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Abstract 350 vî ords maximum: (PLEASE TYPE) 

This thesis presents three main contributions that aim to improve the transport layer of the current networking architecture. The transport layer is 
nowadays dominated by the use of TCP and its congestion control. Recently new congestion control mechanisms have been proposed. Among 
:hem, TCP Friendly Rate Control (TFRC) appears to be one of the most complete. Nevertheless this congestion control mechanism, as with TCP, 
does not take into account either the evolution of the network in terms of Quality of Service and mobility or the evolution of the applications. 

The first contribution of this thesis is a specialisation of TFRC congestion control to provide a QoS-aware Transport Protocol specifically designed 
to operate over QoS-enabled networi<s with bandwidth guarantee mechanisms. This protocol combines a QoS-aware congestion control, which 
takes into account networi<-level bandwidth reservations, with full ordered reliability mechanism to provide a transport service similar to TCP. As a 
result, we obtain the guaranteed throughput at the application level where TCP fails. This protocol is the first transport protocol compliant with 
bandwidth guaranteed networi^s. 

At the same time the set of networi< services expands, new technologies have been proposed and deployed at the physical layer. These new 
technologies are mainly characterised by communications done without wire constraint and the mobility of the end-systems. Furthermore, these 
technologies are usually deployed on entities where the CPU power and memory storage are limited. The second contribution of this thesis is 
therefore to propose an adaptation of TFRC to these entities. This is accomplished with the proposition of a new sender-based version of TFRC. 
This version has been implemented, evaluated and its numerous contributions and advantages compare to usual TFRC version have been 
demonstrated. 

Finally, we proposed an optimisation of actual implementations of TFRC. This optimisation first consists in the proposition of an algorithm based on 
a numerical analysis of the equation used in TFRC and the use of the Newton's algorithm. We furthermore give a first step, with the introduction of 
a new framewori< for TFRC, in order to better understand TFRC behaviour and to optimise the computation of the packet loss rate according to 
loss probability distributions. 

Declaration relating to disposition of project thesis/dissertation 

I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in 
part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all 
property rights, such as patent rights. I also retain the right to use in future worics (such as articles or books) all or part of this thesis or dissertation. 

I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral 
theses only). 

The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for 
restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional 
circumstances and require the approval of the Dean of Graduate Research. 

FOR OFFICE USE ONLY Date of completion of requirements for Award: 

to^ / ( o g 

THIS SHEET IS TO BE GLUED TO THE INSIDE FRONT COVER OF THE THESIS 



Towards a Versatile Transport Protocol 

Guillaume Jourjon 

A dissertation submitted in fulfilment 
of the requirements for the degree of 

Doctor of Philosophy 

The School of Electrical Engineering and Telecommunications 
The University of New South Wales 

in a cotutelle agreement with 

The Institut National Polytechnique de Toulouse, Finance 
The École Nationale Supérieur d'Ingénieurs de Constructions Aéronautique, 

France 

December 2007 



COPYRIGHT STATEMENT 

'I hereby grant the University of New South Wales or its agents the right to 
archive and to make available my thesis or dissertation in whole or part in the 
University libraries in all forms of media, now or here after known, subject to the 
provisions of the Copyright Act 1968.1 retain all proprietary rights, such as patent 
rights. I also retain the right to use in future works (such as articles or books) all 
or part of this thesis or dissertation. 
I also authorise University Microfilms to use the 350 word abstract of my thesis in 
Dissertation Abstract international (this is applicable to doctoral theses only). 
I have either used no substantial portions of copyright material in my thesis or I 
have obtained permission to use copyright material; where permission has not 
been granted I have applied/will apply for a partial restriction of the digital copy of 
my thesis or dissertation.' 

AUTHENTICITY STATEMENT 

'I certify that the Library deposit digital copy is a direct equivalent of the final 
officially approved version of my thesis. No emendation of content has occurred 
and if there are any minor variations in formatting, they are the result of the 
conversion to digital format.' 

ORIGINALITY STATEMENT 

'I hereby declare that this submission is my own work and to the best of my 
knowledge it contains no materials previously published or written by another 
person, or substantial proportions of material which have been accepted for the 
award of any other degree or diploma at UNSW or any other educational 
institution, except where due acknowledgement is made in the thesis. Any 
contribution made to the research by others, with whom I have worked at 
UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that 
the intellectual content of this thesis is the product of my own work, except to 
the extent that assistance from others in the project's design and conception or 
in style, presentation and linguistic expression is acknowledged.' 



Acknowledgement 

Firstly, I would like to thank my four supei-visors; Michel Diaz, Emmanuel Lochin, Patrick 
Sénac and Tim Moors for their support and their belief in my work. Tim accepted to 
supervise me in the context of a co-tutelle agreement which was sometimes difficult for 
both of us. Michel gave me some good advice for the latter sections of this thesis. Patrick 
gave me the opportunity to come to Australia in the first place, and always gave very 
interesting directions for all the articles we published together. Emmanuel was a strong 
support during these three years and we succeeded to build some good proposals during 
meetings organised in his "office". 

The thesis would have never been possible without the help of Aruna Seneviratne. I am 
very grateful to him for accepting me into NICTA and for supporting me in obtaining the 
NICTA scholarship. 

I would like to thank NICTA organisation for believing in me and supporting me financially 
during these three years. I have learnt a lot and was able to meet very interesting people 
inside and outside the organisation thanks to this support. 

I would like to thank all the people of the NPC program (Seb, Max, Henrik, Thierry...) 
and all the people of the DMI/ENSICA (Tanguy, Jerome, Fabrice...). At the ENSICA I 
am very grateful to Lament Dairaine who was my interim supervisor for one year. 

I would like to give a special thanks to the people of Redfern (Fern, Jason, Jacques, Dave, 
Gersh...) who were constantly supportive, and helped me discover the inside of Australia. 

Finally. 1 would like to thank my parents, my brothers and all my family who stayed in 
France instead of coming to Austraha with me. I thank Yoann for all the time he refused to 
use my work and for the numerous hours he spent correcting some of my articles (especially 
the ten versions of "the optimisation ). I also thank Thea for correcting my English and 
simply being there. 

ni 





Abstract 

This thesis presents three main contributions that aim to improve the transport layer of 
the current networking architecture. The transport layer is nowadays dominated by the 
use of TCP and its congestion control. Recently new congestion control mechanisms have 
been proposed. Among them, TCP Friendly Rate Control (TFRC) appears to be one of 
the most complete. Nevertheless this congestion control mechanism, as with TCP, does 
not take into accoimt either the evolution of the netw ôrk in terms of Quality of Service 
and mobility or the evolution of the applications. 

The first contribution of this thesis is a specialisation of TFRC congestion control to 
provide a QoS-aware Transport Protocol specifically designed to operate over QoS-enabled 
netwwks with bandwidth guarantee mechanisms. This protocol combines a QoS-aware 
congestion control, which takes into account network-level bandwidth reservations, with 
full ordered reliability mechanism to provide a transport service similar to TCP. As a 
result, we obtain the guaranteed throughput at the apphcation level where TCP fails. This 
protocol is the first transport protocol compliant with bandwidth guaranteed networks. 

At the same time the set of network services expands, new technologies have been proposed 
and deployed at the physical layer. These new technologies are mainly characterised by 
conmiunications done without wire constraint and the mobility of the end-systems. Fur-
thermore, these technologies are usually deployed on entities where the CPU power and 
memory storage are limited. The second contribution of this thesis is therefore to propose 
an adaptation of TFRC to these entities. This is accomplished with the proposition of 
a new sender-based version of TFRC. This version has been implemented, evaluated and 
its numerous contributions and advantages compare to usual TFRC version have been 
demonstrated. 

Finally, we proposed an optimisation of actual implementations of TFRC. This optimisa-
tion first consists in the proposition of an algorithm based on a numerical analysis of the 
equation used in TFRC and the use of the Newton's algorithm. We furthermore give a first 
step, with the introduction of a new framework for TFRC. in order to better understand 
TFRC behaviour and to optimise the computation of the packet loss rate according to loss 
probability distributions. 

Keywords: Transport Protocol. Congestion Control. Quality of Service, Light Architec-
ture. Algorithmic Optimisation. 





.ilésumé 

Les travaux réalisés dans le cadre de cet axe de recherche ont pour but d'améliorer la 
couche transport de l'architecture réseau de TOSI. La couche transport est de nos jours 
dominée par l'utihsation de TCP et son contrôle de congestion. Récemment de nouveaux 
mécanismes de contrôle de congestion ont été proposés. Parmi eux TCP Friendly Rate 
Control (TFRC) semble être le plus abouti. Cependant.tout comme TCP, ce mécanisme 
ne prend pas en compte ni les évolutions du réseau ni les nouveaux besoins des applications. 

La première contribution de cet axe de recherche consiste en une spécialisation de TFRC 
afin d'obtenir un protocole de transport avisé de la Qualité de Service (QdS) spécialement 
défini pour des réseaux à QdS offrant une garantie de bande passante. Ce protocole combine 
un mécanisme de contrôle de congestion orienté QdS qui prend en compte la réservation 
de bande passante au niveau réseau, avec un service de fiabilité totale afin de proposer un 
service similaire à TCP. Le résultat de cette composition constitue le premier protocole de 
transport adapté à des réseaux à garantie de bande passante. 

De concert avec l'expansion des services au niveau réseau, de nouvelles technologies ont été 
proposées et déployées au niveau physique. Ces nouvelles technologies sont caractérisées 
par leur affranchissement du support filaire induisant la mobilité des systèmes terminaux. 
De plus, les méthodes d'accès à des réseaux sans fil sont généralement déployées sur des 
entités où la puissance de calcul et plus généralement les ressources systèmes sont inférieures 
à celles des ordinateurs personnels traditionnellement connectés aux réseaux filaires. La 
deuxième contribution de ce travail de recherche consiste en la proposition d'une adaptation 
de TFRC à ces entités via la définition et la mise en œuvre d'une architecture de TFRC 
centrée sur l'émetteur et réduisant de façon très sensible les traitements opérés par le 
récepteur des fins TFRC. Cette version a été implémentée. évaluée quantitativement et ses 
nombreux avantages et contributions ont été démontrés par rapport à une implémentation 
traditionelle de TFRC. 

Enfin, nous avons proposé une optimisation des implémentations actuelles de TFRC. Cette 
optimisation repose tout d'abord sur un nouvel algorithme pour l'initialisation du récepteur 
basé sur l'utilisation de l'algorithme de Newton. Nous proposons aussi l'introduction d'un 
outil nous permettant d'étudier plus en détails la manière dont est calculé le taux de perte 
du côté récepteur. 

Mots-Clés : Protocole de transport, Contrôle de congestion. Qualité de Service. Archi-
tecture légère. Optimisation algorithmique. 
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C H A P T E R 1 

.Résumé de la thèse en français 

1.1 INTRODUCTION (CHAPITRE 2) 

1.1.1 Contexte 

Durant les années 90 la recherche en réseau s'est focalisée sur la qualité de service offerte aux 
utihsateurs par le biais de modifications successives de la couche réseau [BCS94, BBC^98, 
RVCOl]. Pour des raisons relatives à leur déploiement et aux pohtiques inter-fournisseurs 
d'accès ces solutions ne furent jamais mises en place de manière globale. 

Ces cinq dernières années ont cependant vu émerger de nouveaux services applicatifs pour 
les utilisateurs. Ces services s'appuient sur la même base protocolaire, à savoir TCP/IP. 
Ces nouveaux services ont été rendus disponibles grâce à l'augmentation de la capacité du 
réseau et ont été développés au niveau applicatif. Ils englobent entre autres les réseaux 
pair à pair (P2P), le web 2.0, ou encore la vidéo et la voix sur IP. 

En parallèle de ces nouveaux services applicatifs, de nouvelles technologies de connnunica-
tion sans fil ont été développées au niveau de la couche physique. Ces nouvelles technologies 
englobent les standards IEEE 802.11* [Soc07] et 802.15* [SocOS], ou encore la 3G [Uni99 . 
Ces nouvelles architectures se sont affranchies de la connectivité filaire. Par conséquent, de 
nouveaux problèmes relatifs à la mobilité des systèmes terminaux sont à prendre en compte 
lors de la conception de nouveaux protocoles des couches supérieures. Une des principales 
différences avec la précédente architecture filaire réside dans le fait que les pertes identifiées 
de bout en bout sont différentes de celles détectées dans la précédente architecture filaire. 
En effet, dans la précédente architecture la détection d'une perte est presque toujours syno-
nyme de congestion. Dans le contexte des connnunication sans fiL cette interprétation est 
potentiellement erronée car la perte correspond souvent à un obstacle dans la transmission 
radio ou à un manque de couverture de l'antenne relais. 
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Au contraire de ces avancées au niveau de couches applicatives et physiques, peu de chan-
gements existent du côté des protocoles réseaux et transports. En effet, Internet utilise 
toujours la version 4 du protocole IP et la plupart des communications sont faites avec le 
protocole TCP et ses diverses versions. Toutefois, de nouveaux protocoles de transport ont 
récemment été standardisés. Les deux protocoles de transport nouvellement standardisés 
sont DCCP [KHF061 et SCTP [SAOO]. Ces deiLx propositions diffèrent de TCP par le fait 
qu'elles sont basées sur une communication par datagrammes plutôt que par flux d'octets. 
De plus, dans le cas de DCCP, deux mécanismes de contrôle de congestion sont proposés ; 
un basé sur une fenêtre comme dans TCP, le second est un mécanisme de contrôle de 
congestion qui n'est pas basé sur l'utilisation d'une fenêtre est offert. Ce mécanisme de 
contrôle de congestion se nomme T C P Friendly Rate Control (TFRC). TFRC utilise une 
équation modélisant le comportement de TCP Reno afin de transmettre les paquets d'une 
manière similaire à TCP. 

1.1.2 Contributions de cette thèse 

Cette thèse vise à combler le fossé existant entre les nouveaux services de niveau applicatif 
et les couches réseau et physique. Ceci est en particulier réalisé par la proposition de 
nouveaux mécanismes de contrôle de congestion qui puissent tenir compte soit de la qualité 
de service offerte par le fournisseur d'accès à Internet, soit de la capacité de l'entité sur 
laquelle la communication s'effectue. Cette thèse s'appuie sur le mécanisme de contrôle de 
congestion TCP Friendly Rate Control (TFRC). Ce mécanisme constitue à ce jour l'une 
des alternatives au contrôle de congestion de type AIMD, tel celui utilisé dans TCP, la 
plus aboutie pour les applications multimédia. 

Dans un premier temps, cette thèse propose une spécialisation de TFRC afin de pouvoir 
tenir compte des garanties de bande passante préalablement négociée avec le fournisseur 
de service réseau. Nous démontrons que cette proposition permet d'obtenir la quahté de 
service négociée quelles que soient les conditions du réseau. En effet, de nombreuses études 
ont montré que lors de l'utilisation de TCP sur ce type de réseau, l'utilisateur ne pouvait pas 
obtenir le service qu'il avait payé lorsque certaines conditions du réseau étaient présentes 
SNP99]. En plus de cette amélioration, nous avons intégré un mécanisme de fiabilité, basé 

sur une adaptation de SACK [FM M POO], permettant de délivrer ainsi un service similaire 
à TCP. Le résultat de cette composition constitue le premier protocole de transport fiable 
spécialement conçu pour les réseaux à garantie de bande passante. 

La seconde contribution de cette thèse consiste à proposer une adaptation de TFRC aux 
hôtes mobiles. Cette nouvelle adaptation permet un allégement du receveur en termes 
d'utilisation de la mémoire et du processeur. En effet, de nos jours de plus en plus de 
communications sont effectuées grâce aux périphériciues sans fil et mobiles. Néanmoins, les 
entités mobiles (PDA, téléphone portables, etc.) n'ont pas la même capacité de puissance 
de calcul et de mémoire disponibles que les ordinateurs standards. C'est pourquoi une 
adaptation des tâches récurrentes de comnumication et en particulier du mécanisme de 
contrôle de congestion est nécessaire afin d'obtenir de meilleures performances. 

Eniin, la dernière contribution de cette thèse propose une analyse et une optimisation du 
mécanisme TFRC. Cette analyse a pour objectif de mieux comprendre les différents com-
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posants impliqués dans le calcul de la probabilité de perte durant la communication. Nous 
proposons par ailleurs une optimisation de l'initialisation de TFRC du côté récepteur grâce 
à une analyse numérique de l'équation régissant le taux de transfert et par l'application à 
l'inversion de cette équation de l'algorithme de Newton. Cette optimisation nous permet 
d'améliorer d'un facteur non négligeable la rapidité de convergence vers la solution ainsi 
qu'un allégement de la charge de calcul et de l'utilisation de la mémoire du côté récepteur. 

1.1.3 Plan de cette thèse 

Cette thèse est organisée comme suit : 
- le chapitre 3 définit le contexte de cette thèse en donnant une vue d'ensemble des pré-

cédents travaux sur les architectures réseaux pour la qualité de service, les protocoles de 
transport et des contrôles de congestion ; 

- le chapitre 4 présente la conception et la mise en œuvre d'un protocole de transport avisé 
de la qualité de sei'\âce capable de fournir à l'utilisateur la bande passante négociée avec 
le fournisseur d'accès ; 

- le chapitre 5 présente et évalue une version allégée du contrôle de congestion TFRC ; 
- le chapitre 6 propose une analyse de ce contrôle de congestion ; 
- enfin, le chapitre 7 donne les principales conclusions de ce travail ainsi que ses perspec-

tives. 

1.2 LE CONTEXTE (CHAPITRE 3) 

L'augmentation de la capacité de transmission des systèmes de bordure et des réseaux de 
communication a grandement accéléré le développement des systèmes distribués. A l'ori-
gine, les applications distribuées étaient caractérisées par des besoins modestes en matière 
de comnnmication, principalement liés à Tordonnancement et la fiabilité des paquets. Au-
jourd'hui, les applications multimédia sont de plus en plus utihsées et demandent de fortes 
garanties en termes de délais et bande passante disponible. 

Afin de pallier à ces contraintes, dans un premier temps, les recherches se sont focalisées 
sur la définition de nouvelles architectures réseau. Néanmoins, les architectures proposées 
n'ont toujours pas encore été déployées. La première architecture proposée fut l'architec-
ture Integrated Service (IntServ) |BCS94]. Une autre architecture visant à résoudre les 
problèmes de résistance au passage à l'éclielle de l'architecture Intserv est connue sous le 
nom Differentiated Service (DiffServ). Des contributions intervenant dans les couches 2 et 
3 ont été introduites visant à introduire un contrôle de la qualité de service comme dans 
rarchitecture MPLS [RVCOl]. Nous ne reviendrons p<is sur ces architectures qui ont été 
largement étudiées |Loc04. DelOOj. Récennnent une nouvelle architecture a été proposée 
dans le cadre d'un projet européen, le projet EuQoS. Cette nouvelle architecture propose 
ime vinitalisation des ressources et des services afin de proposer aux utilisateurs certaines 
qualité de services. 

Néanmoins, toutes ces propositions ont été faites sans se soucier des besoins des couches 
supérieures et des architectures de communication. Cette absence de cohésion entre les 
couches a résulté en l'introduction de problèmes complexes afin d'obtenir la quahté de 
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service (QdS) négociée. En effet les protocoles de transport et les mécanismes de QdS 
mis en œuvre dans la couche réseau ne prennent généralement pgis en compte les mêmes 
informations et ne sont pas au courant d'émettre au dessus d'un réseau à QdS. 

Un mécanismes clef des protocoles de transport est le contrôle de congestion du réseau. 
Ce mécanisme est indispensable pour la pérennité de l'Internet. En effet, il permet à dif-
férents flux de partager équitablement la bande passante disponible afin de préserver le 
principe d'équité cher à l'Internet. Cependant, ces mécanismes de contrôle de congestion 
s'affranchissent de la qualité de service au niveau réseau et applicatif et visent unique-
ment à préserver l'état du réseau. Actuellement, deux types de contrôle de congestion sont 
déployés : soit basés sur une fenêtre, soit sur un taux de transfert. Les mécanismes de 
contrôle de congestion utilisant une fenêtre émettent les paquets selon un nombre calculé 
de paquets qui est mis à jour par les messages de contrôle et s'arrêtent lorsque ce nombre 
de paquets est émis. Les mécanismes utilisant un taux de transfert considèrent l'émission 
des paquets selon un temps inter-paquets, ce taux est mis à jour lui aussi par les mes-
sages de contrôle. Par conséquent, dans le cas de l'utilisation d'un mécanisme de contrôle 
de congestion à taux le transfert continue même si l'émetteur ne reçoit pas de mises à 
jour. Dans le contexte de cette thèse, nous nous intéressons particulièrement à un certain 
contrôle de congestion utilisant un taux, connu sous le nom de TCP Friendly Rate Control 
Et nous proposons dans un premier temps une spécialisation de ce mécanisme afin de le 
rendre avisé de la qualité de service garantie par le réseau. Par la suite nous adaptons ce 
mécanisme aux hôtes mobiles qui ont des ressources limitées. Enfin nous proposons une 
optimisation algorithmiciue de ce mécanisme. 

Dans ce chapitre, nous donnons une vue d'ensemble des différents services et architectures 
réseaux ainsi qu'un bref résumé des causes de leur non déploiement. Ensuite, nous pré-
sentons un état de l'art des protocoles de transport. Enfin, nous présentons les différents 
contrôles de congestion basés sur une notion de taux de transfert ainsi que leurs hmitations. 

1.3 CONCEPTION ET IMPLÉMENTATION D'UN PROTOCOLE DE 
TRANSPORT À QDS (CHAPITRE 4) 

De nos jours, les apphcations multimédia sont de plus en phis utihsées et requièrent des 
garanties en termes de délais et de bande passante. Plusieiu's solutions sont disponibles 
au niveau réseau afin d'assurer une certaine qualité de service. Dans le cadre du projet 
EuQoS, nous nous sommes intéressé aux deux classes de service qui garantissent une bande 
passante à l'application : la classe High Trhoughput Data et la classe Multimedia Streaming. 
Ces deux classes de services peuvent etre obtenues dans le cadre d'un déploiement de 
Tarchitecture DiffServ |HBWW99] par le service de la classe Assured Forwarding (AF) 
BCBO()]. C'est pourquoi dans un soucis de simplicité nous nous plaçons tout au long 

de ce chapitre seulement l'architecture DiffServ et plus spécialement la classe Assured 
Forwarding (AF). Nous montrons également en fin de chapitre que la solution proposée est 
également compatible avec d'autres architectures de garantie de service. Dans le cadre d'un 
service AF. une bande passante assurée minimum (aussi appelée taux cible) est procurée 
à l'application en accord avec le profil de l'utilisateur et le fournisseur de service. Cette 
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garantie de bande passante minimale est particulièrement adaptée pour les applications de 
type multimédia ou à forte contrainte de bande passante [BCB06 . 

La plupart des applications utilisant Internet sont supposées s'adapter à l'état du réseau 
et utilisent TCP [PosSl] comme moyen pour transférer leurs données. TCP offre un service 
orienté flux offrant une fiabilité totale et un ordre total. De plus, TCP comprend un contrôle 
de flux et un contrôle de congestion afin d'éviter le débordement du tampon au niveau 
du récepteur et la congestion du réseau. Malgré le bon comportement de TCP en termes 
d'utilisation des ressources réseau et de partage de la bande passante, TCP s'avère inadapté 
pour beaucoup d'applications ayant des contraintes de délais et de la bande passante et 
cela sans pour autant nécessiter une fiabilité totale. 

Une alternative classique à l'utilisation de TCP est UDP [PosSO]. UDP peut-être considéré 
comme un protocole de transport minimaliste qui ne fournit aucune fiabilité ni ordonnan-
cement ni contrôle de congestion. Les applications utilisant UDP devraient proposer au 
niveau utilisateur les contrôles précédents afin de partager équitablement le réseau avec 
TCP. Le protocole DCCP {Datagram. Congestion Control Protocol) a été récemment stan-
dardisé par l ' IETF [KHF06] et offre un service non fiable aux appfications tout en mettant 
en place un contrôle de congestion contrairement à UDP De fait il constitue un substitut 
pour les applications utilisant UDP car il combine l'efficacité et la légèreté d 'UDP avec un 
contrôle de congestion compatible avec TCP. Un des mécanisme mis en place dans DCCP 
pour assurer le contrôle de congestion est TCP Friendly Rate Control (TFRC) [HFPW03]. 
Ce mécanisme est présenté en détails dans le chapitre 3. 

L'utilisation de protocole de transport réactif à l'état du réseau, tel TCP, au dessus d'un 
réseau à garantie de service, ne permet cependant pas une utilisation optimale des res-
sources. En effet, plusieurs études ont montré que TCP ne pouvait pas toujours obtenir 
la bande passante négociée |SNP99, PC04a]. Dans le cas particulier d'utilisation de la 
classe AF de Diff'Serv, une bande passante minimale est fournie (appelée in-profile traffic 
part); tout en permettant aux flux d'avoir une bande passante supérieure à celle négo-
ciée (appelée out-profile traffic part). Néanmoins, de manière similaire à TCP au dessus 
de Diff'Serv/AF, TFRC n'utilise pas le service offert de manière optimale et produit des 
résultats en deçà de ce que l'application pourrait espérer. En effet, comme TFRC modélise 
le contrôle de congestion de TCP, son comportement est identique en moyenne à celui de 
TCP fonctionnant au dessus de DiffServ /AF. 

Dans ce chapitre, nous nous intéressons au comportement de TFRC au dessus de la classe 
AF de Diff'Serv. Nous montrons tout d'abord que notre implémentation est conforme aux 
implementations standards de TFRC et par conséquent conserve les bonnes propriétés de 
TFRC, à savoir son caractère plus stable en ternies d'oscillation du taux de transfert et le 
partage équitable de la bande passante lorsqu'il est en concurrence avec TCP ou TFRC. 
Néanmoins, nous montrons que TFRC seul ne profite pas pleinement de la garantie de 
bande passante offerte par la classe AF. Cet échec à l'obtention de la garantie est due à la 
forte dépendance de TFRC envers le RTT et le taux de perte, ainsi que le fait que TFRC 
ne puisse pas différencier la perte d'un paquet marqué in-profile d'un paquet marqué out-
profile. Afin de résoudre ce problème, nous présentons dans ce chapitre une modification 
de TFRC nonnnée (^TFRC. Cette mcjdification permet à l'application d'obtenir la bande 
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passante négociée quelle que soit le RTT et la valeur de la bande passante. Nous validons 
ce nouveau mécanisme à l'aide d'une implémentation et une campagne de mesures. 

