
Global Consistency Checking of Distributed Models with
TReMer+

Mehrdad Sabetzadeh Shiva Nejati Steve Easterbrook Marsha Chechik

Department of Computer Science
University of Toronto

{mehrdad,shiva,sme,chechik}@cs.toronto.edu

ABSTRACT
We present TReMer+, a tool for consistency checking of distributed
models (i.e., models developed by distributed teams). TReMer+
works by first constructing a merged model before checking consis-
tency. This enables a flexible way of verifying global consistency
properties that is not possible with other existing tools.

1. INTRODUCTION
Models play a key role in many aspects of software engineer-

ing. Analysts build models of a problem domain to understand the
stakeholders’ goals and needs, and they build models of a system
under development to reason about its structure and behaviour. For
large-scale projects, modelling is a collaborative effort that may
involve distributed teams of people. These teams often build sev-
eral inter-related models representing information from different
perspectives, or information relevant to different development con-
cerns. Model Management is concerned with describing the rela-
tionships between these models, and providing systematic ways to
analyze and manipulate the models and their relationships [2].

An important activity in model management is checking the con-
sistency of a set of models with respect to known or hypothesized
relationships between them. For example, suppose that the class
diagrams M1 and M2 in Figure 1 are two different perspectives on
a GUI domain, and that the relationship R in the figure expresses
the overlaps between the two models.

Canvas

Component

Container

Panel

UIObject

R
M1

M2

Figure 1: Consistency checking of pairs of model.

In the above example, R was defined by hand. Larger problems
require automation, usually achieved through conventions for es-
tablishing correspondence between object pairs, e.g., name equiv-
alence if models have a common vocabulary, or identifier equiv-
alence if models have common ancestors. For independently de-
veloped models, heuristic model matching has been proposed [6].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Regardless of how the relationship R is defined, it is important to
be able to check whether it respects the consistency properties of
interest. For example, we may want to verify that R does not imply
cyclic inheritance. This is done using a rule like the following:

¬∃x, y, z, t · R(x, y) ∧ R(z, t) ∧Descends(x, z) ∧Descends(t, y) (C1)

Obviously, the relationship in Figure 1 violates C1, as witnessed
by x= “Component”, y= “UIObject”, z= “Canvas”, and t= “Panel”. This
indicates either that we misunderstood the nature of the overlaps
between M1 and M2, or that there is a real disagreement between
the models.

The example in Figure 1 only considers pairwise consistency,
i.e., consistency of a pair of models with respect to a single rela-
tionship between them. In practice, we are often faced with sys-
tems that have many models inter-related by many relationships.
Therefore, we not only need to check pairwise consistency, but also
the consistency of a system as a whole. This is known as global
consistency checking. Global consistency checking cannot be done
through pairwise checking [14, 8]. To illustrate, consider the sys-
tem in Figure 2.

Container

UIObject

M3

R1 R2

Canvas

Component

M1

M2

ContainerPanel

R3

Figure 2: Consistency checking of systems of models.

The models in the figure are pairwise consistent when checked
against C1. But the system is globally inconsistent because the
combination of the information provided by R1, R2, R3 implies a
loop in the inheritance chain. Specifically, Component inherits from
Canvas =R1 Panel which inherits from Container (in M2) =R2 Con-
tainer (in M3) which inherits from UIObject =R3 Component.

Existing tools for consistency checking of distributed models,
e.g., xlinkit [7], focus on pairwise checking using rules similar to
C1. Unfortunately, such rules are coupled with explicit references
to a relationship (e.g., R in C1). Hence, generalizing a pairwise rule
to a global one involves referring to all of the relationships between
the models within the scope of an individual rule, which makes the
rules too complex to be practical.

