
Securing Group Key Exchange against
Strong Corruptions and Key Registration Attacks

(Full version)

Emmanuel Bresson1 and Mark Manulis2

1 DCSSI Crypto Lab, France
emmanuel.bresson@polytechnique.org

2 UCL Crypto Group, Belgium
mark.manulis@uclouvain.be

Abstract. In group key exchange (GKE) protocols users usually extract the group key using some auxiliary
(ephemeral) secret information generated during the execution. Strong corruptions are attacks by which an
adversary can reveal these ephemeral secrets, in addition to the possibly used long-lived keys. Undoubtedly,
security impact of strong corruptions is serious, and thus specifying appropriate security requirements and
designing secure GKE protocols appears an interesting yet challenging task — the aim of our paper.
We start by investigating the current setting of strong corruptions and derive some refinements such as
opening attacks that allow to reveal ephemeral secrets of users without their long-lived keys. This allows to
consider even stronger attacks against honest, but “opened” users.
Further, we define strong security goals for GKE protocols in the presence of such powerful adversaries
and propose a 3-round GKE protocol, named TDH1, which remains immune to their attacks under standard
cryptographic assumptions. Our security definitions allow adversaries to register users and specify their
long-lived keys, thus, in particular capture attacks of malicious insiders for the appropriate security goals
such as mutual authentication, key confirmation, contributiveness, key control and key-replication resilience.

Key words: Authenticated group key exchange, mutual authentication, contributiveness, insider attacks,
strong corruptions, key registration, Tree Diffie-Hellman

1 Intoduction

A group key exchange (GKE) protocol provides participants with a common secret group key. The main (se-
mantic) security requirement called Authenticated Key Exchange (AKE) [8,9] aims to ensure that the established
key is indistinguishable from a random one by any outsider adversary. The second requirement called Mutual
Authentication (MA) [8] aims to ensure that all legitimate protocol participants and only them have actually
computed identical session group keys. These security requirements have been extensively studied in the liter-
ature (see the recent survey in [28]). In the most basic scenarios, all users are somehow protected, that is, the
adversary has no control over them, and is restricted to attacks carried out through the network (which never-
theless include impersonation attacks where the adversary talks on the network by pretending being a legitimate
user).

In order to take into account further real-life threats on users, the notion of forward secrecy is usually
considered. Forward secrecy means that the established session key remains secure “in the future”, that is,
remains indistinguishable from random even if the adversary learns used long-lived keys in the future. The
notion is motivated by the fact that, by nature, long-lived keys get more chance to be leaked to an attacker than
ephemeral secrets.

The next known kind of corruptions, referred to as strong corruptions in [33, 35, 9] provides the adversary
with even more information. Namely, the adversary gets the user’s ephemeral secrets in addition to the long-
lived keys. But, he is not allowed to get the established session group key. In [33], Shoup explains why such
a separation makes sense: session keys are typically controlled by higher-level applications that will use them,
while internal, ephemeral secrets are specific to the group key exchange protocol execution and could be erased
once this protocol is finished.

This is a full version of the extended abstract which appeared in:
Proceedings of the ACM Symposium on Information, Computer and Communications Security (ASIACCS'08), March 18-20, 2008
M. Abe, V. Gligor (Eds.), ACM, pp. 249--260.

2 Emmanuel Bresson and Mark Manulis

Actually, in GKE it seems impossible to obtain secrecy when ephemeral secrets are revealed during the
protocol session: if the adversary (even “passively”) can learn all intermediate key material, then he will likely
be able to compute the final group key. On the other hand, in dynamic groups there are many cases where
ephemeral secrets of a particular session are subsequently re-used (in addition to some refreshed data) to update
the group key. Then, it is important to ask how the knowledge of ephemeral secrets in a corrupted session impacts
the security of other sessions (past and future). This is precisely where the notion of strong forward/backward
secrecy raises up.

At this point, we precise the corruption types considered in this paper. First, we consider users that are
corrupted and users that are introduced by the adversary. We assume that users are corrupted in a passive mode
(rather than active), i.e., the adversary can only “read” secrets held by the attacked user (whatever these secrets
are ephemeral or long-lived). Through the knowledge of the long-lived key the adversary can (typically) inject
signed messages on behalf of the user while preventing the original user’s messages from being delivered. In
fact, this allows an active participation of the adversary during the protocol execution, and thus we say the
adversary is active; but this refers to his ability to control the network, not the user’s behavior. On the other
hand, we also wish to capture security threats coming from users that are fully controlled by the adversary.
Therefore, we allow the adversary to introduce new users and to register their long-lived keys. The adversary
that corrupts or adds users is adaptive (opposed to static) in the sense that it chooses which users to corrupt
or to introduce based on the information he gained so far and in any stage of the protocol execution. Second,
when considering user corruptions, in order to further refine the security definitions, our intention is to separate
the long-lived key from the internal state which contains ephemeral secrets and to specify when the adversary
can learn them. Through this separation we explicitly allow the adversary to reveal ephemeral secrets without
revealing the long-lived key; we call this opening attacks. They are the balanced complement of weak corruption
attacks, where long-lived keys are revealed, but ephemeral secrets are not. We note that under opening attacks,
there is hope to prevent the adversary from actively participating in the protocol on behalf of the opened parties
since he does not receive the long-lived keys. Finally, we notice that the strong corruption model in its current
form is the best (or worst) of two worlds: if the adversary corrupts then it obtains the long-lived keys and the
ephemeral data, if it does not corrupt then it obtains nothing. But separating the attacks in two distinct modes
allows to refine and opt for stronger security definitions.

Consideration of the adversary that corrupts and introduces users allows us to address security threats against
GKE protocols that may arise also in the presence of malicious participants/insiders – corrupted or introduced
users whose long-lived keys are known to the adversary. The adversary acting as malicious participants might
be able via opening attacks to obtain information from the internal states of the honest users; the goal of the
adversary is then to influence their behavior.

The AKE requirement is usually defined from the perspective of some (fresh) session, and thus makes sense
only if the adversary is restricted to neither participate on behalf of an user nor to obtain any ephemeral secret in
that session, i.e., all during the protocol session active users must be honest and not opened. On the other hand,
the MA requirement remains meaningful even without such limitations. Even if achieving MA without AKE is
of low interest for key exchange protocols, it is still legitimate to ask whether achieving MA under strong corrup-
tions during the attacked session is possible. This especially, since the MA requirement still makes sense in the
presence of malicious participants and may also be useful for protocols other than key exchange. Furthermore,
consideration of malicious insiders raises attacks related to key control and contributiveness: for instance, think
of a participant who can force the same key to be obtained in two different sessions (e.g. key-replication [26]).
Here we recall that the question on who controls the value of the group key states the important difference be-
tween group key exchange and group key transport protocols [12]. In GKE protocols it is essential that the key
is computed from inputs (contributions) of all participants such that even a strict subset of participants cannot
enforce the final value of the group key. Especially, when considering asynchronous communication and mali-
cious participants who can choose own contributions arbitrarily and may additionally reveal internal states of
honest participants at any stage of the protocol execution through opening attacks, preventing key control and
ensuring contributiveness for the honest users appears to be a challenging task.

Securing Group Key Exchange against Strong Corruptions and Key Registration Attacks 3

1.1 Related Work

Original Definitions The AKE- and MA-security requirements (without strong corruptions and only for honest
users) were originally given by Bresson et al. [11] (see [22,23,20] for variants, and [14] for some flaws). In [9],
Bresson et al. modeled strong corruptions, but for AKE-security only, following the ideas of Shoup [33], and
Canetti and Krawczyk [16] for two-party protocols, for which such strong AKE-security has been recently
modeled in LaMacchia et al. [27].

Katz and Shin in 2005 extended the definition of MA-security [21] by assuming misbehaving (malicious)
protocol participants; and they provided a concrete generic solution (compiler) to prevent these attacks, however,
without considering opening attacks against ephemeral secrets as well as key control and contributiveness. The
significance of security against malicious participants was also recognized by Choo et al. [17] through unknown-
key share attacks, by which an active adversary tries to make an honest protocol participant believe that the group
key is shared with one party when it is in fact shared with another party.

On Key Control and Contributiveness Mitchel et al. [31] (see also Boyd and Mathuria [6]) gave informal
definition of key control, to describe attacks where participants try to influence the resulting value of the key. Yet
informally, Ateniese et al. [2] proposed the notion of contributiveness meaning that all participants must equally
contribute to the computation of the key and guarantee its freshness (see [35]); these definitions emphasize the
difference between key distribution and key exchange [30]. Following these requirements Bresson and Catalano
[7] have considered the (weaker) case where participants are honest but have biased source of randomness
so that an adversary can possibly gain extra information about the key. Deepening this, Bohli et al. [4] gave
definitions of key control and contributiveness considering a (stronger) case where participants deliberately
wish to influence the resulting value of the group key. Still, their definitions are based on the model from [11],
and, thus, do not consider strong corruptions. Finally, Krawczyk mentioned in [26] that a key exchange protocol
should prevent key-replication attacks whose goal is to influence the acceptance of the same key in different
protocol sessions.

Other Work Close to Ours Independent of our work, Desmedt et al. [19] considered a property of non-
malleability for GKE protocols, which is close to key control and contributiveness. Their security goal, called
shielded-insider privacy, aims to prevent attacks where an outsider adversary upon communication with some
malicious participants prior to the protocol execution, obtains information about the later computed group key.
In order to ensure shielded-insider privacy they use Pedersen’s commitments [32]; however in case of strong
corruptions committed secrets can still be revealed to the adversary (due to opening attacks), so that malicious
participants would still be able to bias the computation. In our model we do not consider this scenario explicitly,
but focus on the (in)ability of the adversary representing malicious participants to predict the resulting value
of the later established group key. Recently, Manulis [28] analyzed several existing models for GKE protocols
with respect to considering strong corruptions: he pointed out that security against strong corruptions is currently
considered in a rather restrictive way: only for strong forward secrecy of AKE-security. Moreover, none of the
available game-based security models is complete enough to unify the most important definitions of AKE-,
MA-security, and key control and contributiveness.