Suivant cette première validation, nous étendons le service offert à l'application en com-
binant ce contrôle de congestion avec un mécanisme de fiabilité et un contrôle de flux 
spécialement conçus pour des protocoles utilisant un taux de transfert comme contrôle de 
congestion. Le mécanisme de contrôle d'erreur utilisé est une adaptation du mécanisme 
Selective ACKnoledgement (SACK) pour un protocole utilisant des datagrammes. Ce mé-
canisme nous permet, grâce aux informations qu'il contient, de proposer dans le chapitre 
5 une nouvelle architecture pour TFRC afin de s'adapter aux hôtes mobiles et légers. Il 
résulte de cette composition de mécanismes le premier protocole de transport fiable spé-
cialement conçu pour des réseaux à garantie de bande passante. 

Ce chapitre est organisé de la manière suivante. La section 4.2 donne un état de l'art concis 
des travaux relatifs à la relation de DiffServ/Af avec les divers mécanisme de contrôles de 
congestion. La section 4.4 présente le problème et notre solution /7TFRC. La section 4.5 
détaille l'implémentation et la validation de ce nouveau mécanisme gi-âce à l'utihsation 
d'un framework en Java introduit au chapitre 3. Basée sur cette première implémentation 
nous présentons dans la section 4.6 l'implémentation d'un protocole de transport complet 
orienté QdS. Ce protocole est évalué au dessus d'un réseau utihsant DiffServ/AF ainsi 
que d'autres mécanismes génériques garantissant une bande passante. Enfin, la section 4.7 
propose une conclusion pour ce chapitre ainsi que les possibles travaux futurs. 

1.4 NOUVELLE APPROCHE POUR UN TFRC ORIENTÉ ÉMET-
TEUR (CHAPITRE 5) 

Dans le chapitre précédent nous avons montré comment la composition d'un mécanisme de 
contrôle de congestion basé sur une modification de TFRC et d'un mécanisme de contrôle 
d'erreur similaire à SACK permettait d'obtenir le débit négocié dans le cadre de réseau à 
garantie de débit. Grâce aux informations fournies par cette composition nous proposons 
dans ce chapitre une nouvelle architecture permettant d'alléger le mécanisme TFRC du 
côté récepteur. En effet, nous savons que TFRC produit un débit plus stable que TCP ce qui 
fait de lui \m bon candidat pour le transfert multimédia et le streaming. Néanmoins dans 
le scénario d'une communication chent-serveur utilisant TFRC, si les serveurs multimédia 
sont de puissantes machines en matière de calcul et de débit de sortie, cela n'est pas le 
cas pour des clients mobiles. En effet, ces clients sont des entités aux ressources limitées 
qui posent le problème de l'optimisation de ces ressources en particulier pour des tâches 
systèmes récurrentes et des tâches de communication. 

Dans ces conditions, rallègement des ces processus est critique pour Famélioration des 
performances des systèmes mobiles autonomes. Un des principaux coûts du mécanisme 
TFRC est le calcul périodique du temps aller-retour (RTT) et du taux de perte de paquet 
de la conmmnication. En particulier, la RFC 3448 |HFPW03] propose que l'estimation de 
ce taux de perte soit faite du côté receveur. Ce standard suggère aussi que ce calcul puisse 
être fait du côté émetteur. 
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Nous avons donc développé cette idée en spécifiant et évaluant une mise en œuvre de 
TFRC orienté émetteur. Dans cette proposition, le transfert fiable des paquets de contrôle 
est assuré par l'utilisation d'un mécanisme similaire à SACK [FMMPOO]. Ce mécanisme 
est reconnu pour sa robustesse lors de communications dans des canaux à pertes car cette 
robustesse permet d'éviter la mise en place de mécanismes de contrôle d'erreur trop com-
plexes [FMMPOO]. De plus, grâce à sa migration sur les serveurs de flux, l'architecture 
orientée émetteur proposée est robuste face aux receveurs opportunistes et résout un pro-
blème de sécurité identifié dans la RFC 3448. Ce problème de sécurité hérite du fait que le 
récepteur renvoie à l'émmetteur la valeur du taux de perte de la communication. Dans le 
but de recevoir une meilleure bande passante, un récepteur mal intentionné pourrait sous 
évaluer ce taux. Grâce à une architecture orienté émetteur, le serveur n'est plus dépendant 
de la précision et de la véracité des informations renvoyées par le receveur. D'autre solutions 
ont été proposées afin de sécuriser TFRC contre ces receveurs opportunistes dans [GG05 
en utihsant RTSP [SRL98]. Notre solution requiert moins de modifications, et qui plus est 
des modifications plus simples, pour l'entête des messages et l'algorithme de TFRC. 

Une autre solution introduisant un TFRC orienté émetteur a été proposée dans [FKP06]. 
Cette solution requiert de la part du receveur l'envoi dans les paquets de contrôle des 
intervalles d'événement de pertes. A notre connaiscance, cette solution n'a jamais été ni 
implémentée ni testée. De plus, comparée à notre solution, cette proposition est supposée 
être plus proche du mécanisme original mais le receveur reste plus complexe car il doit 
toujours maintenir une structure permettant de différencier une perte de paquet d'un 
événement de perte. 

Ce chapitre est organisé comme il suit : nous résumons brièvement le contexte de cette 
étude. Ensuite nous expliquons en détails notre nouveau dessein et le cheminement qui 
nous a amené à celui-ci. Nous validons par la suite une première implémentation de cette 
architecture en la comparant avec TFRC et TCP. Cette validation est mise en œuvre 
grâce à, dans un premier temps, une étude qualitative de notre proposition et, dans un 
deuxième temps, des métriqut^s nous permettant de quantifier notre proposition. Enfin nous 
quantifions le gain en matière de cycle de processeur et le gain en mémoire introduit par 
cette architecture. Finalement nous proposons les perspectives possibles à cette étude. 

1.5 COMPRÉHENSION ET OPTIMISATION SUR LE MÊME THÈME 
(CHAPITRE 6) 

Les chapitres précédents ont permis de présenter deux modifications architecturales de 
TFRC. Ces deux contributions ont pour but de permettre une spécialisation de l'actuel 
TFRC à des réseaux à garantie de service ainsi qu'ime adaptation à la capacité matérielle 
de Fentité sur laquelle la connnunication est eff'ectuée. Ces propositions n'effectuent aucune 
modification notoire des variables statiques des implementations traditionnelles de TFRC. 
Ces variables sont utilisées pour restimation du délai dans la connnunication ou encore de 
l'estimation du taux de perte de paquets dans la transmission. 

Les deux principales variables sont la valem- initiale de l'initialisation du taux de perte et 
l'ensemble des poids régissant la structure loss history. Ces deux varia])les sont responsables 
du calcul du taux de perte et par conséquent du taux d'émission de paquets. 
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L'initialisation de la structure loss history est essentielle pour l'établissement de la com-
munication. Quand un événement de perte est détecté cette structure doit donc être ini-
tialisée. Cependant, le nombre de paquets reçus depuis le début de la communication ne 
représente pas l'état du réseau. Afin de réaliser cette initialisation, les implémentations ac-
tuelles doivent donc inverser l'équation utilisée par TFRC. Cependant le degré maximum 
de cette équation rend impossible une inversion analytique. Nous proposons de résoudre ce 
problème par l'introduction d'un algorithme qui améliore l'algorithme de résolution utilisé 
habituellement. 

La seconde variable responsable du calcul du taux de perte dans TFRC est constituée de 
l'ensemble des poids appHqués à la structiu'e loss history. Ces poids peuvent être modifiés 
mais sont généralement configurés comme proposés dans [HFPW03]. Nous proposons un 
outil permettant d'étudier la relation entre le taux de perte calculé et celui donné par un 
modèle de perte du réseau. Cet outil est basé sur un programme d'analyse numérique utili-
sant des événements discrets qui nous permet d'intégrer facilement plusieurs distributions 
de probabilité afin de comparer les résultats obtenus en sortie de TFRC avec les résultats 
théoriques liés à ces distributions. 

Dans ce chapitre nous proposons dans un premier temps une optimisation de l'initialisation 
de la structure loss history en utilisant une méthode numérique appliquée à l'équation de 
TCR Ensuite nous étudions la relation entre le calcul du taux de perte et différents schémas 
de perte. Enfin nous concluons et donnons les perspectives de ces améhorations. 

1.6 CONCLUSION (CHAPITRE 7) 

Ce chapitre conclue cette thèse. Nous proposons dans une première partie un résumé des 
problèmes auxquels nous avons été confrontés. Ces problèmes ont été mis en exergue tout 
au long des chapitres de cette thèse et peuvent être synthétisés en trois points : 
- Fécliec à l'obtention du débit négocié avec le réseau par les protocoles de transport 

actuels ; 
- le besoin pour des entités à faibles capacités de calcul et de mémoire d'alléger les tâches 

récurrentes ; 
- le besoin d'optimiser les implémentations actuelles des protocoles de transport. 
Bien que ces problèmes puissent à première vue paraître décorrélés, nous montrons qu'ils 
peuvent être résolus par une approche commune. En effet, afin de résoudre ces problèmes 
nous nous sonnnes basés sur le mécanisme de contrôle de congestion TFRC. Ce mécanisme 
a dans un premier temps été spécialisé afin de résoudre le problème de la non-obtention de la 
garantie dans le cadre de réseaux à QdS. Par la suite, nous avons proposé une adaptation 
de ce mécanisme pour les hôtes légers et mobiles. Enfin une optimisation d'algorithmes 
internes à ce mécanisme a été proposée et quantifiée. 
Dans la deuxième partie de ce chapitre nous présentons un résumé des contributions ori-
ginales dont est constituée cette thèse. Cette partie repose sur les chapitres 4, 5 et 6. Les 
solutions décrites dans ces chapitres visent à résoudre les problèmes précédennnent cités. 
Cette résolution repose sur la définition de nouveaux mécanismes de contrôle de conges-
tion pour les deux premiers problèmes et d'une étude du socle commun, TFRC, pour le 
troisième. Dans le cas de la difficulté pour les protocoles de transport d'obtenir la bande 
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passante garantie avec des réseaux à garantie de service, nous modifions, en effet, le mé-
canisme TFRC afin qu'il puisse tenir compte de la QdS préalablement négociée avec le 
réseau. Cette modification est par la suite composée avec un mécanisme de contrôle d'er-
reur et de flot. De cette composition découle la solution pour le second problème. En effet, 
le mécanisme de contrôle d'erreur nous permet, par le biais des informations nécessaires 
à son fonctionnement, de modifier l'architecture de TFRC en déplaçant le calcul du taux 
de perte vers le serveur. Tout au long de ces études, nous avons aussi tenté d'optimiser les 
méthodes internes de TFRC. 

Enfin, la dernière partie de ce chapitre propose les orientations possibles qui de ces travaux 
de recherche. Ces perspectives incluent : 
- im déploiement sur un réseau multi-hop de la contribution concernant l'allégement de 

TFRC en y rajoutant l'option de contrôle d'erreur et une étude plus approfondie de la 
relation entre le calcul du taux de perte dans TFRC et le taux de perte réel dans le 
réseau ; 

- une étude de l'impact de l'initialisation de la structure loss history sur le reste de la 
communication ; 

- enfin, en nous basant sur des travaux précédents et grâce à l'expérience acquise tout 
au long de cette thèse, nous pensons qu'une adaptation de la couche transport avec des 
applications de calcul sur réseau pair à pair est possible et serait bénéfique à la fois pour 
ces apphcations particulières et l'utihsation générale du réseau. 
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CHAPTER 2 

ntroduction 

2.1 CONTEXT OF THIS THESIS 

During the nineties, numerous studies in networking focused on the improvement of the 
quahty of service (QoS) offered to the end user. This research has lead to the development 
of new network architectures. Problems in the deployment of these architectiu-es have made 
them unavailable to the end-user. Some of these architectures have been standardised at the 
lETF^, for example the Integrated Service (IntServ) [BCS94], the Differentiated Service 
(DiffServ) [BBC+98] and the Multi-Protocol Label Switching (MPLS) [RVCOl]. Lately 
some projects, such as the EuQoS project [MBYSG^OT], have proposed new architectures 
based on the virtualization of network resources and services for providing QoS to the 
end-user. The issues of QoS control in the network layer will be discussed in chapter 3. 

In the last five years, new application services, based on former IP technology, have been 
made available to the user. These new services have been made possible due to the increase 
in network capacity and have mainly been developed at the application layer. These new 
services embraced peer to peer (P2P) networks, web 2.0, TV and Voice over IP. These 
services still use the common T C P / I P stacks. 

In parallel to these two improvements, new technologies have been made accessible to the 
user at the physical layer. These technologies, such as wireless 802.11* |Soc07] or 802.15* 
Soc05], or 3G [Uni99j, introduced mobility and wireless capability in the access networks. 

These new technologies are no longer constrained by a wired architecture. As a result, new 
problems linked to the mobility of end-systems have to be considered when designing new 
network and transport protocols. One of the main differences with the previous network 
architecture is the interpretation of what the end-systems should do about packet losses. 
In the previous architecture when a loss occurs in the connmmication, reactive transport 
protocols interpret this loss as congestion in the network. Nevertheless, in mobile or 

Internet Engineering Task Force 
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wireless access networks, losses can also be entailed by handovers, an obstacle in the radio 
transmission or a loss of coverage. 

Linked to these new network technologies, an evolution of the end-terminals has also oc-
curred. Indeed, end-systems have become progressively lighter and more mobile. This 
emerging new generation of end-systems intrinsically offers limited processing, storage and 
power capacities. 

Nevertheless, during this time few changes have, been made to the core of the Internet 
architecture (i.e. transport and network layer). The dramatic evolution of the two extreme 
protocol layers of the Internet coupled with the ossification of the TCP/IP core protocols 
introduced a hourglass shape protocol stack that is not anymore able to deliver an efficient 
adaptation between new application service and physical layer. This can be synthesised 
by the Figure 2.1 and the Figure 2.2. 

Figure 2.1 Illustration of today's Internet 

In order to make this adaptation between the application layer and the physical layer, the 
transport layer has a great role to play since it is localised at the end systems and therefore 
it is easier to deploy than the network layer. In the transport layer the congestion control 
mechanism is one of the main mechanism. Indeed, the congestion control allows to avoid 
the Internet from collapsing and different flows to share fairly the available bandwidth. 
Nevertheless, actual congestion control mechanisms only focus on the network congestion 
and do not take into account neither the application's needs or the new network services. 

In order to solve this adaptation issue, new transport protocols, such as DCCP |KHF06) 
or SCTP SAOO], have been proposed for standardisation. Nevertheless, these new proto-
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Figure 2.2 New communication landscape 

cols offer limited adaptation capabilities and are not yet implemented in most operating 
systems. These new protocols are characterised by the use of datagram oriented commu-
nication instead of byte-stream oriented communication as in TCP. Furthermore in the 
case of DCCP, a new kind of congestion control is provided. This congestion control mech-
anism, named TCP Friendly Rate Control [HFPW03], is no longer based on a window 
but is instead based on the use of an equation that feeds a rate-based control. TFRC 
can be considered as a first step for the adaptation to the multimedia application since 
the throughput obtained is smoother than the one obtained in the same condition with a 
TCP-like congestion control. Therefore this throughput is better adapted to multimedia 
streaming [FHPWOO). 

2.2 CONTRIBUTION OF THIS THESIS 

This thesis aims to mitigate the bottleneck as depicted in Figure 2.1 by proposing conges-
tion control mechanisms that allow transport protocols to better take into consideration 
either the QoS subscribed by the user or the limitations of the device on which the commu-
nication is performed. In this thesis, we use the TFRC congestion control mechanism since 
this currently appears to be the congestion control the most adapted to encompass the nml-
timedia applications but still stays limited. This mechanism will therefore be specialised 
for QoS network, then an adaptation to lighten and mobile entities will be proposed, and 
finally an optimisation of internal algorithms will provided. 

The first contribution of this thesis consists of a specialisation of TFRC in order to make 
this mechanism aware of the bandwidth guaranteed by the network service provider. We 
show that this speciahsation of TFRC makes possible the obtention of the negotiated 
bandwidth regardless of network's conditions. In addition, we have extended TFRC with 
an error control mechanism based on a Selective ACKnowledgement (SACK) mechanism 
FMMPOO], and a flow control specially designed for rate-based transport protocol in order 

to provide a TCP-like reHable service. The result appears to be the first reliable transport 
mechanism especially designed for bandwidth guaranteed networks. 
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The second contribution of this thesis is an adaptation of TFRC to handheld devices. This 
new TFRC architecture hghtens the load on the communication receiver in terms of CPU 
and memory use. Indeed, nowadays, more and more communication is performed using 
wireless handheld devices. Nevertheless, these mobile entities (PDA, mobile phone) do 
not have the same capacity £ts personal computers in terms of CPU power and memory 
storage. That is why an adaptation of communication recurrent tasks and in particular the 
congestion control is necessary for better performances and resources usage optimisation. 

The final contribution of this thesis consists of an analysis and an optimisation of TFRC. 
This analysis allows to better understand the different components involved during a ses-
sion and specially how the loss event rate is computed. Furthermore, we proposed an 
optimisation of the initialisation of the TFRC receiver. This optimisation is done through 
a numerical analysis of the equation in use in TFRC for the rate computation and the 
application of a Newton algorithm for the inversion of this equation. This optimisation 
allows us to converge faster to the solution and to reduce the CPU and memory usage. 

In the rest of this thesis, we therefore present a transport protocol, its architecture and im-
plementation, named the Chameleon Protocol (CP). This protocol can be configured with 
the previously introduced mechanisms. Chameleon Protocol is based on the networking 
by component paradigm that makes it possible to compose a rate based congestion control 
with a reliability mechanism enhanced with a flow control that is adapted to rate based 
congestion control. 

2.3 ORGANISATION OF THIS THESIS 

This thesis is organised as follows: 

• chapter 3 defines the context of this thesis by giving an overview of the previously in-
troduced QoS architecture, transport protocols, and congestion control mechanisms; 

• chapter 4 presents the design and the implementation of a QoS-aware transport 
protocol able to provide the bandwidth negotiated with the provider; 

• chapter 5 presents and quantifies a lightweight version of TFRC congestion control; 

• chapter 6 proposes an analysis of this particular congestion control; 

• finally, chapter 7 presents conclusions and future directions for the presented work. 



CHAPTER 3 

Context 

3.1 INTRODUCTION 

The increasing capabilities of high performance end systems and communication networks 
have greatly accelerated the development of distributed computing. Distributed applica-
tions were originally characterized by very basic comnmnication recjuirements mainly re-
lated to full packet reliability and order. Today, multimedia applications are in widespread 
use and require delay and bandwidth guarantees. As we have described in the chapter 
2, these new constraints have been partially tackled by the application and the network 
layers, but an adaptation of the transport layer remains necessary. In the transport layer, 
we have seen in the previous chapter that the congestion control mechanism appears to be 
one of the key mechanisms for this adaptation. We will, in this chapter, give an overview 
of these three layers with a particular focus on the QoS they can offer and we will finish 
this chapter with a state of the art of the current congestion control mechanisms and their 
hmitations. 

In order to fulfill these constraints, researchers initially focusexl on defining a new architec-
ture for the underlying network. The first proposed c\rchitecture has been the Integrated 
Service (IntServ) architecture |BCS94]. Because of the problem of deployment of IntServ 
due to the per flow reservation and scalability problems, another architecture has been 
proposed, the Differentiated Service architecture [BBC'^ 98]. Furthermore, architectures 
in between levels 2 and 3, such as the MPLS services |RVC()ll. have been standardised. 
Recently, another architecture has been proposed in the context of a European project; the 
EuQoS network^ EuQoS is bcised on the virtualization of network resources and provides 
QoS through a per domain management mixed with end to end signalling process. 

Nevertheless, all of these proposals have been studied and generated without consideration 
of the upper layer of the networking architecture and in particular the transport layer, 
which aims at applying an efficient adaptation between the applications needs and the net-

^ http://www.euqos.eu/ 
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work state and services. This lack of communication between network layer and transport 
layer has resulted in the incapability to efficiently map the service needs into a complete 
protocol stack that allow to ensure a rigorous QoS control. In this chapter, we present new 
propositions for transport protocols. The first two have been standardised at the lETF^. 
The other propositions are still in the experimental stage. Furthermore we focus on FPTP, 
a transport protocol framework that will be used in this thesis for the implementation of 
our new propositions. 

Congestion control is one of the main transport protocol mechanisms. This mechanism is 
necessary for the sake of the Internet fairness both currently and in the near future. It 
allows different flows to share link bandwidth and router buffer space. Currently there are 
two main kinds of congestion control, the window-based and the rate-based. In the context 
of this thesis we mainly focus on the improvement of a particular rate based congestion 
control in order to provide a complete transport protocol. 

In this chapter, we will give an overview of the actual mechanisms for the deployment 
of QoS in the current protocol stack. We first give in Section 3.2 a brief presentation of 
the mechanisms that have been proposed to enhance the layer application/session. We 
then give 3.3 an overview of the different network services and architectures and brief 
summary of the problems of deploying them. We present in Section 3.4 the main transport 
protocols that have been defined by the IETF and new directions in transport protocol 
research. Section 3.5 presents different kinds of congestion control implemented inside 
these protocols and discusses their limitations. Finally Section 3.6 concludes the chapter. 

3.2 APPLICATION/SESSION LAYER EVOLUTION 

In this section, we present the different application and session protocols for the description 
and signalhng of multimedia applications. In the first time, we present briefly application 
multimedia profile deflned by the International Telecommunication Union (ITU) in the 
framework F.700 |1T04]. We then present RTF and its dual control protocol RTSP and 
then we present two signalling protocols that establish nniltimedia session, SIP and NSIS. 

3.2.1 Application Framework and Constraints for Multimedia Services 

The ITU-T Recommendations F.700 and G.lOlO [rT04. IT96] provide user requirements 
and communication parameters concerning the QoS level of a nniltimedia application. In 
particular, in F.700. different QoS levels are defined according to the nature of medium. 
As a counter part, the reconnnendation G.lOlO uses time metric and loss rate to quantify 
the QoS of different applications. 

3.2.2 RTP/RTCP 

With the evolution of the multimedia applications, new information ]:>ecame necessary. In 
order to provide this service, the Real-time Transport Protocol (RTP) and its informa-

^Internet Engineering Task Force 



3.2 Application/Session Layer Evolution 17 

tional companion protocol the Real-Time Control Protocol (RTCP) have been proposed 
[SCFJ96]. 

These two session protocols aie usually used on top of the UDP protocol [Pos80]. They 
aim to provide to the apphcation information about the multimedia stream. In the case 
of RTP, these information concern the kind of data used in the stream (e.g. codecs), a 
application data unit sequence number, a time stamp, the source ID corresponding to this 
stream in order to differentiate for example the audio and the video stream and other 
optional information. Nevertheless, this protocol does not propose any congestion control, 
error control or flow control mechanism and therefore let the application implement these 
functionahties. 

These controls can be implemented at the apphcation with the help of RTCP information. 
Indeed. RTCP provides periodic information, such as the number of sent packets, the 
number of lost packets or the jitter. This information allows the multimedia application to 
adapt the stream to the network state. This adaptation can be done through a change of 
codec, or a degiadation of the quality in the codec. Furthermore, this information can be 
given to a congestion control mechanism, such as TFRC. in order to compute the sending 
rate as proposed in [GG05]. 

3.2.3 SIP 

SIP [RSC"^02] Wcis designed as a signalling protocol for voice over IP application. It allows 
two end-users to establish a commimication in the network with a negotiation of the codecs 
to use which is usually done with the SDP descriptor [HJ98). This protocol is responsible 
for the establishment and ending of the communication. During the establishment session. 
SIP facilitates the discovery of the IP address of both end-users due to the use of email-
like identifiers or telephone numbers. This identification method allows the user to be 
addressable where\er he is located. SIP can use any transport protocol but it usually choose 
the UDP protocol, since it avoids the connection establishment and teardown overhead. 

3.2.4 Summary 

We have described in this section the solutions deployed at the application level for the 
description and deploy ment of QoS at the application level. These solutions have demon-
strated their benefit but suffered from one main drawback: the use of UDP transport 
protocol. Indeed, the use of UDP is justified by the fact that this protocol does not need 
to establish the connection, which can be done via SIP Nevertheless, this protocol is often 
filtered at the edge router of the network and requires the application to implement the 
congestion control at the application level, which overloads the nmltimedia application. 

IT 
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3.3 NETWORK SERVICES AND ARCHITECTURES 

3.3.1 Previous Contributions 

The initial and current Internet architecture is based on the paradigm of "Best Effort". 
In this architecture, the network does not provide any guarantees of rehabihty, time or 
bandwidth. In order to provide guarantees to the end user, several network architectures 
have been proposed during the last fifteen years. One of the first ones standardized by 
the IETF was the Integrated Services (IntServ) architecture [BCS94]. In this proposal, 
guarantees are provided per-flow and a reservation path has to be setup. These guarantees 
include bandwidth and delay in a first set of services (Guaranteed Services) or reliability 
and delay in another set of services (Controlled Load Service). Since this architecture 
provides QoS per flow and needs a reservation process, poor scalabihty is one of the main 
reasons that prevented its deployment in the core network. 

Differentiated Services (DiffServ) [BBC'^98] was the second network QoS architecture stan-
dardized by the IETF. In order to solve the problem of scalability introduced by IntServ, 
DiffServ provides QoS to a class based flow aggregate. In this proposal two kinds of ser-
vices can subscribed to by the user. The first one is included in the Expected Forwarding 
(EF) class of service. The second class of service is called Assured Forwarding (AF). In EF 
class, a temporal service is provided and a complementary AF class provides a bandwidth 
guarantee to the aggregate. These two kinds of services are setup by distinguishing the 
two parts of the networks, the edge and the core of the network. The edges routers are 
in charge of the traffic conditioning. This conditioning is done through the use of the DS 
field in the IP packet, according to the SLA of the user. Then, the core routers forward 
the packets according to the this DS field following the Per Hop Behaviour associated to 
the class of service. 

More recently the Multi-Protocol Label Switching (MPLS) architecture [RVCOlj has been 
standardised at the IETF. This architecture has been proposed in order to simplify network 
routing. Indeed, MPLS enables the setting of VPN tunnels which allows a scalable solution 
with the help of routing protocols that restrict the topology information known to an 
incoming packet from a VPN site. It also offers Class of Service (CoS). Like the DiffServ 
architecture, MPLS uses bits in Layer 3 header to specify a Class of Service (CoS) which 
also can be mapped in the MPLS Layer 2 label. Thanks to this CoS information, MPLS 
can provide differentiated services. 