In [11], we propose a technique for decoupling consistency rules
from relationships when models are assumed to be homogeneous
(i.e., specified in the same notation). The idea behind the technique
is to employ model merging to reduce the problem of checking
inter-model consistency to checking intra-model consistency of a
merged model. For example, rather than trying to directly check

Inconsistency
Navigation

Source System

Merge

+
<traceinfo model="ex" diagram="Threeway">!
 <element uid="645">!
 <lineage view="Rob" uid="25"/>!
 </element>!
 <element uid="644">!
 <lineage view="Rob" uid="21"/>!
 </element>!
 <element uid="646">!
 <lineage view="Rob" uid="32"/>!
 <lineage view="Connector1" uid="343"/>!
 <lineage view="Sue" uid="12"/>!
 <unifier name="C1-To-Sue" srcuid="343" tgtuid="12"/>!
 <unifier name="C1-To-Rob" srcuid="343" tgtuid="32"/>!
 </element>!
 <element uid="647">!
 <lineage view="Sue" uid="2"/>!
 </element>!
 <element uid="643">!
 <lineage view="Rob" uid="19"/>!
 <lineage view="Connector1" uid="341"/>!
 <lineage view="Sue" uid="6"/>!
 <unifier name="C1-To-Sue" srcuid="341" tgtuid="6"/>!
 <unifier name="C1-To-Rob" srcuid="341" tgtuid="19"/>!
 </element>!
</traceinfo>

Merged Model Consistency
Checking

(Intra-Model)

<html>!
 <head>!
 !
 </head>!
 <body>!
 <h2>!
 Diagnostics for merge!
 </h2>!
 (note the filters
applied)<hr>Objects !
 with multiple parents:!
!
 !
 !
 merge/258 <font
color="#FF00FF"> (Parents: merge/257 merge/260)</
em>!
 !
 !
 <hr>!
 </body>!
</html>Traceability

Data Diagnostics

Figure 3: Global Consistency Checking with TReMer+.

the acyclic inheritance constraint on the system in Figure 2, we
construct a merge, shown in Figure 6, and interpret the constraint
over it. By keeping proper traceability data, we project the diag-
nostics obtained from consistency checking of this merge back to
the source models and relationships.

In this paper, we describe a prototype tool, TReMer+, that sup-
ports the consistency checking approach in [11]. In addition to
addressing the problem of global consistency checking for homo-
geneous models, TReMer+ offers practical insights on how to com-
bine independent model management operators, in this case, merge
and (intra-model) consistency checking, in order to perform more
complex model management tasks.

2. TOOL OVERVIEW
Figure 3 shows an overview of the consistency checking use case

in TReMer+: Having defined a system of inter-related models, we
begin by applying a merge operator to the system. This yields a (po-
tentially inconsistent) merged model along with traceability links
from it to the source system. In the next step, we check the con-
sistency of this merged model against the (intra-model) constraints
of interest, and generate appropriate diagnostics for any violations
found. By utilizing the traceability data for the merge, the tool
enables navigation from the diagnostics to the source models and
relationships involved in every inconsistency instance.

TReMer+ offers end-to-end support for the process in Figure 3.
Specifically, it provides (1) an environment for building models,
relationships, and systems of inter-related models, (2) a library of
merge operators, (3) a platform for constraint checking and diag-
nostics generation, and (4) utilities for computation and navigation
of traceability links. Of these, (3) and (4) are new in TReMer+;
and (1) and (2) are from an earlier conception of the tool, TReMer
(Tool for Relationship Driven Model Merging) [10].

In this paper, we describe the use of TReMer+ for consistency
checking, concentrating on relevant parts of the model merging
process (Section 2.2), specifying consistency rules (Section 2.3),
and understanding the results of the analysis (Section 2.4).

2.1 Models, Relationships, and Systems
TReMer+ has a visual interface that allows users to edit their

models, build relationships between these models, and define dif-
ferent systems by choosing subsets of the models and relationships
in a project. TReMer+ currently supports entity-relationship di-
agrams, state machines, and simple UML domain models. In the
future, we plan to extend TReMer+ to support other notations, such
as goal models and detailed class diagrams.

TReMer+ provides a convenient way for describing relationships.
For this purpose, model pairs are shown side-by-side. A correspon-
dence is established by first clicking on an element of the model in
the left pane and then on an element of the model in the right pane.
Figure 4 illustrates this for the relationship R1 of Figure 2.