1.2 Contributions and Organization

We solve most of the problems put in light above by revisiting the GKE security model from the perspective of
strong corruptions and key registration attacks. Further, we design a provably secure GKE protocol that resists
these attacks.

Security Model and Stronger Definitions As our first contribution in Section 2 we provide the following:

– we model a powerful adversary who is given access to strong corruptions, by describing an appropriate
game-based security model for GKE protocols, thus significantly extending the ideas from Bresson et al. [9];

4 Emmanuel Bresson and Mark Manulis

– we formalize strong AKE-security by considering opening attacks that may occur in earlier and later pro-
tocol sessions;

– in our definition of strong MA-security we consider the adversary that acts as malicious participants during
the attacked session and opens all other (honest) users; due to the opening attacks our definition is stronger
than the related one from [21].

– we formalize strong contributiveness as security against attacks that enforce any value chosen by the adver-
sary as a group key (this includes key-replication [26]); since the adversary can act as malicious participants
and open all other (honest) participants our requirement is stronger compared to [4];

– we strengthen the GKE security model by allowing the adversary to introduce users and register their long-
lived keys; this is similar to the recent models in 2-party key exchange [27,29] and is the main difference to
the extended abstract of this paper which appeared in [13] and also to many previous GKE security models.

GKE Protocol with Strong Security As a second contribution in Section 3, we describe a 3-round GKE
protocol, named TDH1, and prove that it provides strong versions of AKE-, MA-security and contributiveness,
while the deployed techniques can be seen as general for many GKE protocols. TDH1 tolerates the following
numbers of malicious insiders (out of n participants in total): for MA-security up to n− 2, for contributiveness
up to n − 1, whereby all remaining honest users might be opened! Our security proofs do not rely on the
Random Oracle Model [3]. The AKE-security of TDH1 is based on the Tree Decisional Diffie-Hellman (TDDH)
assumption, introduced by Kim et al. in [24, 25]. We give a formal definition of the underlying TDDH problem
and show its polynomial equivalence to the standard Decisional Diffie-Hellman (DDH) problem [5] by a proof
which addresses arbitrary full binary trees, i.e., trees where each node has exactly zero or two leaves (note, Kim
et al. addressed only a subset, i.e., linear and complete trees).

2 Strong Security Definitions for GKE

We start by (re)stating existing definitions and classical notations using the game-based approach. Note that
another way (which we do not consider here) to define security requirements is to use the simulation-based
approach, e.g. [21] (but see Remark 1).

2.1 Protocol Execution and Participants

Users, Instance Oracles, Long-Lived Keys Let U be a set of at most N users. Each Ui ∈ U holds a long-lived
key LLi and has several instances called oracles, denoted Πs

i for s ∈ N, participating in distinct concurrent
executions. (When we do not refer to a specific user Ui we use the index U , e.g. Πs

U .)

Internal States Every Πs
U maintains an internal state information states

U which is composed of all ephemeral
secret information used during the protocol execution. The long-lived key LLU is, in nature, excluded from it
(moreover the long-lived key is specific to the user, not to the oracle). An oracle Πs

U is unused until initialization
(by which it is given the long-lived key LLU). It then becomes a group member, associated to a particular
session, and turns into the stand-by state where it waits for an invocation to execute the protocol. When the
protocol starts, the oracle learns its partner id pids

U (and possibly sids
U) and turns into a processing state

where it sends, receives and processes messages. During that stage, the internal state information states
U is

maintained. After having computed ks
U oracle Πs

U accepts and terminates the execution of the protocol operation
(possibly after some additional auxiliary steps) meaning that it would not send or receive further messages. If
the protocol fails, Πs

U terminates without accepting, and ks
U is set to an undefined value.

Session Group Key, Session and Partner IDs, Group Members Every session is identified by a unique,
publicly-known session id sids

U . In each session each oracle Πs
U gets a value pids

U that contains the identities
of participating users (including U) and computes the session group key ks

U ∈ {0, 1}κ, where κ is a security
parameter.

Securing Group Key Exchange against Strong Corruptions and Key Registration Attacks 5

By G(Πs
i) = {Πt

j , where Uj ∈ pids
Ui

and sids
i = sidt

j} we denote the group of oracle Πs
i and say that

Πs
i and Πt

j are partnered if Πt
j ∈ G(Πs

i) and Πs
i ∈ G(Πt

j). Sometimes we simply write G to denote the group
of oracles participating in the same protocol session. Then each oracle in G is called a group member. Note that
oracles in G may be ordered, e.g., lexicographically based on the user identities.

Definition 1. A GKE protocol P consists of a key generation algorithm KeyGen, and a protocol Setup:

P.KeyGen(1κ): On input a security parameter 1κ each user in U is provided with a long-lived key LLU .
P.Setup(S): On input a set S of n unused oracles a new group G is created and set to be S . A probabilistic

interactive protocol is executed between the oracles in G such that all oracles accept with the session group
key and terminate.

A protocol is said to be correct if, when no adversary is present, all participants compute the same key. Note that
our definition is independent of the communication channel, e.g., (asymmetric) broadcast, multicast, or unicast.

2.2 Strong Adversarial Model

Now we consider an adversary A which is a Probabilistic Polynomial-Time (PPT) algorithm having complete
control over the network. As described in the following, A can add users to the set U and interact with protocol
participants via queries to their oracles. Note that our security model (similar to [9,21,4]) does not deal with the
issues of denial-of-service and fault-tolerance; our security definitions aim to prevent honest participants from
accepting the group key biased by malicious insiders.

AddUser(U,Λ): if U 6∈ U then U with the long-lived (public) key contained in Λ is added to U ; Λ may also
contain some further information.

Execute(S): A eavesdrops an honest execution of P.Setup between a chosen set of oracles and is given the
resulting transcript of P.Setup(S).

Send(Πs
U , m): A sends message m to oracle Πs

U and receives the response Πs
U would have generated after

having (honestly) processed message m. The response may be empty if m is incorrect. The adversary can
have Πs

U invoking P.Setup with the oracles in S via a query of the form Send(′start′,Πs
U ,S):A gets the

first message that Πs
U would generate in this case.

RevealKey(Πs
U): A is given the session group key ks

U , provided Πs
U has accepted.

RevealState(Πs
U): A is given the internal state information states

U which includes ephemeral secrets.
Corrupt(U): A is given the long-lived key LLU .
Test(Πs

U): A tests the semantic security of ks
U . Formally, if Πs

U has accepted a bit b is privately flipped and A
is given ks

U if b = 1 and a random string if b = 0.

The adversary has two ways of learning LLU : by asking it – Corrupt(U), or by registering it – AddUser(U,Λ).
For simplicity, in all definitions of security unless otherwise stated, we treat U as corrupted if any of these
queries had occurred.

Remark 1. The separation of the queries RevealState and Corrupt/AddUser explicitly provides the possibility
for the opening attacks mentioned in the introduction. By asking the RevealState query to an instance oracle
Πs

U the adversary reads out its internal state but cannot impersonate honest U in the protocol execution, un-
less a Corrupt(U) query is asked (in which case all instance oracles Πs

U become malicious insiders through
possible impersonation actions of A). Thus, just opening a user does not make him malicious. In contrast,
simulation-based security models (e.g. Universal Composability / Reactive Simulatability) handle strong cor-
ruptions typically as follows: upon corrupting a user the adversary learns all information known to that user
and controls him thereafter. Obviously, in the simulation-based models opening attacks (which strengthen the
adversary) are currently not modeled.

6 Emmanuel Bresson and Mark Manulis

2.3 Strong AKE-Security

In case of strong AKE-security one must also consider the knowledge of the adversary about long-lived keys
and ephemeral secrets of session participants. If the adversary obtains a long-lived key before the session is
started then it can impersonate a user, and thus, learn the session key. And if the adversary is allowed to obtain
long-lived keys before the session is finished then it should be restricted from actively using these keys during
that time [22].

On the other hand, the adversary should be allowed to reveal ephemeral secrets of participants before the
session starts3 and after the session is finished (defined as strong forward and weak backward secrecy in [14]).
Note that, if one allows long-lived key corruptions in later sessions, revealing ephemeral secrets during the
attacked session wouldn’t make sense. In order to model the described requirements for the adversarial knowl-
edge we define the notion of oracle freshness, extending those given in [9,22] by the conditions concerning key
registration and opening attacks.

Definition 2. (Oracle Freshness) In the execution of P the oracle Πs
U is fresh if all of the following holds:

(a) no Ui ∈ pids
U has been added by A via a corresponding AddUser query,

(b) no Ui ∈ pids
U is asked for a query Corrupt prior to a query of the form Send(Πt

j , m) with Uj ∈ pids
U until

Πs
U and its partners accept,

(c) neither Πs
U nor any of its partners is asked for a query RevealState until Πs

U and its partners accept,
(d) neither Πs

U nor any of its partners is asked for a query RevealKey after having accepted.

We say that a session is fresh if all participating oracles are fresh.

We note that the above definition ensures that if at least one oracle participating in a session is fresh then the
whole session is fresh too because freshness of one oracle requires freshness of all its partners. This notion of
oracle freshness simplifies the following definition of strong AKE-security for GKE protocols.