Based on the previously introduced network architecture, new propositions have emerged 
in order to provide some quality of service. In this context, the newly introduced EuQoS 
project, presented in the following section, provides class based QoS. This QoS is set-up 
through the virtualisation of the resources and the services and a per domain management. 
In this architecture, the inter-domain management is done via the introduction of new end 
to end signalling protocols. 
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3.3.2 The EuQoS system 

Much research has been carried out on Quahty of Sei-vice mechanisms for packet-switched 
networks over the past twenty years. The results of these efforts have still not lead to the 
deployment of multi-domain networks providing QoS guarantees [CMX+05]. The EuQoS 
project [MBYSG"''07] is an integrated project under the European Union's Framework 
Program 6 which aims at deploying a flexible and secure QoS assurance system over a 
pan-European testbed environment. The EuQoS System aims to deliver QoS to many 
applications requiring QoS guarantees such as voice over IP, video on demand or medical 
applications over multi-domain heterogeneous environments such as WiFi, UMTS, xDSL 
or Ethernet technologies. 

For this purpose, the EuQoS System integrates various architectural components such as 
signalling protocols, traffic engineering mechanisms, QoS routing and admission control to 
resource reservation scheme and also tackles the issue of QoS aware transport protocols. 
In this context, network configuration (i.e. resource allocation and reservation) is done 
according to the user's SLA and apphcations' requirements. This configuration consists 
mainly of the establishment of a QoS-path between the two end systems through different 
service providers. In order to successfully estabfish this path, the EuQoS uses the following 
key components: 

1. the Resource Managers (RM), in charge of managing the QoS inside each domain; 

2. the Resource Allocators (RA), in charge of applying the decision of the RMs; 

3. the Enhanced QoS Border Gate Protocol (EQ-BGP), an evolution of BGP-4 that 
can be used for interdomain routing; 

4. the Enhanced QoS Next Steps in Signaling (EQ-NSIS), an extension of NSIS; 

5. the Enhanced QoS Common Open Policy Service (EQ-COPS), in charge of the sig-
naling between RAs and RM. 

As a result, in this proposal the Quality of Service is achieved through the implementation 
of five Classes of Services (CoS): 

1. IP telephony; 

2. Real-time interactive; 

3. Multimedia streaming; 

4. High-throughput data; 

5. Best Effort. 

Several prototypes of this system have been deployed over testbed composed of GEANT 
(the European research network) and the National Research and Education Networks 
(NRENs) of the partners involved. 
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In this architecture, the QoS is provided directly to the appHcation. Therefore, in this 
thesis we take advantage of this guarantee to propose a novel congestion control that is 
able to provide the negotiated guarantee at the application level. 

3.3.3 Summciry of Network Layer Contributions 

We have presented, in this section, the currently standardised QoS network architectures 
and their limitations. We have shown that these present contributions suffer from some 
scalability problems in the case of IntServ and inter-domain deployment for DiffServ and 
MPLS. The solution proposed by the EuQoS system combines the efficiency of the MPLS 
and DiffServ classed based QoS with the definition of new signalling protocols and per 
domain management in order to solve the inter domain problems. In this architecture, 
the network informs directly the application about the negotiated QoS without giving any 
information to the transport layer. In this thesis, we propose to enable the transport layer 
to make use of this information and propose a specialisation of the transport layer in order 
to complete the protocol stack. 

3.4 TRENDS IN TRANSPORT PROTOCOLS 

3.4.1 Introduction 

In recent years, new transport protocols have been proposed. Two main protocols have 
emerged from a myriad of proposals to the IETF, namely the Datagram Congestion Con-
trol Protocol (DCCP) [KHF06] and the Stream Control Transmission Protocol (SCTP) 
SAOO]. These two transport protocols differ from the widely used TCP protocol on two 

main characteristics. The main difference consists in the fact that these protocols are 
datagram-oriented instead of byte-stream oriented like TCP. This difference is justified 
by the fact that IP is datagram-oriented and the new direction for application definition 
as described in the Application Level Framing (ALF) architecture [CTOO]. The second 
difference is in the introduction of new congestion control mechanism. Recent work on 
transport protocols [HFPWOS, KHF06, FHPWOO, WBB04] has proposed alternatives to 
the generally used window-based congestion control. These protocols compute a sending 
rate which reproduces the TCP behaviour. These proposals have been defined as an alter-
native to UDP in order to carry multimedia traffic while respecting the fair-share principle 
cited in [Ja.c88 . 
Furthermore, previous studies [SM05. KK05] have demonstrated the poor performances of 
TCP over wireless and nnilti-hop networks while others emphasise the good behaviour of 
rate controlled congestion control over these networks [CNV04, AP03]. Following these 
studies, the logical step is to consider reliable rate-based protocols in order to provide 
a fully reliable service for multi-hop networks such as vehicular networks (VANET) as 
enipluxsistid in [LSF'^06 . 

In this context, the IETF is pushing for the creation of a new congestion control working 
group [Egg07, FA07]. The outcome of this working group should follow one of the defini-
tions of ''TCP-friendliness", even if this principle is subject to criticism nowadays [BriOG . 
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However, in this thesis we will follow the definition in RFC3448 saying: "/.../ a flow is 
'reasonably fair' if its sending rate is generally within a factor of two of the sending rate of 
a TCP flow under the same conditions". It is generally agreed that this definition concerns 
instantaneous values, on average equivalent rates should be achieved. 

In this section, we fristly present the usual standardised transport protocols. UDP, TCP, 
SCTP and DCCP. We then present the Fully Programmable Transport Protocol (FPTP), 
a transport protocol framework that allows an adaptation between application QoS needs 
and the transport layer. We finally present the future direction in the transport layer and 
give a summary of this section. 

3.4.2 UDP 

UDP can be seen as a minimalist transport protocol as it provides to the application 
only a multiplexing over the network protocol. Nevertheless, since it does not provide 
any reliability and congestion control it does not introduce any jitter at the application 
layer but at a counterpart the in the case of a lossy channel the multimedia application is 
degiadated. Thanks to its lightness. UDP is more and more used with in particular the 
RTP protocol as described in the section 3.2.2. Nevertheless, since it does not implement 
any congestion control this protocol is usually shaped or even filtered out at the edge of 
the network. 

3.4.3 TCP and its Evolutions 

TCP is actually the most used transport protocol in the Internet. Nevertheless while the 
generic name has remained the same, the current TCP version used is different from the 
first TCP version in the early eighties by Postel |Pos81]. In this section, we describe 
four main TCP variants and the reasons that have led to the definition of these different 
versions: TCP Tahoe [JB88). TCP Reno |.JBB92l. TCP Vegas |BP95l. TCP New Reno 
FHG04] with SACK |FMMPOO]. Finally, we present lc\st version of TCP algorithms able 

to better perform over high throughput networks and wireless networks. 

TCP Tahoe 

One of the first TCP version has been described by Van Jacobson in |JB88|. In this version, 
the congestion control mechanism is based on the estimation of losses by the sender and 
a congestion window regulates the number of packet that can be sent over the network 
(i.e. emitted rate). The increase of this congestion window follows two different stages: 
the slow-start and the congestion avoidance phase. In the slow-start phase, the congestion 
window grows exponentially until a certain threshold. Once tlie protocol has reached this 
value, it follows a congestion avoidance phase where it only increases the congestion window 
by a value of one more segment. 

This version of TCP suffered from numerous drawbacks. The first concerns the error 
recovery mechanism used which was the Go-back-N mechanism. This mechanism is not 
efficient mainly because it can only retransmit packets that have already been received. 
The second drawbiick of this TCP version concerns the method for the detection of losses 
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and the recovery of losses. Indeed, the detection of losses in this version is done using 
a timer that is triggered for every packet and stayed active either until the reception of 
the corresponding acknowledgement packet or by the use of the fast retransmit algorithm. 
Furthermore, when the loss is finally detected, the protocol goes back to the slow start 
phase with a threshold value of the half of the actual congestion window. 

In order, to solve these problems new mechanisms have been proposed, the selective repeat 
mechanism for the problem of the error recovery mechanism and fast recovery added to 
the fast retransmit mechanism for the problem of the loss detection. 

TCP Reno 

TCP Reno version took into account the draw^backs previously introduced of TCP Tahoe 
in order to improve the protocol. Indeed, it modifies the fast retransmit algorithm that 
could have been implemented in the Tahoe version to integrate the fast recovery algorithm. 
The fast recovery algorithm consists of halving the congestion window, instead of going 
back to the slow start algorithm. This congestion window is increased during this period 
by the number of duplicate ACKs. Furthermore, this version applies the selective repeat 
mechanism for the recovery of packets lost. Nevertheless, these mechanisms also contain 
some minor drawbacks: the successive fast retransmit problem or the false fast retransmit 
followed by a false recovery problem. This version also suffers from performance problems 
when multiple packets are dropped in the same sending window. 

TCP Vegas 

TCP Vegas has been introduced in [BP95] and proposes new algorithms for the slow-start 
phase, the estimation of the available bandwidth in the congestion avoidance phase and 
the loss detection compare to TCP Reno. In order to detect congestion in the network, 
TCP Vegas defines a BaseRTT as the mininmm measmed RTT and the ExpectedRate 
as the ratio of the ratio of the congestion window to the BasedRTT. Furthermore, the 
sender mecxsures the ActualRate based on the sample RTT, then if the difference between 
the ExpectedRate and the ActualRate is superior to an upper bound the sender linearly 
decreases the congestion window during the next RTT. Otherwise if this difference is 
lower than a lower bound the sender linearly increases the congestion window. According 
to [BP95], this TCP version achieves a better rate than the Tahoe and Reno TCP version. 
Nevertheless, this version was never deployed due to scalability and stability concerns 
identified later in [AHA97. JPBF94]. One of the main drawback of TCP Veg<is concerns 
its poor performances when mixed with other TCP versions. 

TCP New Reno 

In order to improve the behaviour of TCP Reno when multiple packets are lost in the 
same window, TCP New Reno has been proposed. In this version, a modified version of 
the fast recovery algorithm has been integrated, where partial ACKs are used to indicate 
nmltiple losses in the same window. This new fast recovery algorithm has been described 
in [FHG04 . 
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This last version of TCP appears to be adequate to wired networks where the bandwidth-
delay product is not too high, but performs poorly over high bandwidth-delay product and 
wireless networks. These problems over wireless networks are due to the interpretation of 
a lost packet. Indeed, the TCP loss detection mechanism supposes that packets are lost 
because of a congestion in the network. However, in a wireless access network context, 
these losses can be due to the channel errors or bad transmission. This fact has motivated 
new TCP enhancements that are presented in the following section. 

T C P variants for High Throughput and Wireless Networks 

Nowadays, networks offer more and more bandwidth capacities to the end user. Never-
theless, TCP alone cannot take advantage of these new services because of the AIMD 
algorithm which makes TCP too slow to adapt its sending rate to the bottleneck of the 
network. In order to solve this problem, two kinds of transport protocols based on a 
variation of the TCP AIMD congestion avoidance phiise algorithm have been proposed. 
The first proposals remain close to the TCP architecture as they do not require routers to 
modify their internal algorithms and marking such as in BIC, HSTCP or STCP protocols 
XHR04, Flo03, Kel03]. The second proposal, such as XCP |KHR02] and VCP [XSSK05], 

performs better than both TCP New Reno and TCP Westwood but requires the network 
to provide information about the actual network congestion level thanks to an ECN-like 
mechanism [RFBOl . 

Nowadays, another TCP problem concerns its poor performances over wireless networks. 
Indeed, TCP has been designed to perform over wired networks where a packet lost means 
network congestion. As a result, the congo^stion control mechanism, as described above 
with the fast recovery and fast retransmit mechanisms, decreases the congestion window 
in order to decrease the congestion in the network. Nevertheless, in the case of wireless 
comnmnications, losses can also be due to urban obstacles, mobility of devices or channel 
interferences. In this context, new versions of TCP congestion control have been proposed 
such as WTCP |SNV+02l or TCP X^^stwood |GSW-^01). Another solution. TCP Veno 
(Vegas 4 Reno), proposed to let TCP Vegas estimate the available bandwidth and to act 
as TCP Reno when a loss is detected due to a congestion |FL03|. Nowadays, the current 
TCP used in the Internet are TCP New Reno (*BSD). TCP Westwood (Microsoft Windows 
Vista), and a TCP BIC variant (GNU/Linux) all with SACK enabled by default. 

3 .4 .4 S C T P 

SCTP stands for Stream Control Transmission Protocol |SAOO|. This protocol provides 
a reliable message-oriented transport service to the applications. In order to achieve this 
service, SCTP differs from TCP on several points. The main difference concerns the defi-
nition of several streams within a connection. In this definition, a stream is not a reference 
to a byte stream such as in TCP but as a sequence of messages. Furthermore. SCTP pro-
vides a nmltihoming service to the application which is initialised at the beginning of the 
connection. This nmltihoming can be therefore used to provide a different order service on 
the different streams. This function is useful in the case of prioritized messages. 
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3.4.5 D C C P 

The Datagram Congestion Control Protocol (DCCP) [KHF06] offers an unreliable trans-
port service for message-oriented applications. Furthermore, DCCP provides a congestion 
control mechanism in order to avoid the Internet collapsing and to share fairly the network 
bandwidth with TCP flows. This congestion control can be configured actually accord-
ing to two profiles called Congestion Control ID (CCID) 2 or 3. In CCID 2 [FK06|, a 
congestion control similar to the window based congestion control is provided. In CCID 
3 [FKP06], a rate-based congestion control is provided. This congestion control is based 
on the TCP-Friendly Rate Control [HFPW03], which will be presented in more detail in 
section 3.5.5. 

3.4.6 F P T P framework 

In the remaining chapter of this thesis, the implementation of the proposed contributions 
have been done in a user-level framework [Exp03]. This framework is based on the principle 
of composition of micro-mechanisms to build a complete transport protocol. 

In [Exp03], the author developed some micro-mechanisms in order to provide certain quality 
of service according to the media profile of the application. This profile is given to the 
transport protocol through the use of an XML file. In this configuration file different 
levels of application level QoS can be defined. Based on this file, the transport protocol 
configures the micro-mechanisms needed to fulfil the QoS requirements. This configuration 
of micro-mechanisms has been made possible through the definition of an language able to 
described both multimedia data and the action to apply to every kind of data [EMR+03 . 

3.4.7 Future Directions and Summary 

In addition of the standardised transport protocols, researchers have proposed new archi-
tectures and services for transport protocols. One of these new architectures consists of 
building transport protocol as a combination of micro-mechanisrns. This idea has been 
first introduced in the xkernel proposal |HP91]. Based on this idea numerous frameworks 
for the definition of new service have been proposed |GG07, EPM04, For07]. 

In [GG07], the authors proposed a UDP-based transport protocol for high-speed, wide 
area networks named UDP-based Data Transfer (UDT). UDT is a connection oriented 
duplex protocol which supports reliable and partially reliable communications. UDT uses 
a rate congestion control similar to the one used in RAP [RHE99] since it applies an 
AIMD algorithm to the inter packet time. UDT allows the use of a different congestion 
controls. In a modular version of UDT the application can choose numerous numbers of 
T C P algorithms. 

In [For07|, the author proposed a new abstraction stream-leased transport protocol named 
Structured Stream Transport (SST). In SST, applications can create independent sub-
streams from an original stream. Ordered and reliable services are provided for intra-stream 
but not inter-stream. Furthermore, SST allows the creation of short lived datagram ori-
ented communication due to the introduction of ephemeral streams. These streams do not 
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provide any reliability and therefore are more suitable with time-constrained applications. 
The connection in this transport protocol is handled by three abstraction layers respon-
sible for different jobs inside the protocol, the stream protocol, the channel protocol and 
the negotiation protocol The channel protocol is a connection-oriented, best effort delivery 
service that provides packet sequencing, acknowledgment, privacy and congestion control. 
The negotiation protocol is in charge of configuring the channel. Finally, the stream protocol 
is built on top of the two previously introduced protocols and is in charge of the delivery 
of a reliable stream-oriented service to the application. 

New services have been also introduced in recent years. One of these services is the intro-
duction of partial reliability and partial order in order to fill the gap between UDP and TCP 
services. These services have been successfully implemented in SCTP and FPTP. Other 
services are based on the cross layering between the transport layer and the application or 
the network lavers. 

3.5 CONGESTION CONTROL: STATE OF THE ART 

In the section 3.4, we have presented the main transport protocol with a particular focus 
on the evolution of TCP versions and its congestion control. In this section we will present 
briefly the New Reno congestion control and use this version as a control congestion control 
group for rate-based congestion control. In addition to the congestion control mechanisms 
that have been standardised, numerous rate-based transport protocols have been proposed 
the last ten years. In this section we give an overview of the common TCP-friendly rate-
based congestion control. 

3.5.1 Methodology 

In the follo^^^ng of the section we will present and evaluate congestion control with a 
particular focus on the rate based congestion control. In order to perform this evaluation 
we will try to apply the metrics introduced in [MHT07]: 

• efficiency: which represents the occupancy of the l)ottleneck by a transport protocol; 

• faiiiiess: when sharing a bottleneck, the fairness represents how fair this share is 
accomplished. It is usually quantified by the min - max method [BG92). If only 
one bottleneck is present in the network, we can use Jain's fairness criteria [.JaiOl 
order to nie<isure this characteristic: 

m 

convergence speed: this metric represents the time pfissed before reaching the equi-
librium: 

smoothness: this metric represents the oscillation in the the throughput during the 
equilibrium state: 

responsiveness: this metric represents the convergence time for one flow while the 
convergence speed is applied to the whole system: 
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• TCP-friendliness (or inter protocol fairness): the TCP-friendliness represents the 
fairness between different protocol while the fairness is applied only to the same kind 
of protocol. 

In the following of this section, we present three of the main rate-based congestion control 
mechanisms and quantify them in regards to the previously introduced metrics. 

3.5.2 TCP New Reno congestion control mechanism 

As described in section 3.4.3, the TCP congestion control has evolved along the different 
versions standardised at the IETF. We present in this section the most connnonly used 
TCP version; TCP new Reno. In this version the congestion control is composed by two 
main phase; the slow start and the congestion avoidance phase. 

The slow start phase aims to avoid congestion at the beginning of the connection while 
efficiently increasing the size of the congestion window. Indeed, at the beginning of the 
transmission, the TCP sender's congestion window has a size of 1 or 2 Minimum Segment 
Size (MSS). Then, the size of the congestion window is increase by one MSS for every correct 
acknowledged packet, which results in an exponential increase of the congestion window 
every RTT. This phase can stop according to two criteria, either there is a detection of 
losses or the congestion window reaches a threshold value {SSThresh). 

In the case of reaching the threshold value for the congestion window, TCP enters into the 
congestion avoidance phase. During this phase it increases the congestion window by one 
MSS every RTT until the detection of a loss. This algorithm is called AIMD. This loss can 
be identified according to two mechanisms; the trigger of a timer or the reception of three 
duplicate ACKs for the same packet. This last method is called fast retransmit. In the 
case of the timer, TCP goes back to the slow start algorithm. Otherwise it enters into the 
fast recovery algorithm where it continues the AIMD algorithm starting with a congestion 
window divided by two, compared to the value before the detection of the loss. 

The fast recovery and fast retransmit algorithms of TCP New Reno differ from the al-
gorithms in TCP Reno by few points [FHG04] and have been introduced in the section 
3.4.3 

3.5.3 Model of TCP congestion avoidance phase 

One of the first rate-based congestion controls proposed a model of TCP congestion avoid-
ance phase [MSM097]. This model predicts the steady state of TCP in the scenario of 
a light to moderate loss ratio. This model is based on several assumptions. The first 
assumption is that TCP avoids retransmission timeout. Secondly, this model also assumes 
that both the receiver and sender have sufficient receiver windows space. Furthermore, 
in this proposal the authors supposed that loss events are periodic. Based on this hist 
assimiption they apply a derivation to the stationary distribution of congestion window of 
an ideal TCP connection. This model results in modelling the TCP windows as described 
by the equation (3.1). 
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MSS C 

Where C is a constant function of the acknowledgement policy and is usually equal to y 
RTT is the round trip time of the connection. MSS is the maximum segment size of TCP 
and p is the random packet loss at constant probability. 

Evaluation 

This model suffers from its numerous assumptions on both the TCP behaviour and the 
periodic probability loss and therefore it is not able to correctly reproduce TCP throughput. 
Other models have been later proposed in order to enhance this TCP throughput model. 
An enhanced model has been proposed in [] in order to take into account the window size 
and the RTO value. The resulting equation can be summurased as follows: 

F = (p, RTT, RTO, Wmax, b) (3.2) 

Nevertheless, this model shows to be accurate in the case of randomised loss in the bottle-
neck which cannot be applied in every network scenario. 

3.5.4 R A P 

In [RHE99], the authors have designed a congestion control mechanism able to provide a 
TCP-friendly congestion control suitable for media streaming. 

This protocol is based on three main functions, the decision function, the increase/decrease 
function and the decision frequency. Unlike TCP. RAP is not Ack-clocked. meaning if it 
does not receive ACKs for different packet it does not stop emitting. Thus RAP still uses 
a timeout to detect losses in the case of non reception of ACKs. 
The decision function is based on the detection of losses. If no losses have been detected, 
the protocol increases its rate periodically, otherwise it decreases its rate innnediately. The 
frequency between eveiy rate adjustment is not linked to the reception of feedback from 
the receiver as in TFRC. Indeed in RAP. the receiver sends an acknowledgement for every 
received packet. 

The increase decrease algorithm is based on an AIMD algorithm. Nevertheless, since this 
protocol is not window-based the AIMD algorithm is applied to inter-packet-gap(7FG). 
This increase mechanism follows formula below: 

' Q PacketSize 
~ IPG, 

Tpn -11 — jpG.^C 
5 c PackctSize i+1 - — c 

where Si and a denote the transmission rate and step height and C is a constant. The 
decrease process follows the next process expressed cis: 

5,4-1 = IPGm = 3IPG,. 3 = 0.5 

The AIMD process as described above is performed at a frequency of a least once per RTT. 
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Evaluation 

In [HKOO], the authors proposed a simulation-based performance comparison of RAP. In 
their experiments, they mixed different versions of TCP with RAP and other rate-based 
congestion control mechanisms. They showed that RAP is not TCP-friendly when mixed 
with TCP Reno and that TCP obtains less than 20% of the bottleneck (instead of 50%) 
when the researchers configured the router to apply a simple FIFO pohcy. 

In [RHE99], the authors evaluated their proposal according to different scenarios. They 
show that RAP is not TCP-friendly with every TCP version. They also show that RAP 
fairly share the bandwidth when it is mixed only with other RAP instantiations. They 
finally showed that RAP provides a smoother and more predictable throughput than TCP. 

3.5.5 A model for unicast data transfer 

In [PFTK98], the authors proposed another model for the estimation of TCP throughput. 
This model is equation-based and the equation in use is the following (3.3): 

^ ? (3 3) 
{RTT • yf^ + RTO • y ^ . p • (1 + 32 . p^)) 

where s is the packet mean size of the communication, RTT is the round trip time of 
the connection, p is the packet loss rate of the network path and the RTO is the TCP 
retransmit timeout. 
Compared to the model in |MSM097], this model does not suppose that the loss events oc-
curring in the network are periodic. This model has allowed the introduction of a complete 
congestion control mechanism named TFRC [FHPWOO, HFPW03]. This mechanism uses 
equation (3.3) and defines a more complete protocol for the beginning of the connection 
and the role of the both sender and receiver side. Indeed at the beginning of the connection 
the mechanism uses a slow start phase. This phase, as the TCP slow start, increases expo-
nentially the emission rate at the reception of every feedback packet according to equation 
(3.4): 

A" = 2 * X^ êt; (3.4) 

Where Xprev ^̂  tlie previously computed rate. This slow start phase stops when the sender 
received a non-nil estimation of the packet loss. This estimation is done at the receiver 
either by an inversion of the TCP throughput equation (3.3) when the first loss occurs or 
by a weighting moving average of the loss event interval (i.e. interval between two loss 
events'^). This phase can start again in the transmission if the RTO tinier is triggered. 

The sender is responsible for the computation of the RTT and the estimation of the RTO. 
This component receives the information of the packet loss rate from the receiver through 
feedback packets that are supposed to be sent at least once per RTT. Then, as described 
above, the sender either applies the slow start equation (3.4) or the TCP throughput 

â loss event is defined as one or more packet lost during a period of one RTT 
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equation (3.3) and minimises the output by comparing it to twice the receiving rate which 
has been given in the feedback message. 

Evaluation 

The introduction of so-called TCP-friendly congestion control in the Internet has raised 
many questions about the performance of equation based congestion control and the defi-
nition of TCP-friendhness. 

The performance of equation-based congestion control has been studied following both 
empirical and analytical approaches. In [WidOO], the author shows, by measurement, that 
long RTT causes TFRC mechanism to have a very long transitional state before reaching 
the actual bottleneck rate of the network even if it is the only one competing. Therefore, 
compared to TCP, the TFRC mechanism will have a slower convergence speed and respon-
siveness if the RTT is high, but a similar one in the case of low RTT. Furthermore, in 
PFTK98], it is shown that TFRC mechanism obtains a smoother throughput than TCP 

in the same network conditions. 

Recently, researchers explained the behaviour of equation beised congestion control by 
analysing the mathematical properties of the equation and its different parameters [VB05, 
RX05, XH06]. In [VB05], the authors studied how the supposed TCP-friendliness of 
equation-based congestion control is influenced by mathematical factors. In order to fulfil 
this study the authors accepted the definition of TCP-friendliness as an axiom that requires 
the non-TCP source to obtain a long-run term average sending rate not larger than the one 
that TCP would have obtained under the same circumstances. As a result, they identified 
four sub-conditions whose conjunction imphes TCP-friendliness. The first is called con-
servativeness, which means the source reaches a rate not larger than the TCP throughput 
formula used by this protocol. The second is that the loss event rate experienced by the 
source is not smaller than the one TCP would have experienced. The third is that the 
RTT observed by the source is not smaller than the one TCP would have experienced. 
The foTirth is that TCP obtains a throughput at least as large as the TCP throughput 
formula. In this study, the authors analysed three equation-based congestion controls that 
follow a basic control for the computation of the packet loss rate with a constant RTT. 
Based on these iissumptions, enumerated numerous propositions and theorems. They then 
verified these propositions and theorems through simulation and experiments. 