TReMer+ uses an abstraction, called interconnection diagram,

Figure 4: Building relationships between models.

for specifying the set of models and relationships that should be
included in the analysis. For example, Figure 5(a) shows the inter-
connection diagram for the system in Figure 2. Being explicit about
the participating models and relationships is important for two rea-
sons: (1) It allows developers to narrow down the scope of their
analysis to a desired subsystem. For example, if we were inter-
ested in pairwise checking of M1 and M2 (with respect to R1), we
would use the interconnection diagram in Figure 5(b). (2) A mod-
elling project may include outdated or competing versions of the
models and relationships. In such a case, one needs to be explicit
about the versions to be used.

(a) (b)
Figure 5: Interconnection diagrams.

2.2 Model Merging
Our consistency checking approach relies on the ability to merge

a set of related models into a single model. The way this merge
is carried out ultimately depends on the formalism being used, and
the assumptions made about the semantics of the models and their
relationships. To enable the implementation of different merge al-
gorithms, TReMer+ defines a plugin interface for the merge opera-
tion. Currently, TReMer+ provides implementations for two merge
algorithms, described in [9] and [6], respectively.

[9] is a generic algorithm suited to graph-based models in early
stages of development (e.g., requirement elicitation), where models
are typically incomplete and have informal or semi-formal seman-
tics. The algorithm supports a range of ontological relationships
between concepts in different models, e.g., exact matches (equiv-
alence), specialization (isA), aggregation (hasA), and overriding
(refutation of a concept in favour of another). Merges are computed
based on a category-theoretic concept called colimit. Colimits can
merge several models at a time; hence, they can be applied directly
to interconnection diagrams with arbitrary numbers of models and
relationships. Further, colimits are universal, i.e., unique (up to
isomorphism) for a given interconnection diagram. Figure 6 shows
the colimit of the system in Figure 2. For simplicity, our exam-
ple in Figure 2 only uses equivalence mappings. See [9] for more
complex examples.

The second algorithm, [6], which is not illustrated here due to
space restrictions, concentrates on state machine models with formal
execution semantics. Unlike [9], it is assumed that models are com-

Component,UIObject

Container

Canvas,Panel

Canvas (M1)

Panel (M2)

R1:Canvas Panel→
Figure 6: Merging the system in Figure 2, checking its global consistency, and projecting back the resulting diagnostics.

Translation

Model (visual)

CrocoPat

<html>!
 <head>!
 !
 </head>!
 <body>!
 <h2>!
 Diagnostics for merge!
 </h2>!
 (note the filters
applied)<hr>Objects !
 with multiple parents:!
!
 !
 !
 merge/258 <font
color="#FF00FF"> (Parents: merge/257 merge/260)</
em>!
 !
 !
 <hr>!
 </body>!
</html>

<rule domain = "Entity Relationship Diagrams" default="on">!
 <short-description>Cyclic inheritance</short-description>!
 <long-description>!
 Checks for cycles in the generalization hierarchy.!
 </long-description>!
 <rml>!
<![CDATA[!
 R(x, y) := Node(x) & Node(y) & EX(e, Head(e, x) & Tail(e, y) & Type(e,
"Generalization"));!
 Cycles(x, y) := TCFAST(R(x, y)) & (x = y);!
 OnCycle(x) := Cycles(x, x);!
!
 didPrint := 0;!
!
 PRINT "Objects on cyclic inheritance paths (Only one cycle per
object is shown):
", ENDL;!
 PRINT "", ENDL;!
!
 FOR t IN Title(v) {!
 FOR n IN OnCycle(x) {!
 didPrint := 1;!
 CurrentR(x,y) := R(x,y);!
 z:=n;!
!
 PRINT "" , t, "/", n, " ",!
 " (Cycle: ";!
!
 WHILE (!R(z, n)) {!
 ReachVia(x, y, u) := TCFAST(CurrentR(x, y)) & TCFAST(CurrentR(y, u));!
 T(v) := CurrentR(z, v) & ReachVia(z, v, n);!
!
 FIRST() := TRUE();!
 FOR m IN (T(v)) {!
 IF (FIRST()) {!
 PRINT "" , t, "/", m, "→";!
 next := m;!
 }!
 FIRST() := FALSE();!
 }!
 CurrentR(x,y) := (x != z) & (y != next) & CurrentR(x,y);!
 z := next;!
 }!
 PRINT "self)", ENDL;!
 }!
 }!
 IF (didPrint = 0) {!
 PRINT "None", ENDL;!
 }!
 PRINT "<hr>", ENDL;!
]]>!
 </rml>!
</rule>