Definition 3. (Strong AKE-Security) Let P be a correct GKE protocol and b a uniformly chosen bit. Consider
an adversary A against the AKE-security of P. We define the adversarial game Gameake−b

A,P (κ) as follows:

– after initialization, A interacts with instance oracles via queries;
– at some point A asks a Test query to a fresh oracle Πs

U which has accepted;
– A continues interacting with instance oracles;
– when A terminates, it outputs a bit, which we define to be the output of the game.

We define: Advake
A,P(κ) :=

∣∣∣2Pr[Gameake−b
A,P (κ) = b]− 1

∣∣∣

and denote with Advake
P (κ) the maximum advantage over all PPT adversariesA. We say that a GKE protocol P

provides strong AKE-security if this advantage is negligible.

We again stress that (strong) AKE-security makes sense for adversaries that are not able to corrupt users
and act on their behalf during the attacked session or reveal any ephemeral secrets used in that session — this is
guaranteed by the freshness property.

2.4 Strong MA-Security

We say that Πs
U is a malicious participant/insider if the adversary has previously asked Corrupt(U) or AddUser(U,Λ).

In all other cases Πs
U is honest. The following definition of MA-security unifies the requirements of mutual au-

thentication, key confirmation, and unknown-key share resilience. It considers malicious participants and allows
opening attacks against all honest users at any protocol stage.

3 A GKE protocol may use auxiliary secrets pre-computed offline in order to achieve better performance during the com-
munication phase. Such protocols are not strong AKE-secure since the adversary can break into the internal states prior
to the protocol execution.

Securing Group Key Exchange against Strong Corruptions and Key Registration Attacks 7

Definition 4. (Strong MA-Security) Let P be a correct GKE protocol and A an adversary who is allowed to
query Send, Execute, RevealKey, RevealState, Corrupt and AddUser. We denote this interaction as Gamema

A,P(κ).
We say thatA wins if at some point, there exists an honest user Ui whose instance oracle Πs

i has accepted with
ks

i and another user Uj ∈ pids
i that is uncorrupted at the time Πs

i accepts such that

(a) There is no instance oracle Πt
j with (pidt

j , sid
t
j) = (pids

i , sid
s
i), or

(b) There is an instance oracle Πt
j with (pidt

j , sid
t
j) = (pids

i , sid
s
i) that has accepted with kt

j 6= ks
i .

The maximum probability of this event is denoted Sucma
P (κ); we say that a GKE protocol P provides strong

MA-security if this probability is negligible.

2.5 Strong Contributiveness

The following definition models attacks related to key control, contributiveness and unpredictability of group
keys in the presence of malicious participants. Informally, we consider an active adversary A that can add,
corrupt and open participants at any stage of the protocol execution in such a way that there exists at least one
honest oracle (which may nevertheless be opened!) that accepts the session group key chosen by the adversary.
This subsumes key-replication attacks [26] by which honest users are forced to accept a group key from another
session.

Definition 5. (Strong Contributiveness) Let P be a correct GKE protocol and A an adversary operating in two
stages (prepare and attack) and having access to the queries Send, Execute, RevealKey, RevealState, Corrupt
and AddUser. We define the following game Gamecon

A,P(κ):

– A(prepare) interacts with instance oracles via queries;
– A(prepare) outputs k̃ ∈ {0, 1}κ, and some state information ζ;
– the following sets are built: Gus consisting of all honest used oracles, Gstd consisting of all honest oracles

that are in the stand-by state4, and Ψ consisting of session ids sidt
i for every Πt

i ∈ Gus;
– A(attack, ζ) interacts with instance oracles via queries;
– at the end of this stage A outputs (s, U).

The adversary A wins in Gamecon
A,P(κ) if all of the following holds:

(a) Πs
U is honest, has terminated accepting k̃, Πs

U 6∈ Gus \ Gstd and sids
U 6∈ Ψ .

(b) There are at most n− 1 corrupted users Ui having oracles Πt
i partnered with Πs

U .

We define: Succon
A,P(κ) := Pr[A wins in Gamecon

A,P(κ)]

and denote with Succon
P (κ) the maximum probability of this event over all PPT adversariesA; we say P provides

strong contributiveness if this probability is negligible in κ.

The first requirement ensures that Πs
U belongs to an honest user. The set Gus \ Gstd consists of all oracles

that at the end of the prepare stage have already terminated or remain in the processing state. Thus, requiring
Πs

U 6∈ Gus \ Gstd prevents the case where A while being a session participant outputs k̃ for the still running
protocol execution which is then accepted by Πs

U that participates in the same execution (this is not an attack
since participants do not compute group keys synchronously). Similarly, the condition sids

U 6∈ Ψ prevents that
Awhile being in the attack stage outputs (s, U) such that Πs

U has accepted with k̃ already in the prepare stage.
Finally, since in every session id is unique, sids

U 6∈ Ψ holds if at least one new session has been executed with
Πs

U in the attack stage. The second requirement allowsA to corrupt at most n−1 (out of totally n) participants
in the session where Πs

U accepts with k̃.
Note also that U must be honest butA is allowed to reveal the internal state of Πs

U during the execution of the
attack stage (this is because our model separates LLU from states

U). The goal of the adversary is to influence
the honest participants to accept the chosen key. Our game appears stronger than [4] since the adversary can
open honest users’ internal state (furthermore he can make corruptions in an adaptive manner).

4 Note that Gstd ⊆ Gus.

8 Emmanuel Bresson and Mark Manulis

Remark 2. The main difference to the non-malleability definition from [19] is that we allow A to open honest
users during the attacked session, however, at the cost that we do not deal with the ability of A to bias the
probability distribution of the resulting group key (similar to [4]). It seems to be hard to achieve this goal if
A corrupts n − 1 users and opens the last n-th honest user, which is allowed by our definition. At least, the
commitment techniques used in [19] would not help since committed secrets that become part of the internal
state can be revealed.

3 TDH1 Protocol with Strong Security

In this section we present our constant-round GKE protocol denoted TDH1 and show that it satisfies the strong
versions of AKE-, MA-security, and contributiveness. Its AKE-security relies on the Tree Decisional Diffie-
Hellman (TDDH) assumption, introduced by Kim et al. in [24, 25].

3.1 Number-Theoretic Assumptions

First, we formally specify the TDDH assumption and quantify the reduction to the classical Decisional Diffie-
Hellman (DDH) assumption [5]. Our protocol and those (unauthenticated) in [24,25] require a special multiplica-
tive group G in which DDH is assumed to be hard and for which there exists an efficient bijection5 from G to
Z|G|. Thus, not every DDH-hard group can be used, e.g., no such bijection is known for elliptic curves.

Algebraic Group Let p be a safe prime, i.e., p = 2q + 1, with q a κ-bit prime. The set of quadratic residue
modulo p is a cyclic group Ĝ of order q; let g be a generator: Ĝ = 〈g〉. Consider the following mapping
u : Z∗p → Zq defined as

u(z) :=
{

z mod q if z ≤ q
(p− z) mod q if q < z < p

Consider the set G := {u(gi) | i ∈ Zq}. It can be shown [25] that the function f : x 7→ u(gx) from Zq to G is a
bijection, and that the operation (a, b) ∈ G2 7→ u(ab mod p) is a group law on G. Since G = Zq (as sets), we
can define the exponentiation ab := u(ab mod p) for all a, b ∈ G. Also, due to the fact that f is a bijection, we
have f(x) is random, uniform in G as soon as x is so.

Finally, it is believed [5] that the DDH assumption holds in G, that is, the distributions of (gx1 , gx2 , gx1x2)
and (gx1 , gx2 , gr) are computationally indistinguishable for x1, x2, r ∈R G.

Tree Decisional Diffie-Hellman Assumption Let Tn be the set of all full6 binary trees with n leaves. For a
Tn ∈ Tn of depth dTn , each node is identified via a label 〈l, v〉, where l ∈ [0, dTn] is the level of the node and v
its position within this level: the position is such that the child nodes of 〈l, v〉 (if present) are labeled 〈l + 1, 2v〉
and 〈l + 1, 2v + 1〉 (this implies that the nodes positions are in [0, 2l− 1], but may be not contiguous). The root
node is labeled 〈0, 0〉. In the following we will denote Tn\〈0, 0〉 by T ∗n . The set of leaf nodes and the set of
internal nodes of Tn are defined as (respectively):

LNTn := {〈l, v〉 | 〈l, v〉 ∈ Tn, 〈l + 1, 2v〉 6∈ Tn, 〈l + 1, 2v + 1〉 6∈ Tn},

INTn := {〈l, v〉 | 〈l, v〉 ∈ T ∗n , 〈l + 1, 2v〉 ∈ Tn, 〈l + 1, 2v + 1〉 ∈ Tn}.
For a set X of n randomly chosen variables x〈l,v〉 ∈R G, with 〈l, v〉 ∈ LNTn

, we (recursively) define for
each 〈l, v〉 ∈ INTn :

x〈l,v〉 = gx〈l+1,2v〉x〈l+1,2v+1〉 , and TDHTn(X) =
{(
〈l, v〉, gx〈l,v〉

)}
〈l,v〉∈T∗n

5 The exponentiation x 7→ gx is a bijection from Z|G| toG. We require that there exists an efficiently computable (bijective)
mapping in the opposite direction, but we do NOT require this mapping to be the discrete logarithm!

6 A binary tree is called full if each of its nodes has exactly 0 or 2 children. Sometimes such trees are also called proper.

Securing Group Key Exchange against Strong Corruptions and Key Registration Attacks 9

Additionally, for a randomly chosen r ∈R G, we define the tuples TDDH?
Tn

(X) and TDDH$
Tn

(X) as follows:

TDDH?
Tn

(X) = TDHTn(X) ∪ (〈0, 0〉, gx〈1,0〉x〈1,1〉
)

and TDDH$
Tn

(X, r) = TDHTn(X) ∪ (〈0, 0〉, gr
)

The TDDH assumption states that the respective distributions of these tuples induced by uniform choices of
r and the x〈l,v〉, for 〈l, v〉 ∈ LNTn are computationally indistinguishable.

