
Using JULE to Generate a Compliance Test Suite for the UML Standard 
Panuchart Bunyakiati, Anthony Finkelstein, James Skene and Clovis Chapman 

Dept. of Computer Science, University College London 
London WC1E 6BT 

United Kingdom 
{P.Bunyakiati, A.Finkelstein, J.Skene, C.Chapman}@cs.ucl.ac.uk 

 
ABSTRACT 
The Java-UML Lightweight Enumerator (JULE) tool 
implements a vitally important aspect of the framework for 
software tool certification - test suite generation. The 
framework uses UML models as the test inputs for the bounded 
exhaustive-testing approach. Within a size bound for the 
metamodel types, JULE enumerates only the set of non-
isomorphic models in the form of relational structures. These 
models are classified into two sets - demonstration and 
counterexample - using Binary Decision Diagrams (BDDs). The 
power of JULE lies in its model enumeration and its use of a 
high-performance grid infrastructure. Hence, JULE efficiently 
generates a very small test suite while increasing the bound on 
the input size to the extent that is practical for certification 
purpose. 
 
1. COMPLIANCE TEST GENERATION 
An outstanding issue today in the software tools industry is the 
standards compliance of software tools required to support 
interoperability. To assess this compliance, the JULE tool aims 
to provide automated support for compliance test generation 
focusing on the model analysis operations of software modeling 
tools.  
JULE implements compliance-test generation for tools using the 
Unified Modeling Language (UML), from Object-Constraint 
Language (OCL) [14] well-formedness rules embedded in the 
UML standard [15]. In our framework for software tool 
certification [4], compliance testing is limited to 
experimentation on the work products upon which the software 
tools operate to determine whether conditions of compliance are 
maintained by the tools.  
The certification framework uses UML models as the test inputs 
for its bounded exhaustive-testing approach [17]. A compliance 
test case is a pair of a UML model and a test oracle stating 
whether the model satisfies or violates a particular well-
formedness rule. For each compliance test case, the software 
tool creates the test model and verifies it.  The verification result 
is compared with the expected result in the test oracle to 
conclude a pass/fail compliance test result. 
This compliance test suite is composed of two categories of test 
data i.e. demonstrations and counterexamples.  

The demonstrations are the set of valid models. They exist to 
detect the false-positive non-compliance and to ensure that the 
tools do not reject correct models. The counterexamples are the 
set of invalid models. They detect the false-negative non-
compliance in which the tools accept incorrect models. Fully 
compliant tools must accept all demonstrations and reject all 
counterexamples. 
For a given part of the UML metamodel, it is possible to 
generate all model configurations within a finite number of 
instances for the metamodel types present. However, the number 
of models increases rapidly due to combinatorial explosion. 
Therefore JULE employs the model generating technique 
described in [4] to generate only the set of non-isomorphic 
models, each member of which is an exemplar of an equivalence 
class of models, within which structure is preserved but model-
element identities vary. Since OCL well-formedness rules are 
defined at the metamodel level, individual model-element 
identities are not relevant, and testing a tool based on single 
examples from each equivalence class should reveal the majority 
of compliance errors.  
 
2. EXAMPLE  
To illustrate how JULE works, we provide two examples from 
the well-formedness rules of the Association model element. For 
each example, we show the relevant part of the UML 
metamodel, the well-formedness rules under test and two test 
cases, a demonstration and a counterexample. We then present 
for each test the number of total models possible for stated size 
bounds, the number of equivalence classes within those models 
and within the equivalence classes the numbers of 
demonstrations and counterexamples. 
 
Example I 
 
The first example shows that test cases can be generated 
succinctly for a small number of instances. We test the well-
formedness rule (2.1) which constrains association ends to have 
a unique name within the association. Multiplicity constraints in 
the metamodel require that (1) an association must have two or 
more association ends as its connections and (2) an association 
end must have exactly one string as its name. 
 
ModelElement Attribute Type Multiplicity 

Association Connection AssociationEnd 2..n 
AssociationEnd Name String 1 

(Rule 2.1) self.allConnections()->forAll(r1, r2 |  
r1.name = r2.name implies r1 = r2) 

Figure 1: the metamodel and well-formedness rule of the 
Association model element 
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Table 1 lists the numbers of possible models, test cases, 
demonstrations and counterexamples for models having a single 
association, n association ends and n strings. 
 

Table 1: the size of the test suite for rule 2.1 
n Total Test cases Demonstration Counterexample 
2 4 2 1 1 
3 108 6 3 3 
4 2816 15 7 8 
5 81250 28 13 15 
6 2659392 55 24 31 
7 98825160 90 39 51 
8 4.14e10 154 64 90 
9 1.94e11 240 98 142 

10 1.01e13 378 150 228 
11 5.80e14 560 219 341 
12 3.64e16 847 322 525 
 
For n=3, three sets of model elements (referred to as model 
element domains) are created including a singleton set for 
association model element i.e. self, a set of three association end 
model elements - associationend0, associationend1 and 
associationend2 and a set of three name model elements -name0, 
name1 and name2. Out of 108 possible models that can be 
constructed by assigning elements in a model element domain as 
attributes of other elements in another domain according to 
metamodel, JULE generates only six non-isomorphic models. 
Classifying these non-isomorphic models results in three 
demonstrations which each association end of an association has 
its own unique name. The other three models are 
counterexamples in which two or more distinct association ends 
of an association share a common name. This non-isomorphic 
generation significantly reduces the size of the test suite. When 
we increase the size to, for example, seven, the size of the test 
suite may be reduced from 98 million structures to only 90. 
 

