
5

Versatility of Extended Subwords
and the Matrix Register File

ASADOLLAH SHAHBAHRAMI, BEN JUURLINK, and STAMATIS VASSILIADIS

Delft University of Technology

Extended subwords and the matrix register file (MRF) are two micro architectural techniques that
address some of the limitations of existing SIMD architectures. Extended subwords are wider than
the data stored in memory. Specifically, for every byte of data stored in memory, there are four
extra bits in the media register file. This avoids the need for data-type conversion instructions. The
MRF is a register file organization that provides both conventional row-wise, as well as column-
wise, access to the register file. In other words, it allows to view the register file as a matrix in
which corresponding subwords in different registers corresponds to a column of the matrix. It was
introduced to accelerate matrix transposition which is a very common operation in multimedia
applications. In this paper, we show that the MRF is very versatile, since it can also be used for
other permutations than matrix transposition. Specifically, it is shown how it can be used to pro-
vide efficient access to strided data, as is needed in, e.g., color space conversion. Furthermore, it
is shown that special-purpose instructions (SPIs), such as the sum-of-absolute differences (SAD)
instruction, have limited usefulness when extended subwords and a few general SIMD instruc-
tions that we propose are supported, for the following reasons. First, when extended subwords are
supported, the SAD instruction provides only a relatively small performance improvement. Sec-
ond, the SAD instruction processes 8-bit subwords only, which is not sufficient for quarter-pixel
resolution nor for cost functions used in image and video retrieval. Results obtained by extending
the SimpleScalar toolset show that the proposed techniques provide a speedup of up to 3.00 over
the MMX architecture. The results also show that using, at most, 13 extra media registers yields
an additional performance improvement ranging from 1.38 to 1.57.

Categories and Subject Descriptors: C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures, SIMD

General Terms: Design, Performance

Additional Key Words and Phrases: SIMD architectures, SIMD programming, multimedia
standards

Extension of conference papers [Shahbahrami et al. 2006b; 2006c]. This research was supported in
part by the Netherlands Organization for Scientific Research (NWO).
Authors’ address: Asadollah Shahbahrami, Ben Juurlink, and Stamatis Vassiliadis, Computer En-
gineering Laboratory, Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft
University of Technology, The Netherlands; email: {shahbahrami,benj}@ce.et.tudelft.nl.
Asadollah Shahbahrami is also with Department of Computer Engineering, Faculty of Engineering,
The University of Guilan, Rasht, Iran.
Permission to make digital or hard copies part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1529-3785/2008/05-ART5 $5.00 DOI 10.1145/1369396.1369401 http://doi.acm.org/
10.1145/1369396.1369401

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1369396.1369401&domain=pdf&date_stamp=2008-05-29

5:2 • A. Shahbahrami et al.

ACM Reference Format:

Shahbahrami, A., Juurlink, B., and Vassiliadis, S. 2008. Versatility of extended subwords and
the matrix register file. ACM. Trans. Architec. Code Optim. 5, 1, Article 5 (May 2008), 30 pages.
DOI = 10.1145/1369396.1369401 http://doi.acm.org/10.1145/1369396.1369401

1. INTRODUCTION

The efficient processing of multimedia applications is one of the main bottle-
necks in the media processing field. The main reason is that there are many
multimedia standards, such as MPEG-1/2/4, JPEG, and H.263/4, to capture,
manipulate, store, transmit, and compress multimedia data. These standards
employ different algorithms, processes, and techniques [Lee and Smith 1996].
For example, color space conversion (CSC) algorithms such as RGB-to-YCbCr
and YCbCr-to-RGB are usually used in the encoder and decoder, respectively.
In addition, multimedia standards use different similarity measurements, such
as the sum-of-squared differences (SSD) and the sum-of-absolute differences
(SAD) for motion estimation. Each algorithm in the multimedia environment
has certain characteristics. For instance, CSC and similarity measurement
algorithms are computationally intensive. Some CSC algorithms process the
band-separated format, which is the most convenient for SIMD processing,
while others process the band-interleaved format, which is difficult for SIMD
processing. Motion-estimation algorithms use variable block sizes in the H.264
standard.

Our profiling of a JPEG coder/decoder (codec) shows that RGB-to-YCbCr and
YCbCr-to-RGB consume an average of 13.1 and 28.7% of the total execution
time, respectively. Other researchers [Bensaali and Amira 2005; Bartkowiak
2001] have reported that CSC consumes up to 40% of the entire process-
ing time of a highly optimized decoder. In addition, in Kuhn [1999], Rabbani
and Jones [1991], and Shanableh and Ghanbari [2000] it has been indicated
that motion estimation takes about 60 to 80% of the encoding time. Conse-
quently, the performance of JPEG/MPEG codecs and H.263/4 standards can
be significantly improved by accelerating the CSCs and different similarity
measurements.

Since both CSC and similarity measurement algorithms exhibit significant
amounts of data-level parallelism (DLP), they could be implemented using
the single-instruction multiple data (SIMD) instructions supported by most
general-purpose processors (GPPs). Some processor vendors have provided
special-purpose instructions (SPIs), such as the SSE instruction psadbw
[Raman et al. 2000], the VIS instruction pdist (pixel distance) [Tremblay et al.
1996], and ARM instructions usad8 and usada8 [Goodacre and Sloss 2005] to
accelerate motion estimation based on the SAD function. Figure 1 depicts the
speedup of the MMX [Peleg et al. 1997] and SSE implementations of different
similarity measurements and CSCs over a scalar implementation on the
Pentium 4 processor. The speedup of MMX/SSE for the SAD function is higher
than for other similarity measurements. The speedup of the SAD function
used for histogram similarity measurement is only 1.20. As can also be seen,

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

Versatility of Extended Subwords and the Matrix Register File • 5:3

Fig. 1. Speedup of the MMX/SSE over C implementation for different kernels on the Pentium 4
processor.

the MMX implementations of RGB-to-YCbCr and YCbCr-to-RGB are 4.59 and
5.31 times faster than the corresponding C implementations, respectively.

However, there is much more DLP in these functions. In other words, CSC
and similarity measurement algorithms have certain characteristics, which
make them difficult to efficiently implement using existing SIMD extensions.
The main performance limitations are the following.

—The image pixels are usually stored as unsigned bytes, but intermediate
results to implement CSC and different similarity measurements require
precision larger than 8 bits. This means that there is a mismatch between
the storage and the computational format. Consequently, data-type conver-
sion instructions, such as unpacking, are required before operations are per-
formed and the results also have to be packed before they can be stored back
to memory. As a result, performance is lost as a result of the execution of
data conversion instructions and because fewer subwords can be processed
in parallel.

