Mining Library Specifications using Inductive Logic
Programming.

Sriram Sankaranarayanan
NEC Laboratories America.
srirams@nec-labs.com

Franjo lvancic
NEC Laboratories America.
ivancic@nec-labs.com

Aarti Gupta
NEC Laboratories America.
agupta@nec-labs.com

ABSTRACT

Software libraries organize useful functionalities in order to
promote modularity and code reuse. A typical library is
used by client programs through an application program-
ming interface (API) that hides its internals from the client.
Typically, the rules governing the correct usage of the API
are documented informally. In many cases, libraries may
have complex API usage rules and unclear documentation.
As a result, the behaviour of the library under some cor-
ner cases may not be well understood by the programmer.
Formal specifications provide a precise understanding of the
API behaviour.

We propose a methodology for learning interface spec-
ifications using Inductive Logic Programming (ILP). Our
technique runs several unit tests on the library in order to
generate relations describing the operation of the library.
The data collected from these tests are used by an inductive
learner to obtain rich Datalog/Prolog specifications. Such
specifications capture essential properties of interest to the
user. They may be used for applications such as reverse
engineering the library internals or constructing checks on
the application code to enforce proper API usage along with
other properties of interest.

Categories and Subject Descriptors: D.2.4 [Verifica-
tion]: Statistical Methods, 1.2.6 [Learning]: Induction.
General Terms: Verification, Theory.

Keywords: Software Specification, Verification, Datalog,
Inductive Logic Programming, Machine Learning.

1. INTRODUCTION

Software libraries promote modularity and code re-use.
Common examples include operating system functionalities
such as threads, files and sockets; data structures such as
stacks, queues, lists and hashtables; utilities for multime-

Permission to make digital or hard copies of all or part o§ twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ICSE’08, May 10-18, 2008, Leipzig, Germany.

Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

dia codecs, data compression, encryption and transmission;
common functionalities such as parsing and so on. The func-
tionalities provided by a library are exported through an
Application Programming Interface (API).

An APT consists of object types and function signatures.
The interface usage rules are a combination of two basic rule
categories: (a) pre-conditions on the arguments of function
calls, and (b) admissible sequence of function calls to the
API. Any violation of the API usage norm can lead to faulty
or unpredictable behaviour in programs.

In theory, the restrictions on the calls to an API can be
formally specified using many types of logical formalisms
including Prolog/Datalog [13, 4] and automata-based for-
malisms such as interface automata [9]. In practice, how-
ever, specifications of API behaviour and restrictions on its
usage are stated informally in a natural language. Such
specifications may be ambiguous or even inaccurate. Often,
informal specifications may not specify all the corner cases.

Existing verification tools such as SLAM ', JPF 2 and
F-Soft ® can automatically check application code for con-
formance to formal specifications. These tools mostly rely on
the user to provide specifications for the library APIs used
by the application. The process of manually writing specifi-
cations is cumbersome and prone to errors. Therefore, it is
desirable to have automatic techniques to learn such speci-
fications. There are numerous approaches to learning spec-
ifications. First of all, the nature of the specification itself
varies widely. Some techniques learn data preconditions for
function call parameters expressed in a suitable constraint
language. Other techniques derive automata-based tempo-
ral characterizations of legal/illegal calling sequences.

Specification inference may be static or dynamic. Static
approaches analyze the source code to extract specifications
while dynamic approaches infer the required behaviour by
analyzing the runtime behaviour. Similarly, approaches may
be classified as direct or indirect. A direct approach infers
specifications directly by analyzing the library. An indirect
approach analyzes numerous client applications that use the
library to derive common usage patterns for the API.

In this paper, we present a direct technique to automat-
ically infer declarative specifications of the API behaviour.

LCf. http://research.microsoft.com/slam
2Cf. http://javapathfinder.sourceforge.net
3Cf. http://www.nec-labs.com/ fsoft

Unit Tests

API Sig.

Instr. & Unit Tests

Compile & Link

Transactions

ILP learn ———Output Spec.

Library

User Instr.

Figure 1: Block diagram for Inductive Learning of Specifications.

Our approach formulates numerous unit tests, while describ-
ing these tests and their outputs using some inbuilt relations.
Our tool subsequently mines these relations to infer declar-
ative specifications for target concepts such as the raising
of an exception, the return of a special value by a func-
tion, the printing of some specific pattern onto the output,
and other types of targets of interest to the user. The out-
put of our tool consists of the declarative specifications that
describe the target concept in terms of the operations per-
formed upon the library and its responses.

One of the key requirements for our approach is the avail-
ability of many unit tests that need to be run on the library
code. In most cases, the required unit tests are generated au-
tomatically using a randomized unit testing approach, based
on an interface description. An interface description consists
of the standard API header file with additional type quali-
fiers and a description of the target concept to be learned.

The primary advantage of our approach is that it can learn
specifications for different types of target properties as de-
sired by the user. Secondly, the source code for the library is
not required. Hence, it is especially suited for reverse engi-
neering applications. Furthermore, the required annotations
for the header files often require very little user knowledge
about the library’s internals. Finally, by running tests and
observing the output, all the behaviours considered are over
actual program executions. This is in contrast to static ap-
proaches that depend on behavioural abstractions.

The key learning tool used by our approach is called In-
ductive Logic Programming(ILP) [14]. ILP tools learn Dat-
alog (Prolog) specifications for a given target relation (pred-
icate) p in terms of relations pi,...,pm. The input data to
an ILP problem consists of tuples that belong to each of the
relations p1,...,pm as well as positive and negative exam-
ples of the target relation p. ILP tools can also use some user
provided background information about the predicates along
with restrictions on the desired form of the specifications to
infer a set of Horn clause rules that explain the target in
terms of the data. The specifications learned are quite ex-
pressive; they permit constraints on arguments of function
calls as well as characterizations of calling sequences.

