
Using JULE to Generate a Compliance Test Suite for the UML Standard
Panuchart Bunyakiati, Anthony Finkelstein, James Skene and Clovis Chapman

Dept. of Computer Science, University College London
London WC1E 6BT

United Kingdom
{P.Bunyakiati, A.Finkelstein, J.Skene, C.Chapman}@cs.ucl.ac.uk

ABSTRACT
The Java-UML Lightweight Enumerator (JULE) tool
implements a vitally important aspect of the framework for
software tool certification - test suite generation. The
framework uses UML models as the test inputs for the bounded
exhaustive-testing approach. Within a size bound for the
metamodel types, JULE enumerates only the set of non-
isomorphic models in the form of relational structures. These
models are classified into two sets - demonstration and
counterexample - using Binary Decision Diagrams (BDDs). The
power of JULE lies in its model enumeration and its use of a
high-performance grid infrastructure. Hence, JULE efficiently
generates a very small test suite while increasing the bound on
the input size to the extent that is practical for certification
purpose.

1. COMPLIANCE TEST GENERATION
An outstanding issue today in the software tools industry is the
standards compliance of software tools required to support
interoperability. To assess this compliance, the JULE tool aims
to provide automated support for compliance test generation
focusing on the model analysis operations of software modeling
tools.
JULE implements compliance-test generation for tools using the
Unified Modeling Language (UML), from Object-Constraint
Language (OCL) [14] well-formedness rules embedded in the
UML standard [15]. In our framework for software tool
certification [4], compliance testing is limited to
experimentation on the work products upon which the software
tools operate to determine whether conditions of compliance are
maintained by the tools.
The certification framework uses UML models as the test inputs
for its bounded exhaustive-testing approach [17]. A compliance
test case is a pair of a UML model and a test oracle stating
whether the model satisfies or violates a particular well-
formedness rule. For each compliance test case, the software
tool creates the test model and verifies it. The verification result
is compared with the expected result in the test oracle to
conclude a pass/fail compliance test result.
This compliance test suite is composed of two categories of test
data i.e. demonstrations and counterexamples.

The demonstrations are the set of valid models. They exist to
detect the false-positive non-compliance and to ensure that the
tools do not reject correct models. The counterexamples are the
set of invalid models. They detect the false-negative non-
compliance in which the tools accept incorrect models. Fully
compliant tools must accept all demonstrations and reject all
counterexamples.
For a given part of the UML metamodel, it is possible to
generate all model configurations within a finite number of
instances for the metamodel types present. However, the number
of models increases rapidly due to combinatorial explosion.
Therefore JULE employs the model generating technique
described in [4] to generate only the set of non-isomorphic
models, each member of which is an exemplar of an equivalence
class of models, within which structure is preserved but model-
element identities vary. Since OCL well-formedness rules are
defined at the metamodel level, individual model-element
identities are not relevant, and testing a tool based on single
examples from each equivalence class should reveal the majority
of compliance errors.

2. EXAMPLE
To illustrate how JULE works, we provide two examples from
the well-formedness rules of the Association model element. For
each example, we show the relevant part of the UML
metamodel, the well-formedness rules under test and two test
cases, a demonstration and a counterexample. We then present
for each test the number of total models possible for stated size
bounds, the number of equivalence classes within those models
and within the equivalence classes the numbers of
demonstrations and counterexamples.

Example I

The first example shows that test cases can be generated
succinctly for a small number of instances. We test the well-
formedness rule (2.1) which constrains association ends to have
a unique name within the association. Multiplicity constraints in
the metamodel require that (1) an association must have two or
more association ends as its connections and (2) an association
end must have exactly one string as its name.

ModelElement Attribute Type Multiplicity

Association Connection AssociationEnd 2..n
AssociationEnd Name String 1

(Rule 2.1) self.allConnections()->forAll(r1, r2 |
r1.name = r2.name implies r1 = r2)

Figure 1: the metamodel and well-formedness rule of the
Association model element

Copyright is held by the author/owner(s).

ICSE’08, May 10–18, 2008, Leipzig, Germany.

ACM 978-1-60558-079-1/08/05.

Table 1 lists the numbers of possible models, test cases,
demonstrations and counterexamples for models having a single
association, n association ends and n strings.