—SIMD architectures are most efficient when the data, which is processed in
parallel, is consecutively stored in memory. If not, there is a large overhead
involving data-reorganization instructions. For example, in case of the CSC,
the band-interleaved format is often used where the color components of
each pixel are adjacent in memory. This implies that in order to efficiently
employ SIMD instructions, the image pixels have to be reorganized so that
the red data of different pixels are contained in one register, the green data in
another, and the blue data in a third. In this case, many data reorganization
instructions need to be executed.

—SPIs such as the SAD instruction have limited usefulness, except for the
specific kernels they were designed to accelerate. This has several draw-
backs. First, if the SAD becomes obsolete, because a different similarity met-
ric is employed, then the SAD SPI is no longer useful. For example, MIPS’
MDMX [Jennings and Conte 1998] provides no SAD SPI, but advocates us-
ing the SSD instead. Second, as indicated in Larsen and Amarasinghe [2000],
the complex CISC-like semantics of SPIs makes automatic code generation
difficult. Third, the SAD SPI only supports the packed-byte data type. While
useful for the SAD kernel used in motion estimation, this precision is not
sufficient for multimedia kernels, such as motion estimation, in the trans-
form domain or for cost functions used in image and video retrieval [Lee et al.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

5:4 • A. Shahbahrami et al.

2004]. In addition, this 8-bit precision is not sufficient for using quarter-pixel
resolution, which is used in some standards such as H.264 [Tamhankar and
Rao 2003]. Finally, since these instructions process eight 8-bit subwords, they
are most useful if the vector length is a multiple of 8. In the H.264 standard,
however, variable block sizes, for instance, 8×4 and 4×4 are used [Tamhankar
and Rao 2003].

In order to improve the performance of the discussed multimedia functions,
we accelerate them by focusing on exploiting DLP on a programmable SIMD
architecture, for the following reasons. First, media applications have been
changing and this proposes the use of programmable processors, instead of
custom application-specific integrated circuits (ASICs) or highly specialized
application-specific processors. Second, as multimedia standards become more
sophisticated and larger, programmable processors need to scale their SIMD
extensions in order to provide the performance required by new algorithms.

To reach this goal, we propose the use of extended subwords and matrix reg-
ister file (MRF), as well as some general-purpose SIMD instructions. Extended
subwords use registers that are wider than the packed format used to store the
data. While conventional subwords are 8, 16, and 32 bits, extended subwords
are 12, 24, and 48 bits. This avoids data-type conversion instructions. The MRF
allows to consecutively load data stored in memory into a column of the reg-
ister file, where a column corresponds to corresponding subwords of different
registers. This technique avoids the use of data-rearrangement instructions.
In addition, providing some general-purpose SIMD instructions yields much
more performance than using existing SIMD and scalar instructions. Further-
more, we propose to synthesize SPIs, such as the SAD instruction, using a few
general-purpose SIMD instructions and show that this can be achieved with
little performance degradation.

We refer to MMX enhanced with extended subwords, the MRF, and our novel
SIMD instructions as modified MMX (MMMX). We have evaluated the proposed
techniques and new SIMD instructions with the MMX/SSE architectures by
extending the SimpleScalar toolset [Austin et al. 2002].

We make the following contributions, compared to other works.

—We propose the use of extended subwords to alleviate data-type conversion
instructions. The number of subwords that can be processed simultaneously
is increased using this technique.

—We propose to use the MRF to reorganize strided data. We show that the MRF
can be used to transpose a matrix to avoid data-rearrangement instructions
in 2-D multimedia kernels, as well as to reorganize strided data.

—We investigate new and general SIMD instructions addressing the multi-
media applications domain. We did not consider an ISA that is application
specific.

—Color space conversions and SPIs were usually supported by dedicated and
ASICs hardware. In this paper, on the other hand, to avoid the added cost
and complexity of these dedicated hardware units, we focus on maintain-
ing programmability while increasing performance using SIMD extension

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

Versatility of Extended Subwords and the Matrix Register File • 5:5

targeting media applications. In other words, SPIs are synthesized using a
few general-purpose SIMD instructions.

This paper is organized as follows. Related work is discussed in Section 2.
Section 3 describes the MMMX architecture. Workloads are discussed in Sec-
tion 4. The SIMD implementations of some kernels are presented in Section 5
followed by performance evaluation of proposed techniques in Section 6. Finally,
conclusions and future work are given in Section 7.

2. RELATED WORK

In this section we discuss related work. We remark that although we have
enhanced MMX/SSE integer extension to MMX with extended subwords and
the MRF, our techniques can be applied to almost any SIMD ISA extension.

We first discuss work related to extended subwords. Extended subwords are,
in a way, similar to the wide accumulators used in some DSP processors such as
TMS320C64x/C64x+ DSP [Texas Instruments 2007] and MIPS’ MDMX [Gwen-
nap 1996]. In the C64x and C64x+ DSP, two 32-bit registers are used to hold a
value of 40 bits. This means that 24 bits of register pairs are wasted. The MIPS’
MDMX extension uses a 192-bit accumulator. This 192-bit register can be par-
titioned into eight 24-bit values or four 48-bit values. It is mainly used for the
multiply accumulate operations common in many signal-processing algorithms.
Extended subwords are also useful for other algorithms that temporarily re-
quire larger precision.

Slingerland and Smith [2002] have proposed the use of extended subwords
called fat subwords. However, they have not evaluated them. Furthermore,
our work shows that without a method to efficiently rearrange the subwords,
such as the MRF, extended subwords are not suitable for the many 2-D media
algorithms that process data along the rows as well as along the columns.

Some SIMD architectures, for example AltiVec [Motorola Inc. 1998;
Diefendorff et al. 2000] and the ISA of the Cell synergistic processing element
(SPE) [Flachs et al. 2006; Gschwind et al. 2006; IBM 2007], have 128-bit reg-
isters. This allows the use of computational format of, e.g., 16 bits when the
storage format is 8 bits. In fact, the Cell SPE does not provide arithmetic in-
structions for the packed-byte data type. Our work shows, however, that 12
bits are sufficient for many media kernels and, therefore, the additional 4 bits
are not needed. Furthermore, the Cell SPE requires explicit pack and unpack
instructions.

We now discuss related data-reorganization methods. Slingerland and
Smith [2002] proposed that SIMD architectures implement strided loads and
stores to gather nonadjacent data elements, as would be useful in CSC. Strided-
memory accesses would eliminate the overhead instructions, but such memory
accesses are naturally slower than conventional memory accesses. In Chatterji
et al. [2003], it has been indicated that one reason for poor VIRAM [Kozyrakis
et al. 2000] memory performance for CSC is the strided-memory accesses.