Definition 6. (TDDH Assumption) For all n > 1, any Tn ∈ Tn, any group G, and any PPT algorithm A, the
distinguishing advantage AdvTDDHTn,G(A), defined as follows, is negligible (in κ = log |G|):

∣∣∣ Pr
X

[
A(TDDH?

Tn
(X)) = 1

]
− Pr

X,r

[
A(TDDH$

Tn
(X, r)) = 1

]∣∣∣

Theorem 1 (DDH ⇐⇒ TDDH). The TDDH problem in G is polynomially equivalent to the DDH problem in Zq,
and we have:

AdvDDHG (κ) ≤ AdvTDDHTn,G(κ) ≤ (2n− 3)AdvDDHG (κ).

The proof appears in Appendix A and is more general than those in [24, 25] that focus only on complete and
linear binary trees. For n = 2 we get the classical DDH assumption in G with the advantage AdvDDHG (A′) defined
as ∣∣∣ Pr

X

[
A′(DDH?(X)) = 1

]
− Pr

X,r

[
A′(DDH$(X, r)) = 1

]∣∣∣.

3.2 Light Description of TDH1

The main mechanism of the protocol is that of [24, 25], so we first recall it. The differences will be in message
authentication, key derivation, and applied erasure technique to prevent the ephemeral session secrets from
being leaked once the session is finished. Erasure of the internal state can be seen as a general method to
achieve AKE-security in the presence of opening attacks for static GKE protocols.

The Setup Operation Every oracle is assigned to a leaf node of a so-called linear binary tree Tn: a full binary
tree with one leaf at each level, except for the deepest one with two leaves (see Figure 1). In other words
T ∗n := {〈l, v〉}l∈[1,n−1],v∈[0,1].

Round 1 – All. Each oracle at position 〈li, vi〉 chooses a secret exponent x〈li,vi〉 ∈R G and broadcasts
y〈li,vi〉 := gx〈li,vi〉 .

Round 2 – First player. Π1 at position 〈n− 1, 0〉 is able to build a set X1 of secret values for each node
x〈l,0〉 in its path up to the root 〈0, 0〉. This is because for each internal node x〈l,0〉 = (y〈l+1,1〉)x〈l+1,0〉 Then,
Πs

1 computes the set Ŷ consisting of y〈l,0〉 := gx〈l,0〉 for each previously computed internal node’s secret value
x〈l,0〉 except for x〈0,0〉, and broadcasts Ŷ .

Round 3 – No communication. Upon receiving Ŷ , all other oracles Πi6=1 are able to compute their own
set Xi consisting of all secret values x〈l,v〉 in their paths up to the root. Hence, every oracle finally learns x〈0,0〉.
We emphasize that x〈0,0〉 is never exposed, and that there is no y〈0,0〉 in the protocol (see description of function
TDH1_Exp?(l, X) below).

Group Key Confirmation and Derivation To derive the session group key K, each participant iteratively
computes a sequence of values ρ0, . . . , ρn using a pseudo-random function (PRF) f with a public value v0 as
input. The key (secret seed) of f is initially set to x〈0,0〉, and is changed in each invocation of f by embedding
successive nonces using an appropriate one-way permutation π. These nonces are provided by participants
during the protocol execution.

Intuitively, these successive evaluations of f and π prevent malicious participants from influencing values
of the PRF keys and ensures contributiveness for the intermediate value ρn, which is then used as a seed for f
to derive the key confirmation token µ (on input a constant public value v1) and the actual session group key
K (on input another constant public value v2 6= v1). Prior to accepting K: (i) participants exchange and verify
signatures on µ to ensure MA-security (similar to [21]) and (ii) erase [18] all ephemeral secrets, used to obtain
K from their internal states, to achieve strong AKE-security.

10 Emmanuel Bresson and Mark Manulis

〈2, 0〉 〈2, 1〉

〈1, 0〉 〈1, 1〉

〈0, 0〉

Π
1

Π
2

Π
3

0 ≤ l ≤ 2 = dT3

Fig. 1. Example of a Linear Binary Tree T3 for the Group G = {Π1, Π2, Π3}.

3.3 Detailed Description of TDH1

Preliminary Notations We assume that long-lived keys LLi = (ski, pki) are generated via Σ.Gen(1κ), where
Σ = (Gen, Sign, Verify) is an existentially unforgeable (under chosen message attacks) digital signature
scheme. We define the following key exchange functions:

TDH1_Exp(x〈l,v〉): Simple exponentiation. The function returns y〈l,v〉 := gx〈l,v〉 .
TDH1_Pick(1κ): the function returns a randomly chosen secret exponent x〈l,v〉 ∈R G and the corresponding

public value y〈l,v〉 := TDH1_Exp(x〈l,v〉).
TDH1_Exp?(l, X) where X = {x〈j,0〉}1≤j≤l: Computation of corresponding public values for secret exponents

in X . The function returns Y := {y〈j,0〉} where each y〈j,0〉 := TDH1_Exp(x〈j,0〉).
TDH1_Up(l, v, x〈l,v〉, y〈l,1−v〉, Y) where Y := {y〈j,1〉| j ∈ [1, l − 1]}: Iterative computation of the Diffie-

Hellman values up the tree starting at position 〈l, v〉. The function computes x〈l−1,0〉 := (y〈l,1−v〉)x〈l,v〉 ,
and returns

X :=
{
x〈l,v〉, x〈l−1,0〉

} ⋃{
x〈j,0〉 := (y〈j+1,1〉)x〈j+1,0〉

∣∣ y〈j+1,1〉 ∈ Y, ∀j = l − 2, . . . , 0
}
.

Let F :=
{{

fk

}
k∈{0,1}κ

}
κ∈N be a collision-resistant pseudo-random function ensemble with domain and range

{0, 1}κ (see Appendix B for definitions). Let π : {0, 1}κ → {0, 1}κ be a one-way permutation. We denote by
v0, v1 and v2 three distinct, public values in {0, 1}κ. The following function is used to compute the intermediate
value K and the key confirmation token µ.

TDH1_Con(x〈0,0〉, r1| . . . |rn): The function computes ρ0 := fx〈0,0〉(v0), and each ρl := fρl−1⊕π(rl)
(v0) for

all l = {1, . . . , n}. Let K := ρn. Finally, the function computes µ := fK (v1), and returns (K,µ).

The Protocol TDH1.Setup In the following we assume that an oracle aborts without accepting if any performed
check fails.
Round 1. Given the tree structure Tn, each oracle Πi proceeds as follows:

– Pick at random nonce ri ∈R {0, 1}κ;
– Invoke TDH1_Pick(1κ) to generate a secret exponent x〈li,vi〉 and the value y〈li,vi〉 = gx〈li,vi〉 ;
– Invoke Σ.Sign to obtain a signature σi on 0|y〈li,vi〉|ri|pidi using the private key ski;
– Broadcast Ui|0|y〈li,vi〉|ri|σi.

Round 2. Each oracle Πi proceeds as follows:

– Check if Σ.Verify(pkj , 0|y〈lj ,vj〉|rj |pidi, σj) = 1 for j 6= i; Check if |rj | = κ for j 6= i;
– Define sidi := r1| . . . |rn and Yi := {y〈l,1〉}l=li−1,...,1.

In addition, Π1 does the following:

– Compute X1 :=TDH1_Up(n− 1, 0, x〈n−1,0〉, y〈n−1,1〉, Y1) and Ŷ :=TDH1_Exp?(n− 2, X1);
– Invoke Σ.Sign to obtain a signature σ′1 on 1|Ŷ |sid1|pid1 using the private key sk1;
– Broadcast U1|1|Ŷ |σ′1.

Securing Group Key Exchange against Strong Corruptions and Key Registration Attacks 11

Π1 Π2 Π3

r1 ∈R {0, 1}κ r2 ∈R {0, 1}κ r3 ∈R {0, 1}κ

(x〈2,0〉, y〈2,0〉) := TDH1_Pick(1κ) (x〈2,1〉, y〈2,1〉) := TDH1_Pick(1κ) (x〈1,1〉, y〈1,1〉) := TDH1_Pick(1κ)
σ1 := Σ.Sign(sk1, 0|y〈2,0〉|r1|pid1) σ2 := Σ.Sign(sk2, 0|y〈2,1〉|r2|pid2) σ3 := Σ.Sign(sk3, 0|y〈1,1〉|r3|pid3)

Broadcast round: Every Πi broadcasts Ui|0|yi|ri|σi

X1 :=TDH1_Up(2, 0, x〈2,0〉, y〈2,1〉, Y1)

Ŷ := TDH1_Exp?(1, X1)

σ′1 := Σ.Sign(sk1, 1|Ŷ |sid1|pid1)

Broadcast round: Π1 broadcasts U1|1|Ŷ |σ′1

X2:=TDH1_Up(2, 1, x〈2,1〉, y〈2,0〉, Y2) X3:=TDH1_Up(1, 1, x〈1,1〉, y〈1,0〉, Y3)
(K1, µ1) := TDH1_Con(x〈0,0〉, sid1) (K2, µ2) := TDH1_Con(x〈0,0〉, sid2) (K3, µ3) := TDH1_Con(x〈0,0〉, sid3)
σ′′1 := Σ.Sign(sk1, 2|µ1|sid1|pid1) σ′′2 := Σ.Sign(sk2, 2|µ2|sid2|pid2) σ′′3 := Σ.Sign(sk3, 2|µ3|sid3|pid3)

Broadcast round: Every Πi broadcasts Ui|2|σ′′i

K1 := fK1
(v2) K2 := fK2

(v2) K3 := fK3
(v2)

Fig. 2. Example of Operation TDH1.Setup with G={Π1,Π2,Π3}. Public values: sidi = r1|r2|r3, Y1=Y2=
{y〈1,1〉}, Y3 = ∅, Ŷ ={y〈1,0〉}, where y〈1,1〉=gx〈1,1〉 , y〈1,0〉=gx〈1,0〉 . Secret values: X1={x〈2,0〉, x〈1,0〉, x〈0,0〉},
X2 ={x〈2,1〉, x〈1,0〉, x〈0,0〉}, X3 ={x〈1,1〉, x〈0,0〉}, where x〈0,0〉=gx〈1,0〉x〈1,1〉 , x〈1,0〉=gx〈2,0〉x〈2,1〉 and x〈2,0〉,
x〈2,1〉, x〈1,1〉 ∈R G.