Table 1: the size of the test suite for rule 2.1
n Total Test cases Demonstration Counterexample
2 4 2 1 1
3 108 6 3 3
4 2816 15 7 8
5 81250 28 13 15
6 2659392 55 24 31
7 98825160 90 39 51
8 4.14e10 154 64 90
9 1.94e11 240 98 142

10 1.01e13 378 150 228
11 5.80e14 560 219 341
12 3.64e16 847 322 525

For n=3, three sets of model elements (referred to as model
element domains) are created including a singleton set for
association model element i.e. self, a set of three association end
model elements - associationend0, associationend1 and
associationend2 and a set of three name model elements -name0,
name1 and name2. Out of 108 possible models that can be
constructed by assigning elements in a model element domain as
attributes of other elements in another domain according to
metamodel, JULE generates only six non-isomorphic models.
Classifying these non-isomorphic models results in three
demonstrations which each association end of an association has
its own unique name. The other three models are
counterexamples in which two or more distinct association ends
of an association share a common name. This non-isomorphic
generation significantly reduces the size of the test suite. When
we increase the size to, for example, seven, the size of the test
suite may be reduced from 98 million structures to only 90.

Figure 2: a demonstration for rule 2.1

Figure 3: a counterexample for rule 2.1

Example II

The second example shows that it is possible to generate a test
suite for set of rules that constrain the same set of model
elements. The aggregation attribute of an association end
specifies whether the instance on the association end is an
aggregation. Three possibilities are that, the instance is an
aggregate, a composite or a part. The sizes of the instances may
be varied but there will be a fix number of aggregation kinds,
which is three i.e. aggregate, composite and none. For example,
consider the rule (2.2) stating that “at most one AssociationEnd
may be an aggregation or composition” and the rule (2.3) “if an
Association has three or more AssociationEnds, then no
AssociationEnd may be an aggregation or composition.”
ModelElement Attribute Type Multiplicity

Association Connection AssociationEnd 2..n
AssociationEnd aggregation AggregationKind 1

(Rule 2.2) self.allConnections()->select
(aggregation=AggregationKind.aggregate or

aggregation = AggregationKind.composite)->size() <= 1
(Rule 2.3) self.allConnections()->size() >= 3 implies

self.allConnections()->forAll
(aggregation = AggregationKind.none)

Figure 4: the metamodel and well-formedness rules for the
Association model element

Out of 108 possible configurations that can be constructed from
an association and three association ends, JULE generates 20
non-isomorphic models, 14 models more than those of the first
example. This is due to the fact that association kind of the
association ends is now significant, limiting structural
equivalence.

Table 2: the size of the test suite for rule 2.2 and 2.3
N Total Test cases a b c d e f
2 9 6 3 3 6 0 3 3
3 108 20 8 12 11 9 6 14
4 891 45 13 32 17 28 9 36
5 6318 84 18 66 24 60 12 72
6 41553 140 23 117 32 108 15 125
7 262440 216 28 188 41 175 18 198
8 1620567 315 33 282 51 264 21 294
9 9880866 440 38 402 62 378 24 416

10 59816637 594 43 551 74 520 27 567
11 3.60e8 780 48 732 87 693 30 750
12 2.16e9 1001 53 940 101 900 33 968

Column: a – Rule 2.2 demonstrations b – Rule 2.2 counterexamples, c – Rule 2.3 demonstrations,
d – Rule 2.3 counterexamples, e – Rule 2.2 and 2.3 demonstrations, f – Rule 2.2 and 2.3
counterexamples
In Figure 5, one association end is an aggregation. While in
Figure 6, the association has three association ends and none of
them is an aggregation or composition. Therefore, both models
are demonstrations. In Figure 7, one of three association ends is
an aggregation which is not allowed; therefore, this model is a
counterexample.

Figure 5: a demonstration for the rule 2.2 and 2.3

Figure 6: another demonstration for rule 2.2 and 2.3

Figure 7: a counterexample for the rule 2.2 and 2.3

3. HOW JULE WORKS
JULE is an OCL language processor built on top of the
UCLUML repository [16]. Given an OCL statement, JULE
constructs a Java program that generates the test data and a
Relational Manipulation Language (RML) program [2] that
produces the test oracle. This process is performed by the four
components of JULE: the OCL translator; the combinatorial
package; Crocopat [2] a tool for relational computation based on
BDDs; and JUnit [11] generator as described below.

3.1 Translating the well-formedness rules
The parser implemented in JULE constructs syntax trees from
OCL statements based on the OCL metamodel. The results of
the parsing are annotated syntax trees that have the instances of
the OCL metamodel as the nodes and the terms of the parsed
OCL statement as the attribute values. These annotated syntax
trees reference the structure of the metamodel stored in the
UCLUML repository. This information includes the types,
relationships and multiplicity constraints present in the UML
metamodel.