Figure 1 shows the basic components in our approach.
Given an API signature describing the types and methods
involved in the API along with some information about the
method side effects, we automatically generate random unit
tests that exercise some of the functions in the API. The
tests are also instrumented to observe the system’s response
to the functions and print a log of the inputs/outputs. This
log is called a transaction. The unit tests generated are
compiled and linked with some additional instrumentation
for the target concept. After execution, the resulting trans-
actions are converted into relations and fed to an inductive
logic programming (ILP) tool that learns the specifications.
These specifications express the target concept in terms of
the transactions observed in the unit test.

Figure 2: Function to empty and free stack contents.

void freeTheStack (stack t * stack) {
while((x=pop(stack)) != NULL) freeElt(x);

The ILP engine is used in our approach as a black box.
Nevertheless, it is possible to streamline the specification
learning by providing background knowledge in the form of
structural annotations that restrict the type of specifications
considered, along with user defined background predicates
that are not inbuilt into the ILP tool.

Motivating Example

Consider the stack data structure with an API as shown in
Figure 3. The interface can be implemented in numerous
ways with behavioural differences arising only for the corner
cases. Consider the call to the “pop” method on an empty
stack. Implementation A raises an exception for this case,
requiring the user to check the stack length before calling
pop. On the other hand, another implementation B returns
a NULL pointer upon popping an empty stack. It is there-
fore conceivable that an user of library B writes the function
shown in Figure 2 to empty out and free the contents of a
given stack.

Figure 3 also shows a specification for each implementa-
tion written in a declarative formalism. The specification for
library A predicts the raising of an exception on pop while
that for B predicts the return of a NULL pointer. The spec-
ification for B indicates that the pop operation may also
return NULL if a NULL pointer has been pushed onto the
stack by an earlier operation. Therefore, the function shown
in Figure 2 need not free the stack completely, and can lead
to memory leaks. While the example may seem contrived,
incomplete specification of libraries can lead to serious de-
fects in application software.

2. RELATED WORK

Software Specification Mining. The automatic inference of
API specifications for software libraries has been studied
under a wide variety of settings, distinguished primarily by
the type of specification learned and the techniques used to
learn them.

Cohen uses ILP to learn Datalog specifications of differ-
ent inbuilt views of a relational database system inside a
telephony switch system by observing the results of its exe-
cution [7]. While the broad idea of discovering software spec-
ifications using ILP originates in that work, the work itself
addresses the specific case-study consisting of the database
system. However, the current work presents a more princi-
pled approach to learning specifications by describing unit

/* create a stack with some capacity */
stack_t * createStack (int capacity);

/* stack length */

int length(const stack t * stack);

/* stack capacity */

int capacity(const stack_t * stack);
/*top of the stack™®/

Implementation A:

/* pop throws an exception if the stack length is zero. */
throwsException(“pop”,s) : — length(s,0).

/* push throws an exception if the length is equal to the capacity. */
throwsException(“push”,s): — length(s,L), capacity(s,L).

voidx top (const stack t * stack);

/*pop an element from the stack*/
voidx pop (stack_t * stack);

/*push an element onto the stack*/
void push (stack t * stack, void * elem);
/*free the stack*/

void free (stack_t * stack);

Implementation B:

/* pop returns NULL if the stack length is zero. */
returnsNULL(“pop”,s) : — length(s,0).

/* pop returns NULL if a NULL is on the top of the stack. */
returnsNULL(“pop”,s) : — queryResult(“top”,s,NULL).

Figure 3: An API for stack implementations along with the behaviour of two different implementations for

the push/pop operations.

tests relationally and using ILP to recover specifications for
a target concept.

Ammons et al. mine specifications by running applica-
tions on the library and observing their interactions with
the API of the library [3]. The specifications are mined
using an automata learning algorithm that learns weighted
finite state automata. Jiang et al. [12] propose an automata
learning scheme based on NGRAMS to learn function call
sequences by observing execution traces. The Perracotta
tool due to Yang et al. [23] infers statistically common func-
tion call sequences by dynamically observing the application
code. The static analysis tool ESP is used to check for viola-
tions of the usage patterns mined by the Perracotta tool [23].

Whaley et al. present a static analysis for inferring pairs
of methods in a class that may raise an exception when
called successively [22]. The statically obtained specifica-
tion is compared against a dynamically obtained specifica-
tion obtained by instrumenting and executing the code. The
comparison yields useful information about bugs, code cov-
erage and so on.

Ramanathan et al. perform an automatic static analysis
of the application code to mine usage patterns for a given
API [18]. Their technique computes the intersection of many
abstract call patterns mined at different call sites. Acharya
et al. infer partial orders among different functions in the
API by static analysis of the application code [1]. They infer
commonalities among the different partial orders and output
them as possible API usage rules.

Our approach learns specifications for target concepts such
as exceptions, special return values, the printing of some
message to the output and so on. In contrast, indirect ap-
proaches can only claim to infer “common” usage patterns
exercised by the client. It is not possible, in these ap-
proaches, to exercise usage patterns that are not exercised
by the client in the first place. Therefore, specifications for
functions used infrequently in the application code cannot
be reliably inferred. In practice, functions which are under-
specified tend to be used relatively infrequently.

Alur et al. [2] use predicate abstraction and model check-
ing directly on the library itself to synthesize specifications
that characterize correct calling sequences for a given API.

The recent work of Christodorescu et al. demonstrates the
use of specification mining to automatically infer patterns

describing malicious behaviour inside applications [6]. The
Daikon tool of Ernst et al. discovers likely invariants directly
from execution traces [10]. Learning invariants from runtime
data is fundamentally different from specification learning
for a target concept. Whereas, specifications are learned in
the presence of negative as well as positive examples of the
target concept, instances for likely invariants contain only
positive examples of reachable states.

Randomized Unit Testing. Randomization is frequently
used in lieu of exhaustive exploration. Random testing sam-
ples uniformly at random from the space of inputs, essen-
tially treating the program as a black-box. The JCrasher
tool due to Csallner et al. presents a randomized technique
for generation of unit tests by exploring the parameter graph
derived by analyzing the type signature of the API [8]. This
technique is directly used in our approach to generate unit
tests that allocate objects of various types and exercise a
series of API methods on them.