Round 3. Each Πi with i > 1 proceeds as follows:

– Check if Σ.Verify(pk1, 1|Ŷ |sidi|pidi, σ
′
1) = 1;

– Compute Xi as TDH1_Up(li, vi, x〈li,vi〉, y〈li,1−vi〉, Yi).

Then every oracle (including Π1) does the following:

– Compute both Ki and µi using TDH1_Con(x〈0,0〉, sidi); [note that x〈0,0〉 ∈ Xi]
– Erase any private information from statei (including all x〈l,v〉, and ρ0, . . . , ρn) except for Ki;
– Invoke Σ.Sign to obtain a signature σ′′i on 2|µi|sidi|pidi using the private key ski;
– Broadcast Ui|2|σ′′i .

Group Key Computation. When Πi receives Uj |2|σ′′j from all other oracles, it proceeds as follows:

– Check if Σ.Verify(pkj , 2|µi|sidi|pidi, σ
′′
j) = 1; Compute Ki := fKi

(v2);
– Erase any private information from statei (including Ki), and accept with Ki.

Figure 2 sketches the execution of TDH1.Setup for three participants (necessary checks and erasure steps are
omitted). In this example, oracle Π1 builds X1 = {x〈2,0〉, x〈1,0〉, x〈0,0〉} with x〈1,0〉 := (y〈2,1〉)x〈2,0〉 and
x〈0,0〉 := (y〈1,1〉)x〈1,0〉 (remember that y〈2,1〉 and y〈1,1〉 were received in the previous round). The set broad-
casted by Π1 is Ŷ = {y〈1,0〉}, where y〈1,0〉 := gx〈1,0〉 . In the third round oracle Π2 computes X2 = {x〈2,1〉,
x〈1,0〉, x〈0,0〉}, where x〈1,0〉 := (y〈2,0〉)x〈2,1〉 , and x〈0,0〉 := (y〈1,1〉)x〈1,0〉 . In parallel, oracle Π3 computes
X3 = {x〈1,1〉, x〈0,0〉} where x〈0,0〉 := (y〈1,0〉)x〈1,1〉 . Hence, every oracle is in possession of x〈0,0〉. Finally,
all three oracles can compute the intermediate value K , i.e., ρ0 := fx〈0,0〉bκ

(v0), ρ1 := fρ0⊕π(r1)
(v0), ρ2 :=

fρ1⊕π(r2)
(v0), and K = ρ3 := fρ2⊕π(r2)

(v0), and the key confirmation token µ := fK (v1). Note that the value
x〈0,0〉 is never sent over the public channel but computed locally by all participants upon receiving enough
information. Furthermore, there exists no y〈0,0〉 in the protocol.

12 Emmanuel Bresson and Mark Manulis

3.4 Security and Performance of TDH1

In our security proofs following the specification of our model we consider that ephemeral secret information
kept in stateU is always independent of the long-lived key skU . That is, in each session, stateU contains XU

consisting of all secrets x〈l,v〉 known to ΠU , ρ0, . . . , ρn and possibly some (implementation specific) temporary
variables used to compute these values. Furthermore, we assume that the signing algorithm Σ.Sign which
implicitly uses skU is executed under the same protection mechanism as skU , e.g., in a smart card as in [9]
(although smart cards have limited resources we observe that in TDH1.Setup each oracle has to generate at most
three signatures). This is important since the signing algorithm may generate some randomness which should
also be protected from being revealed via a RevealState query; otherwise the adversary may be able to obtain
some information about skU .

The following theorems show that TDH1 satisfies the requirements of strong AKE-, MA-security and con-
tributiveness; the last two also under consideration of insider attacks. In all theorems qs is the total number of
executed protocol sessions during the corresponding attack game.

Theorem 2 (Strong AKE-Security of TDH1). If Σ is existentially unforgeable under chosen message attacks,
F is pseudo-random, and G is TDDH-hard then TDH1 provides strong AKE-security, and

Advake
TDH1(κ) ≤ 2NSuceuf−cma

Σ (κ) +
Nq2

s

2κ−1
+ 2qsAdvTDDHTN ,G(κ) + 2(N + 3)qsAdvprf

F (κ).

Proof. (Sketch) We define a sequence of games Gi, i = 0, . . . , 7 with the adversaryA against the AKE-security
of TDH1. In each game we denote Winake

i the event that the bit b′ output byA is identical to the randomly chosen
bit b in game Gi.

Game G0. This game is the real game Gameake−b
A,TDH1(κ) where we use a simulator ∆ to maintain set U ,

simulate the execution of the protocol (on behalf of uncorrupted users), and answer all queries of A.
Game G1. This game is identical to Game G0 with the only exception that ∆ fails and bit b′ is set at random

ifA asks a Send query on some Ui|seqn|m|σ, with seqn ∈ {0, 1, 2} and σ a valid signature on m, that has not
been previously output by an oracle Πs

i before querying Corrupt(Ui) (note that Corrupt queries can be generally
asked after the Test query) or AddUser(Ui, Λ).

In other words the simulation fails ifA outputs a successful forgery; such event is denoted Forge. A classical
reductionist argument (see for instance [11]) shows that in that case we can build a forger against the signature
scheme and upper-bound the probability difference between G1 and G0 by NSuceuf−cma

Σ (κ).
Game G2. This game is identical to Game G1 except that ∆ fails if two instances of an honest user used

the same nonce twice. Since there are N users and at most qs sessions the difference between games can be
upper-bounded by (Nq2

s)/2κ.
This game ensures the uniqueness of sids

i and excludes replay attacks on the last two messages of TDH1.
Game G3. In this game we add the following rule: ∆ chooses q∗s ∈ [1, qs] and aborts if the Test query does

not occur in the q∗s -th session. Let Q be the event that this guess for q∗s is correct and Pr[Q] = 1/qs. Thus, we
get

Pr[Winake
3

] = Pr[Winake
3
|Q] Pr[Q] + Pr[Winake

3
|¬Q] Pr[¬Q] = Pr[Winake

2
]
1
qs

+
1
2

(
1− 1

qs

)
.

This implies,

Pr[Winake
2

] = qs

(
Pr[Winake

3
]− 1

2

)
+

1
2
.

Game G4. This game is identical to Game G3 except that ∆ is given a tuple from the real TDDH?
TN

distribu-
tion (as specified in Section 3.1) where TN is a linear tree. In all sessions except the q∗s -th one, ∆ simulates the
honest participants as specified by the protocol. In the q∗s -th session with n participants ∆ injects public values
gx〈l,v〉 from TDDH?

TN
into the protocol execution. Note that in the q∗s -th session the group size n might be smaller

than N , thus the simulator will use the subtree Tn which is composed of TN ’s nodes from level 0 to level n− 1.

Securing Group Key Exchange against Strong Corruptions and Key Registration Attacks 13

The idea is to assign Πs
1 to the (internal) node 〈n− 1, 0〉, Πs

2 to the leaf node 〈n− 1, 1〉, . . ., Πs
n to the leaf

node 〈1, 1〉, and to use for each node 〈l, v〉 ∈ Tn \ 〈0, 0〉 public values gx〈l,v〉 taken from the given TDDH?
TN

distribution. The secret value x〈0,0〉 used for the key confirmation is also taken from this distribution. Since the
q∗s -th session is fresh, no RevealState queries to Πs

i or to any of its partners have been asked (∆ would not be
able to answer them since it does not know the secret values x〈l,v〉 of internal and leaf nodes). Of course in all
other sessions RevealState queries can be easily answered. Since TDDH?

TN
is a real distribution we conclude that

this game is a “bridging step” (as named in [34]) and Pr[Winake
4

] = Pr[Winake
3

].
Game G5. This game is identical to Game G4 except that ∆ is given a tuple from the random TDDH$

TN

distribution. Thus, for honest players, the secret x〈0,0〉 is simulated using the provided random element gr.
Obviously, |Pr[Winake

5
]− Pr[Winake

4
]| ≤ AdvTDDHTN ,G(κ).

Game G6. This game is identical to Game G5 except that in the q∗s -th session ∆ replaces f by a truly
random function, implying the uniform distribution of K = ρn. Considering n ≤ N we obtain by a “hybrid
argument”7 |Pr[Winake

6
]− Pr[Winake

5
]| ≤ (N + 1)Advprf

F (κ).
Game G7. This is the continuation of the hybrid argument, but for clarity we specify a separate game;

the confirmation token µ and the session key K are replaced by two random κ-bit values, s.t., |Pr[Winake
7

] −
Pr[Winake

6
]| ≤ 2Advprf

F (κ). Since K is uniform: Pr[Winake
7

] = 1/2. Combining the previous equations, we
conclude the proof. ut
Theorem 3 (Strong MA-Security of TDH1). If Σ is existentially unforgeable under chosen message attacks
and F is collision-resistant then TDH1 provides strong MA-security, and

Sucma
TDH1(κ) ≤ NSuceuf−cma

Σ (κ) +
Nq2

s

2κ
+ qsSuccoll

F (κ).