 
Figure 2: a demonstration for rule 2.1 

 

 
Figure 3: a counterexample for rule 2.1 

 
Example II 

The second example shows that it is possible to generate a test 
suite for set of rules that constrain the same set of model 
elements. The aggregation attribute of an association end 
specifies whether the instance on the association end is an 
aggregation. Three possibilities are that, the instance is an 
aggregate, a composite or a part. The sizes of the instances may 
be varied but there will be a fix number of aggregation kinds, 
which is three i.e. aggregate, composite and none. For example, 
consider the rule (2.2) stating that “at most one AssociationEnd 
may be an aggregation or composition” and the rule (2.3) “if an 
Association has three or more AssociationEnds, then no 
AssociationEnd may be an aggregation or composition.”  
ModelElement Attribute Type Multiplicity 

Association Connection AssociationEnd 2..n 
AssociationEnd aggregation AggregationKind 1 

(Rule 2.2) self.allConnections()->select 
(aggregation=AggregationKind.aggregate or  

aggregation = AggregationKind.composite)->size() <= 1 
(Rule 2.3) self.allConnections()->size() >= 3 implies 

self.allConnections()->forAll 
(aggregation = AggregationKind.none) 

Figure 4: the metamodel and well-formedness rules for the 
Association model element 

Out of 108 possible configurations that can be constructed from 
an association and three association ends, JULE generates 20 
non-isomorphic models, 14 models more than those of the first 
example. This is due to the fact that association kind of the 
association ends is now significant, limiting structural 
equivalence. 

Table 2: the size of the test suite for rule 2.2 and 2.3 
N Total Test cases a b c d e f 
2 9 6 3 3 6 0 3 3 
3 108 20 8 12 11 9 6 14 
4 891 45 13 32 17 28 9 36 
5 6318 84 18 66 24 60 12 72 
6 41553 140 23 117 32 108 15 125 
7 262440 216 28 188 41 175 18 198 
8 1620567 315 33 282 51 264 21 294 
9 9880866 440 38 402 62 378 24 416 

10 59816637 594 43 551 74 520 27 567 
11 3.60e8 780 48 732 87 693 30 750 
12 2.16e9 1001 53 940 101 900 33 968 

Column: a – Rule 2.2 demonstrations b – Rule 2.2 counterexamples, c – Rule 2.3 demonstrations, 
d – Rule 2.3 counterexamples, e – Rule 2.2 and 2.3 demonstrations, f – Rule 2.2 and 2.3 
counterexamples 
In Figure 5, one association end is an aggregation. While in 
Figure 6, the association has three association ends and none of 
them is an aggregation or composition. Therefore, both models 
are demonstrations. In Figure 7, one of three association ends is 
an aggregation which is not allowed; therefore, this model is a 
counterexample. 

 

Figure 5: a demonstration for the rule 2.2 and 2.3 



 
Figure 6: another demonstration for rule 2.2 and 2.3 

 
Figure 7: a counterexample for the rule 2.2 and 2.3 

3. HOW JULE WORKS 
JULE is an OCL language processor built on top of the 
UCLUML repository [16]. Given an OCL statement, JULE 
constructs a Java program that generates the test data and a 
Relational Manipulation Language (RML) program [2] that 
produces the test oracle. This process is performed by the four 
components of JULE: the OCL translator; the combinatorial 
package; Crocopat [2] a tool for relational computation based on 
BDDs; and JUnit [11] generator as described below. 
 
3.1 Translating the well-formedness rules 
The parser implemented in JULE constructs syntax trees from 
OCL statements based on the OCL metamodel. The results of 
the parsing are annotated syntax trees that have the instances of 
the OCL metamodel as the nodes and the terms of the parsed 
OCL statement as the attribute values. These annotated syntax 
trees reference the structure of the metamodel stored in the 
UCLUML repository. This information includes the types, 
relationships and multiplicity constraints present in the UML 
metamodel.  