In [RX05], the authors follow the notations and assumptions introduced in [VB05] to 
underline the limitation of equation-based congestion controls and of TFRC in particular. 
The authors examined how three of the main factors of TFRC, namely the rate equation, 
the loss event rate and the RTO estimation, could influence the long-run throughput 
difference between TFRC and TCP. They outlined that two flows competing for the same 
bottleneck will see a different loss event rate if their sending rate is significantly different. 
They also outlined that this difference in loss event rate can amplify the difference in the 
sending rate. They attributed these differences to the convexity of the throughput equation 
(as in [VB05]) and the difference in the estimation of the RTO between TFRC and TCP. 
This study may be limited by the same assumptions as |VB05 . 
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3.5.6 Conclusion of the congestion control mechanism 

In this section we have described four congestion control mechanisms, TCP congestion 
control, and three of the main rate-based congestion control mechanisms. We have seen 
that even if it is not fully TCP friendly, TFRC remains the closer congestion control mech-
anism when mixed with TCP. Furthermore, TFRC provides the smoothest rate compared 
to both TCP and RAP. 

3.6 CONCLUSION OF THE CHAPTER 

In this chapter we have presented the context of this thesis with a particular focus on 
the issues faced by congestion control mechanisms. We have, first briefly presented the 
possible network architectures and services with a focus on the EuQoS system which is 
the framework of the first contribution of this thesis. We then presented the trends and 
possibilities for the design of the transport protocols. Finally we gave a review of the current 
options for the integration of rate based congestion control inside these new transport 
protocols. This last review also introduced some explanations for the differences between 
these congestion controls and standard window-based congestion control. 



CHAPTER 4 

Design and implementation of a 
QoS-aware transport protoco. 

4.1 INTRODUCTION 

Today, multimedia applications are in widespread use and require strong delay and band-
width guarantees. The Assured Forwarding (AF) class of the lETF/DifFServ [HBWW99 
provides a guaranteed minimal throughput of which these applications can take advantage. 
The offered service is called Assured Service (AS) and is built on top of the AF Per Hop 
Behavior (PHB). The minimum assured throughput (also called target rate^) is given ac-
cording to a negotiated profile between the user and the network service provider. This 
service is particularly designed for elastic flows. These flows are generated l)y applications 
able to adapt their network usage to the available network resources (also called adaptive 
applications). This means that the application is able to increase the traffic to use the 
available network resources and can decrease it when a congestion occurs. 

Most of today's Internet applications are designed to be adaptive and use TCP [Pos81 
as a mean to transport their data. TCP offers a reliable and in-sequence, end-to-end 
stream-oriented data transfer service. Moreover, TCP implements flow and congestion 
control mechanisms in order to avoid network congestion and the receivers' buffers over-
flow. Despite a fair TCP behaviour in terms of network resource usage and bandwidth 
sharing, TCP is not appropriate for many applications that integrate time and bandwidth 
constraints and do not require full reliability ¡WKST04 . 

A classical alternative to the use of TCI^ is the User Datagram Protocol (UDP). UDP is 
a minimalist transport protocol which does not provide any packet reliability, order and 
flow congestion control. As a result, UDP needs the application to implement user-level 
congestion control in order to compete fairly with other TCP flows. The Datagram Con-
gestion Control Protocol (DCCP) is a recently standardized protocol offering a congestion 

' We call in t his chapter TCP and TFRC target rate, the TCP or TFRC flow t arget rate 
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controlled, non-reliable transport service ¡KHF06]. DCCP is suitable to applications cur-
rently using UDP, indeed congestion control is a fundamental mechanism that should not 
be delegated to application layer because of risk of unfair selfish behaviour. DCCP aims 
to provide a transport service that combines the efficiency of UDP with TCP congestion 
control and network friendliness. To realize that, one of the congestion control mechanism 
implemented in DCCP is the TCP-Friendly Rate Control (TFRC) [HFPW03]. TFRC is a 
congestion control mechanism for unicast flows operating in a best-effort Internet environ-
ment. Based on the TCP throughput equation [PFTK98], it is designed to be fair when 
competing for bandwidth with TCP flow. It generates a flow with much lower through-
put variations over time than TCP. As a result, it is particularly suitable for multimedia 
applications such as video streaming or telephony over the Internet. 

In the particular case of the DiffServ/AF class, a minimal bandwidth is provided (called 
in-profile traffic part), with the possibility to reach higher bandwidths (called out-profile 
traffic part) depending on the network congestion level. As stated previously, multimedia 
applications are natural candidates to use this service class. Nevertheless, as for classical 
TCP flows over DiffServ/AF class, TFRC does not use the full potential of the offered 
service and produces unexpected results in terms of user requirements as it will be demon-
strated in the following of this chapter. As the TFRC mechanism models the TCP AIMD 
congestion control algorithm, its behaviour remains similar in average to TCP over this 
class. The flow RTT drives the obtained long term throughput, the guaranteed bandwidth 
not being efficiently used by the application in case of long RTT. 

In this chapter, we focus on the behaviour of TFRC mechanism in the context of a Diff-
Serv/AF class. Through our implementation we show the good properties of classical 
TFRC in terms of bandwidth smoothing and sharing when mixed with other TFRC or 
TCP flows. Nevertheless, even if a throughput guarantee is provided to the application by 
the underlying network, as for TCP, the throughput obtained by TFRC mainly depends 
on RTT and loss probability. Thus, the application does not always receive the negotiated 
guaranteed throughput. To cope with this problem, we propose a simple TFRC specialisa-
tion, namely pTFRC, allowing the application to reach its target rate whatever the RTT 
and the target rate value of the application's flow. We validate, for the first time, the newly 
introduced QoS-aware congestion by implementing it inside a Java framework. After this 
validation, we combine this congestion control with a SACK-likc reliable mechanism and 
a flow control in order to provide the first complete reliable transport protocol compliant 
with a bandwidth guaranteed network service. This protocol is the first version of the 
Chameleon Protocol (CP) denoted in the rest of this chapter CP QoS. 

This chapter is structured as follows. Section 4.2 provides related work about the Diff-
Serv/AF and congestion control mechanisms. We then present and validate in Section 4.3 
our implementation of TFRC mechanism. Based on this implementation we present one 
case where TFRC is not able to obtain the negotiated bandwidth. In order to solve this 
problem, Section 4.4 details the problem statement and presents the .^TFRC mechanism. 
Section 4.5 details a real implementation of (/TFRC in the Java framework introduced in 
chapter 3. Based on the implementation of the QoS-aware congestion control, the section 
4.6 presents the implementation and evaluation of CP QoS. Finally section 4.7 gives a 
perspective of this work and provides a conclusion. 
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4.2 RELATED WORK 

In order to better understand the problem; how TFRC can be specialized to be QoS-aware, 
in this chapter, as TFRC models the TCP congestion control, we first recall previous studies 
on TCP over DiffServ/AF, then, we present a section concerning related work for TFRC. 

4.2.1 TCP over DiffServ/AF class 

Many studies related to the performance of TCP-flow^ over assured service have already 
been conducted. In [SNP99], five factors have been studied (RTT, number of flows, target 
rate, packet size, non responsive flows) and their impact has been evaluated in order to 
provide a predictable service to TCP flows. In an over-provisioned network, the target rate 
associated with the in-profile traffic is achieved regardless of these five factors. However, 
these factors have a deep impact on the distribution of the out-profile excess bandwidth. 
In their paper [PC04a], Park and Choi demonstrate the unfair allocation of out-profile 
TCP traffic and conclude that the smaller target rate aggregate (resp. larger target rate) 
occupies more (resp. less) bandwidth than its fair-shaie regardless of the subscription 
level. As the TCP protocol uses the AIMD congestion control algorithm which fairly shares 
the bandwidth available, the only mean to obtain a service differentiation with the TCP 
protocol is to use DiffServ traffic conditioners such as token bucket color marker (TCM) 
[HG991 or time sliding window color marker (TSWCM) [FSaOO]. The behaviour of these 
traffic conditioners has a great impact on the service level, in terms of bandwidth obtained 
by TCP flows. Several others conditioners have been proposed to improve throughput 
insurance [£0802]. [FRKOO], [HBF02]. [KAJOl], [LAF05a], [LAF05b], [NPEOO]. These 
contributions clearly showed that the key parameters to the TCP throughput guarantee 
problem are given by loss_probabiUty. the RTT and the target_rate) associated to each 
flow. 

4.2.2 TFRC over DiffServ AF class 

As previously introduced. TFRC is an equation-based, rate control mechanism aiming at 
reproducing the behaviour of TCP congestion control with the use of the equation (3.3). 
There are few known studies about TFRC behaviour over a DiffServ networks. In partic-
ular. the authors of |KK03] investigate AF-TFRC performances and give a service provi-
sioning mechanism allowing an Internet Services Provider (ISP) to build a feasible DiffServ 
system. In tliat study, the problem of largo RTT difference between long and short transfers 
were not addressed. Moreover, for experimental purposes (based on loss rate estimation) 
all simulations were carried out during 1000 seconds. This duration associated to invariant 
network conditions allows a TFRC flow to converge easily to its target rate. As a result, 
the flows achieve an average throughput near the target rate. 

In the following section, we will present and validate our implementation of TFRC in 
user-space and we pre-sent a limitation of TFRC over DiffServ 'AF. 
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4.3 VALIDATION OF THE TFRC IMPLEMENTATION 

In this section we present the implementation and the performance analysis of our imple-
mentation of TFRC congestion control mechanism. This implementation has been done 
in user-space by using the Fully Programmable Transport Protocol (FPTP) framework 
Exp03]. FPTP has been introduced to offer a generic transport service and a dynami-

cally configurable transport protocol. FPTP is a connection-oriented and message-oriented 
transport protocol. FPTP offers, among other things, a partially ordered, partially rehable, 
congestion-controlled and time-controlled end-to-end communication service. FPTP has 
been designed to be statically or dynamically configured according to the application layer 
QoS requirements. FPTP services are implemented by the composition of configurable 
micro-mechanisms suited to control and manage the QoS required by sessions' flows. 

We have implemented the TFRC mechanism as a processing module in this compositional 
architecture (see chapter 3 section 3.4.6). This TFRC mechanism has been specialised and 
QoS adapted, as described in the previous section, in order to take into account the QoS 
delivered by the underlying network. FPTP uses an object-oriented approach to dynam-
ically instantiate micro-mechanisms. The Java language has been used for implementing 
FPTP, because of its object-oriented properties. The rest of this section focuses on TFRC 
evaluation and its behaviour above the DiffServ/AF service. We show that the basic TFRC 
mechanism is not able to efficiently use the underlying level of service. 

In this section we present a part of the validation measurements that have been obtained on 
both the ns-2.28 simulator (named in the following the reference TFRC implementation) 
and the Chameleon Protocol framework (named in the following CP/TFRC ) with an 
underlying network of which the behavior is emulated and controlled by the Dummynet tool 
L. 97]. We performed several tests and in this section give an overview of this validation. 

4.3.1 General Assumption and model 

In order to validate the TFRC implementation, we used the simple topology- given in Figure 
4.1 for the ns-2 simulator and the real testbed. Over this topology we demonstrate that our 
implementation react in the same order of magnitude than the ns-2 TFRC implementation 
when, first, there is no other flow in competition for the space in the router's buffer. Then 
we introduce random losses during a given period in order to analyse the reactiveness of our 
implementation. Afterward, we introduce a UDP flow in the network to better quantify 
this reactiveness. Finally we show in a simple experiment a limitation of TFRC congestion 
control mechanism over a DiflServ/AF network. 

100Mbits/s 

1 Mbits/s 

RTT = 50ms or 250ms 

Figure 4.1 The simulation topology for TFRC validation 
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The real testbed is composed of two end-stations on GNU/Linux, and one router with 
FreeBSD. We use a Dummynet pipe in order to emulate various RTTs and packet-loss 
rates (PLR). For ns-2 simulation and real emulation: the packet size was fixed to 1000 
bytes; the router queue size was 50 packets; measurements were carried on during 180sec. 
For each experiment, we computed the average throughput at the server and at the receiver 
side. 

4.3.2 Network with constant bandwidth 

In the scenario presented in Figure 4.2, we show that in a network without any loss and 
with a constant bandwidth, CP/TFRC implementation using the framework described in 
chapter 3, section 3.4.6, acts hke the reference implementation. Figure 4.2 (a) shows the 
reference implementation results and Figure 4.2 (b) the CP/TFRC results. In this scenario, 
the bandwidth is fixed to lOOOKbits/s and RTT — 50ms. No loss is introduced in the 
network. 

These figures show that at the receiver side, the measured throughputs are identical on 
both figures. We can note that the throughput oscillations on the sender side are more 
important on 4.2 (b) than on 4.2 (a). This slight difference can be explained by the different 
environments (i.e., simulation and real systems) and particularly in the real implementation 
host processing and the CPU load influences the packet treatment and as a result end-
to-end delay variance is higher for the real implementation. Nevertheless, the CP/TFRC 
behavior remains strongly similar to ns-2 and above all, on the receiver side, the same 
throughput is obtained. 

4.3.3 Impact of losses and end-to-end delay 

The aim of this experiment was to show that in the case of high RTT (25077is) and a 
loss rate of 1% between t ^ 60.s and t = 1206'. the CP/TFRC implementation reacts 
in a similar way to the reference implementation and that the convergence toward the 
available rate is identical after a loss period. In Figure 4.3. we show that CP/TFRC 
implementation responds properly to loss detection, during the specific packet loss rate 
period. The readjustment to a normal sending rate is done in roughly the same amount of 
time (nearly 2òsec in this particular RTT case). 

4.3.4 Impact of an UDP flow 

In this experiment, the bottleneck remained unchanged. There were no losses and the 
RTT is set to 100/??,6-. A UDP flow with a rate equal to bOOKbiis/s was sent between 
f = |30iiec. QOsed. In Figure 4.4. due to the packet multiplexing with non-responsive 
UDP flow, both implementations significantly decreased during the UDP transmission. 
Furthermore, CP TFRC implementation responded to the detection of losses due to the 
UDP flow in the same way as the reference implementation. When the UDP flow stops, 
the response of both implementations remains similar. 



36 
Design and implementation of a 
QoS-aware transport protocol Chapter 4 

80 100 
Time (sec) 

(a) TFRC ns-2 

120 140 160 180 

80 100 120 140 160 180 
Time 

(b) TFRC real 

Figure 4.2 BW-lOOOKbits/s RTT=-50ms PLR=0 

4.3.5 TFRC limitations over a DiffServ/AF network 

In this section we give an example of the TFRC limitations over a DiffServ/AF network. 
We will show in more details these hmitation in the section 4.5. 

In order to illustrate these limitation we will use the DiffServ network show in Figure 4.5. 
The hosts were PCs on GNU/Linux and routers nm FreeBSD with ALTQ [Cho99] in order 
to implement the DiffServ network. The experiments were carried out using the following 
configuration: the packet size was fixed to 1500 bytes; a two colors token bucket marker 
with a bucket size of bĵ tes was used on the edge router: the routers were configured 
with queue size of 50 packets and RIO parameters in the core router correspond to {miriout, 
maxout iPout rTninin, maxin, 20,0.1,20,40,0.02); the bottleneck between the core 
and the egress router was 1000/\ Mis/s; measurements were carried out for 180.sec. 

In this illustration, we configured the network to be over-provisioned by 20% 
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Figure 4,3 BW-lOOOKbits/s RTT-250ms PLR-1% 

We present in this scenario a network configuration where one TFRC flow cannot reach 
its targe t̂. The network is configured with an excess of 20% of banchviclth. The two flows 
in this network have respectively a target rate of 600kbit/s and 200kbit/s and an RTT of 
300m6' and 10ms. As ah êady identified for TCP in [SNP99], in such a scenario, the flow 
with the higher RTT and target rate is not able to obtain its negotiated bandwidth. In 
a similar manner, as show in Figure 4.6, TFRC alone is not able to reach its target rate. 
We will give in section 4.5 more evidences about the non-obtention for TFRC's flow of 
negotiated QoS. In order to solve this problem we present in the next section a solution 
that allows TFRC to obtain its target rate regardless of the network conditions. 

4.3.6 Conclusions 

We performed experiments with several other scenarios similar to those defined in [WidOO 
for the TFRC ns-2 validation. Even if this is not the purpose of this chapter, all these 
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Figure 4.5 The testbed topology for DiffServ experiments 

experiments delivered very similar results and allowed us to conclude that our CP/TFRC 
implementation compares well to the ns-2 implementation. 
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1000 

Figure 4.6 TFRC over an 20% over-provisioned network 

Furthermore we showed that TFRC mechanism cannot take the full advantage of the un-
derlying bandwidth guarantee in ever}̂  network conditions. In the section 4.5, we extends 
the analysis of CP/TFRC over DiffServ/AF networks and we show that the solution intro-
duced in the next section allow the transport protocol to obtain the negotiated bandwidth. 

4.4 GTFRC: A QOS-AWARE RATE CONTROL 

We showed in the previous section, that in some scenarios TFRC mechanism cannot obtain 
the negotiated bandwidth. In the present section we explain why neither TCP or TFRC 
could not obtain its target rate in ail network condition. Then we present (^TFRC , a QoS-
aware congestion control which specialises TFRC for bandwidth guaranteed network such 
as DiifServ/AF. We conclude this section with a discussion about some potential security 
concerns the introduction of such a mechanism could introduce in the network. 

In the context of DiffServ/AF class providing a known guaranteed rate, a flow throughput 
breaks up into two parts: 

1. a fixed part that corresponds to a minimum assured throughput. In the event of 
congestion in the network, the packets of this part are marked as inadequate to loss 
(colored green or marked in-profile); 

2. an elastic part which corresponds to an opportunist flow of packets (colored red or 
marked out-profile). No delivery guarantee is delivered to these packets. They are 
conveyed by the network on "best-effort" (BE) principle and are dropped first when 
congestion occurs. 

This study assumes that the network is well-provisioned and that on the whole, in-profile 
traffic does not exceed the resource allocated to the AF class. In case of excess bandwidth 
in the network, the application can send more than its target rate, so the network should 



Design and implementation of a 
40 QoS-aware transport protocol Chapter 4 

mark its excess traffic out-profile. If the network becomes congested, this out-profile traffic 
is predisposed to losses. 

As noted in section 4.2, the only way to make use of this service differentiation with TCP 
protocol is to set a DiffServ traffic conditioner. Even if the knowledge of the guaranteed 
bandwidth could be provided to the transport level, the AIMD congestion control inte-
grated into TCP is not able to use the instantaneous throughput as an input value for its 
congestion control. Only acknowledgements and timeout analyses indirectly allow TCP to 
act on the rate control. On the contrary, the TFRC mechanism effectively processes the 
instantaneous throughput according to the flow's RTT and loss event rate. 

Nevertheless, the optimal rate estimated by TFRC can still be under the target rate needed 
by the application and provided by the underlying DiffServ network. TCP would react 
in a similar manner by halving its congestion window. As for TCP in the AF class, the 
TFRC flow is not aware that a loss is corresponding to an out-profile packet and that it 
should not decrease its emitted throughput below the target rate. For TCP, the solution 
was to design a new conditioner, able to better mark the TCP flows than a simple token 
bucket or propose to add a new QoS congestion window as in [FKSS98] or [SPF04]. 

In contrast to TCP, the use of the TFRC equation makes the mechanism able to directly 
process the equivalent TCP throughput in function of the flow RTT and loss event. As a 
result, TFRC does not send packets according to a window but according to a rate that is 
translate into an inter-packet delaying. The ^TFRC mechanism therefore conditioned this 
rate to be compliant with the negotiated bandwidth. In the present study, the pTFRC 
congestion control mechanism is made aware of the target rate negotiated by the application 
with the DiffServ network. Thanks to this knowledge, the application's flow is sent in 
conformance with the negotiated QoS while staying TCP-friendly in its out-profile traffic 
part. This conformance is achieved by computing the sending rate as the maximiun between 
the TFRC rate estimation and the target rate as given in (4.1). 

X' = mm(max(Xcaic, g ) , 2 * Xrecv) (4.1) 

Where: X^ is the transmit rate in bytes/s; g is the target rate in bytes/s, and X is the 
transmit rate in bytes/s computed by the TCP throughput algorithm. The rest of the 
^^TFRC mechanism follows entirely the TFRC specification specified in |HFPW03]. 

gTFRC requires knowledge of the underlying bandwidth guarantee that the DiffServ/AF 
network service provides to the session. We assume this information is made available 
to the mechanism at socket-creation time, directly by the application. This guaranteed 
bandwidth resulted from a contract between the network service provider and the user. So, 
the target rate parameter can be set for example by the setsockoptO function. Without 
loss of generality, this x)aranieter is supposed to be known by an application after it has 
been previously negotiated on an end-to-end basis. This can be accomplished through a 
proper signalling protocol that a DiffServ architecture should provide |HKLdB()5]. The 
main concern with this approach relates to security. Indeed, if we give the possibility to 
the application to instantiate through a setsockoptO function the target rate negotiated, 
we can imagine that a misbehaving person could abuse this functionality by giving an 
higher value to g. We discuss this problem in the rest of this section. 
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4.4.1 Discussions about the security in ^TFRC mechanisms 

In our proposal, the application has to provide the target rate negotiated with the QoS 

network to the transport protocol. This is done at the socket level through a setsockoptO 

specification that allows the application to abuse the network by giving an higher value 

than guaranteed. Another problem hnked to this proposal is the case where the QoS service 

provider gives an incorrect configuration to the application. In the following sections, we 

address both problems. 

Preserving the provider interest against a denial of service 

As we give the possibility to instantiate through a setsockoptO function the target rate 

negotiated between the network service provider and the user, we can easily envisage that 

a misbehaving user could take part of feature by giving to g a higher value than the 

negotiated one. 

In the context of a DiffServ/AF class, the edge router marks in-profile the packets ac-

cording to the negotiated profile and out-profile the excess part. A misbehaving client will 

increase his out-profile traffic part and when a network congestion occurs and the dropping 

precedence set in the core router will entail the dropping of this excess traffic. Therefore, 

the misbehaving application will increase its own packet loss rate and will not get any 

bandwidth advantage. In summary, increasing the value of g at the user level does not 

impact on the in-profile traffic that is bounded by the SLA between the service user and the 

provider. Therefore, this kind of denial of service is avoided by the DiffServ conditioning 

mechanisms. 

Preserving the network service user and provider against wrong network con-

figurations 

This second case can potentially induce issues both. for the network service user and 

provider. Indeed, in this case a discrepancy between the user and provider configurations 

either would induce a risk for the service user to get a poorer service than the negotiated 

one or for the service provider a risk to dedicate to the service user more resources than 

needed. For instance, such an inconsistency could occur if the service provider miscalcu-

lates the resource needed for the related service layer agreement. In a DifiServ context, the 

in-profile traffic is not guaranteed anymore when a QSTP flows gets losses while emitting 

l)elow its target rate. In such a case, two actions are possible for the sender. The first 

one is to continue to emit at the guaranteed rate, g. This is a legitimate behavior because 

of the service provider must provide to his client the service he licis paid for. The second 

type of action w^ould be to react to the observed congestion and to warn the application 

or the user that the SLA has been broken off. This can be done thanks to an additional 

mechanism that would be able to detect that a bunch of losses occurred in the in-profile 

part. Anyway, in the case of an under-provisioned network, TCP (and TFRC) would react 

as if the target rate is lower than the expected one. Conversely, gTFRC, does not lower 

its sending rate and ,in such a pathological situation, suffers from losses. However, by re-



Design and implementation of a 
42 QoS-aware transport protocol Chapter 4 

stricting the sender rate to be not higher than twice the receiver rate, the TFRC algorithm 
bounds this volume of losses. 

The TFRC algorithm prevents in a certain manner these problems. Indeed, the algorithm 
will not return a sending rate higher than twice the receiving rate (given by 2 * Xrecv in 
equation (4.1)). However, we believe that these security concerns are out of the transport 
layer scope. We claim that it is definitely not the responsibility of the protocol to detect a 
selfish user behaviour or to react to a wrong setting. We therefore do not present results 
concerning an under-provisioning network. 

4.5 IMPLEMENTATION AND PERFORMANCE ANALYSIS OF A 
QOS-AWARE TFRC MECHANISM 

In this section we present the implementation and the performance analysis of the previ-
ously introduced QoS-aware congestion control. The FPTP framework has been initially 
modelled and evaluated over a best-effort network [Exp03, EPM04]. However a context 
such as the previously mentioned EuQoS system allows the transport protocol to be in-
formed of the underlying network's QoS characteristics. In such a context, the network 
service description can be provided to FPTP through an Extended Application Program-
ming Interface (E-API) for deciding which micro-mechanisms to compose in relation to the 
associated FPTP session. 

The rest of this section focuses on TFRC evaluation and its behaviour above the Diff-
Serv/AF service. We show that the basic TFRC mechanism is not able to efficiently use 
the underlying level of service and we then propose an extension which improves the QoS 
delivered to continuous flows. 

4.5.1 Testbed measurements in a DifTServ network 

This part deals with the use of CP/TFRC implementation and the implementation of the 
QoS-aware congestion control, gTFRC . as prtisented in section 4.4. above a DiffServ/AF 
class. 

Model and general assumption 

CP / .ĝ TFRC performances have been evaluated over the DiffServ testbed presented in Fig-
ure 4.5. In this topology we use the same parameters as explained in section 4.3.5. 
We experimented with many different RTTs and target rate configmations and present in 
this section a representative measurement of the efficiency of CP/gTFRC . We measured 
the performance obtained by CF/gTFHC in three scenarios; first we configured the network 
to be exactly provisioned, then we study the behaviour of (/TFRC in the case of over-
provisioned network when it is mixed with in a first time TFRC and TCP in a second 
time. 
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Exactly-provisioned network 
• 

In Figures 4.7, two flows are transmitted over the testbed. The first one has unfavourable 
conditions since it has the highest target rate to reach and a high RTT {RTT = 300ms, TR = 
800Kbits/s). The second flow has the lowest target rate {200Kbits/s) and a low RTT 
(10ms). The results for CP/TFRC are presented in Figure 4.7 (a) and for CP/.(7TFRC in 
Figure 4.7 (b). We can see that CP/^TFRC make it possible to reach the target rate more 
quickly than TFRC and that CP/i?TFRC keeps its target rate. The reason is obvious since 
at the first rate decrease entailed by the TFRC algorithm, CP/pTFRC evaluates a rate 
equal to the target rate. 
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Figure 4.7 Exactly-provisioned network 

In Figure 4.7 (a), we can see that the decreasing phase occurs for TFRC around t = lOsec 
and that CP/^^TFRC does not, at this time, deliver a rate lower than the negotiated target 
rate (Figure 4.7 (b)). Furthermore, we can see that the ,gTFRC mechanism entails smaller 



44 
Design and implementation of a 

QoS-aware transport protocol Chapter 4 

throughput variation than the general TFRC mechanism over DiifServ/AF network. Figure 
4.7 (b) shows that the flow with the lower target rate and the lower RTT is constrained to 
reach its own target rate of 200Kbits/s. 