The designers of the SIMD architectures have considered different ap-
proaches for data-rearrangement. Some SIMD architectures, such as MIPS’
MDMX, MMX, and SSE have a set of permutation instructions with limited

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

5:6 • A. Shahbahrami et al.

Fig. 2. Speedup of MMMX over MMX for different kernels on the single-issue processor.

capabilities. For example, SSE pshufw (packed shuffle word) instruction uses
an immediate operand to select which of the four words in the source operand
will be placed in each of the words in the destination operand. On the other
hand, the AltiVec extension, the Cell SPE, and Texas Instruments C64x VLIW
DSP [Seshan 1998] provide a separate permutation unit to allow an arbitrary
permutation of any subword in one instruction. Although this solution provides
more flexibility than MMX/SSE, many instructions are still required to trans-
pose a matrix as is needed in many 2-D media algorithms. This is because the
permutation instruction can only read two registers and write one register.

ARM’s Neon Technology [Baron 2005; Goodacre and Sloss 2005] is a hybrid
64/128-bit SIMD architecture where the register file can be viewed as 32 ×
64-bit registers or 16 × 128-bit registers. This architecture treats memory as
an array of structures (AoS). This means that a load instruction loads sub-
words stored consecutively in memory into different SIMD registers. For ex-
ample, the vld3.16 {D0, D1, D2}, [R0] instruction transfers four 3 × 16-bit
structures stored in memory as x0, y0, z0, x1, . . . , z3 to the registers D0, D1, and
D2 so that D0 contains the values x0, . . . , x3, D1 the values y0, . . . , y3, and D2
the values z0, . . . , z3. This is very useful for CSC, but cannot be used for other
data-rearrangement operations.

A different approach to eliminate data-permutation instructions named
single-instruction multiple disjoint data (SIMdD) has been proposed in the
eLite DSP architecture [Moreno et al. 2003; Naishlos et al. 2003]. Instead of a
vector register file, the eLite DSP employs a large scalar register file, the vec-
tor element file (VEF). The elements in the VEF are addressed by four indices
contained in a vector pointer register. In other words, vectors are dynamically
composed. While very flexible, this approach requires four read ports to the
VEF and can process, at most, four values in parallel. To process more, more
read ports are required. The eLite DSP also has vector accumulator registers
and a vector accumulator unit.

We have evaluated our proposed techniques in a previous paper
[Shahbahrami et al. 2006a] using some 2-D multimedia kernels, such as 2-D
discrete cosine transform (DCT) and its inverse (IDCT), Paeth prediction, 2 × 2
Haar transform and its inverse, vector/matrix multiplication, matrix transpose,
and addition of two images. Figure 2 depicts the speedup of MMMX over MMX
of the multimedia kernels on the single-issue processor. MMMX improves
performance by a factor of 2.26 on average over MMX. One reason why MMMX
improves the performance is the MRF technique. This technique basically

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

Versatility of Extended Subwords and the Matrix Register File • 5:7

unsigned char blk1[16][16], blk2[16][16];

int ssd = 0;

for (i=0; i<16; i++)

for (j=0; j<16; j++)

ssd += (blk1[i][j] - blk2[i][j]) * (blk1[i][j] - blk2[i][j]);

Fig. 3. C code of the sum-of-squared differences.

eliminates the matrix transposition step which is required in some kernels, for
instance, 2-D (I)DCT and vector/matrix multiplication. In this paper, we show
that the MRF is useful also for other permutations. Furthermore, we show that
when extended subwords are provided, then SPIs can be synthesized using a
few general-purpose SIMD instructions.

3. MMMX ARCHITECTURE

In this section we briefly describe the MMMX architecture, which features ex-
tended subwords and the matrix register file. In addition, we discuss the new
SIMD instructions and provide a preliminary evaluation of the hardware cost
of the proposed techniques. More details about the MMMX architecture can be
found in previous work [Shahbahrami et al. 2006a, 2006b, 2006c].

3.1 Extended Subwords and MRF

Image, video, and audio data are usually small integers such as 8 or 16 bits,
while computations on these small data types often require larger data types.
Consider, for example, the code that is depicted in Figure 3. This code computes
the SSD between two 16 × 16 blocks.

The difference between blk1[i][j] and blk2[i][j] is a 9-bit value, and the
result of (blk1[i][j] - blk2[i][j]) ∗ (blk1[i][j] - blk2[i][j]) does not fit
in a subword of either 8 or 16 bits. This is because a 24-bit subword is needed
for the final result, as the following Equation (1) shows:

15∑
i=0

15∑
j=0

(255)2 < (28)3 = 224. (1)

The data, therefore, needs to be converted to a larger format and this causes
data-type conversion overhead. Furthermore, the number of subwords that are
processed in parallel by a single SIMD instruction is reduced. The main reason
for the data-type conversion instructions is the mismatch between the storage
and the computational formats. We have examined some multimedia kernels
to determine their storage and computational formats. The result is depicted
in Table I.

To avoid the data-type conversion overhead and to increase parallelism,
we employ the extended-subwords technique. This means that the registers
are wider than the data loaded into them. Specifically, for every byte of data,
there are four extra bits. This implies that MMMX registers are 96 bits wide,
while MMX has 64-bit registers. These registers are treated either as a vector
of eight 12-bit subwords, four 24-bit subwords, or two 48-bit quantities, as is

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

5:8 • A. Shahbahrami et al.

Table I. Storage and Computational Formats of Some Multimedia Kernels

Multimedia Kernels Storage Format Computational Format

RGB-to-YCbCr Unsigned byte 12-bit
YCbCr-to-RGB Unsigned byte 12-bit
SAD function Unsigned byte 9-bit
SAD function with interpolation Unsigned byte 10-bit
SSD function Unsigned byte 16-bit
SSD function with interpolation Unsigned byte 16-bit
Add Block Unsigned byte 9-bit
2D DCT (un)signed byte 12-bit
2 × 2 Haar transform Unsigned byte 10-bit
Paeth prediction Unsigned byte 10-bit

95 84 83 7172 60 59 48 47 36 35 24 23 12 11 0

8 12−bit elements

4 24−bit elements

2 48−bit elements

Fig. 4. Different subwords in the media register file of the MMMX architecture.

depicted in Figure 4. The extended-subwords technique increases the number
of subwords that can be packed into a media register. This feature allows to per-
form more operations in parallel by packing more data elements into a single
media register.

Conventional SIMD load and store instructions access adjacent elements in
memory. Because of this, many rearrangement instructions are needed to bring
strided data in a form amenable to SIMD processing. To avoid these rearrange-
ment instructions and to reduce the code size, we use the MRF technique to
reorganize strided data. The MRF allows to view the register file as a matrix.
Each register corresponds to a row of the matrix and corresponding subwords
in different registers correspond to a column. In other words, it provides row-
wise, as well as column-wise, access to the media register file. “Load-column”
instructions load data elements stored consecutively in memory into a column of
the MRF. Only load-column instructions access the media register file column-
wise.