Proof. (Sketch) We define a sequence of games Gi, i = 0, . . . , 2 and corresponding events Winma
i meaning

that A wins in Gi.
Game G0. This is the real game Gamema

TDH1(κ) played between a simulator ∆ and A. The goal of A is to
achieve that there exists an honest user Ui whose corresponding oracle Πs

i accepts with Ks
i and another user

Uj ∈ pids
i who is uncorrupted at the time Πs

i accepts and either does not have a corresponding oracle Πt
j with

(pidt
j , sid

t
j) = (pids

i , sid
s
i) or has such an oracle but this oracle accepts with Kt

j 6= Ks
i .

Game G1. Here we proceed as in the previous proof and eliminate executions in which forgeries occur,
obtaining |Pr[Winma

1
]− Pr[Winma

0
]| ≤ NSuceuf−cma

Σ (κ).
Game G2. This game is identical to Game G1 except that ∆ fails if a nonce ri is used by any uncorrupted

user’s oracle Πs
i in two different sessions. Similar to the previous proof we get |Pr[Winma

2
] − Pr[Winma

1
]| ≤

(Nq2
s)/2κ. Having excluded forgeries and replay attacks we follow that for every user Uj ∈ pids

i that is
uncorrupted at the time Πs

i accepts there exists a corresponding instance oracle Πt
j with (pidt

j , sid
t
j) =

(pids
i , sid

s
i). Thus, according to Definition 4 A wins in this game only if any of these oracles has accepted

with Kt
j = fKt

j
(v2) 6= fKs

i
(v2) = Ks

i . However the validity of signatures on tokens µi and µj implies that
µi = µj . Thus the probability difference between these games is upper-bounded by qs Pr[Kt

j 6= Ks
i∧fKt

j
(v1) =

fKs
i
(v1)], which is equivalent to qs Pr[fKt

j
(v2) 6= fKs

i
(v2) ∧ fKt

j
(v1) = fKs

i
(v1)], and results in qsSuccoll

F (κ).
Combining the previous equations we get the desired result. ut

Theorem 4 (Strong Contributiveness of TDH1). If F is collision-resistant pseudo-random and π is one-way
then TDH1 provides strong contributiveness, and

Succon
TDH1(κ) ≤Nq2

s + Nqs + 2qs

2κ
+ (N + 2)qsSuccoll

F (κ) + qsAdvprf
F (κ) + NqsSucow

π (κ).

Note that in TDH1 the adversary is able to enforce the resulting value for x〈0,0〉 by opening oracles of
honest users during the protocol execution. More precisely, A can enforce that the same x〈0,0〉 is computed

7 More precisely, one constructs n + 1 auxiliary “hybrid games” G6,l, l = 0, . . . , n and replaces in each game ρl by a
random value from {0, 1}κ. The difference between two neighbor hybrids is upper-bounded by the PRF advantage.

14 Emmanuel Bresson and Mark Manulis

by the oracles of some uncorrupted user in two different sessions. To show this, assume for simplicity three
participants: Πs

1 , Πs
2 , and Πs

3 , and consider that Πs
1 and Πs

3 are malicious (corrupted) whereas Πs
2 is honest.

We consider two different sessions: session A and session B, whereby session B takes place later than A. In
both sessions the tree is as in Figure 1. Assume that in session A all oracles behave as specified in the protocol
except that neither Πs

1 nor Πs
3 erase their states. At some point before session B is started, the adversaryA (that

can impersonate Πs
1 and Πs

3) computes z := x〈1,0〉x〈1,1〉 where x〈1,0〉 is a value computed by Πs
1 and x〈1,1〉 is

the exponent chosen by Πs
3 , both in session A. Obviously, gz equals to x〈0,0〉 computed in session A. The goal

of A is to influence honest Πs′
2 to compute the same x〈0,0〉 in session B. In session B, the exponent x〈2,1〉 used

by honest Πs′
2 is likely to be different compared to session A. To proceed with the attack A waits for Πs′

2 to
broadcast y〈2,1〉 = gx〈2,1〉 in session B (note the communication is asymmetric). Then, the adversary opens the
oracle holding node x〈2,1〉 (via the RevealState(Πs′

2) query); chooses on behalf of Πs′
1 x〈2,0〉 truly at random,

computes x〈1,0〉 := gx〈2,0〉x〈2,1〉 and x〈1,1〉 := z/x〈1,0〉. To complete the attack, A broadcasts y〈2,0〉 := gx〈2,0〉

and y〈1,1〉 := gx〈1,1〉 on behalf of Πs′
1 and Πs′

3 , respectively. It is easy to check that Πs′
2 computes x〈0,0〉 = gz

in session B.
In our proof of Theorem 4 we show that despite of being able to enforce x〈0,0〉 the adversary is still unable

to enforce the resulting session group key K. We make use of the following “difference lemma”.

Lemma 1. Let A, B, C be events defined in some probability distribution, and suppose that Pr[B] = Pr[A|C].
Then

Pr[A]− Pr[B] ≤ Pr[¬C].

The proof follows from the equation:

Pr[A] = Pr[A|C] Pr[C] + Pr[A|¬C] Pr[¬C]
= Pr[B] Pr[C] + Pr[A|¬C] Pr[¬C]
≤ Pr[B] + Pr[¬C].

With this lemma we can define sequence games based on condition events. In game Gi+1 constructed from Gi

w.r.t. some appropriate condition event C the event Wini+1 is defined as Wini|C. Then according to Lemma
1 Pr[Wini] − Pr[Wini+1] ≤ Pr[¬C]. In order to estimate the probability distance between Gi and Gi+1 it
is sufficient to compute Pr[¬C]. Note that Gi and Gi+1 proceed identical from the adversarial perspective.
Therefore, it is not necessary for the simulator to detect whether this condition event occurs or not (this in
contrast to failure events, used for example in G1 of Theorem 2). Furthermore, by conditioning the success of
the adversary with C we do not restrict the adversarial strategy. Note that the inequality

Pr[Wini] = Pr[Wini+1] Pr[C] + Pr[Wini|¬C] Pr[¬C] ≤ Pr[Wini+1] + Pr[¬C]

considers Wini+1 and Wini|¬C, and so focusing on one strategy represented by Wini+1 = Wini|C in Gi+1

does not rule out all other strategies represented by Wini|¬C because of the total probability Pr[Wini] ≤
Pr[Wini+1] + Pr[¬C].

The main idea of the following proof is to use the fact that every honest oracle Πs
i ∈ G, i ∈ [1, n] computes

the sequence ρ1, . . . , ρn prior to the acceptance of K so that each ρl, l ∈ [1, n] depends on the previously
computed ρl−1. We consider the probability that for an honest Πs

i∗ the adversary A is able to enforce any of
the values ρi∗ , . . . , ρn (note that K = ρn), or K computed by the collision-resistant pseudo-random function
f. This is equivalent to the event that in the prepare stage A is able to output any ρi∗ , . . . , ρn, or K which
Πs

i∗ computes in any session of the attack stage. On the other hand, applying Lemma 1 in our proof we do
also consider the upper-bound for the success probability of the adversary in case that its strategy differs from
influencing any value in ρi∗ , . . . , ρn.

Proof (of Theorem 4). (Sketch) Assume that an adversary A from Definition 5 wins in Gamecon
A,TDH1(κ) (which

event we denote Wincon). Then at the end of the stage prepare it returned K̃ such that in the stage attack there
exist i∗ ∈ [1, n] and an honest oracle Πs

i∗ ∈ G that accepts with Ks
i∗ = K̃. Remind that K̃ = fKs

i∗ (v2) where
Ks

i∗ is the intermediate value computed by Πs
i∗ .

Securing Group Key Exchange against Strong Corruptions and Key Registration Attacks 15

Game G0. This is the real game Gamecon
A,TDH1(κ), in which the honest players are simulated by ∆.

Game G1. In this game ∆ aborts if the same nonce ri is used by any honest oracle Πs
i in two different

sessions. As in previous proofs we get: Pr[Wincon
0

]− Pr[Wincon
1

] ≤ Nq2
s /2κ.

Game G2. This game is identical to Game G1 with the condition event that A being in the prepare stage
is NOT able to output ρi∗ computed by Πs

i∗ in any session of the attack stage.8 We show how to evaluate the
probability that A outputs ρi∗ in the prepare stage. Recall, ρi∗ is computed as fρi∗−1⊕π(r

i∗)(v0) in the attack
stage. IfA does not know the PRF key in the prepare stage, he can either use a different PRF key (thus finding a
PRF-collision) or guess ρi∗ at random. IfA knows the PRF key in the first stage, he has to force Πs

i∗ to compute
that key in the attack stage. However, since ri’s are uniform and chosen in the second stage, A must influence
ρi∗−1; this would allow to distinguish f from a random function. Since there are at most qs sessions we have
(according to Lemma 1): Pr[Wincon

1
]− Pr[Wincon

2
] ≤ qsSuccoll

F (κ) + qsAdvprf
F (κ) + qs/2κ.

