al.

PROCESS-CLASSES:
(database) ::= Calgary 1 Edmonton 1 Saskatoon 1 Vancouver
(bank-machine) ::= Calgary 1 edmonton I saskatoon I Vancouver

(all) ::= (bank-machine) I (database)

Fig. 14. Definition of process classes.

INTERACTIONS:
(bank-machine) send (database)

(bank-machine) ret-reply (database)

::= (request-buf)

::= (result-buf)

(database) receive (bank-machine) ::= (request-buf)

(database) reply (bank-machine) ::= (result-buf)

(database) send (database) ::= (request-buf)

(database) receive (database) ::= (request-buf)

(database) reply (database) ::= (result-buf)

(database) rec.reply (database) ::= (result-buf)

Fig. 15. Process/message interactions specification.

message type is comprised of the string “withdrawal,” the submessages (acct-
number) and (acct-type), and an integer representing the size of the withdrawal.
The second part of the system description associates specific processes with
general process classes. In Figure 14 the process class (database) consists of the
processes named Calgary, Edmonton, Saskatoon, and Vancouver.

The third part of the system description defines the permissible types of
interactions between classes of processes and the types of messages they can use
for each type of interaction. Each definition in this section consists of an
interaction specification and the message(s) that can be used during that inter-
action. Each interaction specification is further made up of a subject process
class followed by an interaction name and another process class. The interaction
names are send, receive, reply, and ret-reply; the first three correspond to the
Jipc interprocess communication primitives, and ret-reply refers to the types of
messages a process can expect to receive as replies.

An example specification for the banking system is shown in Figures 13-15.
The first and second lines in Figure 15 indicate that a process of class
(bank-machine) can send messages of type (request-buf) to processes of class
(database) and that it can expect to receive messages of (result-buf) as replies.

Some uses for the protocol checker and its associated input protocol specifi-
cation are

(1) The specification provides a consistent notation for describing the commu-
nication interfaces among a set of application processes. Developers can use
this mechanism to define interfaces that are checked at run time.

(2) While the system is executing, the protocol checker is able to detect some
errors in the implementation of the protocol. Without the protocol checker,
an illegal data item can be inadvertently passed among several processes

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

Monitoring Distributed Systems l 145

before the error causes one of them to fail. The protocol checker detects the
error as close to its source as possible, thus minimizing the damage done by
its propagation.

(3) As the system evolves and changes are made to the specification, the protocol
checker ensures that modules conform to the updated specification.

4.4 Event Abstraction

The events of interest during system development change from IPC events to
complex patterns of IPC events that correspond to high-level operations in an
application. By recognizing a sequence of lower level events as a composite event,
information that is not currently relevant can be eliminated. For example,
producer, buffer, and consumer processes may form a simple component of a
larger system. Whereas several events are required to transfer a message from
the producer through the buffer to the consumer, only the higher level event of
an item being consumed may be of interest to the user. The purpose of event
abstraction is to support system debugging after development has moved beyond
the IPC protocol level.

Just as an abstraction can be constructed in terms of primitive events, yet
higher level abstractions can be defined in terms of events specified at the
previous level. A composite event console could be developed that accepts a
specification defining several levels of abstraction and reports events that occur
at each level. The levels of abstraction and events at each level would form a tree
with IPC events occupying the leaves. The composite event console is analogous
to grouping in Mona; however, Mona groups processes, whereas a composite
event console would group events.

As an application system executes, IPC events would be collected by the
composite event console and, at any given .time, several partially completed
composite events could exist. The low-level events that comprise a composite
event need not be contiguous in the stream of events. The composite event
console must also be able to recognize events that can never be completed, for
example, when processes required to complete a composite event have died.

Besides being able to report events in terms of abstractions, the composite
event console must permit the user to switch among the levels at which the
system is being monitored. When debugging, the user is continually observing
the system, forming hypotheses, and testing these hypotheses. The ability to
change the level of monitoring becomes relevant when the user is observing a
system at one level, notices some event in the system that suggests a particular
hypothesis, and wants to check it at a more finely focused level.

Event abstraction can be illustrated using the bank system. The design of this
system can be decomposed into four distinct layers with different types of events
at each level:

(1) primitive Jipc events.

(2) remote procedure call events that consist of Jipc send/receive/reply events.
(3) database transaction events that consist of either querying or updating the

database. In either case, a transaction will be composed of a sequence of
remote procedure calls.

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

146 l J. Joyce et al.

