
Proceedings of the 30th International Conference on Software Engineering (ICSE 2008), pages 61–70, ACM Press, New York, NY, 2008

Testing Pervasive Software in the Presence of Context
Inconsistency Resolution Services

∗†‡

Heng Lu
The University of Hong Kong

Pokfulam, Hong Kong

hlu@cs.hku.hk

W. K. Chan
City University of Hong Kong
Tat Chee Avenue, Hong Kong

wkchan@cs.cityu.edu.hk

T. H. Tse
The University of Hong Kong

Pokfulam, Hong Kong

thtse@cs.hku.hk

ABSTRACT

Pervasive computing software adapts its behavior according to the
changing contexts. Nevertheless, contexts are often noisy. Context
inconsistency resolution provides a cleaner pervasive computing
environment to context-aware applications. A faulty context-aware
application may, however, mistakenly mix up inconsistent contexts
and resolved ones, causing incorrect results. This paper studies
how such faulty context-aware applications may be affected by
these services. We model how programs should handle contexts
that are continually checked and resolved by context inconsistency
resolution, develop novel sets of data flow equations to analyze the
potential impacts, and thus formulate a new family of test adequacy
criteria for testing these applications. Experimentation shows that
our approach is promising.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—Testing

tools; D.2.8 [Software Engineering]: Metrics—Product metrics

General Terms

Verification, Experimentation, Measurement, Reliability

Keywords

pervasive computing, context inconsistency resolution, test adequacy

∗ c©ACM, 2008. This is the authors’ version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proceedings of the 30th International

Conference on Software Engineering (ICSE 2008), pages 61–70, ACM
Press, New York, NY, 2008. http://doi.acm.org/10.1145/1368088.1368098.

†
This research is supported in part by grants of the Research Grants Council

of Hong Kong (project nos. 111107, 716507, 717506).
‡

All correspondence should be addressed to Prof. T. H. Tse at Department
of Computer Science, The University of Hong Kong, Pokfulam, Hong
Kong. Tel: (+852) 2859 2183. Fax: (+852) 2858 4141. Email:
thtse@cs.hku.hk.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’08, May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

1. INTRODUCTION
In pervasive computing, a context-aware [2] application widely

uses contexts [2, 14] to represent and reason about the dynamic
computing environment. The application may adapt its behavior
accordingly and produce new contexts. Researchers are studying
effective techniques to address the identified testing challenges for
context-aware applications [13, 14, 20, 21]. Nonetheless, many
contexts are inherently noisy and need to be resolved or repaired for
improving their data quality [10, 24]. A context-aware application
should be implemented carefully.

For instance, Radio Frequency Identification (RFID) is an
enabling technology for improving supply chain management, in
which RFID tags or other sensors may be attached to individual
products, and their RFID data are captured as contexts. Owing
to natural variations in radio frequency (RF) signals, RFID tags
often induce false negative reads or false positive reads [10]. The
former refers to the case when an RFID reader misses the reading
of a tag that is within its detection range, and the latter refers to
the case when a reader mistakenly reads a tag that is considered
outside its associated range. Over 30% of the tag reads may be
lost [10], and contexts obtained from different sources may also
be conflicting [1]. Moreover, when applying a context consistency
resolution strategy to the Call Forwarding application scenario [22]
up to 30% error rate, the strategy can achieve around 80% of
the optimal effectiveness [24]. Automatic resolution of context
inconsistencies is crucial to providing useful services to users of
pervasive software [10, 19, 24].

When encountering an erroneous input, an ordinary program
may follow a software transaction approach. It raises an exception
and skips the “normal” processing, based on the assumption
that exceptions rarely occur. In pervasive computing, however,
the encountering of a problematic context is a norm rather than
an exception. Hence, if the applications merely skip further
processing when encountering problematic contexts, intuitively,
they can hardly offer adequate service to users.

As a result, a context-aware application must use contexts, even
if they may be noisy, to compute other contexts and intermediate
results. When some noisy contexts are later resolved, and yet
the intermediate results of a faulty program are not adjusted
accordingly, the faulty program may result in an inconsistent
program state, which may lead to erroneous outputs. Since
pervasive software uses context data, and context inconsistency
resolution strategies affect the contexts in the computing
environment of such software, testing is essential to assure the
quality of the latter. To our best knowledge, the topic has not been
adequately studied by the software engineering community.

We address the challenges in testing context-aware applications
arising from the presence of context inconsistency resolutions

1

Administrator
 HKU CS Tech Report TR-2008-01

in their computing environment. 1 The resolution mechanism is
modeled as a set of Context Inconsistency Resolution services, or
CIR services for short. We generally categorize CIR services into
drop services and repair services, which supports the deletion of
context data and the modification of such data, respectively [18].

A context stream is a time series of context instances. When a
context instance is detected, it is added to a context stream as the
current (and latest) context instance.

A context-aware application will use a context stream and
associate it to, say, a context variable. Intuitively, fetching a value
from a context variable means fetching the current context instance
from the associated context stream, and assigning a value to the
context variable means adding a context instance to the context
stream as the current context instance.

A drop (repair) service of the computing environment may
however drop (revise) the current context instance in the context
stream. They generally affect the contents of context variables of
the context-aware application, and hence its data flow associations.
For instance, a drop CIR service may erase the latest data definition
assigned to a variable of the application and thus restore the
value of an associated context variable to a previously killed data
definition; whereas a repair CIR service may produce a new
data definition. Both effects essentially reveal implicit data flow
associations relevant to the context-aware application.

We may then ask: What is the way to understand and analyze
the impact of implicit data flow associations on the application?
To answer this question, we study various scenarios and propose
a novel set of data flow equations to capture the impact of CIR
services on context-aware applications. We further propose a new
family of test adequacy criteria based on data flow associations to
assure the quality of the applications.

The main contributions of the paper are three-fold: (i) It proposes
a data flow equation framework to study the feedback mechanism
between CIR services and context-aware applications. It
significantly complements our previous work [14], in which any
context definition by the application must be reliably accepted by
the computing environment. Hence, this paper is a step toward
addressing unreliable computing environments from the data flow
perspective. (ii) We propose a new family of test adequacy criteria
for testing context-aware applications in the presence of CIR
services. (iii) We conduct the first set of experiments to evaluate
our proposal and its kinds. The experimental result shows that our
testing criteria are significantly more effective than random testing.

The rest of the paper is presented as follows. Section 2 will
give the background and an example to motivate our work. We
then develop our data flow framework in Section 3, followed by a
family of test adequacy criteria in Section 4. Section 5 evaluates
the proposal empirically. We then review related work in Section 6
and conclude the paper in Section 7.

2. MOTIVATIONS
This section gives the background that motivates our work.

2.1 Background

2.1.1 Context-Aware Computing

A context characterizes an environmental attribute of a
computing entity. A context is defined via a data structure
consisting of a tuple that record the environmental data [12, 25].

1 We should emphasize to the audience that this paper is not targeted for
the testing of context inconsistency.

Each context is identified and referenced by a context variable,
thus:

DEFINITION 1 (CONTEXT VARIABLE). A context variable

c denotes a tuple of fields (f ield1, f ield2, . . . , f ieldn), where each
f ieldi represents an environmental attribute.