Simplicity and ease of implementation are the essential
advantages to random testing. However, certain inputs of
interest may have a low probability of being discovered by
chance alone. This can be alleviated using concolic testing
to explore the program paths systematically using a con-
straint solver [11, 5, 19]. Concolic testing can enhance our
testing process by exploring inputs that exercise different
paths within a randomly chosen unit test.

Inductive Logic Programming. Inductive Logic Program-
ming is a commonly used relational data-mining technique
that seeks to infer Prolog/Datalog programs from relational
data. An excellent description of the theory behind ILP and
its applications is available from standard machine learning
textbooks [14]. ILP learning algorithms generally perform a
search on the space of permissible Horn clauses to discover
rules that cover all the positive examples and none of the
negative examples. However, in the presence of contradic-
tions in the data due to noise, the learned clauses may cover
some of the negative examples. Other approaches to the
problem have used inverted resolution operators to induce

clauses from the given data. ILP tools such as FOIL [17],FOCL [16],

PROGOL [15], and ALEPH [20] are available online. We have
used the ALEPH system extensively in our experiments and
found it adequate for learning API specifications.

3. DECLARATIVE SPECIFICATIONS

We now present the basics of declarative specifications
expressed in the Datalog formalism.

Datalog.
co,...,cr and predicates pi, ...
of typed variables over domains Dy, ..
be a distinguished goal (target) predicate that we wish to
characterize in terms of the other predicates pi,...,p;. A
declarative specification consists of a set of Horn clauses
{C4,...,Cy}, wherein each clause C; is of the form

Consider a signature ¥ consisting of constants
,pj. Let x1,...,x, be a set

Ci: piy(tin, .y tm1) A oo Apiy (o) = pl@n,...,2k),

where each t;; denotes a variable z1,...,2,, or a constant
¢ € ¥, while = is used to denote implication. Following
Prolog convention, such a clause is written as

)y ey Pig (00) -

It is possible to extend the definition of a clause to consider
recursion where p itself may be part of the left hand side of
the implication. These clauses are well-defined provided the
negation operator is not used in front of recursive predicates.
The signature can be extended using function symbols, to
yield the full power of Prolog specifications.

p(Ti,. o Tn) t =Py (-)y Pig (-

Example 3.1. Consider the domain of human popula-
tion along with the standard notion of biological father and
mother. We assume predicates such as mother(m,p) and
father(f,p), denoting that m (f) is the biological mother (fa-
ther) of p. It is possible to characterize the familiar concept
of “grandfather” using the following Datalog specification:

grandfather(z,y) :— father(zx, z), mother(z,y).
grandfather(z,y) :— father(z, z), father(z,y).

Similarly, the concept of an ancestor can be expressed:

ancestor(z,y) :— father(z,y).
ancestor(z,y) :— mother(x,y).
ancestor(z,y) :— ancestor(x,z),ancestor(z,y).

Declarative specifications can capture useful behavioural
properties of APIs such as permissible calling sequences,
function call preconditions, special return values, outputs
to a file and so on. In order to do so, we fix a first or-
der language that describes functions, the objects that they
manipulate and their return values, so that meaningful spec-
ifications can be expressed (later induced).

3.1 Interfaces

Let T'= {t1,...,tm} be a set of types which include ba-
sic types such as int and char, along with compound types
constructed by aggregating basic types into structures and
arrays. We assume for the time being that the composition
of compound types is unknown to us.

Def. 3.1 (Function Signature). A function signature
f is of the form (t1, ..., t,) «— f(t1,..
denote the argument types and (ty,...,t;,), the return types.
With each function f, we also associate a set of argument
indices that are destroyed as a result of the call. Destroyed
arguments are denoted using a “—” superscript (see Ex. 3.2).

.y Dm. Let p(z1,...,25)

tm), whereinty, ... tm

Example 3.2. The function signatures for the functions
in the stack API shown in Figure 8 are as follows:

stack_tx <« create_stack(int)
int «— length(stack_tx)
int «— capacity(stack_tx)
stack_tx <« create_stack(int)
stack_tx «— push_stack(stack_tx", elt_t)
(stack_tx, elt t) <« pop_stack(stack tx~)
void <« free(stack_tx™)

Note that the functions push_stack and pop_stack can mod-
ify their stack arguments. This is modelled by destroying the
original stack argument and returning a modified stack.

In general, we model all the inputs (formal arguments,
static variables and global variables) to a function as formal
arguments, and model all the side effects by means of the
result parameters. Furthermore, we assume that arguments
passed as pointers to a function are always destroyed un-
less prevented from doing so by a “const” annotation. This
allows us to automatically infer the signature from a pro-
gramming language header file used commonly in languages
such as C/C++ with very little user assistance.

A function signature f; forms a query if (a) all its re-
sults are basic types, and (b) none of its arguments are de-
stroyed. A query is assumed to model some attribute of
its arguments. Likewise, functions that reclaim the mem-
ory allocated to compound objects are termed destructors.
These functions destroy their compound arguments and re-
turn only basic types. Similarly, allocators for compound
types accept basic types as inputs and allocate a return value
of a required type. It is possible to relax the definition to
permit allocators that take compound objects as inputs. In
general, we require a linear type hierarchy among types so
that the inputs for an allocator are always smaller in the
type hierarchy than the output. In practice, the type hier-
archy can be automatically inferred and functions classified
as allocators, destructors or queries by means of a graphical
analysis of the API structure.

Def. 3.2 (Interface Signature). An interface signa-
ture is a tuple (T, Func), where T is a set of types and Func
is a set of function signatures.

Example 3.3. The interface signature for the stack in
Figure 3, has a single compound type stack_t. The alloca-
tor for stack_t is createStack, the query functions include
length, capacity. The functions push and pop modify their
stack argument. The function free is a destructor for objects
of type stack_t.