Figure 5 illustrates how the MRF can be used to reorganize the band-
interleaved RGB data to band separated. With eight load-column instructions
(fldc8u12) eight red, eight green, and eight blue values are loaded into each
register. Each load-column instruction loads 8 bytes (three red, three green, and
two blue) values, as is shown in Figure 5. To provide correct arrangement of
RGB values, an offset, which is a multiple of 6 bytes, is used for each fldc8u12
instruction. We remark that this also works for other strides. For example,
where the stride is 4, an offset, which is a multiple of 8, can be used.

3.2 MMMX Instructions

Most MMMX instructions are direct counterparts of MMX/SSE instructions,
such as addition and subtraction. MMMX, however, does not support satura-
tion arithmetic. It is not needed because load instructions automatically un-
pack and store instructions automatically pack and saturate, as illustrated

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

Versatility of Extended Subwords and the Matrix Register File • 5:9

g1 g2 b2 r3r1 b1 r2 g3 b3 r4 ...

0

0

0

0

0

0

0

0

0

0

0

0

0

0

r1

g1

b1

r2

g2

b2

r3

g3

0

0

0

0

0

0

0

0

g3

b3

r4

g4

b4

r5

g5

3mxc0 3mxc1 3mxc2 3mxc3 3mxc4 3mxc5 3mxc6 3mxc7

r3 0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

r5

g5

b5

r6

g6

b6

r7

r7 r11 r13 r15

g11 g13 g15

b11 b13 b15

r12 r14 r16

g12 g14 g16

b10 b12 b14 b16

r11 r13 r15 r17

g11 g13 g15 g17

g7

b7

r8

g8

b8

r9

g9

r10

g10

b9

g9

r93mx0

3mx1

3mx2

3mx3

3mx4

3mx7

3mx6

3mx5

r5

g5

b5

r6

g6

b6

r7

0

0

0

0

g7

0

g7 0

0

0

fldc8u12 3mxc0, 0(R1)

fldc8u12 3mxc1, 6(R1)

fldc8u12 3mxc2, 12(R1)

fldc8u12 3mxc3, 18(R1)

fldc8u12 3mxc4, 24(R1)

fldc8u12 3mxc5, 30(R1)

fldc8u12 3mxc6, 36(R1)

fldc8u12 3mxc7, 42(R1)

Memory

R1

Fig. 5. Loading eight red, eight green, and eight blue values into the matrix register file using the
fldc8u12 instruction.

R1

fld8s12 3mx0, (R1)

0xFF 0x13 0xaB 0x2a 0xa7 0x01 0x02 0x03 . . .Memory

3mx0 0 03 0 02 0 01 F a7 0 2a F aB 0 13 F FF

Fig. 6. The fld8s12 instruction loads 8 signed bytes and unpacks them to signed 12-bit values.

in Figure 6 for little endian. As this figure shows, the instruction fld8s12
loads 8 signed bytes and unpacks them to signed 12-bit quantities. On the con-
trary, store instructions automatically saturate (clip) and pack the subwords.
For example, the instruction fst12s8u saturates the 12-bit signed subwords to
8-bit unsigned subwords before storing them to memory.

The main differences between the MMX/SSE and MMMX ISAs are depicted
in Table II. There are some general-purpose SIMD instructions in the MMMX
ISA. For example, MMMX provides the fsum{12,24,48} and fdiff{12,24,48}
instructions, which add and subtract adjacent elements packed in a media
register, respectively. Special-purpose MMX/SSE instructions, such as psadbw
and pavg{b,w}, are not supported in the MMMX architecture. In MMMX, these
SPIs can be synthesized using a few general-purpose SIMD instructions. For
instance, the fsum instructions are used to synthesize the special-purpose SAD
instruction.

We have also included some partitioned multiplications such as fmadd{12,24}
and fmul12{l,h} instructions. Partitioned multiplication involves the multipli-
cation of corresponding subwords. The result of a partitioned multiplication
is larger than either subword. In the MMMX architecture, we have provided
two kinds of multiplications. First, multiply-accumulate (MAC) and truncation
operations. The MAC operation is an important operation in digital signal pro-
cessing. The MMX instruction pmaddwd performs the MAC operation on 16-bit
subwords. In the MMMX architecture, the fmadd{12,24} instructions perform
the operation on 12- and 24-bit subwords, respectively. Figure 7 illustrates the
operation of fmadd12 3mx0, 3mx1 instruction. This instruction multiplies each

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

5:10 • A. Shahbahrami et al.

Table II. Main Differences between MMX/SSE and MMMX ISAs

Differences MMX/SSE (integer part) MMMX

Datapath 64-bit 96-bit
Size of register file 8 x 64-bit 8 x 96-bit
Shared with Floating point registers Dedicated
Access to register file row-wise row-wise + column-wise
Size of the partitioned ALU 64-bit 96-bit
Size of the integer subwords 8-, 16-, and 32-bit 12-, 24-, and 48-bit
Addition instructions padd{b, w, d} fadd{12, 24, 48}
Subtract instructions psub{b, w, d} fsub{12, 24, 48}
Saturate add instructions padds{b, w}, paddus{b, w} No
Saturate subtract instructions psubs{b, w}, psubus{b, w} No
Full multiply instruction No fmulf{12, 24}
High and low multiply inst. pmul{hw, lw, huw} fmul{12l, 12h, 24l, 24h}
The size of MAC operation 16-bit 12- and 24-bit
MAC instructions pmaddwd fmadd{12, 24}
Increment instruction No finc{12, 24, 48}
Decrement instruction No fdec{12, 24, 48}
Negate instruction No fneg{12, 24, 48}
Minimum selection instructions pmin{ub, sw} fmin{12, 24, 48}
Maximum selection instructions pmax{ub, sw} fmax{12, 24, 48}
Adjacent subwords addition No fsum{12, 24, 48}
Adjacent subwords subtraction No fdiff{12, 24, 48}
Special-purpose instructions No/pavg{b, w}, psadbw No
Overhead instructions packss{wb, dw} funpckl{12, 24}

packuswb, punpckh{bw, wd, dq} funpckh{12, 24}
punpckl{bw, wd, dq}, pshufw

95 84 83 72 71 60 59 48 47 36 35 24 23 12 11 0

95 84 83 72 71 60 59 48 47 36 35 24 23 12 11 0

3mx0

95 72 71 48 47 24 23 0
=

a5a6a7 a4 a3 a2 a1 a0

b7 b6 b5 b4 b3 b2 b1 b0

3mx0 a7 x b7 + a6 x b6 a5 x b5 + a4 x b4 a3 x b3 + a2 x b2 a1 x b1 + a0 x b0

3mx1

Fig. 7. Partitioned multiplication using the fmadd12 3mx0, 3mx1 instruction.