Table 3: the OCL-RML translation examples
OCLExpression OCL RML

PropertyCallExp self.name name(self,X)
OperationCallExp self.allConnections() allConnections(self,X)
LibraryOperation-
CallExp

self.name = 'tyger' name(self,X) & @"tyger"(X)

LibraryOperation-
CallExp

self.name = 'tyger' implies
not(self.name = 'tigger')

Name(self,X) & @"tyger"(X) ->
!(name(self,X) & @"tigger"(X))

IteratorExp self.allConnections()->forAll
(r | r.name = self.name)

FA(r,allConnections(self,r) ->
(name(r,X) & name(self,Y) &
=(X,Y)))

IteratorExp self.allConnections()->select
(r | r.name = self.name)

allConnections(self,r) &
name(r,X) & name(self,Y) &
=(X,Y)

JULE then produces the Java program for enumerating test data
according to this information. Also, JULE systematically
translates the OCL statement to an RML program using
translation rules; examples are shown in Table 3. These rules
recursively replace the sub-trees of the OCL syntax trees with
the groups of the RML nodes that are semantically equivalent to
them.

3.2 Enumerating the test data
The test generating program invokes the combinatorial package
to enumerate the models of all possible configurations under the
bound to the given instance size. The combinatorial package
implements algorithm for partition-multiplication that produces
only non-isomorphic models. In essence, this algorithm for
partition-multiplication performs in two steps: the partitioning
of each relationship and then the multiplication of the partitions.
The partitioning is the generation and selection of a non-
isomorphic subset of the power set of E, where E is the set of the
edges in the complete bipartite graph between the two sets of
related model elements. The multiplication produces the
Cartesian product of the sets of partitions results in the
partitioning step. This product is the complete set of non-
isomorphic test input.

3.3 Classifying the relational structures
JULE produces the test oracles by solving the satisfaction of the
models to the well-formedness rules. The models and the RML
program are submitted to Crocopat which returns the results
indicate whether a model is a demonstration or a
counterexample. As the test input can become very large, JULE
slices this set of test input into hundreds of parts, each part
contains only one model, and schedules them to the UCL
Condor pool [5], a distributed job scheduling and resource
management system. This helps producing the test oracle very
quickly even for a very large number of test inputs. This
technique is of course reliant on the availability of a large
number of computational resources.

3.4 Testing
JULE uses JUnit, a framework for automating unit testing, to
execute the test suite. JULE displays each test case as a graph
generated using dot [8], and in Rigi Standard Format (RSF) [18]
and generates the JUnit test files that invoke the API of the tool
under test to create the test model, invoke the verification
method of the tool under test, compare the verification result
with the test oracle and report the test results. JULE requires a
user to provide the body of the model constructing methods
such as createClassifier() and setConnection(Association a,
AssociationEnd e) which differ from one tool to another.

4. RELATED WORKS

4.1 Light-weight formal method tools
Tools such as USE [9], Alloy Analyzer [10] and the VDM-SL
Toolbox [7] may be used to analyze the specification of software
systems. These tools are light-weight because they are not
designed for proving the correctness or analyzing the soundness
and completeness of the specification. But relying on the small-
scope hypothesis [10], these tools rather support the assertion of
the specifications by finding a model that satisfy the constraints
ensuring that legal states are not completely ruled out or finding
a counterexample to reveal flaws in the specifications. These
tools are not testing tools; however, JULE relies on the same
small-scope hypothesis.

4.2 Model-based testing
The idea of using model finding to generate test cases is not
novel. TestEra [12] claims the contribution of using SAT solvers
in the Alloy Analyzer to enumerate test data. TestEra and Korat
[3] use pre/post models to generate test data from the
precondition and use the post condition as a test oracle. In
TestEra, the test data is reduced by breaking the symmetry.
Korat also prunes the search effectively by monitoring the
accesses to all the fields of the candidate input. In contrast,
JULE limits its test generation differently, and is capable of
identifying false-negative non-compliance.

4.3 Test generation by DNF partitioning
The technique by which the specification is partitioned into
disjunctive normal form (DNF) to generate test cases is given in
[6], which focuses on the implementation of a tool. Later, a
more theoretical work supporting the idea is given in [13].
Recently, [1] takes a subset of OCL and uses a constraint solver
to generate test cases for mutation-testing which requires prior
knowledge about false patterns. Also, this implementation can
not test OCL constraints including quantifiers.