A context instance ins(c) is generated when all the fields in the
context variable c are instantiated [23]. Context instances are kept
in a global infrastructure, such as a tuple space [15]. In this way,
the read and write operations on context variables can be transient
and consistent in a pervasive environment (see also [15]).

DEFINITION 2 (CONTEXT INSTANCE). A context instance

ins(c) of a context variable c is a tuple (t1, t2, . . . , tn) such that each
ti is of the form (f ieldi = value : type), where f ieldi is the name of
the corresponding field in c, and value and type are the value and
data type, respectively, of the field.

To simplify the presentation, we omit the data types and use the
notation f ield = value to represent the field and value elements in
a context instance.

As an example, a context capturing the signal of an RFID tag
labeled as tag001 can be modeled as a context variable ctag001 =
(id, category, strength, reader, lifespan, timestamp), while a
corresponding context instance may be recorded as ins(ctag001) =
(id = 12345, category = tag signal, strength = 67, reader =
reader2, lifespan = 3000ms, timestamp = 1137615054789).

In the above example, id uniquely identifies each of the context
instances, category describes the type or usage of the context,
strength stores the captured value of the RF signal strength from
the tag, reader denotes the RFID reader that reads the tag, lifespan

is the period of time during which every context instance remains
effective, and timestamp records the machine time at which the
context instance is generated.

2.1.2 Context Inconsistency Resolution as
Middleware Services

To improve the quality of contexts [10], researchers propose
to detect inconsistent context data via consistency constraints,
and to resolve detected inconsistencies via context inconsistency
resolution [18, 23]. Figure 1 describes an overview of typical
context processing in the CIR-enabled pervasive computing
environment.

DEFINITION 3 (CIR SERVICE). A CIR service (or service

for short), is a couple φ = (q, s), where q is a constraint that
specifies a consistency property over context variables, and s is
a resolution strategy that specifies how to resolve the context
inconsistency violating q. 2

A CIR service may use a resolution strategy to resolve a context
instance ins(c) of a context variable c through one of the following
two observable effects [18, 24]: (1) Drop: Discard ins(c) and
restore the state of c to the one immediately before ins(c) is
captured; (2) Repair: modify the values of certain fields in ins(c)
to fulfill the consistency constraints of CIR services. To ease our
discussion, we assume that each CIR service resolves one context
variable, and is identified as either a drop service or a repair

service according to whether it applies a “drop” or a “repair”

2 In RCSM [25], for instance, the constraint is implemented as a situation-
aware expression; in nesC [6], it can be implemented as an asynchronous
event, in which an if-statement may serve the purpose of checking a
violation of the constraint.

2

Sensors CIR Services Situations Program Units

Streams of

raw

context

instances

Streams of

resolved

context

instances

Middleware
Context-aware Application

Figure 1: Overview of context processing in pervasive

computing environment in the presence of CIR services

strategy, respectively. The generalization to resolving multiple
context variables can be considered as a series of these context
inconsistency resolutions. As we shall present in Section 3, our
framework handles the composition of these CIR services to form
more sophisticated strategies.

For each context variable c, we denote the set of CIR services
associated with c as Φc. The set Φc is partitioned into two disjoint
subsets: the set of drop services {δ1, δ2, . . . , δn} ∆c, and the set of
repair services {λ1, λ2, . . . , λm} as Λc, that is, ∆c ∪Λc = Φc and
∆c ∩Λc = /0.

2.2 Running Example
This section gives a running example that shows an RFID

application with a CIR-enabled context-aware scenario.
It is gradually popular to track objects attached with RFID tags,

such as products in a supply chain or baggages in an airport. 3 Let
us consider a conveyor belt that carries packages passing through
an inspection zone (see Figure 2). A line of RFID readers is
set up along the conveyor belt and partitions the inspection zone
into a series of segments according to readers’ respective detection
ranges. We label the readers as reader0, reader1, reader2, and
reader3 along the moving direction of the conveyor belt, and denote
their positions as 0, 1, 2, and 3, respectively. When a package
attached with a RFID tag moves inside the inspection zone, its
position is sensed and calibrated according to the position of the
reader that receives the strongest signal strength [16].

Figure 3 shows a program fragment in pseudo-code for estimating
the position of a package, and Figure 4 shows the corresponding
CIR services. We use the context variables r0, r1, r2, and r3 to
represent the reads of the tag by reader0, reader1, reader2, and
reader3, respectively. p is the context variable for the package. The
program defines the situation enter_inspection_zone that detects
whether the package has moved into the inspection zone. When
the situation is satisfied, the program unit estimate_position will
be invoked to estimate the package position [14, 25]. The primitive
query({c}) at n1, n6, or n13 retrieves the latest context instances
from the corresponding context streams.

As the readers may be close to one another, they may induce false
positive reads [10]. For instance, a package may be detected by r3
via reader3 even if it is closest to position 0. To tackle the problem,
a set of CIR services Φp to resolve inconsistent detections of
package positions is defined. Φp includes two drop services δ1 and
δ3, and one repair service λ2; thus, ∆p = {δ1, δ3} and Λp = {λ2}.
They specify the following three consistency constraints: (i) q1: the

3 Real-life case studies are available from RFID Journal at
http://www.rfidjournal.com/article/archive/4/.

reader0 reader1 reader2 reader3

Moving direction

RFID tag

Conveyor

Package

Figure 2: Conveyor belt example

context_variable {
p; // the package
r0,r1,r2,r3; // reader0, reader1, reader2, and reader3

}

situation enter_inspection_zone {
triggering_condition: r0.strength > 0
adaptive_action: estimate_position

}

estimate_position {
n1: query({r0, r1});
n2: if (r0.strength ≥ r1.strength)
n3: p.position = 0;
n4: else p.position = 1;
n5: wait (FIXED_INT ERVAL);
n6: query({r0, r1, r2});
n7: if (r0.strength ≥ r1.strength and r0.strength ≥ r2.strength)
n8: p.position = 0;
n9: else if (r1.strength > r0.strength and r1.strength ≥ r2.strength)
n10: p.position = 1;
n11: else p.position = 2;
n12: wait (FIXED_INT ERVAL);
n13: query({r1, r2, r3});
n14: if (r1.strength ≥ r2.strength and r1.strength ≥ r3.strength)
n15: p.position = 1;
n16: else if (r2.strength ≥ r1.strength and r2.strength > r3.strength)
n17: p.position = 2;
n18: else p.position = 3;
n19: report p.position;

}

Figure 3: Pseudo code of program fragment to estimate

package position in conveyor belt example

conveyor belt is moving in unidirection; (ii) q2: the speed of the
conveyor belt is restricted so that, in any two consecutive sensing,
a package will not move beyond two or more positions; (iii) q3: in
a normal working status, at least one reader should receive the RF
signal strength above a threshold.

2.3 Testing Challenges
In this section, we use the running example in Section 2.2 to

illustrate the challenges in testing context-aware programs in the
presence of CIR services.