Game G3. In this game we consider a condition event that A (being in the prepare stage) is NOT able to
output Ks

i∗ := ρn computed by Πs
i∗ in any session of the attack stage. Evaluating probabilities that ρn, ρn−1, . . .

can be predicted is done via a hybrid argument. In a nutshell, either the adversary can find the same output with a
different key (which breaks collision-resistance) or he influences the PRF key ρi−1⊕π(ri): this can be done ei-
ther by inverting π or by a random guess. According to Lemma 1 we finally obtain: Pr[Wincon

2
]−Pr[Wincon

3
] ≤

NqsSuccoll
F (κ) + NqsSucow

π (κ) + (Nqs)/2κ.
Game G4. The condition event here is that A (being in the prepare stage) is NOT able to output Ks

i∗

computed by Πs
i∗ in any session of the attack stage. Having excluded the case where Ks

i∗ is known to A, the
probability of such event is (as above) bounded by: Pr[Wincon

3
]− Pr[Wincon

4
] ≤ qsSuccoll

F (κ) + qs/2κ. Having
Pr[Wincon

4
] = 0 (by definition of the game) one can conclude. ut

Comparison of Security and Performance of TDH1 and other Static GKE Protocols In Table 1 we compare
TDH1 protocol with several well-known provably secure GKE protocols in terms of their performance and
achieved security goals. Our comparison is done based on the security arguments and adversarial settings given

Table 1. Efficiency and Security Goals of TDH1 and other Static Provably Secure GKE Protocols

Efficiency Security Goals
GKE Protocol Comm. Comp. AKE MA Contributiveness Model

Abdalla et al. [1] O(1) O(n) weak - - ICM, ROM
Bresson and Catalano [7] O(1) O(n) weak weak, honest weak, honest standard
Bresson et al. [11] O(n) O(n) weak weak, honest - ROM

Bresson et al. [10] O(n) O(n) weak weak, honest - ROM

Desmedt et al. [19] O(1) O(n) weak weak, malicious weak, malicious standard
Dutta et al. [20] O(1) O(n) weak - - standard
Katz and Shin [21] O(1) O(n) strong strong9, malicious - standard
Katz and Yung [22] O(1) O(n) weak weak, honest - standard
TDH1 O(1) O(n) strong strong, malicious strong, malicious standard

in the original publications (sometimes transformed to the terminology of our model). In general, “weak” (or
“strong”) denotes consideration of weak (or strong) corruptions for each of the security requirements, whereas
“honest” (or “malicious”) denotes the assumption on the type of the protocol participants. Note again that by
strong corruptions we mean not only adaptive attacks revealing the long-lived key (thus, weak corruptions)

8 Note, in G0 and G1 the adversary only outputs a value for the resulting group key. In G2 we consider the additional
(in)ability of the adversary to output the value for ρi∗ . Since we are only interested in the success probability of A under
this condition ∆ does not need to detect whetherA is able to output the correct value or not. The same considerations are
applicable to G3 w.r.t. Ks

i∗ .
9 MA-security related definitions in [21] do not consider opening attacks, i.e., the adversary is not allowed to obtain internal

states of other uncorrupted participants.

16 Emmanuel Bresson and Mark Manulis

but also opening attacks which read out the ephemeral secrets. We also distinguish whether a protocol has
been proven under standard or non-standard assumptions such as Ideal Cipher Model (ICM) or Random Oracle
Model (ROM). We remark that TDH1 is the only protocol which provably satisfies strong versions of AKE-,
MA-security and contributiveness (under consideration of malicious insiders where appropriate, that is for MA
and contributiveness) while being proven in the standard model. The protocol proposed by Desmedt et al. [19]
has similar properties as TDH1 but deals only with weak corruptions (ephemeral secrets never leak). The work
by Katz and Shin10 [21] can also be seen as close to ours since they provide MA-security against malicious
insiders; the main differences are that their model (although considering strong corruptions) does not allow
separate opening attacks, i.e., the scenario in which the adversary learns the ephemeral secrets of other honest
users is not considered, and it also does not allow the adversary to register long-lived keys of the users under its
control.

Last but not least, we note that the overall efficiency of TDH1 is similar to the most efficient currently known
provably secure GKE protocols (in the standard model).

4 Conclusions and Future Work

In this paper we have addressed security of GKE protocols against strong (adaptive) corruptions which reveal
internal states (incl. ephemeral secrets) of participants and proposed appropriate definitions of strong AKE-,
MA-security, and contributiveness. Additionally, we presented a 3-round GKE protocol TDH1 which satisfies
strong security under standard cryptographic assumptions.

The function TDH1_Con(x〈0,0〉, r1| . . . |rn) is of independent interest and can be seen as an add-on compiler
for our definition of contributiveness if x〈0,0〉 is the common ephemeral secret computed in the underlying GKE
protocol (see [12] for details).

The equivalence between the TDDH and DDH assumptions is also of independent interest since it is valuable
for the construction of other cryptographic schemes with provable security in the standard model. An interesting
open question: Is TDDH randomly self-reducible?

Beside the extension of TDH1 towards dynamic groups, future work in the area of GKE security may address:

– Consideration of strong corruptions in combination with fault-tolerance and security against DoS attacks
discussed in [15] and [19],

– Strengthening of the simulation-based security models for GKE protocols (e.g. [21]) towards opening at-
tacks due to our Remark 1.

Acknowledgements

The authors wish to thank Berkant Ustaoglu for his comments on key registration attacks.

References

1. M. Abdalla, E. Bresson, O. Chevassut, and D. Pointcheval. Password-Based Group Key Exchange in a Constant Number
of Rounds. In Proc. of PKC’06, vol. 3958 of LNCS, p. 427–442. Springer, April 2006.

2. G. Ateniese, M. Steiner, and G. Tsudik. Authenticated Group Key Agreement and Friends. In Proc. of ACM CCS’98,
p. 17–26. ACM Press, 1998.

3. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Designing Efficient Protocols. In Proc. of
ACM CCS’93, p. 62–73. ACM Press, 1993.

4. J.-M. Bohli, M. I. G. Vasco, and R. Steinwandt. Secure Group Key Establishment Revisited. Intl. Journal of Information
Security, 6(4):243–254, 2007.

5. D. Boneh. The Decision Diffie-Hellman Problem. In Proc. of ANTS-III, p. 48–63. Springer, 1998.
6. C. Boyd and A. Mathuria. Protocols for Authentication and Key Establishment. Springer, 2003.

10 Note that Katz and Shin proposed an add-on compiler and not a concrete protocol.

Securing Group Key Exchange against Strong Corruptions and Key Registration Attacks 17

7. E. Bresson and D. Catalano. Constant Round Authenticated Group Key Agreement via Distributed Computation. In
Proc. of PKC’04, vol. 2947 of LNCS, p. 115–129. Springer, 2004.

8. E. Bresson, O. Chevassut, and D. Pointcheval. Provably Authenticated Group Diffie-Hellman Key Exchange — The
Dynamic Case. In ASIACRYPT’01, vol. 2248 of LNCS, p. 290–390. Springer, 2001.

9. E. Bresson, O. Chevassut, and D. Pointcheval. Dynamic Group Diffie-Hellman Key Exchange under Standard Assump-
tions. In EUROCRYPT’02, vol. 2332 of LNCS, p. 321–336. Springer, 2002.

10. E. Bresson, O. Chevassut, and D. Pointcheval. Group Diffie-Hellman Key Exchange Secure against Dictionary Attacks.
In ASIACRYPT’02, vol. 2501 of LNCS, p. 497–514. Springer, December 2002.

11. E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater. Provably Authenticated Group Diffie-Hellman Key
Exchange. In Proc. of ACM CCS’01, p. 255–264. ACM Press, 2001.

12. E. Bresson and M. Manulis. Malicious Participants in Group Key Exchange: Key Control and Contributiveness in the
Shadow of Trust. In Proc. of ATC ’07, vol. 4610 of LNCS, p. 395–409. Springer, 2007.

13. E. Bresson and M. Manulis. Securing Group Key Exchange against Strong Corruptions. In Proc. of ASIACCS ’08, p.
249–260. ACM, 2008.

14. E. Bresson, M. Manulis, and J. Schwenk. On Security Models and Compilers for Group Key Exchange Protocols. In
Proc. of IWSEC ’07, vol. 4752 of LNCS, p. 292–307. Springer, 2007.

15. C. Cachin and R. Strobl. Asynchronous Group Key Exchange with Failures. In Proc. of PODC’04, p. 357–366. ACM
Press, 2004.

16. R. Canetti and H. Krawczyk. Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels. In
EUROCRYPT’01, vol. 2045 of LNCS, p. 453–474. Springer, 2001.

17. K.-K. R. Choo, C. Boyd, and Y. Hitchcock. Examining Indistinguishability-Based Proof Models for Key Establishment
Protocols. In ASIACRYPT’05, vol. 3788 of LNCS, p. 585–604. Springer, 2005.

18. G. D. Crescenzo, N. Ferguson, R. Impagliazzo, and M. Jakobsson. How to Forget a Secret. In Proc. of STACS’99, vol.
1563 of LNCS, p. 500–509. Springer, 1999.

19. Y. G. Desmedt, J. Pieprzyk, R. Steinfeld, and H. Wang. A Non-Malleable Group Key Exchange Protocol Robust Against
Active Insiders. In Proc. of ISC’06, vol. 4176 of LNCS, p. 459–475. Springer, 2006.

20. R. Dutta, R. Barua, and P. Sarkar. Provably Secure Authenticated Tree-Based Group Key Agreement. In Proc. of
ICICS’04, vol. 3269 of LNCS, p. 92–104. Springer, 2004.

21. J. Katz and J. S. Shin. Modeling Insider Attacks on Group Key Exchange Protocols. In Proc. of ACM CCS’05, p. 180–
189. ACM Press, 2005.

22. J. Katz and M. Yung. Scalable Protocols for Authenticated Group Key Exchange. In CRYPTO’03, vol. 2729 of LNCS,
p. 110–125. Springer, 2003.

23. H.-J. Kim, S.-M. Lee, and D. H. Lee. Constant-Round Authenticated Group Key Exchange for Dynamic Groups. In
ASIACRYPT’04, vol. 3329 of LNCS, p. 245–259, 2004.