Node("256");!
Label("256", "Canvas");!
Type("256", "Entity");!
Certainty("256", "proposed");!
Node("257");!
Label("257", "Component");!
Type("257", "Entity");!
Certainty("257", "proposed");!
Node("258");!
Label("258", "Widget");!
Type("258", "Entity");!
Certainty("258", "proposed");!
Edge("259");!
Type("259", "Generalization");!
Certainty("259", "proposed");!
Src("259", "258");!
Tgt("259", "257");!
Edge("260");!
Type("260", "Generalization");!
Certainty("260", "proposed");!
Src("260", "257");!
Tgt("260", "256");!
Edge("261");!
Type("261", "Generalization");!
Certainty("261", "proposed");!
Src("261", "256");!
Tgt("261", "258");!

Model (relational)

Consistency
Rules

Diagnostics

Figure 7: Consistency checking with CrocoPat [1].

plete. Relationships between model pairs are based on a notion
of behavioural similarity between states. This notion is flexible
enough to relate models that may be at different levels of abstrac-
tion. A merge is defined as a common refinement [13] of a pair
of models with respect to a relationship between them. The ap-
proach generalizes to arbitrary interconnection diagrams by iter-
atively merging a new input model with the result of a previous
merge. Since the merge operator in this approach is associative, the
order in which binary merges are applied does not affect the final
result. For examples and further details, consult [6].

2.3 (Intra-Model) Consistency Checking
TReMer+ uses CrocoPat [1] –a first order relational manipula-

tion tool– for consistency checking of individual models. While
our approach is not tied specifically to CrocoPat, there are two ma-
jor considerations that make CrocoPat an appealing choice: (1) Ex-
pressiveness – CrocoPat provides the full expressive power of first
order logic with counting and transitive closure. This offers great
flexibility for specifying complex structural constraints. (2) Effi-
ciency – CrocoPat uses symbolic encoding for relational structures,
leading to high efficiency in terms of both time and memory.

Figure 7 depicts the process for consistency checking with Cro-
coPat. In the first step, the model to be checked is translated into a
set of first order predicates using the translation algorithm given in
[11]. The result, along with a user-selected set of consistency rules,
is then passed to CrocoPat for consistency checking and generation
of diagnostic. The diagnostics obtained, which are in hypertext for-
mat, are then sent to TReMer+ for presentation to the user.

Figure 6 shows the diagnostics generated when the merge in our
running example is checked for cyclic inheritance. The diagnostics

include a list of offending classes, and for each such class, a coun-
terexample path1. All model elements appearing in the diagnostics
are hyperlinked to the corresponding visual elements, allowing for
more user-friendly navigation. The diagnostics refer to model ele-
ments through their unique identifiers (uids) rather than their names,
as shown by the screenshot in Figure 6.

Omitting the hypertext formatting instructions, the rule for check-
ing non-circularity of the inheritance relation is as follows:

1: Inherits(x, y) := EX(e, Src(e, x) & Tgt(e, y) & Type(e, ”inheritance”));
2: Descends(x, y) := TC(Inherits(x, y));
3: OnCycle(x) := Descends(x, x);

4: FOR n IN OnCycle(v) { // v is a dummy free variable
5: PRINT ”* ”, n, ” (Cycle: ”;
6: R(x,y) := Inherits(x,y);
7: Current(x) := (x = n);
8: WHILE (!(Current(z) & Inherits(z, n))) { // z is a dummy free variable
9: ReachVia(x, y, u) := TC(R(x, y)) & TC(R(y, u));
10: Admissible(x) := EX(z, Current(z) & R(z, x) & ReachVia(z, x, n));
11: Previous(x) := Current(x);
12: Current(x) := Admissible(x) & FA(y, Admissible(y) –> (x <= y));
13: PRINT Current(x), ”→”;
14: R(x,y) := !Previous(x) & !Current(y) & R(x,y);
15: }
16: PRINT ”self)”, ENDL;
17: }