3.2 Deriving Relations

We present a set of inbuilt relations based on the given in-
terface signature that lets us accurately describe a sequence
of operations on a given interface. These relations will later
act as inputs to the learning problem.

Def. 3.3 (Transaction). Given an API, a transaction
O is a sequence of function calls to the interface functions
along with their results:

op; : (O1) <« fi({I1))
opy : (02)

by (On) — ful(ln)

op; : o1 < createStack(10)

op, : 0« length(o1)

op; : 02« createStack(2)

op, : o3« pushStack(o;,ptr0x32)

op; : 04 < pushStack(os, ptrOx45)

opg : (0s,ptr0x0) <« popStack(o])

op;, : (og,ptr0x45) < popStack(oy)

Figure 4: A transaction on the Stack API.

Each operation is of the form op; : (O;) « f;({I;)) where
op; is ils operation ID, (Oj) denotes the tuple of objects
output by the call to function f;, while (I;) denotes the tuple
of arguments to the function call. We require that every
compound argument o to an operation op, should be the result
of an earlier operation op;. Furthermore, o should not be
destroyed by any intermediate operation op,, for j < k < i.

Transactions are similar to unit tests. In essence, a trans-
action describes a set of function calls to a library as well as
their results. Note that transactions correspond to the pop-
ular Single-Static Assignment (SSA) form, commonly used
in program analyses.

Example 3.4. Figure 4 shows a transaction on the Stack
API in Figure 8. Each object is given an unique ID. Objects
destroyed by function calls are denoted by a — superscript.
Objects are referred to using their object IDs, whereas base
types and pointers to them are denoted by their values and
addresses respectively.

Our framework learns Datalog descriptions of target con-
cepts from relational data. Therefore, we need a standard
technique for describing transactions in terms of inbuilt rela-
tions. We use relations that describe the sequence of opera-
tions, the functions called by each operation, the arguments
and the result of each operation. In order to describe each
operation of the transaction, we need to describe (a) the
function called by the operation, (b) the object IDs and val-
ues for the basic-typed arguments, and (c) the object IDs
and the values of the results. The predicates used in the
relational description are summarized below:

e The relation opSucc(op;,op;) denotes that op, is a suc-
cessor (not necessarily immediate) of op;.

e The predicate fnCalled(op,, fi) denotes that the oper-
ation op, calls function f;.

e The predicate fnArgi(op;,ti,0:;) denotes that object

ID o4 is the ;th argument to function called by op; and
is of type t;. This predicate is polymorphic, with dif-
ferent types for 0;;, depending on the function called.

e The predicate fnResi(opj,ti,ogi) denotes that object

ID 0j; is the it" result parameter of the function called
by operation op;.

Example 3.5. The relational view of the transaction in
Ezample 3.4 is shown in Figure 5.

Query Closure. We now focus on the nature of the query
methods in an API. Since query functions are assumed not

op; : 01 « createStack(10)
opy, g0 : 0« length(o1)
g1 : 10 < capacity(o1)
op; @ 02 < createStack(2)
g2 : 0« length(o2)
gz : 2« capacity(oz)
op, : o3« pushStack(o, , ptr0x32)
ga : 1« length(os)
g5 : 2« capacity(os)
op; : o4 < pushStack(os, ptrOx45)

Figure 6: A query closed transaction.

to destroy their arguments and always return basic types,
we regard the results of a query g to be attributes of its
argument(s).

Example 3.6. For the API in Example 3.4 the query
methods length and capacity can be regarded as attributes
of the stack. They can be used to describe if a given stack is
empty or full.

Let q(t1,...,tx) be a query method with arguments of
type ti,...,tx. In order to have the maximal amount of
information about the objects encountered in a transaction,
we would like to run all the possible query methods on all the
feasible object combinations that are produced during the
transaction. Therefore, for each query ¢ and each operation
0j, we seek to run ¢ on all the new argument combinations
that are made possible by the results of the operation.

The query closure of a transaction consists of adding query
calls on all the newly created objects after every operation
op;. We distinguish the running of query functions on the
new objects from the actual operations in a transaction.

Example 3.7. The transaction shown in Example 3.4 is
not query closed. However, the transaction may be modified
to yield the query closed transaction shown in Figure 6.

By convention, we let g; denote a query while op, denote
a non query function call in a transaction. With each query
function f;, we denote a predicate

queryResult_f;(01,...,0n,71,...,7m), wherein
01,...,0n, denote the IDs of the parameters to the query
while r1, ..., 7, denotes the values of the results returned by

the query. Note that the operation ID corresponding to the
query does not form any part of our query result predicate.
The predicate is assumed to be a property of its argument
objects o1, ..., 0, and not specific to the system state at the
time of its execution. In some cases, queries are intended
to capture the system state at the time of the execution.
Examples include functions such as fstat for finding if a
file exists on the disk or time for finding system time. In
such situations, it is necessary to have the operation ID op;
be a part of the query result predicate.

4. LEARNING SPECIFICATIONS

So far, we have presented the notion of transactions on an
API and shown how to represent the transaction in terms

fnArg2 fanl
op, | elt_t* | ptr0x32 Py §tac - 81
op; | elt_tx | ptrOx45 opy | int
ops | stack_t* | o2
TReD op, | stack_t* | o3
opg | stack_t* | 04
opg | elt_tx | ptrOx0 tack t
It_t* | ptrOx45 OPg | StactE | 05
op7 | €t op; | stack_t* | oe

Figure 5: Relations generated by transaction on the Stack API.

Figure 7: ILP instance for the target concept sibling.

of relations. We now present a technique for mining these
relations in order to learn interesting patterns about them.
Inductive Logic Programming (ILP) is a basic technique that
mines relational data for declarative specifications.

4.1 Inductive Logic Programming

Inductive Logic Programming (ILP) is a relational data
mining technique that seeks to learn Prolog (Datalog) pro-
grams given some relational data, a target concept and back-
ground knowledge about the structure of the target program.