12-bit subword of the destination operand by the corresponding 12-bit subword
of the source operand. Thereafter, adjacent products are added and stored in
the 24-bit subwords of the destination operand.

The second type of multiplication is truncation. Truncation means that the
high or low result bits are discarded. When n-bit fixed-point values are mul-
tiplied with fractional components, the result should be n-bit of precision.
Specifically, the instructions fmul12{l,h} multiply the eight corresponding sub-
words of the source and destination operands and write the low- (fmul12l) or
high-order (fmul12h) 12 bits of the 24-bit product to the destination operand.
This type of partitioned multiplication can be used in some applications. For
example, we have used the fmul12h instruction in the fixed-point MMMX

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

Versatility of Extended Subwords and the Matrix Register File • 5:11

3mx0 = 8 green values

shift to left 1 time
3mx0 = shifted values

fsll12 3mx0, 1

3mx1 = eight times 1028
(0.502 = 1028/2^11)

fmul12h 3mx0, 3mx1

Real multiply results

Actual multiply results
by 0.502
3mx3 = 3mx3 x 0.502

by 1028/2^11

3mx2 = 3mx2 x 1028/2^11

95 84 83 72 71 60 59 48 47 36 35 24 23 1211 0

95 84 83 72 71 60 59 48 47 36 35 24 23 1211 0

95 84 83 72 71 60 59 48 47 36 35 24 23 1211 0

95 84 83 72 71 60 59 48 47 36 35 24 23 1211 0

95 84 83 72 71 60 59 48 47 36 35 24 23 1211 0

95 84 83 72 71 60 59 48 47 36 35 24 23 1211 0

30 40 45 35 255 250 105 85

60 80 90 70 510 500 210 170

1028 1028 1028 1028 1028 1028 1028 1028

15 20 23 18 128 125 53 43

15.058 20.078 22.587 17.568 127.998 125.488 52.705 42.666

15.06 20.08 22.59 17.57 128.01 125.5 52.71 42.67

Steps:

1

2

3

4

3mx3 = 3mx2 = 3mx0

Fig. 8. Partitioned multiplication using the fmul12h 3mx0, 3mx1 instruction.

implementation of CSC. We explain it in detail. Every green value should be
multiplied by the constant coefficient 0.502. We approximate 0.502 by 1028/211.
Figure 8 depicts an example that illustrates how we use the fmul12h instruction
to provide eight-way parallelism.

This figure shows four steps. In the first step, we load eight green pixel
values into a media register (3mx0). In the second step, the subwords are shifted
left by one bit. This is accomplished through the MMMX’s fsll12 instruction.
This is because the fmul12h instruction truncates the result between the 11th
and 12th bit position of the internal 24-bit result. The lower 12 bits will be
discarded. For this, we need to shift the subwords 1 bit to the left. The fixed-
point coefficient 1028 would exceed the 12-bit signed range if it was shifted
left by 1 bit. Based on that, we shift the first operand. In the third step, the
value 1028 is stored in another media register (3mx1) eight times. Finally, the
shifted values are multiplied by the value 1028 using the fmul12h 3mx0, 3mx1
instruction.

There can be some loss of precision because of this type of instruction. The
first error is a result of quantizing. The coefficient is 0.502, while 1028/211 =
0.501953125. The second reason for loss of precision is because of the nature of
truncation. In order to reduce the effect of this error, we first, internally round
the intermediate 24-bit result; after that, we truncate the 12-bit result. On
the MMX architecture, on the other hand, the pmulhw instruction truncates the
lower 16 bits rather than rounding it. As a result, if we compare the fixed-point
with the floating-point results shown in the last row of Figure 8, we can see
there is a small error.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

5:12 • A. Shahbahrami et al.

We summarize the characteristics of the MMMX architecture as follows.
First, the media register file is wider than the data to be loaded into it. Second,
the MMMX ISA can implicitly unpack data with load instructions. Third, store
instructions implicitly pack and saturate data. Fourth, media registers can be
accessed row-wise as well as column-wise. In addition, there are some general
SIMD instructions for different operations to process multimedia applications,
as illustrated in Table II. Furthermore, the MMMX architecture provides more
subword parallelism than MMX that is shown for some multimedia kernels in
the Sections 5 and 6.

3.3 Hardware Cost of the Proposed Techniques

In this section, the overhead hardware cost of the MMMX architecture over
the MMX architecture in terms of area and critical-path delay is discussed and
preliminary VHDL synthesis results are provided. Evaluation of the power
consumption is future work.

The following are differences between the MMX and MMMX architectures
from the hardware point of view. First, each MMMX register is 32 bits wider
than each MMX register. Second, the MMMX register file is accessible in
both directions, while in the MMX architecture it is not. This means that
for column-wise access to the MMMX register file, multiplexers, and an ad-
ditional decoder as well as wiring are required. Third, the MMMX ISA needs
to be able to address the column registers. Finally, in the MMMX architec-
ture, a 96-bit partitioned ALU is required to provide eight 12-bit, four 24-bit,
and two 48-bit subword parallel processing. In the MMX architecture, on the
other hand, a 64-bit partitioned ALU is sufficient. Furthermore, in the MMMX
architecture, there are some other SIMD instructions compared to the MMX
architecture.

In order to reduce the hardware cost of the MMMX architecture, column-
wise access on the write port of the register file has been provided. This is
because the number of write ports is usually less than the number of read ports.
Only load-column instructions can access the column registers, while the other
instructions cannot. The number of load-column instructions in the MMMX ISA
is two. This is because 8- and 16-bit image data are loaded into column registers.
These instructions are used for those kernels that use the MRF technique,
such as the RGB-to-YCbCr kernel. A single bit to the instruction format of
load instructions is used in order to distinguish between normal load and load-
column instructions.

The register file, a 64-bit partitioned ALU, and a multiplication unit of
the MMX architecture and the MRF, extended subwords, a 96-bit partitioned
ALU, and a multiplication unit of the MMMX architecture have been im-
plemented in VHDL. In addition, all SIMD arithmetic, logical, and shift in-
structions of both architectures have also been implemented in VHDL. In the
VHDL implementation of both architectures, the same techniques and meth-
ods have been used. We target the FPGA Xilinx Virtex-II Pro xc2vp30 device.
The hardware implementations have been synthesized, placed, and routed
using the Xilinx ISE tool. The ratio of the MMMX area in terms of utilized

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

Versatility of Extended Subwords and the Matrix Register File • 5:13

LUTs and critical-path delay over the MMX area and critical-path delay are
presented.