Suppose n7 in Figure 3 is wrongly implemented as follows:

n′7: if (r0.strength ≤ r1.strength and r0.strength ≤ r2.strength)

The set of test cases

T = {t1, t2, t3, t4} (1)

where
t1 = 〈(30, 20), (20, 30, 10), (25, 35, 20)〉,
t2 = 〈(30, 20), (10, 25, 30), (30, 20, 10)〉,
t3 = 〈(20, 30), (5, 15, 30), (5, 2, 3)〉, and
t4 = 〈(30, 20), (30, 25, 20), (20, 20, 30)〉

3

cir_service Φp = {δ1, λ2, δ3} {
δ1 = (q1, s1):

q1: ∀ ins(p)i ∈ {ins(p) | ins(p).timestamp

< ins(p)0.timestamp}.
(ins(p)0.position ≥ ins(p)i.position)

s1: drop

λ2 = (q2, s2):
q2: ins(p)0.position < ins(p)1.position+2
s2: repair {ins(p)0.position = ins(p)1.position + 1;}

δ3 = (q3, s3):
q3: (ins(r0)0.strength > 5)∨ (ins(r1)0.strength > 5)∨

(ins(r2)0.strength > 5)∨ (ins(r3)0.strength > 5)
s3: drop

// ins(c)0 denotes the latest context instance of context variable c

// while ins(c)1 denotes the second latest context instance of c

}

Figure 4: CIR services for example program in Figure 3

satisfies the all-uses criterion [5] for the program estimate_position.
In each test case, the two values in the first tuple represent the
test inputs of r0.strength and r1.strength, respectively, at n1 [13].
Similarly, the three values in the second tuple represent the test
inputs of r0.strength, r1.strength, and r2.strength, respectively,
at n6, while the three values in the third tuple represent the test
inputs of r1.strength, r2.strength, and r3.strength, respectively, at
n13. We have simplified their presentations to make our subsequent
discussion clearer. Other test cases in this presentation format in
the paper can be interpreted similarly.

When no CIR service is enabled (say, in the underlying
middleware), applying T to estimate_position does not distinguish
the faulty implementation from the original one because both
implementations will compute p.position at n19 to be 2, 1, 1, and 3
for the test cases t1, t2, t3, and t4, respectively.

Next, let us illustrate how CIR services may interact with the
program, and how the use of this interaction may help expose the
fault. To ease our presentation, the notations ins(p)0 and ins(p)1

refer to the latest context instance and the second latest context
instance for the context variable p in its context stream.

• In the original version of estimate_position, after the
program has executed the statement n15, t2 will compute
ins(p)1.position to be 2 (via n11) and ins(p)0.position to
be 1 (via n15). However, the latter breaches q1. The drop
strategy s1 will then discard ins(p)0, and ins(p)1.position

will finally be reported at n19 to be 2. Thus, the output is 2.

• When applied to the faulty version, t2 will compute
ins(p)′1.position to be 0 (via n8, which is incorrect) and
ins(p)′0.position to be 1 via n15. Since none of the consistency
constraints q1, q2, or q3 is breached, ins(p)′0.position will be
reported at n19 to be 1. Hence, the output is 1, and the fault
is revealed.

3. DATA FLOW FRAMEWORK FOR

CIR SERVICES
This section proposes our data flow analysis framework.

3.1 Conventional Def-Use Associations
We first review the conventional approach to analyzing def-use

associations [5, 8]. A program unit in an application is modeled
as a control flow graph (CFG) G = (N, E), where N is a set of
nodes representing program statements and E ⊆ N ×N is a set of
directed edges representing control flows among statements. Each

CFG has a unique entry node and a unique exit node. Figure 5
shows the CFG for the program unit estimate_position in Figure 3.
The following definitions are taken from [5, 8].

A complete path is a path that traverses from the entry node to
the exit node along the edges. A variable x is defined or has a
definition occurrence at node n if the value of x is stored or updated
at a statement in n. A variable x is used or has a use occurrence
at n if the value of x is fetched or referenced at a statement in n.
Def(n) and Use(n) denote the two sets of variables that are defined
and used at n, respectively.

A subpath of a CFG is definition-clear with respect to (w.r.t.) x

if none of the nodes in the subpath defines x or makes x undefined.
The relation de f _clear(x, ni, n j) denotes that there is a definition-
clear subpath w.r.t. x from ni to n j, exclusively. A definition of x at
node ni is a reaching definition at node n j if de f _clear(x, ni, n j).
The set of reaching definitions of x at node n is denoted by RDx(n).

RDx(n) = {nd | x ∈ Def(nd) ∧
∃n1, n2, . . . , nk · ((nd , n1) ∈ E ∧ nk = n ∧
∀1 ≤ i < k · ((ni, ni+1) ∈ E ∧ x 6∈ Def(ni)))}

A def-use association is defined as a triple (x, ni, n j), where x ∈
Use(n j) and ni ∈ RDx(n j). (x, ni, n j) is covered by a path π if
both ni and n j are in π and there is a subpath of π from ni to n j,
exclusively, which is definition-clear w.r.t. x [5].

For a set of nodes M, we have RDx(M) =
S

n∈M RDx(n) and

RDk
x(n) = RDx(RDk−1

x (n)), where k > 2 and RD1
x(n) = RDx(n) [8].

For the CFG in Figure 5, for instance, RDp(n19) = RDp({n19}) =

{n15, n17, n18} and RD2
p(n19) = {n8, n10, n11}. Each node n

maintains the following set of data flow equations [8] to compute
the reaching definitions of each variable x:

INx(n) =
S

m∈Pred(n) OUTx(m);

KILLx(n) =

{

INx(n), if x ∈ Def(n);
/0, otherwise;

GENx(n) =

{

{n}, if x ∈ Def(n);
/0, otherwise;

OUTx(n) = GENx(n)∪ (INx(n)−KILLx(n));

(2)

where INx(n) is RDx(n); OUTx(n) is the set of reaching definitions
of x immediately after n; KILLx(n) is the set of reaching definitions
of x that are killed by n; and GENx(n) is the set of reaching
definitions of x that are generated at n.

The set of predecessors (via control flow edges) of n is denoted
by Pred(n). The reaching definitions can be computed by iteratively
applying Equation (2) to all the nodes until fixed points have been
reached. Following the standard programming style to model an
aspect of a context variable as an ordinary program variable, the
above computation of reaching definitions also applies to context
variables.

3.2 Our Data Flow Equations
In a context-aware application, when a CIR service φ for some

context variable c affects the def-use associations of the program
(that is, φ resolves a context instance followed by a use of c in the
program), we call such a scenario a service configuration. In this
scenario, each use (or invocation) of φ is represented as a service

node nφ. The nodes in the original CFG of a program unit are
referred to as program nodes.

In a service configuration, nφ is associated with some node n j

that uses c, by diverting an outgoing edge from the node n j , say,
(ni, n j), to nφ before reaching n j . We call (ni, n j) a service point

w.r.t. φ. Intuitively, a service point captures the resolution window
of a variable definition of a context variable at node ni (not due to
any environmental update [14]) before the variable use at node n j.