Let p1, ..., pm be aset of relations over domains D1, . .
Let p be a target relation which we would like to specify
in terms of itself and the other predicates using a Datalog
program. An ILP problem instance requires the following
inputs:

e The relations p1,...,pm,

e Positive tuples that belong to the target relation p and
negative examples of tuples that lie outside the target
relation p,

e Optionally, background knowledge that restricts the
syntactic structure of the clause.

The output of an ILP instance is a set of clauses C1, . ..
Each clause C} is of the form

C; - p(...);_pil(...)7”‘7pik(...).

The clauses conform to the syntactic and semantic restric-
tions specified as part of the background knowledge. To-
gether, the disjunction of all the clauses cover all the positive
examples and exclude all the negative examples provided.

Example 4.1. Figure 7 shows an example ILP problem
using the relations father, mother and the target predicate
sibling. This instance has both positive and negative exam-
ples for the target predicate sibling. No background knowl-
edge is assumed for this example.

., Ds.

,Crm.

opSucc fnCalled fnArgl
OP1 | OP2 | | op, [createStack | | op; | int 10
OP1 | OP3 | | op, | length op, | stack tx [o1
op; | createStack | | opg | int 2
o ;) op, | pushStack op, | stack_t* | o2
0p1 0p7 op; | pushStack op; | stack_t« [o3
P2 | OP3 opg | popStack opg | stack_t« | o1
op; | popStack op; | stack_t* | o4
father mother sibling — sibling
m1 | fa R 2 f2 | ms
mi | m3 Jufma fo | ms || J2
o m;; fa | ms s | fs fi | ms
ma | ms Jo | ma s | fs Ja | i
e Ja| f5 mi | ms
ms | f3 ol Fs mams [g

An ILP learner seeks to cover all the positive examples.
This is achieved by repeatedly (a) choosing an uncovered
positive example, (b) constructing a saturation clause that
explains the positive example, and (c) generalizing this clause
to cover as many positive examples as possible and no neg-
ative example. The generalized clause is added to the pool
of learned clauses and the positive examples covered by it
are removed from the uncovered set. This process is best
illustrated by an example.

Example 4.2. Consider the ILP instance in Example 4.1.
We choose the positive example (ms, f2) € sibling. The rel-
evant tuples concerning ms, fo are

father(mai, ms), mother(f1,ms), father(ma, f2), mother(f1, f2)

These tuples enable us to construct the following saturation
clause by generalizing domain values by means of variables:

sibling(X,Y) :— father(M, X),father(M,Y)
mother(F, X), mother(F,Y).

This clause covers all but one of the positive examples and
none of the negative examples. It is nearly an ideal clause.
We now consider various generalizations of this clause. One
of the important generalizations is to drop antecedents from
the clause to cover more positive examples. However, this
is not the only generalization possible. Many solvers may
consider other means of generalizations such as making two
instances of the same wvariable distinct, adding new predi-
cates, abducing predicates and so on.

Let us consider the following generalizations of the satu-
rated clause along with the number of positive and negative
examples that satisfy the clause:

sibling(X,Y) :— father(M, X), mother(F,Y) | (5,6)
sibling(X,Y) :— father(M, X),father(M,Y") [(5,0)
sibling(X,Y) :— mother(F,X), mother(F,Y) | (6,0)

Among all the clauses the last one is ideal since it is the
smallest clause that explains the largest number of positive
examples and none of the negative examples. It is therefore
added to the set of learned rules. Since there are no uncov-
ered positive examples left, the final learned program consists
of a single clause

C': sibling(X,Y) : —mother(F, X), mother(F,Y").
While this result conforms to the familiar concept of a “sib-
ling”, the following clause is not learned:

C" . sibling(X,Y) : —father(M, X), father(M,Y).

Due to inadequate data, clause C is enough to explain all
the data that can be explained by C.

4.2 Learning Target Specifications

ILP can be used to learn specifications for some target be-
haviour given the output of many transactions carried out on
a library. In general, the target is chosen by the user depend-
ing on the intended application and specified as a part of
the learning problem. Common examples of targets include
an operation throwing an exception (an assertion violation),
returning a special value of interest, printing a specified mes-
sage on the output and so on. We assume that the target
predicate can be evaluated by examining the transaction.

For the remainder of this section, we seek to predict the
conditions under which a call to the function f; throws an ex-
ception. The target predicate, denoted throwsException(f, op),
indicates that a function call to f during an operation op
throws an exception. We may instrument transactions to
print positive examples of the predicate whenever an opera-
tion throws an exception and negative examples otherwise.

Let O1,...,0n be a set of transactions run on the li-
brary whose behaviour we seek to infer. Let us assume that
the set of operation IDs and object IDs involved in these
transactions are pairwise disjoint. We also assume that each
transaction is query closed. The transactions are converted
into inbuilt relations, as discussed previously. Furthermore,
the outcome of the target predicate (eg., exception being
thrown) is tested at the end of each operation and classified
into positive and negative instances.

Finally, the user may provide some background knowledge
(hints) that constrain the search for rules. The nature of
this knowledge and its effect on the learning algorithm is
discussed subsequently. The data thus collected yields an
ILP instance and is fed to an ILP learner.

Example 4.3. Consider the transaction shown in Exam-
ple 3.7. We use the target popReturnsNullPtr(op_id). The
only positive example for the target is popReturnsNullPtr(opg),
while all the other operations form mnegative examples. In
general, the amount of data involved in this instance is quite
small. Learning algorithms typically perform well only when
data is available from a variety of transactions, each exercis-
ing a variety of situations. For instance, if the data volume
is insufficient, the result may vary widely depending on the
search heuristic employed. In this instance, the clause

popReturnsNullPtr(X) : — fnCalled(X, “pop”),
fnArg, (X, stack_t, S),

queryResult(“capacity”, S, 10).

states that a pop operation returns NULL whenever the ca-
pacity of its first argument is 10. This clause covers the sin-
gle positive instance and excludes all the negative instances
in this case. Nevertheless, it is possible in principle (by
choosing the right search heuristics) to this example to yield:

popReturnsNullPtr(X) : — fnCalled(X, “pop”),
fnArg, (X, stack_t, S),

queryResult(“length”, S, 0).