The results show that the area utilization of the register file of the MMMX
architecture is 2.89 times larger than the register file of the MMX architecture.
This is because in the former eight 96-bit registers, 672 2:1 multiplexers, and
two 3:8 decoders are used, while in the latter, eight 64-bit registers and one 3:8
decoder are sufficient. In addition, our timing result shows that the critical-
path delay of the MRF is 5% larger than the critical-path delay of the MMX
register file.

The partitioned ALU of the MMMX architecture is 1.41 times larger than the
partitioned ALU of the MMX architecture. The former ALU is 30% slower than
the latter ALU. The critical-path delay is because of the subword adder. We have
used multiplexers in the subword boundaries to propagate or prevent the sub-
word carries in the carry chain [Huang et al. 2007]. The partitioned ALU and
the multiplication unit of the MMMX architecture are 2.27 times larger than
the partitioned ALU and multiplication unit of the MMX architecture. This
is because of the following reasons. First, the partitioned ALU of the MMMX
architecture is wider than the partitioned ALU of the MMX architecture. Sec-
ond, there are more general SIMD instructions in the MMMX ISA, such as
full 12- and 24-bit multiplications. Finally, we did not consider the overhead
instructions of the MMX architecture depicted in the last row of Table II. The
critical-path delay of MMMX, which is related to 24-bit multiplication, is 40%
longer than that of MMX. It needs to be mentioned that we have not consid-
ered pipelining the multiplication operation. In addition, in this paper, we have
not used the 24-bit multiplication instruction. It has been provided for future
use.

4. BENCHMARKS

To show that the MRF can be used to reorganize strided data and that
SPIs provide limited benefit when extended subwords and a few general-
purpose SIMD instructions are supported, we use the kernels summarized in
Table III. These kernels form significant components of many media applica-
tions such as content-based image and video retrieval (CBIVR) systems and
multimedia standards. In the following sections, these functions are briefly
described.

4.1 Color Space Conversion

Conversion between the YCbCr and RGB formats and vice versa can be repre-
sented with the following equations [Poynton 1996].

⎛
⎝

Y
Cb
Cr

⎞
⎠ =

⎛
⎝

0.256 0.502 0.098
−0.148 −0.290 0.438
0.438 −0.366 −0.071

⎞
⎠

⎛
⎝

R
G
B

⎞
⎠ +

⎛
⎝

16.5
128.5
128.5

⎞
⎠ (2)

⎛
⎝

R
G
B

⎞
⎠ =

⎛
⎝

1.164 0.000 1.596
1.164 −0.392 −0.813
1.164 2.017 0.000

⎞
⎠

⎛
⎝

Y − 16.5
Cb − 128.5
Cr − 128.5

⎞
⎠ (3)

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

5:14 • A. Shahbahrami et al.

Table III. Summary of the Kernels

Kernels Description
RGB-to-YCbCr Color space conversion, which is usually used

in the encoder stage.
YCbCr-to-RGB Color space conversion, which is usually used

in the decoder stage.
SAD function The SAD function, which is used in motion

estimation kernel to remove temporal
redundancies between video frames.

SAD function with interpolation Using the SAD function with horizontal and vertical
interpolation for the motion-estimation kernel.

SSD function The SSD function, which is used in
SSD function motion-estimation kernel to remove

temporal redundancies between video frames.
SSD function with interpolation Using the SSD function with horizontal and vertical

interpolation for the motion-estimation kernel.
SAD function for image histograms Using the SAD function for similarity measurements

of image histograms.

Fig. 9. Mean square error (MSE) for different bit widths in implementation of color space conver-
sion.

In both equations, the coefficients have been rounded to three fractional deci-
mal digits. Color space conversions are defined using floating-point arithmetic,
but here, to avoid using floating-point operations, we use fixed-point arith-
metic. Specifically, for MMX, we use 16-bit fixed-point numbers; for MMMX,
we approximate the CSC using 12-bit fixed-point arithmetic. To determine the
accuracy of these approximations, we have performed two tests in a previous
paper [Shahbahrami et al. 2006b]. First, we have measured the maximum ab-
solute error by checking all possible RGB values (0 ≤ R, G, B ≤ 255). For both
the MMMX implementation (12-bit) and the MMX implementation (16-bit), the
maximum absolute error compared to a single-precision floating-point imple-
mentation is 1. Second, we have measured the mean square error (MSE) for
real images, as well as randomly generated inputs. Figure 9 depicts the MSE of
the 8-, 12-, and 16-bit implementations as a function of the image size. It shows
that the MSE of the 12- and 16-bit implementations are very close to each other
and that the MSE of the 8-bit implementation is much larger.

4.2 Similarity Measurements

Among the different similarity measurements, the sum-of-squared differences
(SSD) and the sum-of-absolute differences (SAD) functions have been found

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

Versatility of Extended Subwords and the Matrix Register File • 5:15

to be the most useful [Zhang and Lu 2003; Wang et al. 2005]. For example,
in Zhang and Lu [2003] eight similarity measurements for image retrieval have
been evaluated. Based on the results presented there, in terms of retrieval
effectiveness and retrieval efficiency, the SSD and SAD functions are more
effective than other functions.

The SSD and SAD cost functions of two N × N blocks for motion estimation
are defined by Equations (4) and (5), respectively. In these equations, x(m, n)
represents the current block of N 2 (usually N = 16) pixels, y(m + i, n + j)
represents the block in the reference frame, and (i, j) is the motion vector.

SSD(i, j) =
N∑

m=1

N∑
n=1

(x(m, n) − y(m + i, n + j))2. (4)

S AD(i, j) =
N∑

m=1

N∑
n=1

|x(m, n) − y(m + i, n + j)|. (5)

The SSD and SAD functions are also used in CBIVR systems, where images
and videos are indexed into a database using a vector of features extracted from
the image or video. In the retrieval stage, the similarity between the features of
the query image and the stored feature vectors is determined. That means that
computing the similarity between two images or videos can be transformed into
the problem of computing the similarity between two feature vectors [Lee et al.
2004]. Hence, the large computational cost associated with CBIVR systems is
related to matching algorithms for feature vectors, because there are many
feature vectors from different images and videos in the feature database.