In the above rule, we first compute a relation Inherits(x,y) that
holds if x inherits from y, i.e., if there exists an arc e of type ”in-
heritance” whose source is x and whose target is y (line 1). We then
take the transitive closure (TC) of Inherits(x,y). This yields a relation
Descends(x, y) that holds if x is a descendant of y (line 2). Finally,
we compute a set OnCycle(x) of classes lying on cyclic inheritance
paths, i.e. classes that are descendants of themselves (line 3).

For diagnostics (lines 4–17), we iterate over the classes in OnCy-
cle and print a cycle for each. Specifically, for every n ∈ OnCycle,
we compute a set Admissible of n’s successors that have a path back
to n (line 10). We choose an arbitrary element from Admissible (line
12) – in our code, the element with the smallest identifier (uid).

1Currently, we ignore symmetries between inconsistencies; hence,
the tool reports three distinct errors for the same cycle in Figure 6.

After printing this successor (line 13), the process continues recur-
sively, having removed from the inheritance relation the arc from
n to the printed successor (line 14). The process ends when a full
cycle is printed.

TReMer+ currently has rules for checking well-formedness of
ER diagrams, UML domain models, and state machines. All these
rules are specified in a single XML file which can be easily modi-
fied or extended by end-users. To simplify the specification of new
consistency rules, TReMer+ provides a set of generic and reusable
expressions capturing recurrent patterns in the structural constraints
of graph-based models. These expressions are discussed in [11].

2.4 Inconsistency Navigation
To support projecting the inconsistencies found over a merge

back to the source models and relationships, TReMer+ implements
the traceability approach described in [9]. Specifically, for each
element of the merge, traceability links are stored on the source el-
ements and relationships relevant to that element. For example, the
Projections pane in Figure 6 shows the links for Canvas,Panel in the
merge. These include a link to Canvas in M1, a link to Panel in M2,
and further, a link to relationship R1 so that we know why Canvas
and Panel were unified.

In a typical inconsistency exploration scenario, the user starts
from the diagnostics. Clicking a link in the diagnostics causes the
corresponding element in the merged model to be highlighted and,
at the same time, the traceability data for that element to be dis-
played in the Projections pane. The traceability data, like the diag-
nostics, are in a hyperlinked format, allowing the user to navigate
to the source models and relationships relevant to the element in
question. Figure 6 shows the setting immediately after the user has
clicked Merge/47 (i.e., Canvas,Panel) in the Diagnostics pane. If the
user goes on to click R1/(uid:15, uid:19) in the Projections pane, she
will be taken to the screen in Figure 4.

Our tool further provides traceability at the level of interconnec-
tion diagrams. For example, clicking on R1/(uid:15, uid:19) takes the
user to the interconnection diagram in Figure 5(a) with R1 high-
lighted. This is useful when the user does not want to zoom into
the details of the source models and relationships, and only wants
to get a bird’s eye view of the models and relationships involved in
a particular inconsistency instance.

3. EVALUATION
We have evaluated the practical utility of TReMer+ through two

case studies. In the first study [11], we used a set of domain models
for a health care system developed by the students of an advanced
object-oriented modelling course. In the second study [6], we used
variant specifications of telecom features from AT&T.

Both studies deal with independently developed models. For
these models, relationship building is an exploratory process be-
cause one can never be entirely sure how the vocabularies of dif-
ferent models relate to one another. Each study begins by hypoth-
esizing a set of relationships between the models, done manually
in [11], and using a heuristic model matcher in [6]. TReMer+ is
then employed for checking the structural consistency of these re-
lationships, and the resulting diagnostics are used by the analysts
to refine the relationships. Throughout the studies, we demonstrate
that constructing merged models and checking global consistency
enables various types of analysis that would be either expensive or
impossible to do by pairwise consistency checking.