The clause above states that pop operation may return null
if the length of its argument is 0. The former clause can
be avoided in the presence of enough data either because of
negative examples of stacks with capacity 10 (but with 1 or
more elements) that do not return a NULL on pop, or more
positive examples with varying capacities but length 0 that
return a NULL. Finally, commonly used search heuristics

are governed by the “Occam’s Razor” and prefer constants
such as 0 over 10.

We have observed that given higher data volumes, it is pos-
sible to reliably learn the right clause using many heuristics.

4.3 Background Knowledge

We distinguish between two different types of background
knowledge (a) Structural information about the clauses, and
(b) User defined predicates that may be used by the learner.

Structural Knowledge. 1t is possible to annotate clauses
using structural information. The exact form of this infor-
mation varies, depending upon the search used by the ILP
learner. In general, it is possible to restrict the possible com-
bination of predicates that may form a part of the body of
a clause by means of mode annotations on predicates. Let
p(x1,...,xm) be a predicate in an ILP problem instance.
A mode annotation for p classifies each input argument x;
into one of three categories (a) an input variable z!, (b) an
output variable ¥ or (c) a constant z7.

The ILP learner uses mode annotations to learn clauses
according to the following rules:

1. Any term X that instantiates an argument z! in the
body of a predicate p; must appear in the head p as
an input argument, or as an output argument of an
earlier predicate p; in the clause body.

2. Any output argument 2 in the head must also appear
as an output in the body of the clause.

3. Any argument :cf& is instantiated by a constant term.

Annotations speed up the search by restricting the clause
structure. Our experiments with ILP learners use the fol-
lowing annotations for the inbuilt relations:

o throwsException(op’, fn#), fnCalled(op’, fn#)

o fnArg;(op’, typ?, obj_id?), fnRes; (op’, typ™, obj_id?),
e queryResult_fn(obj!, ... obj’, 7P, ..., 75),

e opSucc(op’, 0p?).

Background knowledge may also consist of user-defined
predicates. We require common predicates such as equality,
comparison operators such as inequalities, disequalities, and
constants such as 0,1, —1 and so on. Depending on the tool
used, such predicates may or may not be inbuilt. We simply
establish a library of common background predicates that
the learner may use in the body of the learned clauses.

Finally background knowledge may also be provided in the
form of dependency information between the target predi-
cate and the different predicates used in the data. In general,
if a predicate p; is known not to affect the target predicate
p, it need not be considered by the learner while inferring
the specification for p.

5. TRANSACTION GENERATION

We now turn to the automatic generation of transactions
given a library with an API signature (7', Func). Our tech-
nique relies on the generation of random wunit tests. These
unit tests are instrumented to yield the relations that form
the inputs to the learning problem. The unit test generator

Algorithm 1: Randomized unit test generation scheme.

Input: (7T, Func): API Signature, N: initial pool size
Result: Unit Test output
begin
for each obj. type t € T do

/* Initialize the pool for the type t */
| pool[t] < initPoolForType(t, N)

while --- do /* Run unit test */
Sel. (t1,...,tn) < f(t1,...,tm) € Func — Queries
Sel. arguments i1, ..., 0m
Args. are chosen randomly from their corr. pools

Execute : (0f,...,0,) «— f(i1,...,im)
Remove destroyed arguments from their pool

Add returned objects to the pool

end

is called repeatedly in our framework and the resulting re-
lations are merged with those collected from previous unit
tests.

Random Unit Tests. Algorithm 1 outlines our random unit
testing approach. Our approach first constructs a fixed size
pool of object references to each type in the signature. The
size of this pool is a user input.

The pool for basic types such as int, char are constructed
by using random number generators. Arrays of basic types
such as strings and integer arrays are constructed by allocat-
ing memory with randomly chosen lengths, and filling the
allocated arrays with randomly generated content.

Pools of compound objects are then constructed by us-
ing allocator methods for these objects. In principle, any
method that returns a reference to an object of type ¢t can
be thought of as an allocator for the type. However, during
the construction of the object pool, not all such methods are
suitable. For instance, the pushStack method for the stack
API in Figure 3 is unsuitable for constructing a stack object
pool, since it requires a stack object as an argument that is
destroyed by the call. The allocators and the order of object
allocations are selected by analyzing the parameter graph of
the API signature following the approach of Csallner and
Smaragdakis [8].

Once all the objects in the pool are allocated, the unit test
generator repeatedly chooses non query methods at random
and executes them with inputs chosen randomly from the
pool. The outputs obtained are added back to the object
pool, while the arguments destroyed by the method are re-
moved. By removing objects that are destroyed by a func-
tion call, we ensure that their object IDs are not used in sub-
sequent operations. In order to obtain query closed trans-
actions, each query method in the API is run on all possible
combinations of inputs from the pool, after each operation.

The unit tests generated by our technique are then instru-
mented in order to generate the transaction along with the
relations required for the ILP learner. This is achieved by
numbering different operations issued by the unit test and
the objects produced/consumed by these operations.

The test generator is also instrumented based on the tar-
get, predicates chosen by the user. For instance, in order to
learn the exception behaviour, the unit test sets up exception
handlers for various types of exceptions. Upon the receipt

Run queries on the return vals. and objects in the pool

of an exception, a positive instance of the target predicate
is generated. If an operation ends successfully without an
exception being thrown, a negative instance of the corre-
sponding target predicate is printed.