Over-provisioned network 

These experiments dealt with an over-provisioned network in two different situation, where 
respectively, the sum of the target rates is equal to 800Kbits/s (Figure 4.8) and the sum 
of the target rates is QOOKbits/s (Figure 4.9). 
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Figure 4.8 Over-provisioned network 20% 

The networks have respectively 20% and 40% of excess bandwidth. Moreover, the more 
excess bandwidth in the network, the more difficulty the flow with the highest target rate 
will have to reach its target rate. This is due to the increase of the out-profile traffic 
which involves more losses in the network. These losses are more critical for the flow with 
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Figure 4.9 Over-provisioned network 40% 

the highest target rate and the highest RTT than for the lowest one. Indeed, the TFRC 
algorithm can process a rate lower than the negotiated target rate and due to a long RTT, 
the flow can have difficulty to retrieve its initial throughput as experimented during the 
period [SOsec, 1406'ecj on Figure 4.8 (a). 

This is not the case with the use of CP/.gTFRC . We can see in figures 4.8 (b) and 4.9 (b) 
that the flow with a lower RTT and lower target rate obtains a higher part of excess 
bandwidth. It is important to take into consideration that the proportional sharing of the 
excess bandwidth was not the aim of the proposed specialisation of TFR,C over an AF 
network service. This problem should remain under the responsibility of the edge router 
conditioning. 
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Interaction with a TCP aggregate in an over-provisioned network 

The last experiment shows the interaction of TFRC or i?TFRC and a TCP aggregate. In 
this experiment, two Chameleon Protocol flows with either TFRC or gTFRC mechanisms 
were sent versus an aggregate of ten TCP flows.The TCP aggregate crosses a token bucket 
marker with a target rate of 200Kbits/s and has an RTT equal to 1ms. Both CP flows 
have a target rate of AOOKbits/s and 200Kbits/s for RTT equal to 300ms and 10ms 
respectively. Figures 4.10 give the results obtained for both CP flows. 

Concerning the TCP aggregate, the obtained throughput was of 447Kbits/s, 403Kbits/s, 
362Kbits/s respectively for figures 4.10 (a, b, c). Therefore, the TCP aggregate always 
reached its target rate. In Figure 4.10 (a), conversely we see that with CP/TFRC , both 
flows had difficulties in reaching their respective target rates and that the flow with the 
higher target rate and RTT, did not reach a correct throughput value before t = 120sec. 
In Figure 4.10 (b), CP/.gTFRC flow easily reached its target rate. Nevertheless, due to 
the increase of the in-proflle traffic and the aggressive nature of the TCP aggregate, the 
other flow with CP/TFRC strongly decreased its rate. Finally, on Figure 4.10 (c), both 
flows used CP/.gTFRC and reached their target rate while the TCP aggregate remained 
aggressive and reached its target rate as well. 

4.5.2 Conclusions 

In this section, we have experimentally demonstrated the efficiency of the ^TFRC mecha-
nism through a large range of measurements. .(/TFRC allows to reach a negotiated mini-
mum guaranteed throughput regardless of the RTT or the target rate of a flow. Further-
more, in this section e have only presented the worst cases for a unique flow to reach its 
target rate. Indeed, as shown in [SNP99], these worst scenario are identified by a large 
difference in the value of the RTT in addition to a large difference in the value of the target 
(the smallest RTT corresponding to the smallest target rate value). The second scenario 
represents the case when a ffow is mixed with a TCP aggregate. Thanks to its multiplexing 
property, the TCP aggregate can outperform the single flow which cannot reach its target 
rate. gTFRC requires only to be aware of the target rate negotiated by the application. 
The transport protocol bî ised on such a QoS-aware congestion control mechanism is well 
suited to multimedia applications which do not require any reliability. 

In the following section, we present the composition of this mechanism with a reliability 
mechanism in order to deliver a reliable and congestion controlled transport service. This 
service is provided by the combination of a SACK-like mechanism for loss recovery and 
a flow control mechanism especially designed for rate-based transport protocols. This 
version of the protocol is well suited for applications which required a reliable service 
and guaranteed bandwidth. An example of such applications could be a tele-medicine 
application where doctors want to share high quality images or videos. 
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Figure 4.10 Over-provisioned network 20% with ten TCP flows 



Design and implementation of a 
48 QoS-aware transport protocol Chapter 4 

4.6 DESIGN AND IMPLEMENTATION OF A COMPLETE QOS-AWARE 
TRANSPORT PROTOCOL 

Error and congestion control are two fundamental mechanisms of a QoS oriented trans-
port layer. However, the legacy error and congestion-control mechanisms proposed by 
TCP focus exclusively on network behaviour and impact badly on apphcation layer band-
width, delay and jitter constraints. Indeed, when packets are dropped by the network, the 
standard window-based congestion control mechanism causes TCP to change indirectly its 
ACK-clocked sending rate. Advances in error control have lead to the SACK mechanism 
that potentially opens the door to more efficient retransmission strategies during loss peri-
ods [FF96]. However, the TCP congestion control mechanism, even when used with SACK, 
imposes retransmission constraints that entail a severe sender rate decrease during recovery 
phase [FHG04]. This behaviour may alter the quahty of service delivered to continuous 
flows such as video or audio streams. As underlined by RFC 2018 "future research into 
congestion control algorithms may take advantage of the additional information provided 
by SACK". 

The present contribution aims at demonstrating how the combined use of TFRC and SACK 
can improve a TCP-compliant transport service, especially during loss bursts. Indeed, 
TFRC and SACK share the common goal of improving the QoS delivered to flows by 
offering both a mechanism for enhancing flows' rate smoothness and a mechanism for 
loss recovery. Their combined use offers potential performance improvements that this 
chapter aims to explore. Therefore, we show how two QoS parameters, i.e. bandwidth and 
rehabihty, can be managed jointly in a non-conflicting way (i.e. conversely to TCP) to 
deliver a better transport service than TCP, regardless of the underlying network service. 
In addition, the composition of SACK and TFRC has two other main advantages: first, 
SACK allows fully or partially reliable error control disciplines to be achieved; then, the 
SACK data structure can be easily integrated with TFRC feedback packets. 

In the following section, we present the context of this work and we introduce the SACK 
mechanism and the flow control. Then, section 4.6.1 shows how .^TFRC can be composed 
with the SACK mechanism for delivering an AF compliant and reliable transport service. 
The resulting protocol appears to be the first reliable transport protocol especially designed 
for the DiffServ/AF class. 

4.6.1 CP/QoS Design and Implementation 

In this section we present how reliability can be performed an adaptation of SACK to 
if TFRC, and due to the design of an efficient flow control adapted to a rate based congestion 
control. 

Reliable TFRC 

Section 4.4 focuses on the first component of our QoS-aware rehable transport protocol, 
that is QoS-aware congestion control mechanism. Indeed, gTFRC allows the target rate 
negotiated by the application to be ensined whist being TCP-friendly. Tlie next step is 
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the integration of ^TFRC with a SACK-based mechanism to provide a rehable transport 
service. SACK offers a powerful base to provide a sophisticated error-control mechanism 
compared to the basic Go hack N error-recovery mechanism. As specified in [MMFR96], 
the mechanism aims to give information about the set of missing TPDUs^. Since TFRC 
is a datagram-oriented mechanism and SACK is byte-stream oriented, we made change to 
the SACK mechanism to make it aware of packet losses instead of byte losses. 
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Figure 4.11 Modification in TFRC header 

In Figure 4.11, the two first protocol data imits represent respectively the TFRC header 
and the new header that results from the composition of ^TFRC and SACK. The two 
last PDU represent respectively the feedback given by the receiver for the classical TFRC 
protocol and TFRC/SACK composition. In these headers, each field is either 4 or 8 
bytes encoded field except for the proto ID (one byte), the type (one byte) and the SACK 
payload (variable length). The datagram oriented SACK mechanism is defined in the same 
way as the stream oriented one. The SACK payload is constituted by a sequence of pairs 
of sequence numbers^. These pairs represent the edge of intervals of correctly received 
contiguous packet. The length represents the number of pairs to analyse for the sender. 
Finally the Offset represents the sequence number of the first packet of the first pair. We 
can note that in an implementation these pairs of sequence number could be implemented 
as a bit field to be more efficient, but we choose to present here a solution close to the 
one introduced in the SACK RFC [MMFR96). We can note that the SACK mechanism 
can help to implement a partial order transport service that would retransmit mandatory 
packets only. 

Design of a flow-control adapted to a rate-based reliable Transport Protocol 

In this section, we describe the design of our flow-control mechanism. Since the SACK 
mechanism requires receivers to maintain a buffer for the in-order dehvery of packets to 

^Transport Protocol Data Units 
•"̂ this SACK structure could also be implement as a bit field 
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the application, for rate control purpose, we introduced a new window variable, avail_ win, 
representing the space available in this buffer in the case of constant packet size. This 
window is similar to the TCP receiver window. The purpose of this variable is to maintain, 
at the sender, the amount of buffer space available at the receiver and prevent the sender 
from transmitting more packets than the receiver can buffer. Other candidates solutions 
for the design, including modification of the TFRC equation, are discussed later. We note 
in the rest of the section "reading rate" the maximum rate we allowed the application to 
read from the receiver buffer when there is available data. 

Figure 4.12 gives an illustration of sender and receiver windows. In this figure, the dark 
boxes represent data packets already sent or received. 
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(a) The sender's window. Left border: highest acknowledged packet ID; Right 
border: highest packet ID sent so far. avail_ win: available window size to send 
further data packets. 
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(b) The receiver's window. Left border: highest packet ID of the previously sent 
SACK vector; Next left border: highest packet ID of all correctly and in-order 
received packets. Right border: highest packet ID received so far. avail_win: 
available window size to receive further data packets. 

Figure 4.12 The sender's and receiver's window 

At the sender, the flow-control mechanism should stop transmitting data packets if the 
receiver's buffer is full. To achieve this, we use the avail_win variable, which, at the 

'••9m 
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receiver, represents the available space in the receiver buffer, in number of packets. This 
variable is integrated in the TFRC-SACK feedback messages as a one byte field after the 
Receiving Rate field of the last header in Figure 4.11. The avail_win variable therefore 
indicates, at the sender, the supposed number of packets which can be sent. Avail_win 
is never negative and is upper-bomided by the total window size. When this variable is 
non nil, the sender sends data packets at the rate computed by TFRC algorithm. Each 
time a packet is sent, avail_win is decreased by one at the sender. When avail_wm is nil, 
the sender has already sent the maximum number of data packets which could have been 
accepted by the receiver. Note that the TFRC rate still conditions the speed at which 
packets are sent, the avail_win variable conditions are the maximum number of packets 
which can be sent between receiving two feedback messages. 

Indeed, as mentioned previously, each feedback message sent by the receiver contains 
the available buffer space. At the sender, upon reception of a feedback message, the 
local avail_win variable is computed by withdrawing the number of packets sent since 
the header's Offset (which can be seen as the last byte sent in TCP) from the header's 
avail_win field. A feedback message can therefore unfreeze the sender if the newly com-
puted local avail_ win variable is non-nil or the SACK vector indicates that some packets 
need to be retransmitted. 

At the receiver side, when a data packet is received, if its sequence number (Snew) is 
higher than the highest previously received sequence number (Sold), avail_ win is reduced 
by Snew—Sold- Otherwise, this packet is out-of-order and is therefore placed in the reception 
buffer. When the application reads packets from the buffer, the avail_ win is increased by 
the corresponding number of read packets. 

Discussion In this section, we discuss the design of our flow control for TFRC and 
explore alternative solutions. 

The main feature of a rate-based congestion control mechanism is the use of an equation 
to determine the sending rate. This equation typically uses network measurements (or 
estimations) to calculate the theoretical rate at which TCP would send in similar condi-
tions. Following this observation, we first investigated two other possible solutions to the 
flow-control problem. 

The first solution is to obtain the reading rate of the receiving application and send it 
back to the sender. This can be done either by estimating the reading behaviour of the 
application or by assuming that the application can communicate this reading rate to the 
transport protocol. The sender would then adjust its sending rate to the minimum between 
its computed congestion control sending rate, twice the receiver's receiving rate, and the 
application reading rate. However, this solution has two major drawbacks. Firstly, the 
reading rate depends on different parameters such as application type and CPU usage, 
and may therefore follow complex patterns, which can be difficult to estimate. This may 
result in erroneous values leading in buffer overflow. Secondly, in order to provide packet-
ordering. the receiver temporarily buffers out-of-order packets. This can lead to a situation 
where the application reading rate is nil. therefore the sender would stop even if there is 
space in the buffer. 
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From this, it follows that there is no improvement or benefit in including the flow control 
in the TFRC's sending rate algorithm. 

Validation of the flow-control mechanism In this section, we validate our flow-
control mechanism using simulation in ns-2.30. We first implemented the SACK-like 
mechanism within ns-2.30's TFRC. We also extended the ns-2 simulator to include the 
apphcation layer to simulate an application reading from the socket buffer at different 
rate. Using this implementation, we conduct a set of simulations to demonstrate the ef-
fectiveness of our flow control mechanism, and quantify the potential impact of the SACK 
and flow control modifications over the TFRC flow dynamics. 

Validation of TFRC-SACK: TCP-friendliness conservation and Reliability The 
first experiment aims to verify the TCP-friendliness of TFRC-FC-SACK when sharing a 
bottleneck with other TCP flows. Currently, the definition of the TCP-friendliness is still 
being debated [Bri06]. In this study, we will first follow the definition in RFC3448: a 
flow is "reasonably fair" if its sending rate is generally within a factor of two of the sending 
rate of a TCP flow under the same conditions.This definition concerns instantaneous 
values. Another common view is that, on average, a flow is TCP friendly if the non-TCP 
source obtains a long-run term average sending rate not larger than the one TCP would 
have obtained under the same circumstances [FF99 . 

To quantify the TCP-friendliness we therefore use an expression of the means ratio as 
shown on equation (4.2). 

nx) = i ^ i ^ l (4.2) 
m yi 

Where X is the protocol being studied, the average throughput of the X flow, n 
the number of X flows, ^ the average throughput of the TCP flow and m the number 
of TCP flows. In this formula, if T has a value of less than 1 then the non-TCP flow is 
TCP-friendly, if T is equal to 1 then we have an ideal friendliness and finally if T if greater 
than 1 then the non-TCP flow overruns TCP. 

In this simulation scenario, we used a butterfly topology as illustrated in Figure 4.5. We 
performed two experiments where TFRC-SACK first competed with TCP-SACK, then 
with TCP New Reno. All three protocols were set to the same packet size of IK Byte and 
a maximum window size 64KBytes. 

Results are presented in Figure 4.13. Each graph shows the flow's instantaneous throughput 
at the receiver computed with an average sliding window throughput estimation with a l7ns 
window. In both experiments, the application reading rate can be considered as infinite. 

From Figure 4.13, we can see that the TFRC-SACK-flow instantaneous throughput is 
slightly under that of both TCP SACK and TCP New Reno flows. The TFRC-SACK 
instantaneous throughput is well within the 2x factor imposed by our TCP friendly defi-
nition. We can therefore conclude that this TFRC-SACK implementation is friendly with 
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both TCP SACK and TCP New Reno^^ In Figure 4.13 (a), TFRC-SACK equally shares the 
"̂ we conducted a series of other experiments with different range of RTT and bottleneck bandwidth 

which confirm this result 
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bottleneck with TCP for almost 130s. At t = 130s, TFRC suffers from consecutive losses 
and therefore sharply decreases its throughput. TFRC-SACK then attempts to re-adjust 
its throughput to the equilibrium with TCP, but this process converges slowly [WidOO . 
When competing against TCP New Reno, as shown in Figure 4.13 (b), TFRC-SACK be-
haves similarly except that TFRC-SACK stays longer at the first equilibrium (200s instead 
of 130s). Furthermore, after consecutive losses, TFRC-SACK reaches the equilibrium with 
TCP New Reno faster than with TCP SACK. These differences can be explained as the 
TFRC equation models TCP Reno. 

Table 4.1 presents the TCP-friendliness index of TFRC-FC-SACK calculated using equa-
tion (4.2). As all figures are below one. This confirms that TFRC-SACK is friendly with 
both versions of TCP. 

Table 4.1 TCP-friendliness index results 
TCP version T(TFRC-SACK) 

TCP/Newreno 0.82 
TCP/SACK 0.72 

These experiments made it possible to validate the SACK mechanism and to verify that 
all lost packets are retransmitted until received. In Table 4.2, we summarize the number 
of sent and lost packets for each of the flows in the previous experiments. We can see 
from this table that the TFRC-SACK flow sends fewer packets than both TCP versions. 
This is explained as the TCP flows' overall throughput is higher than the TFRC-SACK 
and the packets-statistics are collected during a fixed time period of 400s. Furthermore, 
we can see that the TFRC-SACK flows experience less packet losses than both TCP flows 
(in terms of both absolute value and percentage). This is explained by the fact that the 
rate-based congestion-control mechanism produces a smoother sending rate compared to 
a window-based mechanism which is more aggressive. Finally, by using packet marking 
(not shown in the table), we verified that TFRC-SACK did retransmit until all dropped 
packets wre correctly received. 

Table 4.2 Packets statistics 
number of sent number of lost 

packets packet (percentage) 
TCP/Newreno 26702 166 (0.62%) 
TFRC-SACK 21962 45 (0.2%) 
TCP/SACK 28740 162 (0.55%) 
TFRC-SACK 20368 42 (0.2%) 

Impact of the Application's Read Rate The objective of this experiment was to 
validate the flow-control mechanism, by measuring the sender throughput when varying 
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the receiver application reading rate, i.e. simulating a slow application. We also wanted 
to confirm that no packets were lost due to a slow receiver unable to accept incoming 
packets. In addition, in this section, we quantify the impact of our SACK and Flow 
Control mechanisms over TFRC smoothness, by measuring the throughput stability during 
the data transfer. 

In order to quantify this stability, we consider the average throughput for each time-unit 
interval. For each time interval we compute the standard deviation of the throughput 
for each flow [JWL04] and use the average of variation coefficients of considered flow so 
considering the following metric equation (4.3). 

S = 
n / m \ 

\ M / 

Where in the following, xl is the average throughput of the TFRC-FC-SACK (resp. 
TFRC) flow, n is the number of flows, Xi{k) is the throughput of the TFRC-FC-SACK 
(resp. TFRC) flow for the k^^ time interval and m is the number of time intervals. 

For these experiments, we used a simple topology where two nodes communicate through 
a third. Packets were crossing two consecutive links of respectively 10 Mbps and 1Mbps 
bandwidth, for an overall 20 ms RTT (5ms delay on each link). 

Figure 4.14 shows the throughput of a TFRC-FC-SACK flow as the apphcation reading 
rate is set to 600A:6zt/s at the receiver. 

Each packet-loss event is illustrated on Figure 4.14 by a cross on the x-axis. At the begin-
ning of the transmission, the sender sends packets according to the slow start algorithm. 
This phase stops when the first packet loss event occurs. TFRC then enters the conges-
tion avoidance phase. As soon as the receiver's buffer is full due to the application slow 
read-rate, the sender can no longer send further packets. As soon as the application reads 
packets from the buffer non nil avail_ ivin values are sent to the sender. 

Hence, the sender is only allowed to send new packets when the receiver has delivered 
some packets to the application. Consequently, Figure 4.14 confirms that the flow control 
mechanism operates correctly as the throughput is adapted to the receiver application 
reading-rate. Furthermore, Figure 4.14 shows that the receiver does not drop any packets. 

In Figure 4.15, we mix one TFRC-FC-SACK and one TFRC flow in the same network as 
the one used previously. However, contrary to the previous experiment, the application 
reading rate varied in time and followed a specific pattern as shown in Figure 4.15. We 
chose this specific pattern as it represents a mix of reading rate that are respectively above, 
under and equal to the fair share throughput. 

From Figure 4.15, we can first see that a reading rate above to the theoretical fair share 
value {500kbit/s) does not impact on the behaviour of TFRC-FC-SACK: TFRC and 
TFRC-FC-SACK share equally the link bandwidth. Furthermore, the transition from 
this reading rate to another one less than bOOkbit/s does not induce any packet loss at the 
receiver buffer for TFRC-FC-SACK (but for TFRC). Between t = lOO.s and t = 1506-, the 
application reading rate is set to lOOkbit/s, under the theoretical fair share value. During 
this phase, we can see from Figure 4.15 that the TFRC-FC-SACK sending rate follows 
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Figure 4.14 TFRC-FC-SACK with read rate 600 Kbps, 20 ms RTT, queue limit of 10 packets (the cross 
represents six losses) 

the application reading rate while TFRC flow can fulfill the rest of the bottleneck. At 
t = 150s, the application reading rate is set again to values above to the fair share for 
100s. We can see from the graph that during this period TFRC-FC-SACK and TFRC 
equally share the bottleneck bandwidth as expected. Finally, for the remaining variations 
of application reading rate, TFRC-FC-SACK continues to behave consistently with reading 
rate variation. 

To quantify the impact of the flow control mechanism on the throughput smoothness, we 
used the stability metric defined in equation 4.3. We applied this metric on a series of 
experiments that aimed to check that the flow control did not introduce any degradation 
in the smoothness characteristic of TFRC. 
In Table 4.3, we present the results of experiments where two identical flows shared a 
bottleneck of IMhit/s during 4006'. We show in this table that TFRC-FC-SACK remains 
as smooth as TFRC when it is not limited by the application read rate. Furthermore, when 
we introduce for both flows a receiver reading rate of 300Kbit/s, the resulting stability of 
the system is increased. This result can be explained by the fact that the osciUations in 
the throughput are usually due to the congestion control mechanism that tries to increase 
until the detection of a loss. In the case of a system limited by the application read rate 
the two flows do not try to increase nor decrease and therefore are more stable. 
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Figure 4.15 TFRC versus TFRC-FC-SACK with experiencing variation of read rate 

Table 4.3 Stability index for different protocols 
TFRC TFRC-FC-SACK TFRC-FC-SACK reading rate 

s 0.094 0.097 0.051 

Implementation 

In this section we present the implementation of a CP/QoS protocol based on a composi-
tional transport protocol framework [Exp03]. Basically, this framework, developed in Java 
langiiage, allows easy instantiation of transport layer mechanisms and to compose them 
to build a transport protocol which applies an efficient adaptation between application 
needs and miderhdng network characteristics [Exp03]. Figure 4.16 gives an overview of the 
micro-protocols (i.e. processing modules) that have been composed for the instantiation of 
the CP/QoS protocol. CP/QoS is composed on both sides by seven Processing Modules 
(PM) respectively dedicated to (see Figure 4.16 for details): 

• the processing of the outgoing flow (Add Header, Set Header, Rate Control): 

• the processing of the incoming flow (Remove Header, Process IN, Receive Sock): 

• the Process Feedback and the Create Feedback deal with the management of the 
feedback messages (i.e. creation and analysis). 

The main components of CP/QoS are: 
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Figure 4.16 Internal mechanisms of the protocol at the sender and receiver side 

• the Process IN component: this component implements the ^^TFRC mechanism at 
the sender side; 

• the buffer Buffer Out: this buffer is the transmission queue upstream from the rate-
control component, packets to retransmit are placed on top of this queue; 

• the buffer BufferRetr: this buffer stores data sent but not yet acknowledged; 

• the Process Feedback component: this comi^onent is in charge of the processing of 
feedback messages. This component applies error control on packets stored in the 
Retransmission Buffer; 

• the Create Feedback component: this component computes the loss event rate and 
creates the Feedback message with the SACK structure and the avail_win variable. 

Detailed descriptions of this framework can be found in [Exp03 . 

4.6.2 Performance evaluation of CP/QoS 

This section evaluates the CP/QoS service over a bandwidth guaranteed network. We 
firstly present the experimental model used and the general assumptions. Then, the results 
and their analyses are provided with respect of various network conditions. For the sake of 
comparison, the chosen parameters are those used in other well-known papers about TCP 
over AF, such as [SNP99, CM05, NPEOO, £0802]. 
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Model and general assumption 

CP/QoS is implemented in the Java language and evaluated over the DifFServ testbed 
presented in Figure 4.5. All the nodes are PC, the end-hosts run GNU/Linux and the 
routers run FreeBSD with ALTQ |Cho99] in order to implement the DiffServ service. The 
experiments were carried out using the following configuration: 

• the packet size is fixed to 1500 bytes; 

• a two-color token bucket marker with a bucket size of 10^ bytes is used on the edge 
router [HG99]; 

• routers are configured with a queue size of 50 packets and RIO'̂  parameters in the core 
router correspond to {miriaut, rnaxout ,P(mt -miriin, rnaxin, Pin)^{lO, 20,0.1,20,40,0.02); 

• the bottleneck between the core and the egress router has a fixed capacity of lOOOKbits/s-, 

• measurements are carried out 10 times during ISOsec for an FTP-like transfer. 

We performed experiments with a large set of different RTTs and target rates. Only a 
representative part of these results is given in the next section. The choice of these results 
has been made since the various scenarios presented represent some of the worst cases for a 
unique flow (TCP and TFRC) to reach its target rate. In the following section we measure 
first the throughput obtained at the network level at the receiver side. Then we present 
the "goodput", which is a measure of the throughput at the application level. Finally, we 
present the jitter obtained for TCP and TFRC flows. 

Analysis of CP/QoS behaviour over a standard DiffServ/AF network scenario 

This section aims to illustrate the CP/QoS behaviour above a DiffServ service. The mea-
surements presented in Figure 4.17 gives the corresponding instantaneous throughput at 
the network level on the receiver side. This throughput is computed using a time-sliding 
window algorithm of one second as explained in [FSaOO . 

In this first experiment, we analyzed the behaviour of one flow (i.e. a TCP, TFRC, or 
CP/QoS flow) versus a TCP aggregate of 15 micro-flows. All the flows have an RTT of 
30m.s'. This single flow has a target rate of 500Kbits/s and crosses the (A,B) path of the 
DiffServ testbed while the TCP flows aggregate has a target rate of 300Kbit/s and crosses 
the (C, D) path. In all experiments, the TCP aggregate outperformed its target rate. In 
Figure 4.17, we only report the results for the single flow against the TCP aggregate. First, 
we give the result obtained by a TCP flow in Figure 4.17(a). As explained in [SNP99], 
the TCP flow is not in the best conditions to reach its target rate since it has the highest 
target rate. Moreover, because of the TCP-multiplexing behaviour, when two aggregates 
with a diflerent numbers of micro-flows are in a network, the larger outperforms the smaller 
SNP99]. Figure 4.17(a) shows that the TCP flow does not reach its target rate. 