Histogram Euclidean distance (Equation 6) and bin-to-bin difference (b2b)
(Equation 7) are common similarity measurements in CBIVR systems [Deb
2005]. In these equations, h1 and h2 represent two histograms, N is the number
of pixels in an image, and n is the number of bits in each pixel.

d2(h1, h2) =
2n−1∑
i=0

(h1[i] − h2[i])2. (6)

f db2b(h1, h2) =
∑2n−1

i=0 |(h1[i] − h2[i]|)
N

. (7)

The size of a histogram depends on the number of bits in each pixel. If we
suppose a pixel depth of n bits, the pixel values will be between 0 and 2n − 1,
and the histogram will have 2n elements.

Components of color histograms are unsigned numbers and are usually
larger than 8 and 16 bits. For instance, if we suppose a frame of size 512 × 512
is completely white or black, the largest element will be 218.

4.3 Interpolation

The SAD and SSD similarity measurements are only a summation of the pixel-
wise intensity differences and, consequently, small changes may result in a
large similarity distance. For example, the Euclidean distance of Figure 10a

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

5:16 • A. Shahbahrami et al.

(a) (b) (c)

Fig. 10. Similar and dissimilar images.

and b is less than the Euclidean distance of a and c, even though Figure 10a is
more similar to Figure 10c than to b.

For images, there are spatial relationships between pixels. There are many
ways to consider the relationships between pixels, for example, averaging. Aver-
aging neighboring pixels can be done either on two adjacent pixels horizontally,
two adjacent pixels vertically, or four adjacent pixels in both horizontal and ver-
tical dimensions. For instance, the MPEG-2 encoding offers varieties of block
matching, involving half-pixel interpolation. The original MPEG-2 standard
first performs interpolation, and then computes the sum of absolute differences.
To consider relationships between pixels in this paper, we implement horizontal
and vertical interpolation.

5. SIMD IMPLEMENTATION OF KERNELS

In this section, we discuss in detail the SIMD implementations of the color space
conversion and similarity measurement functions. The SIMD implementations
of other kernels can be found in previous papers [Shahbahrami et al. 2006b,
2006c].

5.1 SIMD Implementation of Color Space Conversion

In this section, we discuss in detail the SIMD implementation of RGB-to-YCbCr
color space conversion using the MMX and MMMX architectures.

The RGB values are usually in the band-interleaved format. Because of this,
a straightforward MMX implementation of the RGB-to-YCbCr kernel is not
efficient for the following reasons. First, image pixels must be unpacked from
unsigned byte to 16 bits and vice versa, because of the mismatch between the
storage and the computational format. Second, there are four 16-bit subwords in
each MMX register and three R, G, and B values for each pixel. This implies that
one of the subwords (a quarter of the processing capacity) will be unused. Third,
there is no instruction in the MMX ISA that adds adjacent pixels. To synthesize
this operation, we have to use many shift instructions and basically perform
scalar addition. In addition, there are unaligned memory accesses, because, in
each loop iteration, two pixels are processed and their starting address is not
necessarily a multiple of 8.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

Versatility of Extended Subwords and the Matrix Register File • 5:17

To efficiently implement this kernel, we must first change from the band-
interleaved to the band-separated format using rearrangement instructions,
since experimental results on an actual machine show that the MMX implemen-
tation using the band-separated format is 4.20 times faster than the straight-
forward MMX implementation for an image of size 576×768. We use the faster
method as the reference.

The MMX implementation using the band-separated format consists of the
following stages:

1. Load the RGB values of eight pixels into the media register file (three in-
structions).

2. Conversion from band-interleaved to band-separated format using rear-
rangement instructions (35 instructions).

3. Unpack the packed byte data types to packed 16-bit word data types (six
instructions).

4. Shift the RGB values to the left by 7 bits (six instructions).
5. Convert from RGB to YCbCr using 16-bit packed multiplication and addition

instructions (51 instructions).
6. Truncate the results by shifting them to the right by 6 bits (six instructions).
7. Pack the unpacked results and store in memory (12 instructions).

This MMX implementation is also not very efficient, because many rear-
rangement and data-type conversion instructions are required. For instance,
35 instructions are needed to convert 8 pixels from the band-interleaved to the
band-separated format. Figure 11 shows a part of the MMX code that achieves
this rearrangement. It can be seen that many unpack, shift, and data-transfer
instructions are required to achieve this. As a result, both MMX implementa-
tions are inefficient.

In the MMMX implementation of the RGB-to-YCbCr kernel, because of the
MRF, changing from the band-interleaved to the band-separated format is
not needed, as was illustrated in Figure 5. In addition, the data-type conver-
sion instructions are avoided and eight-way parallelism is provided using the
extended-subwords technique.

5.2 SIMD Implementation of Similarity Measurements

In this section, we explain the SIMD implementations of the SAD and the SAD
with interpolation functions.

As mentioned in Section 1, there are some SPIs for the SAD function, for
example, the psadbw instruction [Raman et al. 2000]. A 64-bit psadbw instruc-
tion consists of three steps: (1) calculate eight 8-bit differences between the
elements, (2) calculate the absolute value of the differences, and (3) perform
three cascaded summations. The code in Figure 12 depicts the MMX/SSE im-
plementation of the motion-estimation kernel for two 16 × 16 blocks using the
psadbw instruction.

One of the reasons why the psadbw instruction provides a significant perfor-
mance benefit is that the 9-bit differences cannot be stored in the 8-bit subwords.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

5:18 • A. Shahbahrami et al.