Each unit test is run for a fixed number of steps. Tests are
stopped upon the throwing an exception or the exhaustion
of a resource such as time/memory. Typically, the unit test
generator is also reseeded repeatedly to enhance randomiza-
tion. The relations obtained from different unit tests are
all merged (after renumbering object and operation IDs to
make them unique). They may be fed directly into an ILP
learner to learn specifications.

6. EXPERIMENTS

We have implemented a tool flow that automatically gen-
erates random unit tests given the interface description. These
tests are instrumented to generate relational transactions
which are then fed as inputs to the ILP learning tool Aleph [20].
In order to facilitate the learning, we provide predicates
that model relational operators such as {=,>, <, <, > #},
as well as comparison with the constants zero and one. The
output of the learner is post-processed to consider the sup-
port for each rule, i.e., number of positive examples ex-
plained by the rule. Rules with high support are more re-
liable than those with lower supports. The latter rules are
more likely to be products of accidental biases in the tests
than actual properties of the API. Consequently, we reject
rules with inadequate support (<5% of the total positive in-
stances). The exceptions explained by these rules are treated
as uncovered.

We evaluate our tool on a variety of benchmark examples.
These examples include data structure implementations for
stacks and lists, the Parma Polyhedron Library, the Unix file
library, the “Stdlib” Math library and the Bignum library
used for cryptographic applications in OpenSSL. For each li-
brary, we run numerous unit tests, depending on the number
of API functions and their complexity *. Table 1 shows the
number of tests (each test generates one transaction) gen-
erated along with the number of exception instances. The
output data for the ILP learner consists of the number of
rules learned, the time taken and the number of exceptions
that were left uncovered by the rules learned. The data show
that our learned rules were able to explain a vast majority of
all the exceptions raised by the unit tests with adequate sup-
port. Finally, the rules learned themselves were compared
against the documentation for the library for accuracy. In
general, almost all the rules were borne out by the library
documentation. However, the output for the Unix file and
GLPK libraries contained factually incorrect rules that had
significant support.

Insufficient Instances. One of the common problems with
random unit testing is that the number of positive and/or
negative examples for a particular type of exception can be
too few even though many tests are run.

Example 6.1
umented requirements for the function

addRowToLP(lp_t = Ip, int len, int* ind, float = ptr)

in the GLPK library requires (a) a properly initialized Ip,
(b) the parameter “len” be less than the array lengths of the

“The data and results for these experiments are available by
requesting srirams@nec-labs.com

(Complex API requirements). The doc-

Table 1: Summary of results on data structure implementations: #Fn: number of API functions, #Tr:
number of transactions, #Pos: number of exception instances, #R: number of rules learned, T: ILP learner
time taken in seconds, #U: number of uncovered exceptions, #In: Number of rules that are inaccurate.

PPL Parma Polyhedra Library
Varset Bitvector sets

File C stdio FILE interface
Math Stdlib math

Bignum | Openssl bignum package

Name Descr. #Fn | #Tr. | #Pos | #R | T #U | #In.
Stack Stack data struct. 6 200 160 4 1 0 0
List List data struct. 9 500 251 4 38 20

GLPK | GNU Linear Programming Kit (LP setup) || 15 8000 | 7909 9 36 |0

18 2000 | 1373 14 11 1
19 500 408 19 18 |0
26 2000 [1110 21 51 | 28
46 2000 | 31 1 1 0
63 5000 | 545 8 153 | 12

SO R OO NO

pointers “ind” and “ptr”, (c) each element of the array “ind”
be positive and less than the number of columns in “Ip” and
(d) each element of the array “ptr” be non zero.

The probability of automatically obtaining a random test
that exercises this function while satisfying all the require-
ments listed above is vanishingly small. Therefore, no neg-
ative examples are encountered in this case. In turn, our
tool concludes that such a function always raises an excep-
tion with support from a large number of positive exam-
ples (since no negative examples are present to refute such
a claim).

In general, a large number of random unit tests may be
required to provide a few examples that demonstrate the
proper working of such a function. The resulting data vol-
ume can slow down the ILP engine. Alternatively, the in-
correct clause can guide the design of specific unit tests that
may demonstrate the correct working of the function, thus
leading our tool towards the right concept.

Closed World Assumption. The ILP learner can fail to
learn the right concept, or infer an incorrect concept when
unmodelled factors depending on the run time environment
can affect the behaviour of the API.

Example 6.2 (File Operations). Consider the com-
mon library function

FILEx « fopen(charx fname, rw_mode_t rwmode) .

The behaviour of fopen on some file foo.tzt may vary de-
pending on whether the file already exists in the disk, or not.
This leads to non determinism in the function behaviour that
cannot be explained by the learner.

The problem is addressed by running a query function such
as fstat that finds if a file exists on the disk before each op-
eration. Furthermore, since a file may be created on the disk
by means of a previous operation, the query function in this
case needs to be predicated on the subsequent operation ID
in the transaction. Consequent to these changes, the learner
correctly infers rules explaining the return value of the fopen
API

FExpressiveness. In general, limitations to the expressive-
ness stem from the lack of background knowledge or inbuilt
predicates required to express certain properties.

Example 6.3. The function addRowToLP described in Ex-
ample 6.1 requires that the contents of arrays ind and ptr

Table 2: Some rules inferred for Bignum library.
R1,R2 | Check result of BN_generate_prime

and BN_mod_inverse for NULL before use.
The second argument to BN_generate_prime
and BN_rand should be positive.

R3,R4

Table 3: Checking the rules R1-R4 on applications
using the bignum library. #C: Number of calls, #O0K:
Check passes, #NG: violation possible.

Rule | #C || #0K | #NG
RL |10 |8 2
R2 |12 || 11 1
R3 |10 |5 5
R4 |98 | 90 8

follow some specific requirements (requirements (c) € (d)).
Our current model does not track array contents. There-
fore, it can capture requirements (a), (b) for an exception.
However, requirements (c), (d) cannot be learned.

Other pitfalls include noise in the data due to unreliable
exception handling for faults such as segmentation violation,
and also due to interference caused by aliasing and sharing,
that can confuse the learner. In practice, ILP learners em-
ploy heuristics that make them insensitive to small amounts
of noise in the data.