'̂ "RED In Out queue 
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Figure 4.17 Throughput of one TCP, TFRC/SACK, CP/QoS flow versus a 15 TCP flows aggregat;e 

In the next Figure 4.17(b), we give the result obtained for a TFRC/SACK flow multiplexed 
with the same 15 micro-flows aggregate. In this experiment, TFRC/SACK did not reach 
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its target rate either. Since TFRC reproduces the TCP window-based congestion-control 
behaviour and since we have added a rehabihty mechanism, we could expect to obtain a 
behaviour almost similar to TCP on average. Nevertheless, the smoothing TFRC property 
makes the TFRC/SACK flow less aggressive than the TCP ones. As the bottleneck of the 
network becomes loaded, the RTT and the losses in the network increase. As a result, we 
can see between t = [40sec, lOOsec] that TFRC mechanism recovers slowly after a transient 
congestion [WidOO . 

To cope with the QoS-unawareness issue, the CP/QoS protocol composes gTFRC and 
SACK mechanisms. The results depicted in Figure 4.17(c) illustrates that, conversely 
to the TCP and TFRC flows, the CP/QoS flow is able to achieve the requested target 
rate. In conclusion, thanks to the composition of these two mechanisms, CP/QoS can be 
considered as a DiffServ/AF compliant reliable protocol. Indeed, for these experiments 
we used only standardized and implemented DiffServ mechanisms such as a token bucket 
two-color marker on the edge and a RIO queue on the core. 

The next section will focus on the study of the impact of these three transport protocols on 
the QoS offered to the application layer (i.e. the transport service user). In this context, 
measurements focus on the application throughput (or goodput) at receiver side. In the 
case of a FTP transfer, this corresponds to the data transfer throughput. 

Impact on the QoS perceived at the user level 

In this study, one flow {from host A to host B) is in competition with a variable size 
aggregate. The aggregate {from, host C to host D) has a variable number of micro-flows 
ranging from 1 to 20. The RTT of all flows is set to 30ms and target rates of {A,B) 
and {C,D) are equal to AQ^Khits/s. Figiue 4.18 gives the results obtained for TCP, 
TFRC/SACK and CP/QoS flow in function of the aggregate size. 

The average application throughput (computed after 150 seconds) and the min/max value 
often consecutive meixsurements are provided in the Figure 4.18. As already underlined 
for DiffServ networks [SNP99], Figure 4.18(a) illustrates that TCP flow did not reach its 
target rate. Concerning the TFRC/SACK composition. Figure 4.18(b) shows that the 
throughput variations are lower than TCP's one. This is due to the "smoothing" property 
of TFRC congestion control. Nevertheless, on average, the obtained throughput was in the 
same order of magnitude than TCP. Finally. Figure 4.18(c) conflrms the previous results, 
showing that the CP QoS flow {A,B) reached the requested target rate regardless of the 
number of competing micro-flows in the (C. D) aggregate. 

Note that the difference between the target rate at the network level and the average 
application throughput in Figure 4.18(c) is simply due to the CP/QoS /UDP/IP protocol 
overhead. Moreover, the min/max interval is the smallest one. For the sake of accuracy 
and in order to quantify the throughput variations, we give separately in Figure 4.19 the 
standard deviation of these rt?sults. This figure confirms the stability of TFRC and gTFRC 
over a differentiated network service. Indeed, we can see that the standard deviation for 
these two congestion control mechanisms is small. The TCP inadaptation to a DiffServ 
network is unlighted by its large standard deviation. 
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Figure 4.18 Average throughput according to the number of micro-flows in the aggregate 

Illustration over a QoS network with bandwidth guarantee 

In this section, we focus on the behaviour of CP/QoS on top of another network level QoS 
mechanism. This allows us to verify that the proposed protocol can be used over any kind of 

62 
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network providing a bandwidth guarantee. To perform this evaluation, we configure a QoS 
network with a Class Based Queueing (CBQ) scheduling mechanism [FJ95] that provides 
a guaranteed pipe of 300kbit/s for the studied flow (i.e. TCP or CP/QoS). The network 
topology used in these experiments remains identical to the one presented in FigTire 4.5. 
The emulated QoS network does not use any admission control. The CBQ is configured in 
"borrow mode". This means that in the case of no-congestion, the BE traffic can borrow 
bandwidth from the reserved pipe. This case of configuration is more general as this kind 
of scheduling algorithm is currently available in commercial routers such as CISCO 4000 
and above series. Figure 4.20(a) and Figure 4.20(b) show respectively the throughput of 
TCP and CP/QoS at the sender and receiver side. Figure 4.20(c) and Figure 4.20(d) show 
the jitter of these two flows. In these experiments, both flows compete with a UDP flow. 

During the experiment, the UDP flow transmitted at 300kbit/s except between [60,120 
seconds where it transmitted at lOOOkbit/s. As a result, the bottleneck hnk was saturated 
during this interval. Figures 4.20(a) and 4.20(b) give the throughput measured at the 
sender and receiver side. Once the congestion occurs, the CBQ algorithm starts (i.e. when 
the UDP flow sends above 700Kbit/s). Thanks to the CBQ scheduling, both flows obtained 
their guarantee as shown by these figures. 

Figures 4.20(c) and 4.20(d) shows the jitter experienced by both flows in milliseconds. We 
can see that TCP sufl'er from a higher jitter than CP/QoS 4.20(d). This is an expected 
result as TFRC congestion control algorithm emits a non-bursty traffic. Accordingly, the 
resulting jitter must be lower. Moreover, these measurements show that the composition 
of TFRC with SACK did not impact on this standard behaviour and that the resulting 
jitter for CP/QoS wiis lower than for TCP. 
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Figure 4.20 Jitter of one TCP^ CP/QoS flow versus a UDP flow with various throughput 

4.7 CONCLUSION OF THE CHAPTER 

In this chapter, we have presented the design and the implementation of a fully reliable 
QoS-aware transport protocol. In order to specify this protocol, we first introduced (7TFRC 
, a specialisation of the TFRC congestion control mechanism, that allows the transport 
protocol to be aware and to exploit the QoS negotiated with the network service provider. 
In .^TFRC , we identified secmity issue that can be raised by such an approach. These 
problems are mainly related to selfish users and misconfiguration of network resources. In 
the case of a selfish user, the DiffServ conditioners should avoid this kind of deny of service. 
In the case of a misconfiguration, due to the use of the estimation of the received rate if 
such a misconfiguration occurs, our proposal will react to it. However, we believe that 
these security concerns are out of the transport layer scope. We claim that it is definitely 
not the responsibility of the transport protocol to detect a selfish user or to react to a 
wrong network configuration. 

We implementedithis new QoS-aware congestion-control mechanism inside a Java frame-
work. Prior to this implementation, a large range of measurements have been done 
in the ns-2 simulator [ns2]. The results of this simulation study have been published 
LDJ06b, LDJ06a]. In parallel with the implementation of .gTFRC , we have integrated 

i^TFRC inside the DCCP protocol in ns-2 and the results of the simulation of pDCCP 
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have been published in [ELD07]. In this chapter we have just presented the results from 
the implementation of ^TFRC . The results of the emulation campaign show, identically 
of the implementation campaign, that ^TFRC allows a transport protocol to obtain at the 
network level the negotiated bandwidth. 

In order to propose a complete transport protocol, we then composed the .9TFRC mech-
anism with a reliability mechanism. In order to provide reliability we decided to use a 
SACK-like mechanism that we customised for a datagram-oriented transport protocol. In 
addition to a loss recovery mechanism we proposed and validated the design of a flow-
control especially dedicated for rate-based transport protocol. The result of this composi-
tion has been evaluated first at the network layer then at the application layer. We show 
that, at the application level, our proposal allows the application to obtain a bandwidth 
close to the one negotiated at the network level whatever the conditions of the network. In 
particular, we show that contrary to TCP and a reliable TFRC, the obtained bandwidth 
does not depend of the number of flows against gTFRC . Finally, we show that our pro-
posal is not dedicated only to the DiifServ/AF class. Indeed, we made an experimental 
evaluation of our proposal in the case of a generic Class Based network service based on 
the CBQ scheduling algorithm and show that our protocol can still reaches the negotiated 
bandwidth. 

For future work, this proposal should be implemented at the kernel level in order to evaluate 
this proposition in high throughput networks. Indeed, because the implementation was 
performed at the apphcation level, we observed a maximum bandwidth of 8Mbit/s. 
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CHAPTER 5 

^^e-thinking TFRC 
sender-based architecture 

5.1 INTRODUCTION 

In the previous chapter, we have shown how a QoS-aware speciahsation of TFRC and its 
composition with a SACK-hke mechanism could improve the throughput obtained at both 
network and apphcation level above a bandwidth-guaranteed network. In this chapter, 
we will show how the TFRC architecture can be rethinking to light mobile multimedia 
end-system. This paradigm shift is motivated by the fact that first mobility in the In-
ternet is becoming the rule and second the TFRC smooth rate variation make it a good 
candidate for the delivery of an efficient transport service to multimedia end-systems. 
However, in such media-streaming scenarios, if multimedia servers are powerful processing 
and communication engines, this is not the case fir mobile clients. Indeed, these clients 
are resource-limited end-systems and are far more sensitive to communication and system 
processing that should impact as little as possible on the application layer processing. 

Therefore, the lightening of recurrent communication processing on hght end-systems, that 
populate increasingly the Internet, is a critical issue for increasing the performance and 
autonomy of mobile end systems. One of the main costs of the TFRC mechanism comes 
from the periodic computation of both the RTT and the loss rate of data carried by a con-
nection. In particular, RFC 3448 [HFPW03J proposes the loss rate estimation to be done 
on the receiver side. A classical receiver-based solution achievois a periodic estimation of 
the loss event rate before sending it to the sender. This computation requires maintenance 
of a loss event history data structure. Such a receiver-based solution does not comply with 
the capacities and resource constraints (i.e. in terms of energy consumption and overall 
computational performance) of light mobile receivers (e.g. PDAs, mobile phones) which 
are increasingly pervasive. 



Re-thinking TFRC 
sender-based architecture Chapter 5 

RFC 3448 also suggests that this computation could be done on the sender-side: "It would 
be possible to implement a sender-based variant of TFRC where the receiver uses reliable 
delivery to send information about packet losses and the sender computes the packet loss 
rate and the acceptable transmit rate". We developed this idea by specifying and evaluating 
the design of a sender-based implementation of the TFRC congestion control mechanism. 
In our proposal, the reliable transfer of feedback packets is ensured by using packet-oriented 
SACK mechanism [FMMPOO]. This scheme is known to be robust to lossy channels while 
not entaihng heavy and complex error control mechanisms [FMMPOO]. Moreover, we will 
see that, because it is located on the flows' servers only, the proposed sender-based approach 
is more robust to selfish receivers. Indeed, the sender no longer depends on the accuracy 
and the integrity of the returned information [HFPW03]. Some solutions to secure TFRC 
from selfish receivers have been proposed in [GG05] using RTSP [SRL98]. Our solution 
requires fewer and simpler modifications to the TFRC header and algorithm than the 
proposal in [GG05 . 

Another sender-based solution has been proposed in [FKP06] where the receiver sends 
back loss event intervals to the sender. This solution has not to date been either tested or 
implemented. In comparison to our solution, this solution is supposed to be closer to the 
original algorithm, but the receiver remains more complex as it has to maintain a structure 
able to differentiate a loss from a loss event. 

This chapter is structiu-ed as follows: section 5.2 introduces the context of this study 
and provides some background information. Section 5.3 gives insights into the design 
of the new sender-based congestion-control-protocol architecture. Section 5.4 compares 
the performance of the proposed congestion control protocol with respect to the standard 
TFRC implementation. We quantify the benefits of our proposal in terms of algorithmic 
processing and communication load in section 5.5. Finally, section 5.6 provides conclusions 
and future directions. 

5.2 CONTEXT AND RELATED WORK 

TFRC estimates the equivalent TCP sending rate X from equation (3.3). This equation 
depends on the mean packet size s and two periodically processed parameters: the packet 
loss event rate p and the round trip time RTT. In this equation, RTO refers to the TCP 
retransmission timeout value which is usually a linear function of the RTT. 

During the initialization phase. TFRC acts as TCP does during the slow start algorithm. 
This slow start phase also occurs during the transfer after the RTO timeout expires. This 
phase is followed by a congestion avoidance phase i\s soon as the receiver detects a loss. At 
this step. TFRC needs to estimate the loss rate in order to compute the sending rate X . 
The receiver evaluates the packet loss rate by a sliding window-based loss-history structure. 
This structure stores the eight most recent loss-event intervals and makes it possible to 
process the loss event rate from low path filter that smoothes the loss event variation. A 
loss event and its related interval of packets is defined as one or more lost packets during 
a duration of a least one RTT[HFPW03|. In other words, several packets lost during an 
RTT define a single loss event and the duration of a loss interval is greater than or equal 
to the RTT. The algorithm used at the receiver side is given in Figure 5.1. 



5.3 Design 69 

ReceivePacket0 { 
Add packet to packet history; 
p_new = new value of packet loss rate; 
if (p_new > p_old){ 

stop feedback timer; 
do CreateFeedbackO ; 

} 
} 
CreateFeedbackO { 

compute average packet loss rate; 
calculate measured receive rate; 
prepare and send feedback packet; 
restart feedback timer; 

Figure 5.1 Original algorithm of the receiver 

Two main issues can be identified in the receiver-based implementation algorithm. Firstly, 
the receiver must continuously maintain and update the loss-event history data struc-
ture. The management of this data structure is an undesirable processing and memory 
management overhead for resource-limited mobile receivers. Secondly, the receiver has to 
continuously process the loss-event rate and send it to the sender at least once per RTT, 
and as soon as it observes a loss event rate increase. Once again, this processing load 
squeezes the remaining processing capacity of the receiver. Moreover, such a receiver-
based implementation cannot guarantee that selfish receivers do not try to trick the sender 
by inaccurately reporting the loss rate in an attempt to obtain higher bandwidth [GG05]. 

5.3 DESIGN 

This section presents the design of our sender-based TFRC protocol named TFRCugh f The 
design of this protocol is based on the shifting of the loss-rate estimation to the sender side. 
We identify and propose several changes entailed by this shifting mainly in the feedback 
packet structure and in the data structures managed by the receiver. The aim of our new 
TFRC protocol architecture and design is to reduce the receiver load. We discuss in this 
section the design of TFRCught by first presenting the problems that resulted from shifting 
packet-loss-rate estimation. Then, we define and experimentally validate efficient solutions 
to these problems. 

5.3.1 Notification of packet loss 

In the original TFRC. the receiver has to periodically send feedback information to the 
sender. These feedback messages contain two parameters that allow the sender to estimate 
the current RTT value. These parameters are respectively (1) the timestamp of the last 
packet received (Last Timestamp), and (2) the amount of time elapsed between the receipt 
of the last packet and the generation of the feedback (Processing Time). We present these 
fields of the TFRC header in Figure 5.2. 
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sequence 
number Timestamp current RTT Payload 

proto ID TFRC Data Packet 

a last sequence 
number Last Timestamp Processing Time Packet Lost 

Rate 
Receiving 

Rate 
proto ID TFRC Feedback Packet 

Figure 5.2 Example of TFRC header 

Moreover, feedback packets also contain information about the packet-loss rate (Packet 
Loss Rate) and the received throughput (Receiving Rate) as processed by the receiver. 
In TFRCiight, the packet-loss rate is no longer processed and returned by the receiver. 
Nevertheless, the receiver still remains the only entity able to detect the loss of a packet 
and to notify the sender of this loss. 

In order to perform this notification, we propose the maintenance of a compact and light 
data structure at the receiver. This data structure is a simple bits vector (i.e. a SACK 
vector) that describes, from a given packet number, the distribution of packets received 
and lost. In other words, if a given packet is received, the bit is set to 0 otherwise 1. This 
vector is periodically sent to flow source. Such a data structure leverage on the SACK 
mechanism used when some degree of reliability is needed. Therefore, in this case our 
approach does entail any additional data structure at the receiver. Thus, two services are 
delivered for the price of one. 

When its sending period is lower than the duration covered by the SACK vector the SACK 
vector offers redundancy that contributes to the reliable delivery of loss information. The 
value of the feedback packet sending period will be discussed in the next section. The right 
vector length can be chosen by considering that the sender-based and receiver-based im-
plementations should react similarly to packet losses. Indeed, as defined in [HFPW03], the 
sender no-feedback timer expires after 4 * RTT, where RTT is the exponentially weighted 
moving average of the round trip time sent by the sender in each packet. A SACK-based 
mechanism is intrinsically robust to a maximum period of data losses equivalent to the 
vector range. Then, the loss vector length should cover at least: 

4 * RTT * PacketSendingRate 

where, PacketSendingRate is the sending rate included in each data packet header or 
computed by the receiver as the received-packet rate. In order to reproduce the no-feedback 
timer behaviour of the standard receiver based version of TFRC, the loss information vector 
length must be dynamically recomputed with a period of RTT. 

The data structure used to compute SACK is a circular buffer, with a pointer keeping 
track of the most recently received packet. In the next section we first consider a simple 
initial scheme for managing this structure. Then, from the issues raised by this scheme, 
we will propose a solution that conforms to the standard TFRC behaviour. 

The message headers for the simple initial scheme are given in Figure 5.3. 
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s sequence 
number Tìmestamp current R T T nbSeq sync Payload 

proto ID TFRClighl Data Packct 

S. last sequence 
number Last Timestamp Processing Time Receiving 

Rate 
Length Offset SACK 

proto ID 
TFRClight Fccdback Packct 

Figure 5.3 Modification in TFRC header 

5.3.2 Loss event definition in TFKCHght 

Althougli the previously introduced data and protocol data unit structures are necessary 
for implementing an efficient sender-based TFRC protocol, they are not sufficient. Indeed, 
the loss-history structure is based on the loss-event definition given in [HFPW03]. A loss 
event is defined as the detection of one or more lost packets during one RTT. For keeping 
track of loss events, the receiver needs the receiving time of each packet to detect if lost 
packets correspond to the current loss-event interval. 

Since the sender and the receiver cannot maintain a synchronous behaviour, the simple 
SACK structure previously introduced does not allow the sender to construct an accurate 
loss-event-history structure even if feedback packets are sent every RTT. Indeed, without a 
careful design, in certain cases, a loss event may be falsely detected. In Figure 5.4, we give 
an illustration of such false detection. The time axis is used to represent the arrival time of 
the data packets. We also show on this axis the times, when the receiver sends feedback. 
As an example, we show the tail (i.e. the SACK vector) of three feedback messages below 
this axis. At ti, the feedback message reports two losses represented by the two bits set in 
the SACK field. The Offset is equal to 100. 

In the original TFRC, a timer of RTT time units should have been triggered at the esti-
mated receiving time of the lost packet with the sequence number of 106. This timer range 
is represented in Figure 5.4 by two-way arrows. At to, when the receiver sends its second 
feedback packet, the SACK vector Offset is now equal to 112 and as the RTT period 
is expired, a loss event should have been detected. At this time, the traditional TFRC 
algorithm closes the previous loss interval and restarts a new one from packet number 119. 
Finally at ¿3. the losses reported for packets 125 and 127 belong to the previous loss event 
cis the RTT timer expired at packet number 130. Since no other packet is lost after this 
expiration there is no new loss event. The problem of false detection can potentially result 
from an interpretation as a loss event of this third feedback with Offset field which is 
equal to 124 and its two marked bits in the vector. 

As shown in Figure 5.4. the TFRC mechanism is supposed to see two loss events (symbol-
ized by the two RTTs). In TFRC/jg^,/ , if we just shift the packet-loss-rate estimation, since 
there is no information about the estimated time of the packet loss, and the sender and 
receiver are not synchronous, the TFRC mechanism will see three loss events. Indeed, it 
will receive three disjointed feedback messages (one per RTT) with a non-null SACK field. 
Therefore, a simple logical interpretation of these feedbacks leads to the identification of 
three loss events instead of onlv two. 
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Offset of a packet loss event 

• packet received 
• packet lost 
tn feedback sending time 

packet number 

RTT 

1 M I M i p H M H H I 

time 
to tl t2 ts 

Feedback message at ti : 

12 100 0 0 0 0 0 0 1 0 1 0 0 0 

Offset Offset Vector of Received/Lost Packet 

Feedback message at ¿2 : 

12 112 1 0 1 0 0 0 0 1 0 1 0 1 

Feedback message at ts : 

12 124 0 1 0 1 0 0 0 0 0 0 0 0 

Tail of feedback message 

Figure 5.4 Illustration of a the definition of the loss event 

Figure 5.5 illustrates the impact of this false detection problem. We give in this figure the 
instantaneous throughput measured at the sender and instantaneous throughput measured 
at the receiver. Figure 5.5(a) shows the resulting throughputs of TFRCi^^/it with a bad 
interpretation of loss events. The experiments involve an architecture with two nodes 
that generate traffic and are connected by a link with fixed capacity of 1Mbit/s and 
RTT = 100ms. In Figure 5.5(a), TFRC/i^^i detects five loss events just after the slow 
start phase (between t — [0,10])^. However a correct implementation of TFRC would have 
seen only four loss events as illustrated in 5.5(b). 

As a result, when a new loss event occurs (i.e. t = 63s and t = 137s), the sender will 
decrease its emission rate more than is needed. In Figure 5.5(a), this behaviour can be 
seen with the two rate dips. This throughput decrease is explained by the way the loss-
history structure is built. Indeed, as the mechanism observes successive loss events, the 
corresponding entries in the loss-history structure will be filled with loss intervals shorter 
than they should be. When a new loss event occurs, these erroneously sized loss intervals 
raise the resulting value of the loss event rate. This loss rate causes an excessive reduction 
of the sending rate as given by equation (3.3). 

In order to solve this issue we propose the following modifications. 

^Observed by the addition of a memory variable inside the core protocol 
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Figure 5.5 Comparison of TFRC/ig7,iWith a false detection and a usual TFRC in a network with a 
bandwidth of 1Mbit/s, and an RTT^lOOms 

New receiver algorithm 

At the receiver side the structure remains similar to the one presented in the previous 
section. The algorithm used by the receiver is shown in Figure 5.6. 
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ReceivePacket 0 { 
Manage SACK vector; 

> 
CreateFeedback(){ 

calculate measured receive rate; 
prepare and send feedback packet; 
restart feedback timer; 

} 

Figure 5.6 Receiver algorithm 

In this proposal, the receiver is no longer responsible for computing the packet loss rate. 
Nevertheless, the receiver has to keep updated the SACK vector. This is done by the 
function "Manage SACK Vector". In this function, the receiver set to 1 the value corre-
sponding to the received packet number in the SACK structure. This algorithm supposes 
the existence of a new structure that records the arrival or loss of packets. 

Modification at the sender side 

In order to detect a loss event at the sender side, the server has to set up a structure 
that stores information about when packets were sent. This structure is identical to the 
one that traditional receiver-based TFRC receivers use to compute the packet-loss rate, 
except that instead of keeping trace of the packet-arrival time, this new structure stores 
the packet-sending time. 

Based on this new structure the sender is now able to detect loss events from a sender 
perspective by considering the sending time of the packets reported as lost in the received 
SACK vectors. Furthermore, because the sender keeps the packets sending time, the 
TimeStamp field is no longer needed in both data and feedback headers. Figure 5.7 gives 
the resultnig new structure of the TFRC/^g/if headers associated with the data and feedback 
packets. 

Q) sequence 
number 

current R T T nbSeq sync Payload 

proto ID TFIK'M/ Dain Packcl 

1 last sequence 
number 

Processing Time Receiving 
Rate 

Length Offset SACK ^ 

proto ID TFRC/i.v/ii Fccflbm k Pm ltcl 

Figure 5.7 Modification in TFRC header for the loss event detection second solution 
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Translation from Loss History to Loss Events: A Sender Perspective 

In our proposal, the sender is now aware of the sending time of each packet. This informa-
tion, combined with the received SACK vectors, allows the sender to process the packet 
loss rate as detailed in Figure 5.8. 

forCint i=0; i<lenghtACK; i++) { 

if(vectorCi]==0) 
add Packet(offset+i) loss History; 
p_new=new value of packet loss rate; 

else 
translation from loss history to loss event; 

> 
compute average packet loss rate; 

Figure 5.8 Analysis of the vector of Ack 

In section 5.2 of RFC 3448, the authors explain how to build loss events from the loss 
history. This operation needs: 

• Sioss the sequence number of the lost packet; 

• She fore the sequence number of the last packet to arrive, such that Sbefore < Sioss-

• Saftar the Sequence number of the first packet to arrive, such that Sioss < Safter'-, 

• The fore the reception time of She fore-. 

• Tafter the reception time of Saftev 

In the presented solution, the sender is not aware oiThpfore and Tafter- Nevertheless, the 
sender must estimate the arrival time of Sioss- Iî  proposal, we use sending times, 
not arrival times, to build loss events. These sending times are corrected by the following 
factor, which the sender evaluates whenever it receives a feedback (where X^ent înd Xrecv 
are respectively the sending and receiving rates): 

Xsent 
Y 

The determination of the new event is accomplished in the same way in the original 
TFRC except that the time reference is no longer the arrival time but is now the sending 
corrected by the factor a. Base on this new loss event, a loss interval is built and stored in 
the loss history structure at the receiver. Then, the receiver use the same sliding window 
algorithm as described in |HFP\V03] in order to compute the packet loss rate. 

(b 
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Discussion 

As feedback messages are not systematically sent when a loss is detected, we recommend 
that the feedback message sending interval should equal at least one per RTT. 

5.4 VALIDATION OF TFRCLIGHT 

In this section, we present an evaluation of our proposal. This evaluation is done using 
several experiments on an emulate network. We have implemented a user level prototype 
of TFKCiight in Java. We have evaluated the TFRCught protocol over a simple testbed 
composed of two end-systems and a network emulated by a FreeBSD/Dummynet pipe 
L. 97]. 

We used both TCP and TFRC as the basis for the comparison against TFRCught- An 
exhaustive comparison between these protocols can be difficult to obtain. In the rest of 
this section we will study through representative example the behaviour of TFRC/ig/ii. 
Then, for evaluation purpose, we will use metrics as proposed in [GG07, BG92, JaiQl . 

5.4.1 Evaluation Strategy 

The performance evaluation of TFRCnght^ias been achieved regarding four criteria: 

• Efficiency (throughput) 

• Intra-protocol fairness 

• TCP-friendliness 

• Stability (oscillations) 

Here, we provide the definitions of these metrics. In the next section, we will quantify our 
scheme in terms of CPU and memory use. 

Efficiency (throughput) 

In [GG07] a protocol efficiency is defined as the aggregate throughput of all the concurrent 
flows. Here we will apply a normalised definition to our studv is described in equation 
(5.1). 