4

ENTER

n
1

n
3

n
4

n
5

n
6

n
12

n
8

n
2

n
18

n
19

n
17

n
13

n
9

n
15

n
7

n
14

n
10

n
11

n
16

EXIT

Figure 5: CFG of program unit estimate_position

ENTER

n
1

n
3

n
4

n
5

n
6

n
12

n
8

n
2

n
18

n
19

n
17

n
13

n
9

n
15

n
7

n
14

n
10

n
11

n
16

EXIT

ENTER

n
1

n
3

n
4

n
5

n
6

n
12

n
8

n
2

n
18

n
19

n
17

n
13

n
9

n
15

n
7

n
14

n
10

n
11

n
16

EXIT

n

n

n

(a) (b)

n

Service Node Service Point

Service Edge

Original Def-Use Association

New Def-Use Association

1

1

3

2

Figure 6: Example service configurations: (a) single service;

(b) composite service

As we have explained in Section 1, the program may compute a
context based on other noisy contexts. Such a window provides
a chance to detect context inconsistency [23] followed by one
or more context resolution strategies [24] to rectify the detected
inconsistency before the next variable use. 4 To construct this
service configuration, the CFG for the program should be modified,
by deleting edge (ni, n j) and adding the service edges (ni, nφ) and
(nφ, n j). When multiple CIR services are used at the same service
point, we use the above scheme to chain up the respective service
nodes (to form a composite service) in between service edges
according to each interleaving execution order of these services
defined by the underlying middleware.

In the CFG shown in Figure 5, for instance, since n19 has a
use occurrence of the context variable p, potential service points
w.r.t. n19 include (n15, n19), (n17, n19), and (n18, n19). Figure 6
shows two example service configurations on top of Figure 5. In
Figure 6(a), CIR services δ1 and λ2 are used at the service points
(n15, n19) and (n18, n19), respectively. In Figure 6(b), CIR services
δ1 and δ3 are used in turn at the service point (n17, n19).

4 Since environmental update [14] is not in the big picture, our previously
identified def-use associations [14] do not cover the def-use associations
relevant to service points.

A drop service δ drops a context instance in a context stream
and thus restores the reaching definition of a context variable to
a previously killed one. To model such an activity, we give the
reaching definition equations w.r.t. a context variable x for nδ in
Equation (3), in which the set of killed definitions restored by the
drop service δ at nδ is denoted by RESx(nδ).

INx(nδ) =
S

m∈Pred(nδ) OUTx(m);

KILLx(nδ) =

{

INx(nδ), if δ ∈ Φx;
/0, otherwise;

RESx(nδ) =

{
S

m∈KILLx(nδ) KILLx(m), if δ ∈ Φx;

/0, otherwise;
OUTx(nδ) = RESx(nδ) ∪ (INx(nδ)−KILLx(nδ)).

(3)

A service node nλ for the repair service λ ∈ Φx is similar to
a redefinition of the variable x, but the difference is significant.
Unlike any definition of x that always generates a new context
instance of x, it only modifies the value of the context instance
generated by the latest definition of x in the context stream. For the
purpose of data flow propagation, its “killed” set, KILL, is defined
as the union of the KILL sets of its reaching definitions. We give
the reaching definition equations for nλ in Equation (4).

5

INx(nλ) =
S

m∈Pred(nλ) OUTx(m);

KILLx(nλ) =

{
S

m∈INx(nλ) KILLx(m), if λ ∈ Φx;

/0, otherwise;

GENx(nλ) =

{

{nλ}, if λ ∈ Φx;
/0, otherwise;

OUTx(nλ) =

{

GENx(nλ), if λ ∈ Φx;
INx(nλ), otherwise.

(4)

3.3 CIR Impact on Def-Use Associations
To compute the def-use associations for context-aware

applications having CIR services, our data flow equations presented
in the last section reveal the special needs to consider the KILL and
OUT sets, which cannot be effectively captured by conventional
approaches (such as Equation (2), or [7], or our previous work [14]).
In this section, we first investigate the data flow impact of having
one CIR service per service point, which establishes the base case
for us to present a more general case, namely a service point having
multiple CIR services.

3.3.1 Single Services

For a program node nu that contains a use occurrence of a context
variable c, we first analyze the impact on def-use associations for
single service nodes on nu. By a “single service”, we formally
mean any service configuration in which any complete path π
traverses no more than one service node, such as nφ, before
reaching nu. nφ may introduce new reaching definitions (w.r.t. c)
to nu only if φ ∈ Φc and there is a subpath of π from nφ to nu

that is definition-clear w.r.t. c. To ease our discussion, we denote
this set of new def-use associations w.r.t. c as DUCIR(nφ, nu)c, or
just DUCIR(nφ, nu) if the context variable is known implicitly and
clearly. We also refer to RDx(n) as the set of reaching definitions
that are derived from the original CFG.

According to Equations (2) and (3), a drop service node nδ for
c will restore all the definitions of c that are killed by the reaching
definitions of nδ. Thus, we have

DUCIR(nδ, nu) = {c} × RD2
c(nu) × {nu}. (5)

For a repair service λ for c, according to Equation (4), its service
node nλ corresponds to a definition of c. As each service node of
λ refers to an invocation of the same CIR service λ, we denote the
definition occurrence of c at service node nλ as λ for short. Thus,
we have

DUCIR(nλ, nu) = {(c, λ, nu)}. (6)

In Figure 6(a), for example, n19 has a use occurrence of p, and
there are two single service nodes nδ1

and nλ2
. We have

DUCIR(nδ1
, n19) = {p}×RD2

p(n19)×{n19}
= {(p, n8, n19), (p, n10, n19), (p, n11, n19)},

and
DUCIR(nλ2

, n19) = {(p, φ2, n19)}.

3.3.2 Composite Services

In this section, we consider the impact of composite services for
program node nu that uses the context variable c. By a “composite
service”, we mean any service configuration in which there is a path
from the entry node that traverses multiple service nodes before
reaching nu. Since the reaching definitions at nu w.r.t. c are only
affected by the nodes that define c as well as the relevant service
nodes for c, we model the subpath of a complete path right before
reaching nu as a sequence of definition occurrences and service
nodes. We call such a sequence a definition-service witness, or
simply a witness.

DEFINITION 4 (DEFINITION-SERVICE WITNESS). A
definition-service witness (or simply witness) w(nu) for node
nu w.r.t. context variable c (∈ Use(nu)) is a sequence of nodes
〈n1, n2, . . . , nk〉, where (a) ∀1 ≤ i ≤ k, ni is either a program node
such that c ∈ Def(ni), or a service node for some service φ ∈ Φc;
(b) ∀1≤ i < k, de f _clear(c, ni, ni+1); and (c) de f _clear(c, nk, nu).

In Figure 6(a), 〈n3, n10, n15, nδ1
〉 is a witness for n19. Similarly,

in Figure 6(b), 〈n3, n11, n17, nδ1
, nδ3

〉 is a witness for n19. Detailed
variable definitions and uses for the program unit estimate_position

can be found in Figure 3.
As the witness w(nu) with one or more service nodes may

introduce new reaching definitions w.r.t. c to nu, we denote the set
of new def-use associations as DUCIR(w(nu), nu).