To ensure that global consistency checking scales, we have done
a number of performance tests on models with 500 to 10,000 ele-
ments checking for such violations as dangling and parallel edges,
multiple inheritance, and cyclic inheritance. The most computa-

tionally expensive of these checks ran in less than 3 minutes. De-
tailed results are available from [11]. From these results, we an-
ticipate that our approach should be applicable to larger systems.

4. IMPLEMENTATION & AVAILABILITY
TReMer+ is written entirely in Java. It is roughly 15K lines of

code excluding comments and third-party libraries. Of these, 8.5K
implement the user interface, 5.5K implement the tool’s core func-
tionality (model merging, traceability, and serialization), and 1K
implement the glue code for interacting with CrocoPat. The tool
uses JGraph [5] for editing and visualizing models, and EPS Graph-
ics2D [4] for exporting models to EPS vector graphics.

TReMer+ has been in operation since February 2007 and was
publicly released in May 2007. The tool and the data for the case
studies conducted with it are freely available at
http://www.cs.toronto.edu/˜mehrdad/tremer/

5. CONCLUSION
We presented a tool, TReMer+, for detecting global inconsisten-

cies in distributed models. The tool enables checking inter-model
properties of a set of models via checking intra-model properties of
their merge. TReMer+ is currently limited to homogeneous model
only. Generalization to heterogeneous models presents a challenge
because merge cannot be defined at a notational level. In future
work, we plan to develop ways to merge models at a logical level
and provide support for heterogeneous consistency checking [7,
3]. Another natural follow-on to our current work is resolution of
global inconsistencies.

TReMer+ is part of a larger research effort to build usable model
manipulation tools. A complementary part is a project aimed at
developing a customizable Eclipse-based platform for model man-
agement. An outline of this project is given in [12].
Acknowledgments. We thank everyone who provided feedback
on TReMer+, particularly Dirk Beyer, Renée Miller, Rick Salay,
and Pete McCormick. Funding for this work was provided by OGS,
NSERC, and Bell Canada (through the Bell University Labs).
6. REFERENCES

[1] D. Beyer. Relational programming with CrocoPat. In ICSE, pages
807–810, 2006. Tool Paper.

[2] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and
M. Sabetzadeh. A manifesto for model merging. In ICSE Wrkshp on
Global Integrated Model Mgmt., 2006.

[3] A. Egyed. Instant consistency checking for the UML. In ICSE, pages
381–390, 2006.

[4] EPS Graphics2D. http://www.jibble.org/epsgraphics/.
[5] Java Graph Visualization and Layout. http://www.jgraph.com/.
[6] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and P. Zave.

Matching and merging of Statecharts specifications. In ICSE, pages
54–64, 2007.

[7] C. Nentwich, W. Emmerich, A. Finkelstein, and E. Ellmer. Flexible
consistency checking. ACM TOSEM, 12(1):28–63, 2003.

[8] B. Nuseibeh, S. Easterbrook, and A. Russo. Making inconsistency
respectable in software development. J. of Sys. and Soft., 56(11), 2001.

[9] M. Sabetzadeh and S. Easterbrook. View merging in the presence of
incompleteness and inconsistency. RE J., 11(3):174–193, 2006.

[10] M. Sabetzadeh and S. Nejati. TReMer: A tool for relationship-driven
model merging. In Posters and Research Tools Track of Formal
Methods, 2006. No published proceedings.

[11] M. Sabetzadeh, S. Nejati, S. Liaskos, S. Easterbrook, and M. Chechik.
Consistency checking of conceptual models via model merging. In RE,
pages 221–230, 2007.

[12] R. Salay et. al. An Eclipse-based tool framework for software model
management. In OOPSLA Wrkshp on Eclipse Technology eXchange,
2007.

[13] S. Uchitel and M. Chechik. Merging partial behavioural models. In
FSE, pages 43–52, 2004.

[14] A. van Lamsweerde, R. Darimont, and E. Letier. Managing conflicts in
goal-driven requirements engineering. IEEE TSE, 24(11):908–926,
1998.