Table 3: the OCL-RML translation examples 
OCLExpression OCL RML 

PropertyCallExp self.name name(self,X) 
OperationCallExp self.allConnections() allConnections(self,X) 
LibraryOperation-
CallExp 

self.name = 'tyger' name(self,X) & @"tyger"(X) 

LibraryOperation-
CallExp 

self.name = 'tyger' implies 
not(self.name = 'tigger') 

Name(self,X) & @"tyger"(X) -> 
!(name(self,X) & @"tigger"(X)) 

IteratorExp self.allConnections()->forAll 
(r | r.name = self.name) 

FA(r,allConnections(self,r) -> 
(name(r,X) & name(self,Y) & 
=(X,Y))) 

IteratorExp self.allConnections()->select 
(r | r.name = self.name) 

allConnections(self,r) & 
name(r,X) & name(self,Y) &  
=(X,Y) 

 
JULE then produces the Java program for enumerating test data 
according to this information. Also, JULE systematically 
translates the OCL statement to an RML program using 
translation rules; examples are shown in Table 3. These rules 
recursively replace the sub-trees of the OCL syntax trees with 
the groups of the RML nodes that are semantically equivalent to 
them. 

3.2 Enumerating the test data 
The test generating program invokes the combinatorial package 
to enumerate the models of all possible configurations under the 
bound to the given instance size. The combinatorial package 
implements algorithm for partition-multiplication that produces 
only non-isomorphic models. In essence, this algorithm for 
partition-multiplication performs in two steps: the partitioning 
of each relationship and then the multiplication of the partitions. 
The partitioning is the generation and selection of a non-
isomorphic subset of the power set of E, where E is the set of the 
edges in the complete bipartite graph between the two sets of 
related model elements. The multiplication produces the 
Cartesian product of the sets of partitions results in the 
partitioning step. This product is the complete set of non-
isomorphic test input.   
 
3.3 Classifying the relational structures  
JULE produces the test oracles by solving the satisfaction of the 
models to the well-formedness rules. The models and the RML 
program are submitted to Crocopat which returns the results 
indicate whether a model is a demonstration or a 
counterexample. As the test input can become very large, JULE 
slices this set of test input into hundreds of parts, each part 
contains only one model, and schedules them to the UCL 
Condor pool [5], a distributed job scheduling and resource 
management system. This helps producing the test oracle very 
quickly even for a very large number of test inputs. This 
technique is of course reliant on the availability of a large 
number of computational resources. 
 
3.4 Testing  
JULE uses JUnit, a framework for automating unit testing, to 
execute the test suite. JULE displays each test case as a graph 
generated using dot [8], and in Rigi Standard Format (RSF) [18] 
and generates the JUnit test files that invoke the API of the tool 
under test to create the test model, invoke the verification 
method of the tool under test, compare the verification result 
with the test oracle and report the test results. JULE requires a 
user to provide the body of the model constructing methods 
such as createClassifier() and setConnection(Association a, 
AssociationEnd e) which differ from one tool to another.  
 
4. RELATED WORKS 
 
4.1 Light-weight formal method tools  
Tools such as USE [9], Alloy Analyzer [10] and the VDM-SL 
Toolbox [7] may be used to analyze the specification of software 
systems. These tools are light-weight because they are not 
designed for proving the correctness or analyzing the soundness 
and completeness of the specification. But relying on the small-
scope hypothesis [10], these tools rather support the assertion of 
the specifications by finding a model that satisfy the constraints 
ensuring that legal states are not completely ruled out or finding 
a counterexample to reveal flaws in the specifications. These 
tools are not testing tools; however, JULE relies on the same 
small-scope hypothesis. 
 



4.2 Model-based testing 
The idea of using model finding to generate test cases is not 
novel. TestEra [12] claims the contribution of using SAT solvers 
in the Alloy Analyzer to enumerate test data. TestEra and Korat 
[3] use pre/post models to generate test data from the 
precondition and use the post condition as a test oracle. In 
TestEra, the test data is reduced by breaking the symmetry. 
Korat also prunes the search effectively by monitoring the 
accesses to all the fields of the candidate input. In contrast, 
JULE limits its test generation differently, and is capable of 
identifying false-negative non-compliance. 
 
4.3 Test generation by DNF partitioning 
The technique by which the specification is partitioned into 
disjunctive normal form (DNF) to generate test cases is given in 
[6], which focuses on the implementation of a tool. Later, a 
more theoretical work supporting the idea is given in [13]. 
Recently, [1] takes a subset of OCL and uses a constraint solver 
to generate test cases for mutation-testing which requires prior 
knowledge about false patterns. Also, this implementation can 
not test OCL constraints including quantifiers.  
 
5. LEVEL OF MATURITY 
The development of JULE was initiated in January 2007 and is 
under active development. It provides support for generating the 
test suite for the well-formedness rules in the Foundation::Core 
package of UML 1.4.2 used in testing the UCLUML and 
ArgoUML tools.  JULE aims to support test generation for 
modeling languages defined using EMOF/OCL Beyond our 
current work we believe JULE is likely to be helpful in 
generating test cases for analysis tools of other modeling 
languages. 
 
6. CONCLUSION 
This paper describes the application of JULE for generating a 
test suite for the UML standard. Given the UML metamodel and 
OCL well-formedness rules, JULE generates a set of 
demonstration and counterexample test cases which have UML 
models as test input. To illustrate the use of JULE, two 
examples of tests on association model elements are provided. 
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