For the ease of representation of w(nu), in the rest of the section,
we use the notation u to represent nu. We classify the nodes in
a witness into three categories w.r.t. context variable c, namely,
program nodes that define c, service nodes for drop services of c,
and service nodes for repair services of c. We use the symbols d,
δ, and λ to represent a node in the three categories, respectively.
If necessary, we identify different nodes of the same category by
subscriptions, such as d0, d1, and so on. We also omit the commas
between each two consecutive nodes, and use the symbols “∗” and
“|” to represent zero-to-many repetitions of nodes and selection of
nodes, respectively. For example, the pattern (δ|λ)∗d0 refers to
any sequence in which the definition d0 is preceded by an arbitrary
number of drop service nodes and repair service nodes.

In the following, we analyze the impact of witnesses on
the introduction of new def-use associations by enumerating all the
patterns that may exist in a witness.

Pattern 1: The witness is terminated by a definition, that is,
w(u) = (d|δ|λ)∗d0. Under this pattern, any definition of c due to
a service node appearing before d0 in the witness cannot reach u.
Hence, DUCIR(w(u), u) = /0, which means that witnesses of this
pattern will not introduce any new reaching definitions to u.

Pattern 2: The witness is terminated by a repair service, that
is, w(u) = (d|δ|λ)∗λ0. Similarly to Pattern 1, any definition of
c due to a service node before λ0 in the witness cannot reach u.
Thus, the impact of witnesses with this pattern is the same as that
of the single service node λ0. Following Equation (6), we have
DUCIR(w(u), u) = {(c, λ0, u)}.

Pattern 3: The witness is terminated by a drop service, that is,
w(u) = (d|δ|λ)∗δ0. We first analyze the impact of repair service
nodes in this pattern. By exhaustive enumeration, a repair service
node λ may occur in one of the following three situations:

Case (a) of Pattern 3: λ is succeeded by (and thus killed by) a
definition or by another repair service node. Hence, the
repair service λ does not have any impact on u.

Case (b) of Pattern 3: λ is preceded by a definition and succeeded
by a drop service node, that is, the witness contains a
subsequence of the pattern dλ∗δ. Since λ only modifies the
latest context instance generated by d, it does not create a
new context instance. δ will then kill the latest definition due
to this d as well as all repair service nodes between this d

and δ. Therefore, λ does not have any impact on u.

Case (c) of Pattern 3: The definition of c due to a repair service λ
reaches u, because δ0 (and possibly other drop service nodes)
kills the definition(s) succeeding λ (as in Case (a) above).
Hence, the case gives the same result as a single service λ.

6

Based on the above analysis of Pattern 3, we need only consider
different combinations of definitions and drop service nodes for
context variables.

For witnesses of Pattern 3 with two drop service nodes, there are
the following three subpatterns. They correspond to zero, one, and
two definitions between two drop service nodes, respectively.

Subpattern (i): w(u) = d∗d2d1d0δ1δ0. According to
Equation (3), δ1 kills d0 and restores d1, while δ0 kills d1

and restores d2. Hence, d2 reaches u and DUCIR(w(u), u) =
{(c, d2, u)}.

Subpattern (ii): w(u) = d∗d2d1δ1d0δ0. Similarly to
Subpattern (i), δ1 kills d1 and restores d2, and δ0 kills d0 and
restores d2. Thus, d2 reaches u, and we have DUCIR(w(u), u) =
{(c, d2, u)}.

Subpattern (iii): w(u) = d∗d2δ1d1d0δ0. In this subpattern, d1

reaches u because δ0 kills d0 and restores d1. d1 is in RD2
c(u).

Hence, according to Equation (5), DUCIR(w(u), u) = {(c, d1, u)},
which is a subset of the new def-use associations introduced by the
impact of the single service δ0.

As an example, in Figure 6, the witness w(n19) = 〈n3, n11, n17,

nδ1
, nδ3

〉 follows subpattern (i). Since n3 ∈ RD3
p(n19), we have

DUCIR(w(n19), n19) = {(p, n3, n19)}.
We can use mathematical induction to conclude that, for witness

w(u) of Pattern 3 with k drop service nodes (k ≥ 2), w(u) may
introduce new def-use associations only if it follows the pattern

d∗(δk−1|δk−1d) . . .(δ2|δ2d)(δ1|δ1d)δ0. (7)

Hence, DUCIR(w(u), u) = {(c, d0, u)}, where d0 ∈ RDk+1
c (u).

4. TEST ADEQUACY CRITERIA
This section proposes our family of test adequacy criteria for

context-aware applications in the presence of CIR services.
As mentioned in Section 2.3, an intuitive testing coverage

requirement is to use each CIR service at least once. We hereby
propose the all-services criterion as follows.

DEFINITION 5 (ALL-SERVICES CRITERION). A test suite T

satisfies the all-services criterion if T satisfies the all-uses criterion
and, for each CIR service φ = (q, s), there exists a test case
t ∈ T which executes a complete path that causes the consistency
constraint q to be violated and the resolution strategy s to be
applied.

The test suite T = {t1, t2, t3, t4} in Equation (1), for instance,
satisfies both the all-uses [5] and the all-services criteria for the
program in Figure 3. In Section 3.3, we investigate the impact of
CIR services through the introduction of new def-use associations
to the original program units. In the rest of the section, we
propose adequacy criteria to cover these new def-use associations
at different levels.

4.1 Covering All Reaching Single Service
Nodes

For a stricter criterion over all-services, we propose that, for
every program node nu which uses some context variable c, the test
suite should also cover all the new def-use associations introduced
by all the service nodes in a single-service service configuration
that may reach nu. We denote the set of new def-use associations
as DU1

CIR(nu)c.

DU1
CIR(nu)c =

S

φ∈Φc ∧ ∃nφ .de f _clear(c,nφ,nu) DUCIR(nφ, nu)

=

{

{c}× (RD2
c(nu) ∪ Λc)×{nu}, if ∆c 6= /0;

{c}×Λc ×{nu}, otherwise.

(8)

For a CFG G = (N, E) having a set of context variables C, we
define the union set of all the new def-use associations as:

DU1
CIR =

S

n∈N ∧ c∈(Use(n)∩C) DU1
CIR(n)c (9)

Following Equations (8) and (9), we implement an algorithm to
compute DU1

CIR. We omit the algorithm from the paper owing to
page limitation.

We propose an all-services-uses criterion that satisfies all-services
and at the same time covers all the new def-use associations
introduced by the impact of single services.

DEFINITION 6 (ALL-SERVICES-USES CRITERION). A test
suite T satisfies the all-services-uses criterion if T satisfies the
all-services criterion and, for each def-use association α in the set
DU1

CIR computed by Equations (8) and (9), there exists a test case
t ∈ T that executes a complete path covering α.