1. vaxc.Calgary enters the system
2. vaxa.Vancouver enters the system
3. vaxb.Edmonton enters the system
4. vaxd.Saskatoon enters the system
5. vaxdsaskatoon enters the system
6. vaxd.saskatoon calls “connect” in vaxd.Saskatoon

arguments + NONE
7. vaxd.saskatoon returns from “connect”

results * NULL
8. vaxb.edmonton enters the system
9. vaxb.edmonton calls “connect” in vaxb.Edmonton

arguments + NONE
10. vaxc.calgary enters the system
Il. vaxc.calgary calls “connect” in vaxc.Calgary

arguments * NONE
12. vaxd.saskatoon calls “security check” in vaxd.Saskatoon

arguments =+ 200
13. vaxd.Saskatoon calls “security check” in vaxa.Vancouver

arguments * 200
14. vaxd.Saskatoon returns from “security check”

results * “success” 5
15. vaxd.saskatoon returns from “security check”

results * “success” 5
16. vaxd.saskatoon calls “withdrawal” in vaxd.Saskatoon

arguments =+ 200 “savings” 100
17. vaxd.Saskatoon calls “withdrawal” in vaxa. Vancouver

arguments * 200 “savings” 100

Fig. 16. Trace of banking system at the transaction level.

(4) database session events that consist of a sequence of transactions begin-
ning with the establishment of a connection to the database, followed by
a series of query and update transactions, and finally, a disconnection
transaction.

Figure 16 shows a trace of the banking system at the transaction level that
corresponds to the events shown in Figure 6. Composite events could also be
displayed graphically by using a version of Mona that accepts a specification of
composite events and a description of how each event is to be animated. Just as
Mona frees the user from having to deal with the system by reading a textual
trace, the composite event console would free the user from having to deal with
the system at the IPC level.

Bates and Wileden [3] describe previous work related to event abstraction.
They propose behavioral abstraction as a tool for debugging distributed systems.
Behavioral abstraction provides a means of transforming the stream of primitive
events produced by a distributed system into a stream of composite events that
correspond to the user’s view of the system. Clustering and filtering are two
essential mechanisms in behavioral abstraction. Clustering gathers together one
or more primitive events into a single higher level event. Filtering removes
primitive events from consideration as candidates in the formation of a higher
level event. They also discuss some of the problems involved with recognizing

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

Monitoring Distributed Systems l 147

composite events out of a stream of low-level events, that is, filtering out noise,
handling the relative timing of processes, sharing a primitive event between more
than one composite event, and time and space considerations.

Baiardi et al. [l] present a debugger that is also based on levels of event
abstraction. This debugger allows knowledge of the semantic model of the
programming language to be included in event definition. Event abstraction is
also discussed in [181.

5. DISCUSSION AND CONCLUSIONS

Our work on monitoring evolved from previous research that focused on the
simulation and prototyping of computer systems [26]. The role of distributed
systems in this work led to the development of Jade and its subsequent application
to simulation and prototyping [161. The display and animation of simulation
traces [4, 10, 131 was a natural outgrowth of this work and resulted in the
development of an initial version of the Jade monitoring system. This version
was embedded within the implementation of Jipc.

As a result of the lessons learned from this simulation research and the initial
Jade monitoring system, a new monitoring scheme was designed and implemented
in 1984 and 1985. Two of the key objectives of the new implementation were to
build the monitoring system on top of Jipc, to increase its modularity and
portability, and to create a small set of basic tools that could be extended in
different directions to facilitate experimentation with alternative monitoring
schemes. This monitoring system was released as an integral part of the third
release of Jade in the Fall of 1985 and forms the basis of most of this paper.
During 1985 and 1986, a number of application systems, including a relatively
large distributed simulation system [28] have been built using Jade and its
monitoring system.

Our experience with the development and use of the monitoring system has
led us to the following conclusions:

(1) Collecting and distributing monitoring information with the same IPC
mechanism used by application processes offers several advantages. The design,
debugging, and maintenance of the monitoring system is simplified. Also, when
an application program is ported to a target network of machines, support for
the monitoring system is available without having to port a second IPC mecha-
nism.

(2) The detection and collection of monitoring data should be separate from its
analysis and display. This separation supports the development of an integrated
set of tools that share a common implementation and that can work together
effectively (e.g., textual traces and deadlock detection). This approach also
permits a wide range of monitoring tools to be implemented efficiently because
the writer of each new tool does not have to become familiar with the low-level
details of how monitoring information is gathered.

(3) A wide variety of different monitoring views and interpretations is needed.
This is because no single tool can display all the information the user requires.
The spectrum of tools required has at least two dimensions. First, it is necessary

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

148 l J. Joyce et al.

to be able to move from low-level IPC views through increasingly higher levels
of abstraction. Second, the use of complementary views, such as textual traces
and graphical state displays, is very effective.