5. LEVEL OF MATURITY
The development of JULE was initiated in January 2007 and is
under active development. It provides support for generating the
test suite for the well-formedness rules in the Foundation::Core
package of UML 1.4.2 used in testing the UCLUML and
ArgoUML tools. JULE aims to support test generation for
modeling languages defined using EMOF/OCL Beyond our
current work we believe JULE is likely to be helpful in
generating test cases for analysis tools of other modeling
languages.

6. CONCLUSION
This paper describes the application of JULE for generating a
test suite for the UML standard. Given the UML metamodel and
OCL well-formedness rules, JULE generates a set of
demonstration and counterexample test cases which have UML
models as test input. To illustrate the use of JULE, two
examples of tests on association model elements are provided.

7. ACKNOWLEDGEMENT
The authors would like to thank Andrew Dingwall-Smith for his
early contributions to the model enumeration algorithm and
Andy Maule for his helpful suggestions concerning RML
programming. We are grateful to the reviewers for their
constructive suggestions and to the University of the Thai
Chamber of Commerce for their funding of Panuchart
Bunyakiati.

8. References

[1] Aichernig, B. K., Salas, P. A. P. 2005. Test Case

Generation by OCL Mutation and Constraint Solving. In
Proceedings of the QSIC. 64-71.

[2] Beyer, D. 2006 Relational Programming with CrocoPat. In
Proceedings of the ICSE, Shanghai, China, 807-810.

[3] Boyapati, C., Khurshid, S. and Marinov, D. 2002. Korat:
Automated Testing Based on Java Predicates, In
Proceedings of the ISSTA, Rome, Italy.

[4] Bunyakiati, P., Finkelstein, A. and Rosenblum, D. 2007.
The Certification of Software Tools with respect to
Software Standards. In Proceedings of the IEEE IRI, Las
Vegas, USA, 724-729.

[5] Chapman, C, Goonatilake, C., Emmerich, W., Farrellee,
M., Tannenbaum, T., Livny, M., Calleja, M. and Dove, M.
2005. Condor Birdbath - Web Service interface to Condor.
In Proceedings of the UK E-Science All Hands Meeting,
Nottingham, UK.

[6] Dick, J. and Faivre, A. “Automating the Generation and
Sequencing of Test Cases from Model-Based
Specifications”, LNCS, vol. 670, Springer-Verlag, London.
268-284.

[7] Fitzgerald, J. and Larsen, P. G. 1998. Modelling Systems:
Practical Tools and Techniques in Software Development,
Cambridge Uni. Press.

[8] Gansner, E.R. and North, S.C. 2000. "An Open Graph
Visualization System and Its Applications to Software
Engineering," Software---Practice and Experience, v. 30, n.
11, 1203-1233.

[9] Gogolla, M., Bohling, J. and Richters, M. 2003. Validation
of UML and OCL Models by Automatic Snapshot
Generation. In Proceedings of the UML'2003, Lecture
Notes in Computer Science, Vol. 2863, Springer, Berlin.

[10] Jackson, D. 2006. Software Abstractions: Logic, Language,
and Analysis. MIT Press. Cambridge, MA.

[11] JUnit, November 2007, DOI=http://www.junit.org/
[12] Khurshid, S. and Marinov, D. 2001. TestEra, “A novel

framework for automated testing of Java programs”, In
Proceedings of the IEEE ASE, CA, USA.

[13] Meudec, C. 1998 Automatic Generation of Software Test
Cases from Formal Specifications. Doctoral Thesis, the
Queen's University of Belfast.

[14] The Object Management Group (OMG), The Object
Constraint Language (OCL) specification,
DOI=http://www.omg.org/.

[15] The Object Management Group (OMG), The Unified
Modeling Language (UML) specification,
DOI=http://www.omg.org/.

[16] Skene, J., and Emmerich, W. 2006. Specifications, not
Meta-Models. In Proceedings of the ICSE Workshop on
Global integrated Model Management, China, 47-54.

[17] Sullivan, K., Yang, J., Coppit, D., Khurshid, S., and
Jackson, D. 2004. Software assurance by bounded
exhaustive testing. In Proceedings of the ISSTA '04. ACM,
New York, NY, 133-142.

[18] Wong, K. 1998. The Rigi User's Manual - Version 5.4.4.
DOI=http://www.rigi.cs.uvic.ca/downloads/rigi/doc/