For example, for the program in Figure 3, we have

DU1
CIR = {(p, n8, n19), (p, n10, n19), (p, n11, n19), (p, λ2, n19)}

and the following test suite T1 satisfies the all-services-uses criterion:

T1 = {〈(30, 20), (20, 30, 10), (25, 35, 20)〉,
〈(20, 30), (10, 25, 30), (30, 20, 10)〉,
〈(20, 30), (5, 30, 15), (2, 5, 3)〉,
〈(30, 20), (30, 25, 20), (20, 20, 30)〉,
〈(30, 20), (5, 2, 1), (1, 2, 3)〉}

(10)

4.2 Covering All Reaching Composite Service
Nodes

In this section, we propose testing criteria to cover new def-use
associations introduced by composite services.

Given a program node nu that uses a context variable c, let
DU2

CIR(nu)c denote the set of new def-use associations introduced
by witnesses with two service nodes. We have shown in Section 3.3
that only the witnesses of Subpatterns (i) and (ii) (but not
Subpattern (iii)) of Pattern 3 may introduce additional def-use
associations that are not contained in DU1

CIR(nu)c. Hence, we have

DU2
CIR(nu)c =

{

{c}×RD3
c(nu)×{nu} ∪ DU1

CIR(nu)c, if ∆c 6= /0;

DU1
CIR(nu)c, otherwise;

=

{

{c}× (RD3
c(nu)∪RD2

c(nu) ∪ Λc)×{nu}, if ∆c 6= /0;

{c}×Λc ×{nu}, otherwise.

When considering witnesses with k service nodes, where k ≥ 2,
we denote the set of new def-uses associations thus introduced w.r.t.
c as DUk

CIR(nu)c. Similarly, DUk
CIR(nu)c contains additional def-

uses associations atop DUk−1
CIR (nu)c only if the witnesses belong to

the pattern of Equation (7). Thus, we have

DUk
CIR(nu)c =











{c}×RDk+1
c (nu)×{nu} ∪ DUk−1

CIR (nu)c,
if ∆c 6= /0;

DUk−1
CIR (nu)c, otherwise;

=







{c}× (RDk+1
c (nu)∪ . . .∪RD3

c(nu)
∪RD2

c(nu) ∪ Λc)×{nu}, if ∆c 6= /0;

{c}×Λc ×{nu}, otherwise.
(11)

7

Algorithm Compute_DUk
CIR

Input: program unit CFG G = (N, E);
set of context variables C;
set of CIR services Φc for each context variable c ∈C;

Output: DUk
CIR;

DUk
CIR = {};

generate empty table TRD;
// initial step

for each node n ∈ N

for each context variable c ∈ (Use(n) ∩ C)
TRDc(n, 0) = RDc(n);
for each node m ∈ TRDc(n, 0)

TRDc(n, 1) = TRDc(n, 1) ∪ TRDc(m, 0);
for each repair service λ ∈ Λc // Λc is a subset of Φc

DUk
CIR = DUk

CIR ∪ {(c, λ, n)};
// inductive steps

for each integer i from 2 to k

for each node n ∈ N

for each context variable c ∈ (Use(n) ∩ C)
for each node m ∈ TRDc(n, i−1)

TRDc(n, i) = TRDc(n, i) ∪ RDc(m);
for each node m′ ∈ TRDc(n, i)

DUk
CIR = DUk

CIR ∪ {(c, m′, n)};

Figure 7: Algorithm for computing DUk
CIR

For a program unit with CFG G = (N, E) and a set of context
variables C, we define the union set of new def-use associations by
all witnesses with k service nodes as:

DUk
CIR =

S

n∈N ∧ c∈(Use(n)∩C) DUk
CIR(n)c (12)

Figure 7 shows the algorithm for computing DUk
CIR. In the worst

case, the algorithm Compute_DUk
CIR computes the set RDc(n)

for every node n ∈ N w.r.t. every context variable c ∈ C, and
the calculation of RDc(n) once requires the visiting of at most
|N| nodes; the time complexity of Compute_DUk

CIR is, therefore,

O(|C| · |N|2).
We propose an all-k-services-uses criterion that satisfies all-

services and, at the same time, covers all the new def-use association
introduced by the impact of all the witnesses with k services.

DEFINITION 7 (ALL-k-SERVICES-USES CRITERION). A
test suite T satisfies the all-k-services-uses criterion if T satisfies
the all-services criterion and, for each def-use association α in the
set DUk

CIR as computed by Equations (11) and (12), there exists a
test case t ∈ T that executes a complete path covering α.

As an example, for the program in Figure 3, we have

DU2
CIR = {(p, n3, n19), (p, n4, n19), (p, n8, n19),

(p, n10, n19), (p, n11, n19), (p, λ2, n19)}

and the following all-2-services-uses-adequate test suite:

T2 = T1 ∪ {〈(30, 20), (2, 3, 3), (5, 5, 2)〉,
〈(20, 30), (5, 15, 30), (5, 2, 3)〉}

where T1 is the test suite shown in Equation (10).
A criterion subsumes another if any test suite satisfying the

former also satisfies the latter [5]. As such, all-k-services-uses
subsumes all-(k − 1)-services-uses, while all-2-services-uses
subsumes all-services-uses. Moreover, all-services-uses subsumes
all-services, which in turn subsumes all-uses. Owing to space
limitation, other criteria analogous to all-p-uses [5] and the like are
not presented here.

5. EVALUATION
This section reports the experimental evaluation of our proposal.

5.1 Experiment Design
We use Cabot [23, 24] as the testbed for our experiment. It

includes a middleware that supports context acquisition, reasoning,
and triggering of context-aware applications, and an evaluation
application that implements the LANDMARC RFID-based location
sensing algorithm [16], which has also been used to evaluate
techniques in our previous work [14, 24]. In version 3, Cabot

supports CIR services. WALKPATH is an application that extends
LANDMARC [14, 16] and runs on Cabot. It tracks a person’s
walking path in an indoor space equipped with RFID sensors.
The person’s current locations are obtained via LANDMARC by
capturing and analyzing the RFID contexts. WALKPATH utilizes
the location data as incoming contexts and optionally accepts or
repairs them through a set of CIR services. Hence, while a person
moves, the application senses contexts from its surroundings and
reacts accordingly. It includes five CIR services and 20 functions.

Our experiment consists of the following steps:
First, to conduct statistical analysis on testing effectiveness, our

tool generates two groups of test suites for the adequacy criteria
under evaluation. It maintains a large test pool of 20,000 different
test cases and instruments the target program. All the test cases are
real-world data captured via RFID readers. In Group 1, we generate
100 independent test suites for each of the all-services, all-services-
uses, and all-2-services-uses criteria proposed in Section 4. When
generating each test suite, the tool randomly selects a test case from
the test pool, executes the instrumented program over the test case,
and computes the test coverage w.r.t. the corresponding criterion
from execution traces.

A test case is included in a test suite only if it increases the
coverage of the test suite. This process continues until either 100%
coverage of the criterion has been achieved, or an upper bound
of 2,000 trials in selecting test cases have been completed. This
test case selection approach is similar to those in [9, 14]. The
outstanding def-use associations are deemed infeasible. Table 1
shows the coverage percentages and mean sizes of the Group 1 test
suites. It also shows that, on average, the coverage of a test suite is
more than 95% for each criterion, which indicates that the problem
of infeasible def-use associations is manageable in the experiment.