(4) Textual and graphical displays offer roughly orthogonal views into a system’s
execution. The former provides a complete record of a system’s execution whereas
the latter provides a relatively clear picture of the system’s state. Our experience
with the text console and Mona strongly suggests that the former is more useful
for tracking down the cause of an error, whereas the latter provides more insight
into the system’s overall operation.

(5) The ability to interactively control nondeterminism and to reproduce specific
computation paths is crucial. This permits better test coverage because improba-
ble, but nevertheless possible, execution paths can be explicitly tested, and
erroneous executions can be reproduced easily.

(6) The ability to control nondeterminism supports system prototyping. The use
of a combination of real and simulated time to automatically determine the order
in which independent events occur enables the execution of an application system
to be coordinated with simulations of, as yet, unimplemented or unavailable
components.

(7) Animated, graphical state displays provide a very effective form of
dynamic documentation. In practice, Mona has been used most often to demon-
strate a system to those who are unfamiliar with the system’s structure and
operation.

(8) A monitoring system should be able to exploit semantic information about
an application system. Except when the user is monitoring the system at the IPC
level, the monitoring tools must be able to interpret and display information in
a way that reflects the structure and dynamic behavior of the system. This is not
possible unless the monitoring system is able to recognize patterns of lower level
interactions as logical operations in the application system.

Our work has focused on monitoring at the interprocess communication level.
The processing and interpretation of large amounts of monitoring data, a problem
common to the monitoring of both sequential and distributed systems, remains
unresolved. For example, it is possible to collect a transcript of a system’s
execution that leads to an error and to use this transcript to recreate the erroneous
execution. However, this is often not practical when the system must execute for
a long period of time before the error occurs. Further work is also needed on the
specification of higher level system activity in ways that can be exploited by both
graphical and textual monitors.

ACKNOWLEDGMENTS

We would like to thank the faculty, students, and staff associated with the Jade
Project for contributing ideas and for providing an excellent environment in
which to explore these ideas. Special recognition is due John Cleary and Radford
Neal for their contributions to this work. We would also like to express our
appreciation to the Natural Science and Engineering Research Council of Canada
for supporting this research.

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

Monitoring Distributed Systems l 149

REFERENCES

1. BAIARDI, F., DE FRANCESCO, N., MATTEOLI, E., STEFANINI, S., AND VAGLINI, G. Development
of a debugger for a concurrent language. Softer. Eng. Not. 8,4 (Aug. 1983), 98.

2. BALZER, R. M. EXDAMS-EXtendable debugging and monitoring system. In Proceedings of
AFIPS Spring Joint Computer Conference. AFIPS Press, Reston, Va., 1969,567-580.

3. BATES, P., AND WILEDEN, J. C. An approach to high-level debugging of distributed systems.
Softw. Eng. Not. 8, 4 (Aug. 1983), 107.

4. BIRTWISTLE, G. M., WYVILL, B. L. M., LEVINSON, D., AND NEAL, R. Visualizing a simulation
using anirnated pictures. In Proceedings of SCS Conference on Simulation in Strongly Typed
Languages (San Diego, Calif., Feb. 2-4,1984). Society for Computer Simulation, San Diego, 1984,
57-61.

5. BROWN, M. H., AND SEDGEWICK, R. Techniques for algorithm animation. IEEE Softw. 2, 1
(Jan. 1985), 28.

6. CHERITON, D. R., MALCOLM, M. A., MELEN, L. S., AND SAGER, G. R. Thoth: A portable real-
time operating system. Commun. ACM 22,2 (Feb. 1979), 105-115.

7. CHERITON, D. R., AND ZWAENEPOEL, W. Distributed process groups in the V Kernel. ACM
Trans. Comput. Syst. 3,2 (May 1985), 77-107.

8. CORSINI, P., AND PRETE, C. A. Multibug: Interactive debugging in distributed systems. IEEE
Micro 6, 3 (June 1986).

9. DEWAR, A. A graphical debugger for prolog. Master’s thesis, Department of Computer Science,
University of Calgary, Calgary, Alberta, Canada. (1985).

10. DEWAR, A., AND UNGER, B. Graphical tracing and debugging of simulations. In Proceedings of
SCS Conference on Simulation in Strongly Typed Languages (San Diego, Calif., Feb. 2-4, 1984).
Society for Computer Simulation, San Diego, 1984, 68-76.

11. GARCIA-M• LINA, H., GERMANO, F., AND KOHLER, W. H. Debugging a distributed computing
system. IEEE Trans. Softw. Eng. 10, 2 (Mar. 1984), 210.