E = (5.1) 
O 

Suppose there are n TFRCught flows in the network with a bottleneck of C M bit/s and 
let's be xj the throughput of the flow then the equation (5.1) represent the percentage 
of used bandwidth. 
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Intra-protocol fairness 

The fairness metric represents how flows share fairly the bandwidth. In order to quantify 
this, the commonly used method is the max - min fairness[BG92]. In this method the 
lowest throughput is maximised. In the following part of this section, since there is only 
one bottleneck in all experiments, we will use the Jain's fairness [Jai91] in order to measure 
this characteristic of T F R Q i ^ i . Therefore, this fairness is given by the equation (5.2). 

Where in this case ^ is the average throughput of the TFRCught flow and n is the 
number of flows competing for the bandwidth. F is always inferior or equal to 1. If F = 1, 
then all flows have the same throughput. 

TCP-friendliness 

TCP-friendliness is nowadays subject to discussion among the networking community. In 
particular, some researchers claim that, from different point of views, this qiialification 
for a flow is not a real criterion. In this study, we used a metric that follows the iixiom 
that defines that a flow is TCP-friendly if the non-TCP source obtains a long-run term 
average sending rate not larger that the one TCP would have obtained under the same 
circiimstances. This results in evaluating the TCP-friendliness with the equation (4.2). 

Stability (oscillations) 

The last metric considered in this section is a stability criterion. TFRC is renowned for 
being well-adapted for multimedia traffic due to its capacity to deliver a smooth throughput 
[WidOO]. 

In order to quantify this stability, we consider the average throughput for each time unit 
interval. For each time interval we compute the standard deviation of the throughput 
for each flow |J\\'L04] and obtain the metric (equation given by the formula (4.3). In the 
present case, Xi is the throughput of the TFRChght flow, n is the number of flows. Xi{k) 
is the throughput of the i TFRCught flow for the k '̂' time interval and in is the number 
of time intervals. 

5 .4 .2 G e n e r a l b e h a v i o u r o f t h e TFRC/,^/,/ 

We have implemented a user-level prototype of TFRCj^gki in Java. We have evaluated 
the TFRC/jgAi/: protocol over a simple testbed composed of two end-systems and a network 
emulated by a FreeBSD ' Durnmynet pipe |L. 97|. For all experiments, the bandwidth and 
the RTT are respectively set to iMbit s and 100ms. In both figures 5.9. we report the 
sending/receiving instantaneous throughputs measured respectively at the sender , receiver 
sides. The results of our experiments show that our sender-based proposal have the same 
behaviour as traditional receiver based TFRC implementations. 
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We obtained many measurements to validate this new architectural design and report 
in this section a representative sample of the results. It is always difficult to compare 
the performance of a real implementation and a simulated one as the simulation re-
produces an ideal case without the overhead introduced by real measurements. Never-
theless, we show that the TFRCught receiver throughput is as stable as the ns-2 ver-
sion receiver throughput. Concerning the sender throughput, more oscillations occur in 
TFRC light than in ns-2 TFRC. This can be explained by the overhead introduced by our 
user level TFRC/i^/^iimplementation. 

In the experiment illustrated in Figure 5.9, we introduced an UDP flow with a rate of 
500Kbits/s between t = [30sec, 90sec]. This test aimed to verify the responsiveness of 
TFRCiight compared to ns-2 TFRC. In Figure 5.9, due to the packets being multiplexed 
with a non-responsive UDP flow, both implementations decreases during the UDP flood. 
Furthermore, both implementations reacted the same way to the losses induced by the UDP 
flow. When the UDP flow stopped, both implementations responded similarly. Eventu-
ally, we concluded from this scenario that the modifications proposed and implemented in 
TFRCiig^i result in a behaviour similar to ns-2 TFRC. 

5.4.3 Efficiency, fairness and stability of TFRC/Ì^/ÌÌ 

In the set of experiments discussed in this section, we have measured different criteria when 
TFRCiight^haies a network with other TFRCi^^/jtflows only. The topology of the network 
is displayed on the Figure 5.10. 

In this topology, we made the number of TFRCnght flows vary from 1 to 4 following two 
patterns. These two patterns differ from the communication stopping time of their streams. 
Indeed, in the first patterns, every flow starts at the same time but does not have the same 
dmation as depicted in Figure 5.11. In the second pattern, the starting and stopping time 
of every flow is the same. Thanks to these two different patterns we are able to study the 
long run behaviour of our proposal and its reactiveness when flows leave the network. 

Different Stopping Times 

Figure 5.12 represents the perceived throughput at the receiver side. This throughput was 
computed using a time sliding window of one second as explained in [FSaOO]. 

In Figure 5.12, we show that our proposal equally shared the bandwidth between flows. The 
difference observed during the first period of the experiment can be explained by two main 
characteristics. First, our implementation was in Java, therefore the four flows shared the 
same virtual machine and the last flow get some difficulties to start. Second, all the flows 
experience their first loss event at different times. The differences in the observation of the 
loss event explain why some flows have more difficulty reaching the equilibrium throughput 
again, because the RTT is higher following the increase and variance in buffering delay. 

The behaviours represented in Figure 5.12 are confirmed by the previously introduced 
metrics displayed in Table 5.1. These results have to be compared to what TCP would 
experience in the same conditions, as given in Table 5.2. 
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Figure 5.9 TFRC and TFRCzight with a network bandwidth of 1Mbit/s, an RTT-^ lOOms and introduction 
of an UDP flow at t = [30s, 90s] 

Long-term Behaviour 

We present in this section the characteristics of our proposal.in the case of a long-run 
communication. In order to process this analysis, we performed the same experiment as 
previously but without different stopping times. 

79 
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Figure 5.10 Topology 

Flow 1 

Flow 2 

Flow 3 
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Figure 5.11 Stopping times of the different flows 

As expected, the results for the long run behaviour of TFRCught were a stabilised adjust-
ment of the first test-period of the previous set of experiments. As a result, TFRC^i^t is 
more stable in the long-run experiments than in short-run experiment. In the same way, 
TFRCiight reached the equilibrium and therefore the intra-fairness property was enforced. 
Concerning the efficienc}^ metric, TFRCught is more efficient in the long term behaviour 
study than in the previous one due to the fact that the equihbrium is reached compare to 
the period 0 — 200^ in the previous experiment. This is explained by the nearly equal to 
one intra-fairness metric. 
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Figure 5.12 Receiving throughput of the different flows 

0 - 2 0 0 S 2 0 0 - 4 0 0 S 4 0 0 - 6 0 0 S 6 0 0 - 8 0 0 S 

Efficiency 0 . 9 4 9 0 . 9 7 4 0 . 9 6 1 0 . 9 5 8 

Stability 
(oscillations) 

0 . 1 3 7 0 . 0 4 3 0 . 0 3 1 0 . 0 3 5 

Intra-protocol 
fairness 

0 . 9 9 6 0 . 9 9 9 0 . 9 9 9 1 

Table 5.1 Result of the delayed start experiment 

0 - 2 0 0 S 2 0 0 - 4 0 0 S 4 0 0 - 6 0 0 S 6 0 0 - 8 0 0 S 

Efficiency 0 . 9 6 4 0 . 9 6 5 0 . 9 6 5 0 . 9 7 5 

Stability 
(oscillations) 

0 . 0 2 3 0 . 0 7 9 0 . 1 6 7 0 . 2 1 8 

Intra-protocol 
fairness 

0 . 9 9 3 0 . 9 9 9 0 . 9 9 9 1 

Table 5.2 Result of the delayed start experiment with TCP 
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TFRCiight 
Efficiency 0.965 

Stabihty (oscillations) 0.058 
Intra-protocol fairness 0.999 

Table 5.3 Result of the long-run experiment 

5.4.4 TCP-Friendliness 

In the following experiments, we have shown that the proposed sender-based TFRC remains 
TCP-friendly. The results of the TFRC-friendliness property are shown in Table 5.4. 
These measurements give the average throughput observed at the receiver after 200s of 
transfer. We have driven the first experiment with 5 TFRCiight flows only. We also 
studied the multiplexing behaviour of TFRCughi flows with TCP and TFRC flows. The 
results summarized in Table 5.4 show that TFRC/i^/ji flows occupied a fair share of the 
bandwidth when multiplexed with TCP and TFRC flows. This table shows that our 
proposal is friendly with TCP, as it did not obtain a bandwidth superior that of TCP. On 
the contrary, TFRCughti^ less friendly with our implementation in user space of TFRC. 
This can be explained by the fact that TFRCught, as explained in the section 5.3, does not 
react as quickly as the original TFRC algorithm when a loss occurs in the network. 

T(TCP) T(TFRC) 
^TFRCiight 
and 5TFRC 

1.05 N/A 0.95 

5 TFRCiight 
and lOTCP 

0.92 1.08 N/A 

l^b le 5.4 Inter-Protocols TCP-friendliness 

5.5 QUANTIFICATION OF THE GAINED RESOURCES 

In Table 5.5, we summarize the benefits and drawbacks of the proposed design compared 
to the original algorithm. 

The main advantages of our solution are the removal of the packet-history structure and 
the removal of the computation of the packet loss rate at the receiver. Conversely, we 
have introduced a new light structure that allows the receiver to build the Sack vec-
tor sent to the sender in feedback messages. This structure has a size of the order of 
4RTT^ Bandwidth/{packet size). For instance, in the case of a transmission with a band-
width of iMhit/s, an RTT of 100m.s and a packet size of lOOOBytes, the structure should 
have a maxinmm size of 506/^5. This structure is actualized for each data packet received. 
In the original receiver-brised design of TFRC, the receiver had to manage a more com-
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benefits suppression of the loss history structure 
no processing of the packet loss rate 
protection from misbehaving receivers 
simpler timer management 
simpler sender's algorithm 

drawbacks new structure for Sack vectors management 
loss events built from sender point of view 
feedback only sent periodically 

Table 5.5 Summary of the benefits and drawbacks of TFRCught 

plex structure that stores information concerning the arrived or lost packets. The stored 
information includes: 

• the packet timestamp (16bits); 

• the packet size (8bits): 

• the arrival time (IGbits). 

Therefore, the elementar}^ size of an entry is AObi-ts. Furthermore, this structure potentially 
entails an unbounded size. Indeed, this structure is emptied after detecting a loss event 
only. As an example in Figure 5.5, there are no losses between í = 63 and t = 137. During 
this entire period, the structure has to be updated at a rate of 1Mbit/s which corresponds 
to 12bpacket/s. This structure for the given example would contain: 

40 * 125 * (137 - 63) = S70Kbits 

when it can be released. In this particular case, with TFRCnghtr the memory use would 
decreases from 370Kbits to bObits. This comparison remains true in the case of the proposal 
of sender-based as proposed in [FKP06]. Indeed, in this proposal, the receiver is still 
responsible for the diflPerentiation between a loss event and a packet lost. Therefore, it 
still needs to maintain a structure storing information of the arrival time of the packet as 
described above. Nevertheless, the following CPU's cycle comparison only applies to the 
original TFRC if the sender-based option is confígured only to check the value compute 
the packet-loss rate. Indeed, this option can also be activated only to double check the 
packet loss rate field in the feedback header. Therefore, the receiver still computes this 
estimation. 

To estimate the computation benefit of our proposal let's consider how in normal TFRC 
|HFPW03] the loss rate estimate is processed for every received packet as shown in Figure 
5.1. The basic algorithmic sequence for computing the loss rate estimate entails the fol-
lowing set of elementary arithmetic operations: eight additions, eight multiplications, one 
division and one maximum operation. For instance, at rate of 1Mbit/s with a packet size 
of 1Kbyte, this estimation should be computed 125 times per second. These elementary 
operations can be translated into CPU cycles as follows": 

"According to Intel PIV documentation 
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• division ^ 70 cycles 

• multiplication — 15 cycles 

• addition, maximum ^̂̂^ 0.5 cycles 

As a result, for the given example, in the original TFRC, the receiver has to use 24312.5 
cycles/s. 

Furthermore, after a slow start phase, the receiver has to initiate its loss history. This 
initialization is done from the inversion of equation (3.3) in order to find the packet loss 
rate corresponding to the measured received rate. This initialization is usually done with 
a binary search and uses the list of elementary operations sum up in Table 5.6. 

4- * / sqrt 
binary search 4n + 4 8?i-}-8 2n + 2 n 
CPU cycles 0.5 15 70 70 

Table 5.6 List of the number of elementary operations (n = number of iterations) 

The worst case of this binary search can be observed when this algorithm diverges, which 
can occur when the solution of the inversion of (3.3) is outside the [0,1] range. This 
potential of divergence leads to an upper bound on the number of iterations done during 
the binar}̂  search. Therefore, in order to compute the inversion of (3.3) for most cases, the 
maximum number of iterations is usually set to 50. Indeed, we implemented the binary 
search of the inversion and found out that the algorithm converges in 15 iterations for 
RTT - 400m5 and bandwidth = IMbU/s. 

In conclusion, for the worst case it takes 16862 CPU cycles for the initialization process. 
In our proposal, all of this computational process is achieved at the sender side. Moreover, 
we have shown in section 5.4 that this simplification entails a congestion-control behaviour 
that strictly conforms to receiver-based TFRC implementations. 

5.6 CONCLUSION 

In this chapter, we have presented the design of a sender-based TFRC congestion control 
mechanism This design is driven l)y the aim of shifting the computation of the loss rate 
estimation from the receiver to the sender, in order to alleviate the processing and memory 
needs of "light" receivers. This shifting requires the sending of loss-resilient feedbacks, and 
is accomplished through the use of a SACK-fike mechanism. This results in a significantly 
lightened computational load on the receiver which is particularly useful for mobile clients 
with computation and energy constraints. 

have shown that the proposed sender-based TFRC architecture behaves identically to 
the official ns-2 implementation and remains friendly to TCP streams. This validation has 
been accomplished through well accepted metrics which confirmed that our architecture 
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remains as efficient as the original TFRC. We have also quantified the benefits of this shift 
from the perspective of computations and memory. 

Furthermore, the proposed solution allows the security issues raised in [HFPW03] to be 
resolved. The way to resolve these issues are not explicitly explained in this chapter, but 
will be explained in a future work. These security issues are related to the forw^arding of 
false loss event rates by the receiver. Such misbehaviour is no longer possible uith our 
solution when associated with nonce mechanisms and will be detailed in a future extension 
of the proposed solution. We plan to further validate our proposal by performing a large 
range of experimental measurements on a multi-hop testbed. 
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CHAPTER 6 

Understanding and improvement 
on the same variation 

6.1 INTRODUCTION 

Previous Chapters have presented two architectural modifications of TFRC. These two 
contributions aim to adapt the current TFRC mechanism to either the quahty of sei'\ice 
offered by the network layer or the capability of entities on which the protocol is running. 
These proposals have been done without modif3ang any parameter defined in the original 
mechanism. 

Among all these parameters, two of them are closely related to the computation of the 
packet loss rate of the transmission and by consequence to the sending rate. These two 
parameters are the initial packet loss rate estimation and the loss history weights (i.e. de-
fined as a set eight real constants). These two variables are important for the computation 
of the packet loss rate. Indeed, the initialisation of the loss history structure is crucial 
since at the beginning of communication the loss history structure is empty. When a loss 
event occurs the loss history has to be initialised. Because of the initial slow-start phase 
associated to TFRC. we have to initialise the loss history and then process the loss event 
rate just from the occurrence of the first and single loss event. In order to perform this 
initialisation, TFRC implementations have to invert the TCP throughput equation taking 
the received rate as the main parameter of the stopping criterion. Based on the value 
found by this process the receiver initialise the loss history structure. 

The second parameter resi)onsi]>le of the computation of the packet loss rate in TFRC is 
the set of weight applied to the loss history. These weights allow to decide how long the 
memory of loss event is kept, via the configuration of the number of loss-event intervals 
it manages. Furthermore these weights allow the mechanism to decide of the importance 
of every loss interval that composes the loss-event history. For example, if all the weights 
were equal, obviously every loss interval would be of the same importance regardless of the 
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loss occurrences. This could be relevant in the unlikely hypothesis of an invariant network 
loss distribution. These weights can be tuned but are generally limited to eight and for 
the definition of their value follow the recommendation of [HFPW03]. 

In this chapter we first propose an optimisation of the loss history initialisation using a 
numerical analysis of the TCP throughput equation. We then present a first approach for 
studying the relation between the loss rate computation and the weight used in T F R C 
following different lost patterns using a discrete event model of TFRC. 

This chapter is organised as follows: Section 6.2 presents the problem of the loss history 
initialisation, its optimisation and the evaluation of the proposed algorithm. Section 6.3 
presents an analysis of the loss history behaviour, then we introduce a simple model of 
T F R C using the Scilab software, finally we propose a first approach for the study of the 
weights in TFRC biised on a 3-states Gilbert model of network losses. Finally, Section 6.4 
concludes and gives some perspectives for this work. 

6.2 LOSS HISTORY INITIALISATION 

The main characteristic of T F R C is the use of a TCP equation model which provides a 
much lower throughput variation over time than TCP. As a result, it is more suitable for 
multimedia applications such as audio/video streaming or voice over IP. 

In addition to round trip time and received estimated throughput,TFRC algorithm needs 
an estimation of the packet loss rate. This loss estimation is computed by the receiver and 
sent periodically to the sender where the rate control is performed. The initial packet loss 
estimation is crucial as it determines the sending rate in the congestion avoidance phase 
from a consistent initialisation of the loss-history structure as described in |HFPW03] and 
the receiver to correctly initialize its loss history events. Indeed, the subsecj[uent estimations 
of the packet loss rate are based on a weighted moving average using this history. As a 
consequence, the initialization of this structure has an impact on the sending throughput 
and on TFRC overall performances (for further details see section 6 in [HFPW03]). 

Since TFRC equation can not be analytically solved due to the higher exponent, the method 
proposed in |WidOO] is bî ised on a binary search process. In every iteration, this process 
converges towards the solution of the equation by halving the range of study; by the end, 
the res^llt will be chosen as the middle of the last range. This method is used by all the 
early available T F R C implementations such as in ns-2 or DCCP implementations. To the 
best of our knowledge, no efficient method has been formulated. In this section, we show 
that the binary search is not efficient and needs a large number of iterations to achieve the 
5% accuracy required by the T F R C RFC |HFPW03]. Then, we propose a method faster 
than the binary search method. 

The rest of this section is structured as follows: part 6.2.1 states the problem and explains 
our proposed method. Part 6.2.2 provides numerical results and analytical analysis of 
them. Finally, part 6.2.3 provides conclusions and perspectives. 
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6 . 2 . 1 Optimization of t h e loss r a t e computat ion 

In this section, we present the initiahsation problem of the loss event rate and loss history 
and provide an algorithm that offers an efficient solution to this issue. 

Problem statement 

T F R C uses a T C P throughput model given by the equation (3.3). 

T h e sending rate ( X ) depends on the packet loss rate (p), the mean packet size (s) and 
the Round Trip Time. RTO refers to the T C P retransmission timeout value. 

During the initiahzation phase, T F R C acts like the T C P slow start algorithm. This slow 
start phase can also occur during the transfer if the RTO timeout expires [HFPW03]. This 
phase is followed by a congestion avoidance phase as soon as the receiver detects a loss. 
In order to compute the sending rate X , T F R C needs an estimation of the current loss 
event rate. This estimation is achieved using a loss history structure which records the 
number of packets between successive loss events also called a loss-event interval. From 
this structure, the loss rate can be computed, as described in [HFPW03J. 

When the slow start phase is over, the loss history has to be initiahzed. The number of 
packets transmitted during the slow start phase cannot be used to estimate the loss event 
rate since it does not reflect accurantly enough the undertying packet drop rate of the 
connection [WidOO]. For this reason, existing T F R C implementations use a simple binary 
search process in which the receiver measures the receiving rate {Xmeasured) corresponding 
to the rate when the first loss occurs and then starts the estimation of the corresponding 
loss event rate. This estimation is performed by computing the packet loss rate that 
should have allowed the sender to transmit at the rate Xmeasured using (3.3). We show 
in the following that the loss history's initialization can be improved with the use of a 
numerical analysis based on Newton's algorithm of the T F R C equation. 

Newton's algorithm rate estimation method 

The binary search algorithm is well known for its ea.sily progranmiable properties but also 
for its slow convergence. Usually, numerical problems are solved more efficiently using more 
elaborated algorithms, such as the gradient method, Newton's algorithm or primal-dual 
method. Because of the relatively simple equation used by T F R C , we propose to set a 
Newton's algorithm in order to estimate the packet loss rate. To compute this algorithm, 
during the loss history initialization phase. (3.3) has to be used as a simj^le function of p 

as follows: 

F{p) = RTT • + RTO • J i ^ • p • (1 + 32 . p^) - (6.1) 

89 
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Then, the problem becomes to solve F{p) = 0. (6.1) is a algebraic function which can be 
derived as follows: 

F'ip) = 
RTT-. i 

2 - v ^ 
+ RTO ( 1 .5 -v^+112 -p5 ) (6.2) 

Newton's algorithm is known to converge with a quadratic pace to the solution compared 
to a linear pace for the binary search algorithm [Gau97]. Thanks to (6.2), we propose 
to use Newton's algorithm starting with an under solution of p for the first iteration. 
Newton's iterative process is performed while the convergence criterion is not reached and 
is computed as follows: 

Pi+i = Pi 
npi) 
F'{Pi) 

(6.3) 

Newton's algorithm is constrained by the existence of F{pi) and F'{pi) for all pi G [a, 6 
where [a, 6] is the study interval with a — 0 and b = +oo. This constraint leads us to 
exclude values pi < 0. In our method, we claim that we have to start the process with 
the value a = 10"^. This value comes from the analysis of the function F(p). Indeed, 
F{p) has a double concavity. This double concavity can result in a negative value for the 
next iteration of the algorithm. Nevertheless, this double concavity has a stationary point 
for po = 2.84 * 10-^ for all RTT, .s, and Xmeasured under the hypothesis RTO - 4RTT 
[HFPW03]. In an obvious way, the stationary point is no longer identical for all RTT. s, 
and X^neasured if RTO ^ 4jRTT. According to this stationary point and the restriction 
p > 0 due to the square root, we have to take a starting point inferior to pq. Thanks to the 
convergence property of Newton's algorithm [Gau97], we know that it will fmd the result 
from any starting point (Theorem 2.7 p 37 for [BFRSl]). 

In order to compare the two methods, we introduce the following convergence criterion: 

X measured ~x computed 
X measured 

< a (6.4) 

where Xmeasured is the rate meî isured by the receiver, Xcomputed is the rate computed 
with (3.3) and a is the computation accuracy criterion (also called stopping criterion). 
According to |HFP\V03], this accuracy is reconmiended to be at legist 5%, meaning that 
when Xcomputed equals to Xjnea_sured niore or less 5% the process stops. The 5% tolerance 
is introduced for two main reasons: firstly (3.3) is difficult to invert, and secondly the 
numerical computation cost of ;>> |HFPW03 
pace of both algorithms. 

The next section will evaluate the convergence 
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6.2.2 Numerical results and interpretation 

Numerical results 

This section presents the numerical results of our proposed loss rate computation method 
compared to the classical binary search method. We have implemented these two algo-
rithms in C + + and evaluated analytically the number of iterations to compute p for given 
X and RTT values. All the computations have been performed on a Pentium IV pro-
cessor. The study is performed over a large scale of bandwidth and delay values, with an 
RTT ranging from 1ms to lOOOms and a bandwidth ranging from IKB/s to lOOMB/s. 

Table 6.1 shows the summary of the number of iterations required to reach the 5% accuracy 
in this context. 

average min max standard deviation 
Binary search 21.7379 1 29 4.1656998 

Newton 5.00034 3 13 0.0688248 

Table 6.1 Summary of the number of iterations for both algorithms 

The results concerning the binary search are expected as this method tends to converge 
with a number of iterations n fGau97l with: 

n = log2{-—-) a (6.5) 

where [a, 6] is the study interval with c = 0 and d — I, a is the convergence criterion 
and \x] denotes the ceiling of x (i.e., the smaller integer > ;r). Nevertheless in (6.5), the 
convergence criterion a is supposed to be function of the iterative parameter (in oiu* case 
/;). In this study the convergence criterion is function of Xcompxded- In order to explain the 
number of iterations needed by the binary search, we have to use the equation (6.6). 

n — 
a' 

(6.6) 

where a' is the equivalent convergence criterion on p for q = 0.05. For the same reason, 
as it is impossible to solve directly the equation, the translation from o to o ' cannot be 
done with a simple function. In order to illustrate this translation, we give two examples 
as shown in Table 6.2. 

RTT ^measured s o' 
1007/75 IMhit/s SKbits 0.0006 (n = 11) 
400r?is 2Mbit/s SKbits 0.000015 {n = 17) 

Table 6.2 Example of a ' value 
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Our large range of numerical experiments tends to show that there is a correlation between 
RTT, X.measured and the new accuracy on p. Indeed, in our experiments, the number of 
iterations needed to compute the binary search increase with the RTT and Xmeasured-

The results concerning Newton's algorithm are also linked to the properties of this al-
gorithm. Indeed, Newton's algorithm converges monotonically from any starting point 
Gau97]. Nevertheless, there is no general inferior or superior boundary for Newton's 

algorithm. 

Obviously, the number of iterations is linked to the computation time needed by both 
methods. However, even if Newton's algorithm requires a stable number of iterations, 
we need to verify if it is more computationally efficient. In the next section, we therefore 
compare the computation time of both algorithms. We focus on the range where the binary 
search algorithm is efficient. 

Interpretation and discussion 

We define the efficiency criterion e as the ratio of the binary search algorithm computation 
time (tdicho) to Newton's algorithm computation time {tNewton)'-

e — ^dicho 
tNewton 

(6.7) 

The results are shown in Figure 6.1. When the efficiency criterion is lower than one it 
corresponds to a better efficiency of the binary search algorithm. 

RTT=400ms — o— RTT=30nis —m— RTT=1ms —B~ 
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4 5 Mbytes/s 
Figure 6.1 Comparison of binary search and Newton's algorithm efficiency 

In Figure 6.1, we represent a sample of the study case summarised in Table 6.1. We focus 
on the smaller range of bandwidth than in Table 6.1 as this range is less favorable to 
Newton's algorithm. In total study range summarised in Table 6.1, our study shows that 
Newton's algorithm is more efficient for more than 95% of the cases, as efficient for less 
than 4% and less efficient for less than 1% of the cases. 
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In addition, we propose to study the correlation between the number of iterations and the 
number of CPU cycles needed to reach the 5% of accuracy. In order to explore the way 
these two characteristics interact, we proceed to an algorithmic study of both algorithms. 
We have presented in Table 5.6 the number of elementaiy operations in both algorithms 
and the theoretical number of CPU cycles for every operation^ 

Usually, the division and the square root need the highest number of CPU cycles. We see 
that Newton's algorithm needs more elementary operations per iteration. But as shown 
previously, it also needs less iteration for a given accuracy. Next we study these two 
algorithms for the worst case. For the binar>' search, the worst case is when the result 
of the computation is outside the range [0,1]^. In this case, the maximum number of 
iterations should be fixed a-priori as a static variable. According to the results obtained 
and summarized in Table 6.1, we fixed this variable to 30 iterations. The Newton's worst 
case has been evaluated to 13 iterations by our computation scheme. In these conditions 
the worst case study results are presented in Table 6.3. 