To compare the effectiveness of different criteria based on
comparable cost [3], we expand the test suites in Group 1 to form
Group 2 by compensating smaller test suites in Group 1 with
additional test cases randomly selected from the test pool so that
all test suites, irrespective of their corresponding criteria, have the
same fixed size. We set the fixed size to be 62, which is the
maximum size of the all-2-services-uses test suites in Group 1. We
use the random criterion as the benchmark for the comparison of
effectiveness [4]. Thus, Group 2 also contains 100 independent
random test suites, each with 62 test cases.

Next, we generate different faulty versions by seeding one
fault into each copy of the original target program. These faults
simulate the miscomputation of context variables and misuse of
CIR resolution strategies. We have invited an experienced
programmer to check all the seeded faults and assure their validity.

Finally, our tool executes all faulty versions with all generated
test suites to measure the fault detection effectiveness of each
adequacy criterion. For each criterion, the tool computes its
effectiveness in detecting a specific fault in terms of fault detection

rate [4, 9], which is defined as the ratio of the number of adequacy
test suites that expose the fault to the total number of adequacy test
suites generated under the criterion.

8

Table 1: Description of Group 1 test suites
Criterion Coverage Mean

Min Mean Max size

All-Services 100% 100% 100% 27

All-Services-Uses 95.8% 95.8% 95.8% 43

All-2-Services-Uses 94.8% 95.3% 95.7% 50

5.2 Data Analysis
We apply the entire test pool to every faulty version to estimate

their failure rates [4, 9], and select the faulty version for analysis
if its (estimated) failure rate is within the range (0.000, 0.060). In
total, 49 versions are selected. Their median failure rate is 0.026;
the mean is 0.028.

We first compare the effectiveness of different adequacy criteria.
Table 2 shows the overall fault detection rates of both Group 1 and
Group 2 test suites. We observe that among the testing criteria,
all-2-services-uses is the most effective criterion in detecting faults
in either group. In Group 2, the effectiveness of all-services is
only comparable to that of random testing. Since all-services
subsumes all-uses, it indicates that all-uses may not outperform
random testing much, if any.

In the rest of the section, we compare the effectiveness of
different criteria using Group 2. We further observe that both all-
services-uses and all-2-services-uses outperform random testing —
all-services-uses (all-2-services-uses) improves on random testing
by 13% (23%) in terms of fault detection rate. According to
the “Sd” column in Table 2, these criteria have similar standard
deviations of fault detection rates, which indicates that the variations
in their fault detection effectiveness are fairly consistent.

To give a clearer comparison of the different criteria, Figure 8
shows the fault detection rate of each criterion for every faulty
version in one plot. The horizontal axis is the failure rate and the
vertical axis represents the fault detection rate. Each line in the plot
represents the variation of mean effectiveness of each criterion on
the 49 faulty versions.

We observe that the effectiveness of our criteria gradually
improve as the failure rates of the faulty versions increase. When
the failure rate is at or above 0.02, the line for all-2-services-uses
criterion already exceeds 0.8. On the other hand, random testing
will not exceed this threshold until the failure rate is over 0.04, and
it cannot catch up with the all-2-services-uses in the entire range. It
may indicate that our criteria are more effective in detecting subtle
faults than random testing.

In the experiment, we also expand every random test suite by
randomly selecting additional test cases until it gives the same fault
detection effectiveness as that given by the all-2-services-uses test
suites. On average, the size of the former test suites needs 48%
more test cases to match the effectiveness of the latter.

We further statistically compare the effectiveness of different
criteria using the collected data. In Table 3, Cproposed represents
one of our proposed criteria under comparison, while Crandom

represents the random criterion. We set the significance level to
be 0.01. The condition Cproposed > Crandom means that the effec-
tiveness of Cproposed in detecting a particular fault is significantly
higher than that of Crandom with 99% confidence level [4]. The
condition Crandom > Cproposed is defined analogously.

Table 3 gives the number of faulty versions that fulfill the two
conditions for comparison. For instance, the last row shows that all-
2-services-uses is significantly more effective than random testing
in detecting 30 out of 49 analyzed faults. For the remaining 19
faults, the effectivenesses of all-2-services-uses and random testing
cannot be statistically distinguished. In fact, in Figure 8, when the

Table 2: Overall fault detection rate
Test suites Criterion Fault detection rate

Min Mean Max Sd

All-Services 0.15 0.569 0.87 0.185
Group 1 All-Services-Uses 0.26 0.699 0.97 0.186

All-2-Services-Uses 0.33 0.757 0.97 0.164

Random 0.18 0.662 0.94 0.194
Group 2 All-Services 0.22 0.693 0.94 0.181

(fixed size) All-Services-Uses 0.31 0.748 0.98 0.176
All-2-Services-Uses 0.44 0.812 0.98 0.154

0

0.2

0.4

0.6

0.8

1

0 0.01 0.02 0.03 0.04 0.05 0.06

Failure rate

F
a

u
lt

 d
e
te

c
ti

o
n

 r
a

te
Random All-Services

All-Services-Uses All-2-Services-Uses

Figure 8: Variation of fault detection rates for different criteria

failure rate is above 0.45, the fault detection rate of either criterion
is already close to 1.0.

In addition, the rightmost column of Table 3 suggests that, for
any of the faulty versions, random testing is never statistically more
effective than any of our proposed criterion. This is in line with the
above discussion on Table 2.

5.3 Discussion
The above experiment shows that our approach can be effective

in testing context-aware applications. Among the criteria reported
in the experiment, all-2-services-uses is the strongest in detecting
faults, followed in turn by all-services-uses and all-services. On the
downside, as only around 80% of faults can be detected effectively
in the experiment, it may also suggest that faults relevant to context
resolution can be intricate.

We are also concerned with the potential threats to validity
of the experiment. We have only used one subject program to
evaluate our proposal, and plan to conduct more evaluations using
nesC programs [6] in the wireless sensor network domain because
(i) correction (resolution) of sensory data sent over unreliable
wireless channels is common in these applications and (ii) the
barebone tinyOS merely captures and transmits contexts, and
invokes actions through interrupts to execute applications.
Apparently, these characteristics match the model presented in the
paper. Owing to the lack of CVS or SVN records in our current
subject program, to produce a faulty version, we arbitrarily select
a position in the program and inject a fault such that the faulty
version can be successfully compiled; we invite an independent
programmer to assure whether the fault is realistic and to reject
the faulty version if he judges that there is a better position to inject
such a fault.

9

Table 3: Statistical comparison of fault detection effectiveness

Proposed criterion Number of faults (49 in total)
(Cproposed) Cproposed > Crandom Crandom > Cproposed

All-Services 1 0

All-Services-Uses 2 0

All-2-Services-Uses 30 0

In the future, we plan to use different test pools and use developer
faults in additional to seeded faults to evaluate our proposal.

6. RELATED WORK
In this section, we review related work on context-aware

pervasive computing and program adequacy testing.
Pioneering context-aware frameworks include Context Toolkit [2].