12. HARRISON, M. D. Monitoring a target network to support subsequent host simulation. Res.
Rep., Dept. of Computer Science, University of York, Toronto, Ontario, Canada (1984).

13. JOYCE, J. J., BIRTWISTLE, G. M., AND WYVILL, B. L. M. ANDES-an environment for animated
discrete event simulation. In Proceedings of United Kingdom Simulation Conference (Bath, U.K.,
May 1984). United Kingdom Simulation Council, 1984.

14. JOYCE, J. J., AND UNGER, B. W. Graphical monitoring of distributed systems. In Proceedings
of the SCS Conference on AZ, Graphics, and Simulation (San Diego, Calif., Jan. 1985). Society for
Computer Simulation, San Diego, Calif., 1985,85-92.

15. LAMPORT, L. Time, clocks, and the ordering of events in a distributed system. Commun. ACM
22, 7 (July 1978), 558-565.

16. LOMOW, G. A., AND UNGER, B. W. Distributed software prototyping and simulation in Jade.
Con. J. Oper. Res. Inf. Process. 23, 1 (Feb. 1985), 69-89.

17. MINCY, J., THARP, A., AND TAI, V. Visualizing algorithms and processes with the aid of a
computer. In 14th SIGSCE Technical Symposium on Computer Science Education. SIGCSE Bull.
15,l (1983), 106-111.

18. MODEL, M. L. Monitoring system behavior in a complex computational environment. Ph.D.
dissertation, Department of Computer Science, Stanford University, Stanford, Calif. (1979) Also
available from Xerox Palo Alto Research Center, Palo Alto, Calif.

19. MYERS, B. A. Incense: A system for displaying data structures. Comput. Gr. 17, 3 (July 1983).
20. NEAL, R., LOMOW, G. A., PETERSON, M., UNGER, B. W., AND WITTEN, I. H. Experience with

an interprocess communication protocol in a distributed programming environment. In Proceed-
ings of CIPS Session ‘84 Conference (Calgary, Alberta, Canada, May 9-11, 1984). Canadian
Information Processing Society, Calgary, 1984, 361-364.

21. NOUNOU, N., AND YEMINI, Y. Development tools for communication protocols. l&s. Rep.
CUCS-160-85, Department of Computer Science, Columbia University, New York, N.Y. (Feb.
1985).

22. SCHWAN, K., ANI) MATTHEWS, J. Graphical views of parallel programs. Softw. Eng. Notes II,
3 (July 19%). 51-64.

23. SNODGHASS, Ii. ‘I’. Monitoring distributed systems: A relational approach. Ph.D. dissertation,
1)rpar(rncn~ of Computer Science, Carnegie-Mellon University, Pittsburgh, Pa. (1982).

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

150 ’ J. Joyce et al.

24. SOFTWARE RESEARCH AND DEVEVLOPMENT GROUP. Jade User’s Manual (4 ~01s). Res. Rep.,
University of Calgary, Dept. of Computer Science, Calgary, Alberta, Canada. (Oct. 1985).

25. TEITELMAN, W., AND MASINTER, L. The interlisp programming environment. IEEE Cornput.
24,4 (Apr. 1981).

26. UNGER, B. W., AND BIDULOCK, D. S. The design and simulation of a multicomputer network
message processor. Comput. Networks 6,4 (Sept. 1982) 263-277.

27. UNGER, B. W., BIRTWISTLE, G. M., CLEARY, J. G., AND DEWAR, A. A distributed software
prototyping and simulation environment: Jade. In Proceedings of SCS Conference on Intelligent
Simulation Enuironments (San Diego, Calif., Jan. 23-25,1986). Society for Computer Simulation,
San Diego, 1986,63-71.

28. UNGER, B., CLEARY, J., LOMOW, G., LI, X., SLIND, K., AND XIAO, Z. Jade virtual time
implementation manual. Res. Rep. 86/242/16, Department of Computer Science, University of
Calgary, Calgary, Alberta, Canada (Oct. 1986).

29. VAUCHER, J. Future directions in simulation software. In Proceedings of SCS Conference on
Simulation in Strongly Typed Languuges (San Diego, Calif., Feb. 1984).

30. WYVILL, B. L. M., NEAL, R., LEVINSON, D., AND BRAMWELL, B. JAGGIES: A distributed
hierarchical graphics system. In Proceedings of CZPS Session ‘84 Conference (Calgary, Alberta,
May 9-11, 1984). Canadian Information Processing Society, Calgary, 1984, 214-217.

Received July 1985; revised November 1986; accepted November 1986

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