Checking Learned Rules

In principle, it is possible to convert the Datalog rules auto-
matically into static checks on application code. Following
the approach in this paper, we may statically gather all the
possible sequences of function calls for a given object o by
means of static analysis to form static transactions. The
resulting static transactions can be converted into relations
and checked against the learned rules to infer the possibil-
ity of an exception on some inputs. Efficient static analysis
tools for evaluating Datalog queries such as BDDBDDB are
ideal for this purpose [21].

We provide a proof of concept by manually interpreting
the clauses into static checks, based on four of the rules in-
ferred for the bignum library as described in Table 2. Table 3
shows the results of a manual inspection of the source code

of the rest of the OpenSSL library and other applications
available online for instances that violate the checks 5. A
majority of the calls to the functions involved do conform
to the checks described in Table 2. Some of the violations
found can be exploited to produce an exception while oth-
ers simply translate into requirements on the OpenSSL li-
brary functions. At least one application considered could
be crashed, specifically due to a missing check for R3 ©.

7. CONCLUSION

In conclusion, we have provided a framework for induc-
tively inferring useful specifications for libraries targeted to-
wards a specific concept. Our technique uses random test
generation to compile the behaviour of the library into rela-
tions that can be mined for useful Datalog properties. We
have also provided a proof of concept for potentially con-
verting the mined properties into feasible static checks.

8. REFERENCES

[1] AcHARYA, M., XiE, T., PEL, J., AND XU, J. Mining

API patterns as partial orders from source code: from
usage scenarios to specifications. In ESEC-FSE 07
(2007), ACM Press, pp. 25-34.

[2] ALUR, R., CERNY, P., MADHUSUDAN, P., AND NAM,
W. Synthesis of interface specifications for java
classes. In Proc. ACM SIGPLAN symp. on Principles
of prog. lang. (POPL) (2005), ACM Press, pp. 98-109.
AmmMons, G., Bopik, R., AND LARUS, J. R. Mining
specifications. In POPL (2002), pp. 4-16.

[4] BERGADANO, F., AND GUNETTI, D. Inductive Logic
Programming: From Machine Learning to Software
Engineering. MIT Press, 1996.

[6] CADAR, C., AND ENGLER, D. R. Execution
Generated Test Cases: How to make systems code
crash itself. In SPIN (2005), vol. 3639 of LNCS,
Springer—Verlag, pp. 2—23.

[6] CHRISTODORESCU, M., KRUEGEL, C., AND JHA, S.
Mining specifications of malicious behavior. In
ESEC-FSE 07 (2007), ACM Press, pp. 5-14.

[7] CoHEN, W. W. Recovering software specifications
with inductive logic programming. In AAATI (1994),
pp. 142-148.

[8] CSALLNER, C., AND SMARAGDAKIS, Y. Jcrasher: an
automatic robustness tester for Java. Softw., Pract.
Ezxper. 84, 11 (2004), 1025-1050.

[9] DE ALFARO, L., AND HENZINGER, T. A. Interface
automata. In ESEC / SIGSOFT FSE (2001), ACM
Press, pp. 109-120.

[3

SCf. http://www.openssl.org/related/apps.html.

5Cf. Chameleon Hash Implementation: http://www.dsi.
uniromal.it/"patil/projects/cham/main.c.

[10] ErRNST, M. D. Dynamically Discovering Likely
Program Invariants. Ph.D., University of Washington
Department of Computer Science and Engineering,
Seattle, Washington, Aug. 2000.

[11] GopEFROID, P., KLARLUND, N.,; AND SEN, K. DART:
Directed Automated Random Testing. In ACM
SIGPLAN 2005 Conference on Programming
Language Design and Implementation (PLDI’05)
(2005), pp. 213-223.

[12] JiaNg, G., CHEN, H., UNGUREANU, C., AND
YosHIHIRA, K. Multi-resolution abnormal trace
detection using varied-length N-grams and automata.
In ICAC (2005), IEEE Computer Society,
pp. 111-122.

[13] JonEs, C. B. Software Development: A Rigorous
Approach. 1980.

[14] MiTcHELL, T. M. Machine Learning. McGraw-Hill,
1997.

[15] MUGGLETON, S. Inverse resolution and PROGOL. New
Generation Computing 18 (1995), 245-286.

[16] PazzaNi, M., BRUNK, C., AND SILVERSTEIN, G. A
knowledge-intensive approach to learning relational
concepts. In Proc. Workshop on Machine Learning
(1991), Morgan Kauffmann, pp. 432-436.

[17] QuINLAN, J. R. Learning logical definitions from
relations. Machine Learning 5 (1990), 239-266.

[18] RAaMANATHAN, M. K., GRAMA, A., AND
JAGANNATHAN, S. Static specification inference using
predicate mining. In Proc. ACM SIGPLAN Prog.
Lang. Design & Implementation (PLDI) (2007), ACM
press, pp. 123-134.

[19] SEN, K., MARINOV, D., AND AGHA, G. Cute: A
concolic unit testing engine for ¢. In ESEC/FSE’05
(2005), ACM Press.

[20] SRINIVASAN, A. The Aleph manual. Available at
http://www.comlab.ox.ac.uk/oucl/research/
areas/machlearn/Aleph/.

[21] WHALEY, J., AND LaM, M. S. Cloning-based
context-sensitive pointer alias analysis using binary
decision diagrams. In PLDI "0 (2004), ACM Press,
pp. 131-144.

[22] WHALEY, J., MARTIN, M. C., AND LaM, M. S.
Automatic extraction of object-oriented component
interfaces. In ISSTA (2002), pp. 218-228.

[23] YaNG, J., EvaNs, D., BHARDWAJ, D., BHAT, T,
AND DaAs, M. Perracotta: Mining temporal API rules
from imperfect traces. In Proc. of ICSE (2006).