Other researchers further find that the middleware-centric archi-
tecture successfully leverages the development and functionality of
context-aware applications. These models and approaches include,
for instance, CARISMA [1], EgoSpaces [12], RCSM [25], and
Cabot [23].

Handling corrupted or inconsistent context data in a pervasive
environment has been investigated. Jeffery et al. [10] and Rao
et al. [18] propose techniques to clean up noisy or corrupted
context data streams, such as RFID signals, from sensor networks.
Researchers find the middleware-centric architecture highly
beneficial to the maintenance of context consistency, either by
filtering, cleaning, and repairing raw context data [10, 18, 24], or
by reasoning and solving context conflicts at a higher level [1].

In [14, 20], we propose to use metamorphic testing to alleviate
the test oracle problem, and extend conventional data flow concepts
by proposing that the computing environment can update the value
of variables We also propose a family of testing criteria [14] to
address an orthogonal issue, which measures how well a program is
truly context-aware by testing context-aware adaptation. Unlike the
present paper, our earlier work does not address the testing issues
related to CIR services and the resolved contexts in the computing
environments of context-aware applications. By evaluating different
concurrent program executions, Wang et al. [21] propose an
approach to measuring how well a test suite covers different
context-aware situations without altering any context (such as by
dropping or repairing). Their efforts are complementary to ours.

Our criteria also differ from conventional data flow testing
counterparts. The latter focuses on comprehensive coverage of,
say, data flow associations [5, 8], chains [7, 17], subpaths [5], or
environmental interaction [11] of program variables. Our criteria
focus directly on covering those data flow entities of context-
aware applications affected by CIR services. Some concepts in our
proposal are styled after those in [5, 8]. Parts of our experimental
processes for evaluating our proposed adequacy criteria are similar
to the empirical studies reported in [4, 9].

7. CONCLUSION
Pervasive computing applications adapt their behavior

extensively by using and reasoning about the changing contexts.
Nevertheless, context instances may be noisy and inconsistent
among themselves. Context inconsistency resolution (CIR) as
middleware services is a promising approach in detecting context
inconsistencies and resolving them. A faulty application may,
however, mishandle resolved contexts and produce incorrect results.

This paper proposes a data flow framework to model context-
aware applications in the pervasive computing environment where
the middleware supports CIR services. Based on the framework,
we further propose a family of novel data flow testing criteria
to test context-aware applications. Our criteria focus on the
propagation of context variables in context-aware applications,
which are potentially affected by CIR services. We have illustrated
via examples and empirical evaluation that our approach is
promising in detecting faults in context-aware applications.

The work is a step toward understanding the context (feature)
interactions of “good” services on emerging pervasive software.
Future work includes the generalization of the data flow framework
to study other fundamental context-aware computing services,
debugging techniques, and cost tradeoff issues.

8. REFERENCES

[1] L. Capra, W. Emmerich, and C. Mascolo. CARISMA: context-aware
reflective middleware system for mobile applications. IEEE TSE,
29 (10): 929–944, 2003.

[2] A. K. Dey, D. Salber, and G. D. Abowd. A conceptual framework
and a toolkit for supporting the rapid prototyping of context-aware
applications. Human-Computer Interaction Journal,
16 (2–4): 97–166, 2001.

[3] P. G. Frankl and O. Iakounenko. Further empirical studies of test
effectiveness. In Proceedings of SIGSOFT ’98/FSE-6, pages
153–162, 1998.

[4] P. G. Frankl and S. N. Weiss. An experimental comparison of the
effectiveness of branch testing and data flow testing. IEEE TSE,
19 (8): 774–787, 1993.

[5] P. G. Frankl and E. J. Weyuker. An applicable family of data flow
testing criteria. IEEE TSE, 14 (10): 1483–1498, 1988.

[6] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: a holistic approach to networked
embedded systems. In Proceedings of PLDI 2003, pages 1–11. 2003.

[7] M. J. Harrold and M. L. Soffa. Efficient computation of
interprocedural definition-use chains. ACM TOSEM,
16 (2): 175–204, 1994.

[8] M. S. Hecht. Flow Analysis of Computer Programs. Elsevier, 1977.

[9] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on
the effectiveness of dataflow- and controlflow-based test adequacy
criteria. In Proceedings of ICSE ’94, pages 191–200, 1994.

[10] S. R. Jeffery, M. Garofalakis, and M. J. Franklin. Adaptive cleaning
for RFID data streams. In Proceedings of VLDB 2006, pages
163–174. 2006.

[11] Z. Jin and A. J. Offutt. Coupling-based criteria for integration testing.
Software Testing, Verification and Reliability, 8 (3): 133–154, 1998.

[12] C. Julien and G.-C. Roman. EgoSpaces: facilitating rapid
development of context-aware mobile applications. IEEE TSE,
32 (5): 281–298, 2006.

[13] H. Lu. A context-oriented framework for software testing in
pervasive environment. In Doctoral Symposium, Proceedings of

ICSE 2007, pages 77–78. 2007.

[14] H. Lu, W. K. Chan, and T. H. Tse. Testing context-aware
middleware-centric programs: a data flow approach and an
RFID-based experimentation. In Proceedings of SIGSOFT

2006/FSE-14, pages 242–252. 2006.

[15] A. L. Murphy, G. P. Picco, and G.-C. Roman. LIME: a coordination
model and middleware supporting mobility of hosts and agents.
ACM TOSEM, 15 (3): 279–328, 2006.

[16] L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil. LANDMARC: indoor
location sensing using active RFID. ACM Wireless Networks,
10 (6): 701–710, 2004.

[17] S. C. Ntafos. On required element testing. IEEE TSE,
SE-10 (6): 795–803, 1984.

[18] J. Rao, S. Doraiswamy, H. Thakkar, and L. S. Colby. A deferred
cleansing method for RFID data analytics. In Proceedings of VLDB

2006, pages 175–186. 2006.

10

[19] P. Tarr and L. A. Clarke. Consistency management for complex
applications. In Proceedings of ICSE ’98, pages 230 – 239. 1998.

[20] T. H. Tse, S. S. Yau, W. K. Chan, H. Lu, and T. Y. Chen. Testing
context-sensitive middleware-based software applications. In
Proceedings of COMPSAC 2004, volume 1, pages 458–465. 2004.

[21] Z. Wang, S. G. Elbaum, and D. S. Rosenblum. Automated generation
of context-aware tests. In Proceedings of ICSE 2007, pages
406–415. 2007.

[22] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The active badge
location system. ACM TOIS, 10 (1): 91–102, 1992.

[23] C. Xu, S. C. Cheung, and W. K. Chan. Incremental consistency
checking for pervasive context. In Proceedings of ICSE 2006, pages
292–301. 2006.

[24] C. Xu, S. C. Cheung, W. K. Chan, and C. Ye. Heuristics-based
strategies for resolving context inconsistencies in pervasive
computing applications. In Proceedings of ICDCS 2008. 2008.

[25] S. S. Yau and F. Karim. An adaptive middleware for context-sensitive
communications for real-time applications in ubiquitous computing
environments. Journal of Real-Time Systems, 26 (1): 29–61, 2004.

11