24. Y. Kim, A. Perrig, and G. Tsudik. Group Key Agreement Efficient in Communication. IEEE Transactions on Comput-
ers, 53(7):905–921, 2004.

25. Y. Kim, A. Perrig, and G. Tsudik. Tree-Based Group Key Agreement. ACM Transactions on Information and System
Security, 7(1):60–96, February 2004.

26. H. Krawczyk. HMQV: A High-Performance Secure Diffie-Hellman Protocol. In CRYPTO’05, vol. 3621 of LNCS, p.
546–566. Springer, 2005.

27. B. LaMacchia, K. Lauter, and A. Mityagin. Stronger Security of Authenticated Key Exchange. In Proc. of ProvSec’07,
vol. 4784 of LNCS, p. 1–16. Springer, 2007.

28. M. Manulis. Survey on Security Requirements and Models for Group Key Exchange. Technical Report 2006/02,
Horst-Görtz Institute, November 2006.

29. A. Menezes and B. Ustaoglu. Security Arguments for the UM Key Agreement Protocol in the NIST SP 800-56A
Standard. In Proc. of ASIACCS ’08, p. 261–270. ACM, 2008.

30. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC Press, October 1996.
31. C. J. Mitchell, M. Ward, and P. Wilson. Key Control in Key Agreement Protocols. Electronic Letters, 34(10):980–981,

1998.
32. T. P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In CRYPTO ’91, vol. 576

of LNCS, p. 129–140. Springer, 1991.
33. V. Shoup. On Formal Models for Secure Key Exchange (Version 4). Technical Report RZ 3120, IBM Research,

November 1999.
34. V. Shoup. Sequences of Games: A Tool for Taming Complexity in Security Proofs. Cryptology ePrint Archive, Report

2004/332, January 2006.
35. M. Steiner. Secure Group Key Agreement. PhD thesis, Saarland University, March 2002.

18 Emmanuel Bresson and Mark Manulis

A Proof of Theorem 1 (DDH ⇐⇒ TDDH)

AdvDDHG (κ) ≤ AdvTDDHTn,G(κ): This holds trivially since distributions TDDH?
Tn

and TDDH$
Tn

contain a triple of the
form ((〈1, 0〉, gx〈1,0〉), (〈1, 1〉, gx〈1,1〉), (〈0, 0〉, Z)) where Z = gx〈1,0〉x〈1,1〉 in case of TDDH?

Tn
or Z is random

otherwise.
AdvTDDHTn,G(κ) ≤ (2n− 3)AdvDDHG (κ): To prove this we use a TDDHTn-distinguisher A, and show how to solve

an instance of the DDH problem: on input (A,B, C) ∈ G3, where A = ga and B = gb for random a and b, we
build a PPT algorithm ∆ that distinguishes whether C = gab or C is random.

First, we sort the nodes of any Tn ∈R Tn in the postfix order, s.t. each node is listed after its two children (if
any). For simplicity, we slightly modify this order: we separate nodes by re-numbering all n leaves to negative
indices (without changing their order), and the internal nodes to indices 1 to n− 1 (also without changing their
order). In other words, for internal nodes, we “shrink” the sequence that remains after having moved the leaves.
This results in the following map σ from Tn to [−n,−1] ∪ [1, n− 1]:

−n,−n + 1, . . . ,−1︸ ︷︷ ︸
number assigned to leaves

, 1, . . . , n− 1︸ ︷︷ ︸
internal nodes

Note that any node still appears after its children, e.g. the root node is assigned number σ(〈0, 0〉) = n− 1.
By a “hybrid argument” we consider the following sequence of games. In each game Gi for i = 0, . . . , n−2,

∆ chooses a set X of n random values in G, denoted x−n through x−1. Additionally, for i > 0, in Gi, ∆
chooses a set Yi of i random values in G, that are denoted x1 through xi. Then, ∆ builds a set TDHi(X, Yi)
defined (recursively) as {(〈l, v〉, gx〈l,v〉)}〈l,v〉∈T∗n , with





x〈l,v〉 = xσ(〈l,v〉) ∈ X if σ(〈l, v〉) < 0,
x〈l,v〉 = xσ(〈l,v〉) ∈ Yi if 0 < σ(〈l, v〉) ≤ i,
x〈l,v〉 = gx〈l+1,2v〉x〈l+1,2v+1〉 otherwise.

Finally, in each game, ∆ flips a coin b and provides A with a set TDDHi(X, Yi, b, r) = TDHi(X, Yi) ∪
{(〈0, 0〉, Z)} where Z = gx〈1,0〉x〈1,1〉 if b = 1 and Z = gr is a random element in G if b = 0.

Let Pri[. . .] denote the probabilities as induced by random choices in Gi. In G0 the constructed TDH0(X, Yi)
is exactly TDHTn(X) (due to Y0 = ∅) s.t. the distance between Pr0[A(TDDH0(X, ∅, b, r)) = 1|b = 1] and
Pr0[A(TDDH0(X, ∅, b, r)) = 1|b = 0] is upper-bounded by AdvTDDHTn,G(κ). On the other hand, in Gn−2, all values
x〈l,v〉 for l > 1 are random and independent, and also independent from random x〈1,0〉 and x〈1,1〉. Further-
more, x〈0,0〉 = gx〈1,0〉x〈1,1〉 iff b = 1 s.t. the distance between Pr[A(TDDHn−2(X, Yn−2, b, r)) = 1|b = 1] and
Pr[A(TDDHn−2(X,Yn−2, b, r)) = 1|b = 0] is upper-bounded by AdvDDHG (κ). The last experiment G? is identi-
cal to Gn−2 except that A, B and C are used in the computation of TDDHn−2(X, Yn−2, b, r) instead of gx〈1,0〉 ,
gx〈1,1〉 and x〈0,0〉, respectively. In particular the flipping of b is ignored here: whatever b, the last input ofA is set
to C. Let β denote the hidden bit that ∆ is trying to guess. Note, the random variables (b, gx〈1,0〉 , gx〈1,1〉 , x〈0,0〉)
and (β, A, B,C) are identically distributed. It follows that (for simplicity we removed A’s inputs that are iden-
tical and independent from the rest in both cases):

Pr n−2[A(gx〈1,0〉 , gx〈1,1〉 , x〈0,0〉) = 1|b = 1] = Pr ?[A(A,B, C) = 1|β = 1]
Pr n−2[A(gx〈1,0〉 , gx〈1,1〉 , x〈0,0〉) = 1|b = 0] = Pr ?[A(A,B, C) = 1|β = 0]

Last, it is straightforward to see that the computational distance between two consecutive games is upper-
bounded by AdvDDHG (κ) since the only difference between them is to replace a value gx〈l+1,2v〉x〈l+1,2v+1〉 by a
random one. Hence,

∣∣∣ Pr ?[A(A,B, C) = 1|β = 1]− Pr 0[A(TDDH0(X, ∅, b, r)) = 1|b = 1]
∣∣∣ ≤ (n− 2)AdvDDHG (κ)

∣∣∣ Pr ?[A(A,B, C) = 1|β = 0]− Pr 0[A(TDDH0(X, ∅, b, r)) = 1|b = 0]
∣∣∣ ≤ (n− 2)AdvDDHG (κ)

Securing Group Key Exchange against Strong Corruptions and Key Registration Attacks 19

Their sum gives us the desired inequality:

AdvTDDHTn,G(κ) = |Pr 0[A(TDDH0(X, ∅, b, r)) = 1|b = 1]− Pr 0[A(TDDH0(X, ∅, b, r)) = 1|b = 0]|
≤ |Pr ?[A(A,B,C) = 1|β = 1]− Pr ?[A(A,B, C) = 1|β = 0]|+ 2(n− 2)AdvDDHG (κ)

≤ (2n− 3)AdvDDHG (κ).

ut

B Security Definitions for F

Definition 7 (Pseudo-Random Function Family). A family of functions

F :=
{{

fk : {0, 1}p(κ) → {0, 1}p(κ)
}

k∈{0,1}κ

}
κ∈N

with a polynomial p, is called an (efficiently computable) pseudo-random function ensemble if:

1. Efficient Computation: There exists a polynomial-time algorithm that on input k and x returns fk(x).
2. Pseudo-Randomness: Choose uniformly k ∈R {0, 1}κ and a function f̃ in the set of all functions with

domain and range {0, 1}p(κ). Consider a PPT adversary A asking queries of the form Tag(x) and partic-
ipating in one of the following two games:

– Gameprf−1
A,F (κ) where a query Tag(x) is answered with fk(x),

– Gameprf−0
A,F (κ) where a query Tag(x) is answered with f̃(x).

At the end of the executionA outputs a bit b trying to guess which game was played. The output ofA is also
the output of the game.

We define: Advprf
A,F (κ) :=

∣∣2Pr[Gameprf−b
A,F (κ) = b]− 1

∣∣

and denote Advprf
F (κ) the maximum advantage over all adversaries A. We say that F is pseudo-random if

this advantage is a negligible function in κ.

By an (efficiently computable) pseudo-random function we mean a function fk ∈ F for some random k ∈R

{0, 1}κ.

Definition 8 (Collision-Resistance). Let F :=
{{

fk

}
k∈{0,1}κ

}
κ∈N be a pseudo-random function ensemble.

We say that F is collision-resistant if there is an efficient procedure Sample such that for all PPT adversaries
A the following success probability (over all adversaries A) is a negligible function in κ:

Succoll
F (κ) := Pr


x ← Sample(1κ);

k, k′ ← A(1κ, x) :
k, k′ ∈ {0, 1}κ∧

k 6= k′∧
fk(x) = fk′(x)