Iterations CPU cycles 
Binary search 30 10222 

Newton 13 6402.5 

Table 6.3 Worst case study 

We show that the number of c\ ĉles needed in both cases is largely in favor of Newi:on's 
algorithm. 

Side effect of the Newton Algorithm 

One other property of the Newton algorithm is the acciuacy improvement toward the solu-
tion for each iteration. In order to study this property let's define the efficiency criterion d 
as the ratio between the dichotomy algorithm computation accuracy {Sdicho) to the Newton 
algorithm computation accuracv (S\rewto7i) such as d == As a result, if S is lower 
than 1 it means that the binary search is more efficient the Newton algorithm. The result 
for large range of RTT and bandwidth value are shown in Figure 6.2. 

Figine 6.2 shows an important difference in favor of the Newton algorithm in terms of 
precision. This difference can be explained by speed of convergence of this algorithm. This 
figure shows that the Newton algorithm is more precise in 99.5% of cases for the same 
stopping criterion. 

Although the TFRC Request For Comments |HFPW03] recommends a computation with 
a precision of at least b%. we show that the Newton algorithm can reach a higher precision. 
This higher accuracy in the sending rate computation is expected to impact the effective 
throughput of the transmission significantly. For example, as the sending rate more ac-
curately reflects the bandwidth available to the flow, the chances of the sending process 

^According to Intel PIV documentation. 
^These rare cases have been voluntary excluded from the Table 6.1. 
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Precision ratio t 

Kbytes/s 

RTT (ms) 

Figure 6.2 Comparison of binary search and Newton's algorithm accuracy 

exceeding its fair share (possibly resulting in packet losses), are minimised. We computed 
this initialization process with a stopping criterion set to 0.1%. In average, the dichotomy 
requires 90% more time than it would need to reach 5% precision. 

6.2.3 Conclusion 

In this section, we have presented an efficient method to compute the packet loss rate 
of the TFRC equation. We showed that this method outperforms the 5% accuracy in 
terms of number of iterations and computation time. The initial results presented in 
this section have demonstrated the efficienc}^ of the proposed method. Due to its low 
computation needs, it is particularly well-suited to mobile devices with low processing 
power. Furthermore, due to the low standard deviation of the number of iterations, it 
is also well-suited to real time processing. In future work, presented in the following 
section, we will evaluate the performance implications of using this mechanism in a TFRC 
implementation. 

6.3 FUTURE WORK: STUDY OF THE LOSS HISTORY 

In the previous section we have presented an optimisation of the initialisation of the loss 
history structure. This optimisation lead us to investigate the impact of the initialisation 
on the overall behaviour of TFRC. Indeed, we have seen that as a side effect the Newton's 
algorithm can find the solution with a better accuracy than the recommended 5% without 
an excessive number of iterations. In order to study the possible correlation between this 
initialisation (and the value of the stopping criteria) and TFRC behaviour, we propose in 
this section the first step toward an approach to better understand the importance of the 
various TFRC's parameters through a model of TFRC receiver. 
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This work focuses on the structure used to compute the packet loss rate, i.e. the loss 
history structure. This work follows the notations introduced in [VB05, RX05, XH06]. We 
consider in this work the comprehensive model of [VB05] and we will adapt this model to 
a Markov chain. 

The study will be organized as follows: 

• Proposition of the Markov chain model: 

• model of TFRC inside scilab/scicos software; 

• presentation of the 3-states Gilbert model we will use; 

• conclusion and future work. 

This approach aims to help the designer to better understand the behaviour of the receiver 
and of the streaming in TFRC. Indeed, this model can help to have a state-oriented model of 
TFRC. In the rest of this section we propose in a first model for the use of the loss history 
structure, we then present the integration of TFRC inside the scilab/scicos software in 
which we have integrated different loss models. 

6.3.1 A first model of the lost history util isation 

In this section we propose a first model of the loss history structure and its relation with 
the network behaviour. This model is based on a Markov chains. This network will be 
configured by the following parameters: 

• the probability that a packet is lost in an RTT round, 

• the number of packets received since the last loss event 

• the actual weight of the n - 1 interval in the loss history 

• the value of the n^^ interval in the loss history (OnXi: 

• and t the time since the beginning of the transmission. 

The different use of the loss history 

In |HFPW03) the estimation of the loss rate is computed regarding a specific structiu^e on 
which is applied a sliding window weighted average computation scheme. This scheme is: 

(6.8) 
max( UJi • On-i, YJUl • (^n-i) 

This scheme can be illustrated by the Figure 6.3. 

In this context we have 9t = number of packets received since the hist loss event, ĉ o = 1, 
e,, = number of packet received l^etween the (n + loss event and the loss event or 

and cjr, = 1 - The prc^vious notation has been introduced in |VB05] and used in 
Vnst ' " ^ « + 3 ^ 
[RX05, XH061. 
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Figure 6.3 Use of the loss history to compute the loss rate 

Equivalent Markov Chain 

Based on the presentation of the use of the loss history structure depicted in the previous 
section we were able to produced an equivalent Markov chain. This Markov chain is shown 
in Figure 6.4. 

P(2i+l)(2i+l) 

Figure 6.4 Equivalent Markov Chain 

In this model there is three particular states: 

• the slow start state: this state represents the behaviour of the protocol during its 
slow start phase. The two other kind of states represent the behaviour of the protocol 
during the congestion avoidance phase. 

• the (2̂ ;, Vi G N"̂ ) states represent the behaviour of the protocol when it does not 
take into account the number of packets arrived since the last loss event; 

• the {2i + Vi € M"̂ ) states represent the behaviour of the protocol when it takes 
into account the number of packets arrived since the last loss event; 
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The transition matrix of this model is of infinite dimension with the following pattern: 

P PsO 0 
0 i>oo Poi P02 

• 0 Pii Pi2 0 
: 0 

0 P2i2i P2i{2i+1) P2ii2i+2) 0 

: 0 P{2i+l){2i+l) P(2i+l)(2i+2) 0 

: 0 

In our study we consider the following simplifying hypothesis: 

Hypothesis 6.3.1 even if a loss is detected the receiver only computes the packet loss 
rate once an RTT. 

In the previous transition matrix, the transition probabilities can be classified as follow^s: 

Pso = P((9o > t) 

P2ii2i+2) = P{2i+l){2i+2) > t) 

(6.9) 
(6.10) 

where, P2i{2i+2) and P{2i+i){2i+2) represents the probability of a loss event. Furthermore 
since the transition matrix that represents the system is infinite and is not positive recurrent 
(if all probabilities are different from 1 and 0) we know that there is not a stationaiy 
distribution associated to it [Bre99 . 

The weights uji, i G [0, N] are computed as recommended in [HFPW03]. In |HFPW03], the 
authors recommend to compute these weights following the algorithm as described in Fig. 
6.5. 

f o r { i = l ; i<=ii; i + + } { 
i f ( i > n / 2 ) { 

w_i=(2N-2i) / (n+2) 
3-else{ 

w_i=l 
> 

} 

Figure 6.5 Computation scheme of the different weights in TFRC 

Based on this first analysis of the loss history behaviour, we decide to investigate the rela-
tion between the proposed Markov chain, the value of the weight applied to the different 
loss intervals and some probability distributions for the loss pattern probability distribu-
tions. To achieve the evaluation of the possible correlation between these three parameters, 
we have decided to implement the TFRC mechanism inside an adequate tool kit. We have 
chosen the scilab/scicos toolkit for its modularity and the availability of its open source 
code 
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6.3.2 Use of scilab/scicos 

In order to study the previous Markov chain, we have chosen an analytical approach since 
the transition matrix is infinite, therefore we cannot find its stationary distribution. 

A model of TFRC and the network 

We have modelled the TFRC sender and receiver algorithm inside scicos toolkit. These 
two blocks are therefore linked with a block representing the network between the receiver 
and the sender. This general model is represented in the Figure 6.6. 

tfrc 

initial rate 

feedback 

initial plr Mux 

Figure 6.6 General Model of TFRC inside a network 

In this model we make one important assumption. This assumption concerns the one way 
delay between the sender and the receiver. This one way delay is set to 0ms in order to 
better use the possibilities of scicos. Indeed, in scicos we want to use the input and output 
event to better drive our simulations. 

The receiver and sender have also been modelled in scicos. In the receiver model we have 
included the slow start phase as we want to study the impact of the initialisation of the 
receiver. 

In this model the network is modelled with a simple function that looses packets. These 
losses can be driven via two methods. In the first one we simply loose packets according 
to measurements obtained either with ns 2 or real test bed. In the second one, we loose 
packet following some probability models. We have implemented three kinds of probability 
of losses: 

• simple Gilbert model; 

• multiple states Gilbert model; 

• Bernoulli model. 

We present in the following section a 3-states Gilbert model 
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Multiple states Gilbert model 

In order to clarify this model we will first study the four states Gilbert model. This model 
is a Markov chain with transition matrix M : 

1 - p i Pi 0 0 
I -P2 0 P2 0 
I -P3 0 0 PS 
1 — P4 0 0 P4 

In this model the state 1 represents the network when you just had a packet lost. The 
state 2 represents the successful transmission of one packet. The state 3 represents the 
successful transmission of one more packet. Finally the state 4 represents the successful 
transmission of more than three packets and continuing sending packets without losses. 
In this model there is only one class except when P4 = 1 and the other probabilities are 
different to zero, and obviously when one probability equal to zero there is more than one 
class. Therefore the class is irreducible and all the states are transient. A simple study of 
this model can provide us a stationary distribution tt = [tti 7r2 tts 7r4] where 

TTi 
TT2 

7r4 

^ (1-P4) 
_ ÍP1-P1P4) 
_ {P1P2-P1P2P4) 
_ {PlP2P3) 

Where a = I - P4 + Pi - PiP4 + P1P2 - P1P2P4 + PiP2P3- In this Markov model, the 
chain is irreducible and admits a stationary distribution then we know that every 7r¿ for 
i E {1, 2 ,3 ,4} is equal to the inverse of the average return time of the state |Bre99]. 

6.3.3 Preliminary conclusion 

We have implemented the Gilbert model inside the network model of scicos. We are 
currently studying the impact of the different parameters on TFRC flow. The introduction 
of such probabilities distribution should allow us to compare the theoretical result and the 
packet loss rate computed as described before. Indeed, the use of scilab allows us to 
compute the Euclidean distance between the computed packet loss rate and the theoretical 
value. Based on this distance we should be able therefore to adjust the value of the weight 
{or the way to compute them) and repeat the experiment until the distance between these 
values is minimised. 

We have presented in this section a first approach to study the behaviour of TFRC under 
numerous probability distributions. Nevertheless, this first approach did not allow us 
to produce any significant results yet, but thanks to the ease of use scilab and scicos 
toolkit, we think that we will ]:>e able to propose in the future a more complete study that 
could ciuantify the impact of loss history initialisation and also according to well known 
stochastic distribution optimise the computation of the weight applied to the computation 
of the packet loss rate. 
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6.4 CONCLUSION 

In this chapter we have presented one contribution and a promising future work. We have 
shown that b^ised on a numerical analysis of the equation used in TFRC mechanism we 
can lighten and enhance the initialisation of the loss history structure. This solution is 
based on the use of the well known Newton algorithm for solving the inversion problem of 
the TFRC equation. 

We have quantified the benefit of this algorithm compared to the usually used binary 
search algorithm and we have shown that our proposal, even if it required more elementary 
operations per iterations, outperforms the original algorithm in terms of computation time 
and CPU consumption. Furthermore, the proposed method can invert the TCP throughput 
equation with a better accuracy and without loss of performance. This is due to the better 
convergence pace of the Newton algorithm. We plan to integrate this new algorithm inside 
the Chameleon Protocol in order to quantify the potential benefit of this method on the 
communication process. 

In the second part of this chapter, we described an in-progress approach that aims to 
analyse the correlation between the use of the loss history, the applied weights and a defined 
loss probabihty model. We have first proposed a Markov chain representing the loss history 
behaviour and its associated transition matrix. Due to the complexity introduced by this 
model we have decided to analyse it through the integration of the TFRC mechanism inside 
a discrete event toolkit. 

In a future work we plan to pursue the use of this model in order to try to answer the 
following questions: 

• how to quantify the impact of probability models on the way the packet loss rate is 
computed in TFRC? 

• Is it possible to optimize the weights associated to the loss interval, in order to be 
closer to the probability distribution? 

• If this is possible, how can we distinguished between wired and wireless losses? 



CHAPTER 7 

Conclusion 

This chapter gives an overview of the contributions of this thesis and some directions on 
future research that would benefit from this thesis. 

7.1 PROBLEMS SUMMARY 

In this thesis, we try solve two problems observed in current transport protocols thanks to 
respectively the specialisation and the adaptation of the congestion control TCP Friendly 
Rate Control (TFRC). These problems are: 

1. the poor performances of current transport protocols over band width-guaranteed 
network: 

2. CPU and memory consumption of transport protocols when used on entities with 
limited resources. 

In addition to these two general problems we identified and corrected some drawbacks in 
the current architecture of the TFRC. This resolution has been done with the optimisation 
of TFRC internal algorithms. 

7.1.1 Transport protocols performance over bandwidth guaranteed net-
works 

In chapters 2. 3 and 4. we have presented the limitations of current transport protocols 
to fully benefit from QoS-oriented network-layer services. We mainly focus on bandwidth-
guaranteed networks and in particular the DiffServ AF class. In these networks, cis shown 
in previous work [SNP99. PC04a]. TCP cannot reach the negotiated bandwidth for all 
network conditions and it is not fairly sharing the out-profile bandwidth. The only way 
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to ensure TCP to reach its target rate is to introduce complex conditioners at the edge of 
the network. Nevertheless, because these conditioners and TCP are not using the same 
measures of the network behaviour it still remains some cases where TCP cannot reach its 
target rate. 

The introduction of new transport protocols and new congestion controls did not solve 
this incompatibility between the QoS networks and the transport layer. Indeed, in SCTP 
SAOO] and DCCP/CCID 2 [FK06], the congestion control is similar to the one used by 

TCP. In DCCP/CCID 3 [FKP06], the congestion control in use is TFRC [HFPW03]. This 
congestion control uses a model of TCP AIMD congestion control, as a result this kind 
of congestion control does not perform better than TCP over a QoS network [KK03 . 
Nevertheless, TFRC and rate-based congestion controls, contrary to TCP, are sending 
packets according to the inter-packets time which constitutes a metric at the edge routers. 

7.1.2 Resources limited entities 

The last five years have seen more and more small communication entities emerge. These 
entities are characterised by less CPU power and memory storage than usual personal 
computers. Therefore the lightening of recurrent connnunication processing is a critical 
issue for increasing the performance and autonomy of mobile end systems. One of the 
main costs of the TFRC mechanism comes from the periodic computation of both the 
RTT and the loss rate of data carried by a connection. In particular, RFC 3448 [HFPW03] 
proposes the loss rate estimation to be done on the receiver side. It also suggests that this 
computation could also be done on the sender-side: "It would be possible to implement a 
sender based variant of TFB.C where the receiver uses reliable delivery to send information 
about packet losses and the seiider computes the packet loss rate and the acceptable transmit 
rate". 

7.1.3 Drawbacks of TFRC implementations 

Throughout this thesis we tried to solve different problems related to TFRC congestion 
control. These studies led us to discovery some computational possible improvements 
inside this mechanism. The first one was tlie computation of the loss history initialisation. 
Indeed, in every implementation we analysed, this particular function was done with a 
binary search algorithm which is the simplest algorithm to implement but also poorly 
efficient one. Furthermore, this algorithm cannot certify the resolution of the problem if 
the solution is outside the initial boundaries. 

The second problem we observed was the computation of the packet loss rate. Indeed, this 
computation is done using a weighting moving window average of the loss event intervals. 
Nevertheless, the weight liave been defined in the case of wired network therefore, nowadays 
these weights may not be adapted to the different new network technology, especially the 
wireless networks. 
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7.2 CONTRIBUTION SUMMARY 

7.2.1 Design and implementation of QoS-aware Transport Protocol 

In this thesis we have designed and implemented a transport protocol able to reach the 
negotiated bandwidth whatever the network conditions. This successful design is based 
on the introduction of a new congestion control mechanism especially designed for QoS-
oriented network services. We called this mechanism .gTFRC (for guaranteed TFRC) since 
it consists of a specialisation of TFRC congestion control mechanism in order to make it 
aware of the target rate. We have demonstrated the efficiency of this mechanism through 
its implementation inside a Java framework and its evaluation over a DiffServ/AF testbed. 
The results show that this mechanism allowes the transport protocol to reach its target 
rate whatever the network conditions. Nevertheless, this mechanism still does not allow 
the transport protocol to share fairly the out-profile traffic. 

After the evaluation of this congestion control we compose it with a reliable mechanism 
in order to provide a transport service similar to TCP. This reliable service is provided 
by a SACK-like mechanism and the introduction of flow control especially designed for 
datagi-am-oriented and rate-based transport protocol. The results of this composition have 
confirmed the previous results and have shown that, at the application level, the results 
remain similar. Furthermore, we have shown that this mechanism is not only efficient with 
a DiffServ/AF class using a RIO mechanism but also with on top of a generic class-based 
network service. 

7.2.2 Lightened version of TFRC 

Our second contribution has focused on the design and implementation an adaptation of 
TFRC for mobile and light end-system via the introduction of a new version of a sender-
based architectiu-e. This TFRC architecture has aimed to provide a light version of TFRC 
and to solve the problem of the selfish receiver. This proposal is based SACK-like in-
formation to inform the sender about lost packets and therefore luis introduced a new 
sender-oriented definition of loss events. Indeed, in this new version a loss event is no 
longer detected according to the estimated arrival time of the lost packet but according to 
the sending time of this lost packet corrected by a ratio factor between the sending and 
receiving rate. 

The proposed solution has been evaluated regarding numerous metrics, confirming that it 
stays compatil^le both with TCP and the original TFRC. Furthermore, we have quantified 
this proposal and shown that it allows light entities to save a substantial number of CPU 
cycles, memory space and therefore increases substantially their autonomy. 

7.2.3 Optimisation and tool box for TFRC 

Finally we have introduced an additional contribution and sketche a promising future work. 
The contribution hfis targetted the optimisation of the loss history initialisation. This 
optimisation uses a Newton algorithm ba,sed on the numerical analysis of the equation 
used in TFRC. This proposal allows the receiver to invert the equation with a stable 
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number of iterations and less CPU cycles than the currently used algorithm. Furthermore, 
this algorithm allows a better accuracy in the resolution of the inversion of the equation 
without using many more iterations. 

Based on this first optimisation, we investigated a way to better quantify how TFRC 
loss event rate is computed and how to optimise it. This study can be done due to the 
introduction of a tool box that reproduces the behaviour of TFRC and where probability 
model for the losses can be easily integrated. 

7.3 FUTURE RESEARCH DIRECTIONS 

During this thesis, we have shown the efficiency of the combination of a rate-based con-
gestion control and a SACK-like mechanism that integrates a flow control. 

In this thesis, we have built transport protocol mechanisms that aim to improve the QoS 
perceived by the user, as well as the autonomy of light entities. These new mechanisms 
are merely elementary components of a versatile transport protocol and they demonstrate 
the pressing need for a transport protocol that can be simultaneously adapted to the 
application and underlying network services. Indeed, facing the gi'eat diversity of access-
network features and application requirements, it seems impossible to define an universal 
protocol that would encompass the entire combination of these features. Therefore, service-
oriented transport protocols, able to be dynamically configured, appear to be the future 
of new generation communication architectures. These new approaches dispose of the 
traditional layered approach and raise numerous issues, such as security, performance, 
service identification, localisation and composition, and the reliability and consistency of 
composed services. In a future work, we plan to define a global architecture for dynamic 
protocol composition. 

Recent studies have shown that a rate-based congestion-control mechanism should improve 
the throughput for multi-hop ad-hoc networks, in particular for Vehicular Ad-Hoc Network 
(VANET). The studies presented in this paper provide substantial evidence for the poten-
tial benefits of such a composition. In future, we plan to specify the entire chameleon 
protocol and its different versions in order to implement it at the kernel level, since we 
have observed certain limitations in terms of throughput when the prototype was used at 
the application level. This implementation should allow us to test the properties of such a 
protocol over a vehicular network test bed. 

This implementation at the kernel level will integrate all the different versions of the 
chameleon protocol as synthesised in the Table 7.1 

reliable non-reliable 
TFRC normal Yes Yes 

QoS-aware Yes Yes 
Sender-based Yes Yes 

Table 7.1 Differtnit configuration of Chameleon 
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In all these versions of Chameleon Protocol, the optimisations proposed in chapter 6 will 
be integrated. 

Based on the work done with the Scilab-Scicos software, we plan to propose more complete 
studies of the computation of the loss event rate in TFRC. Future research will attempt 
to better understand the problems raised in [VB05, RX05]. In the first instance, future 
research will use the same hypothesis concerning the constant value of the RTT. However, 
as demonstrated in [ABR05, BCD+06] this hypothesis is no longer valid when the studied 
network contains a wireless access network. Therefore, we will integrate a non-constant 
RTT in order to better study TFRC mechanism. 

In the future, based on the findings of this thesis, we will attempt to adapt the transport 
layer for global computing P2P application. Indeed, we have shown in [JE05] that this 
kind of application, with the use of asynchronous algorithms, allows an improvement for 
the pace of convergence of the algorithm. Furthermore, the use of asynchronous algorithms 
ensures a certain robustness and the convergence of the resolution [BG97). A study of this 
kind of algorithm using a transport protocol, whether able or not to be configured to 
provide reliability, should improve P2P global computing applications. 

In order to integrate such kinds of transport protocols inside a global computing applica-
tion, some frameworks allow the study of these applications over an heterogeneous network 
[Bou05]. One possible study could be the optimisation of the sending process according to 
the network estimations and the class of asynchronous algorithm used by the application 
(e.g. gradient, Gauss-Siedel). 
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Toward a Versatile Transport Protocol 

Résumé : Les travaux présentés dans cette thèse ont pour but d'améliorer la couche transport de l'ar-
chitecture réseau de l'OSI. La couche transport est de nos jour dominée par l'utilisation de TCP et son 
contrôle de congestion. Récemment de nouveaux mécanismes de contrôle de congestion ont été proposés. 
Parmi eux TCP Friendly Rate Control (TFRC) semble être le plus abouti. Cependant, tout comme TCP, 
ce mécanisme ne prend pas en compte ni les évolutions du réseau ni les nouveaux besoins des applications. 
La première contribution de cette thèse consiste en une spécialisation de TFRC afin d'obtenir un protocole 
de transport avisé de la Qualité de Service (QdS) spécialement défini pour des réseaux à QdS offrant une 
garantie de bande passante. Ce protocole combine un mécanisme de contrôle de congestion orienté QdS qui 
prend en compte la réservation de bande passante au niveau réseau, avec un service de fiabilité totale afin 
de proposer un service similaire à TCP. Le résultat de cette composition constitue le premier protocole de 
transport adapté à des réseau à garantie de bande passante. 
En même temps que cette expansion de service au niveau réseau, de nouvelles technologies ont été proposées 
et déployées au niveau physique. Ces nouvelles technologies sont caractérisées par leur affranchissement 
de support filaire et la mobilité des systèmes terminaux. De plus, elles sont généralement déployées sur 
des entités où la puissance de calcul et la disponibilité mémoire sont inférieures à celles des ordinateurs 
personnels. La deuxième contribution de cette thèse est la proposition d'une adaptation de TFRC à ces 
entités via la proposition d'une version allégée du récepteur. Cette version a été implémentée, évaluée 
quantitativement et ses nombreux avantages et contributions ont été démontrés par rapport à TFRC. 
Enfin, nous proposons une optimisation des implémentations actuelles de TFRC. Cette optimisation pro-
pose tout d'abord un nouvel algorithme pour l'initialisation du récepteur basé sur l'utilisation de l'algo-
rithme de Newton. Nous proposons aussi l'introduction d'un outil nous permettant d'étudier plus en détails 
la manière dont est calculé le taux de perte du côté récepteur. 
Mots clés : Protocole de transport. Contrôle de congestion. Qualité de Service, Architecture légère, 
Optimisation algorithmique. 

Toward a Versatile Transport Protocol 

Abstract: This thesis presents three main contributions that aim to improve the transport layer of the 
current networking architecture. The transport layer is nowadays overruled hy the use of TCP and its 
congestion control. Recently new congestion control mechanisms have been proposed. Among them, TCP 
Friendly Rate Control (TFRC) appears to be one of the most complete. Nevertheless this congestion 
control mechanism, as TCP, does not take into account either the evohition of the network in terms of 
Quality of Service and mobility or the evolution of the applications. 
The first contribution of this thesis is a specialisation TFRC congestion control to propose a QoS-aware 
Transport Protocol specifically designed to operate over QoS-enabled networks with bandwidth guarantee 
mechanisms. This protocol combines a QoS-aware congestion control, which takes into account network-
level bandwidth reservations, with full reliability in order mechanism to provide a transport service similar 
to TCP. As a result, we obtain the guaranteed throughput at the application level where TCP fails. This 
protocol is the first transport protocol compliant with bandwidth guaranteed networks. 
At the same time the set of network services expands, new technologies have been proposed and deployed 
at the physical layCT. These new technologies are mainly characterised by communications done without 
wire constraint and t he mobility of the end-systems. Furthermore, t hese technologies are usually deployed 
on entities where the CPU power and memory storage are limited. The second contribution of this thesis 
is therefore to propose an adaptation of TFRC to these entities. This is accomplished with t he proposition 
of a new sender-based version of TFRC. This version has been implemented, evaluated and it s numerous 
contributions and advantages compare to usual TFRC version have been demonstrated. 
Finally, we proposed an optimisation of actual implementations of TFRC. This optimisation first consists 
in the proposition of an algorithm based on a numerical analysis of the equation used in TFRC and the 
use of the Newton's algorithm. We furthermore give a first step, with the introduction of a new framework 
for TFRC, in order to better understand TFRC behaviour and to optimise the computation of the packet 
loss rate according to loss probability distributions. 

Keywords: Transport Protocol, Congestion Control, Quality of Service, Light Architecture, Algorithmic 
Optimisation. 
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