movq mm0, (RGB) ; mm0 =

movq mm2,8(RGB) ; mm2 =

movq mm1,16(RGB); mm1 =

movq mm3, mm0 ; mm3 =

movq mm4, mm0 ; mm4 =

psrlq mm3, 24 ; mm3 =

punpcklbw mm4, mm3 ; mm4 =

movq mm6, mm2 ; mm6 =

movq mm7, mm2 ; mm7 =

psrlq mm3, 24 ; mm3 =

psllq mm6, 16 ; mm6 =

psrlq mm7, 8 ; mm7 =

por mm6, mm3 ; mm6 =

punpcklbw mm6, mm7 ; mm6 =

movq mm3, mm4 ; mm3 =

punpcklwd mm4, mm6 ; mm4 =

punpckhwd mm3, mm6 ; mm3 =

movq mm0, mm2 ; mm0 =

movq mm6, mm1 ; mm6 =

psrlq mm2, 32 ; mm2 =

psrlq mm0, 56 ; mm0 =

psllq mm6, 8 ; mm6 =

por mm0, mm6 ; mm0 =

punpcklbw mm2, mm0 ; mm2 =

movq mm0, mm1 ; mm0 =

psrlq mm1, 16 ; mm1 =

psrlq mm0, 40 ; mm0 =

punpcklbw mm1, mm0 ; mm1 =

movq mm6, mm2 ; mm6 =

punpcklwd mm2, mm1 ; mm2 =

punpckhwd mm6, mm1 ; mm6 =

movq mm1, mm4 ; mm1 =

punpckldq mm1, mm2 ; mm1 =

punpckhdq mm4, mm2 ; mm4 =

punpckldq mm3, mm6 ; mm3 =

g3 r3 b2 g2 r2 b1 g1 r1

r6 b5 g5 r5 b4 g4 r4 b3

b8 g8 r8 b7 g7 r7 b6 g6

g3 r3 b2 g2 r2 b1 g1 r1

g3 r3 b2 g2 r2 b1 g1 r1

0 0 0 g3 r3 b2 g2 r2

r3 r2 b2 b1 g2 g1 r2 r1

r6 b5 g5 r5 b4 g4 r4 b3

r6 b5 g5 r5 b4 g4 r4 b3

0 0 0 0 0 0 g3 r3

g5 r5 b4 g4 r4 b3 0 0

0 r6 b5 g5 r5 b4 g4 r4

g5 r5 b4 g4 r4 b3 g3 r3

r5 r4 b4 b3 g4 g3 r4 r3

r3 r2 b2 b1 g2 g1 r2 r1

g4 g3 g2 g1 r4 r3 r2 r1

r5 r4 r3 r2 b4 b3 b2 b1

r6 b5 g5 r5 b4 g4 r4 b3

b8 g8 r8 b7 g7 r7 b6 g6

0 0 0 0 r6 b5 g5 r5

0 0 0 0 0 0 0 r6

g8 r8 b7 g7 r7 b6 g6 0

g8 r8 b7 g7 r7 b6 g6 r6

r7 r6 b6 b5 g6 g5 r6 r5

b8 g8 r8 b7 g7 r7 b6 g6

0 0 b8 g8 r8 b7 g7 r7

0 0 0 0 0 b8 g8 r8

0 r8 b8 b7 g8 g7 r8 r7

r7 r6 b6 b5 g6 g5 r6 r5

g8 g7 g6 g5 r8 r7 r6 r5

0 r8 r7 r6 b8 b7 b6 b5

g4 g3 g2 g1 r4 r3 r2 r1

r8 r7 r6 r5 r4 r3 r2 r1

g8 g7 g6 g5 g4 g3 g2 g1

b8 b7 b6 b5 b4 b3 b2 b1

Fig. 11. The MMX instructions needed to convert RGB values from the band-interleaved to the
band-separated format.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

Versatility of Extended Subwords and the Matrix Register File • 5:19

1 mov eax , 16

2 pxor mm5 , mm5

3 loop:

4 movq mm1 , [blk1]

5 movq mm2 , [blk2]

6 movq mm3 , [blk1+8]

7 movq mm4 , [blk2+8]

8 psadbw mm1 , mm2

9 psadbw mm3 , mm4

10 paddd mm1 , mm3

11 paddd mm5 , mm1

12 add blk1, 16

13 add blk2, 16

14 dec eax

15 jnz .loop

Fig. 12. The MMX/SSE program of the SAD function.

Furthermore, there are no instructions to sum all the elements in a register or
to add adjacent elements. In the MMMX architecture the 9-bit differences can
be stored in the 12-bit subwords. Moreover, it provides instructions to add adja-
cent, elements, which can most lightly be performed in a single cycle. In other
words, we have implemented SIMD instructions to replace the psadbw instruc-
tion, which are more general purpose and can be used in many multimedia
kernels and also in other similarity measurements. The psadbw instruction can
be synthesized using a small number of such general-purpose SIMD instruc-
tions with only a small performance degradation. Figure 13 shows how the SAD
function can be implemented using MMMX instructions.

The two psadbw instructions have been synthesized by the SIMD instructions
fsub12, fneg12, fmax12, fadd12, and fsum{12,24,48}, which are more general
purpose than them. In order to provide eight-way parallelism, we divided a
16 × 16 block into two 8 × 16 blocks. In the first iteration of the outer loop, the
SAD function of the first 8 × 16 block is calculated and in the next iteration,
the SAD function of the other 8 ×16 block is performed. Finally, the results are
accumulated into one register using the fsum{12,24,48} instructions.

As already mentioned is Section 4.3, one way to consider the relationship
between image pixels is averaging. For this, the SSE ISA provides a spe-
cial averaging instruction pavgb for 8-bit subwords. This instruction aver-
ages two pixels; unsigned values are rounded up to the nearest integer. How-
ever, averaging four pixels using horizontal and vertical interpolation may
produce an error of 1 when performing three average operations as follows
pavgb(x, y , z, t) = pavgb[pavgb(x, y), pavgb(z, t)]. To avoid this error in the
MMX/SSE implementation, we use 16-bit operations using pack/unpack in-
structions. Figures 14 and 15 show a part of the MMX/SSE and MMMX im-
plementations of the SAD function with horizontal and vertical averaging,
respectively.

The sum of four neighboring pixels is larger than 8 bits. Hence, in the
MMX/SSE implementation, we unpack the 8-bit data type to 16 bits. This means
that four-way parallelism is provided, as depicted in Figure 14. The MMMX

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

5:20 • A. Shahbahrami et al.

1 mov ecx , 2

2 loop2:

3 fxor 3mx5, 3mx5

4 mov eax , 8

5 loop1:

6 fld8u12s 3mx1, [blk1]

7 fld8u12s 3mx2, [blk2]

8 fld8u12s 3mx3, [blk1+8]

9 fld8u12s 3mx4, [blk2+8]

10 fsub12 3mx1, 3mx2

11 fneg12 3mx7, 3mx1

12 fmax12 3mx1, 3mx7

13 fsub12 3mx3, 3mx4

14 fneg12 3mx7, 3mx3

15 fmax12 3mx3, 3mx7

16 fadd12 3mx1, 3mx3

17 fadd12 3mx5, 3mx1

18 add blk1, 16

19 add blk2, 16

20 dec eax

21 jnz .loop1

22 fsum12 3mx5

23 fsum24 3mx5

24 fsum48 3mx5

25 fadd96 3mx6 , 3mx5

26 dec ecx

27 jnz .loop2

Fig. 13. The MMMX implementation of the SAD function.

implementation, on the other hand, employs eight-way parallelism, because
12 bit is sufficient for the sum of four pixels.

6. PERFORMANCE EVALUATION

In this section, we evaluate the MMMX architecture by comparing the perfor-
mance obtained for the MMMX implementation to the performance of scalar
and MMX implementations on different out-of-order processors. For the RGB-
to-YCbCr kernel, the performance of the band-interleaved MMMX code is com-
pared to the band-separated MMX code.

6.1 Evaluation Environment

In order to evaluate the MMMX architecture, we have used the sim-outorder
simulator of the SimpleScalar toolset [Austin et al. 2002]. sim-outorder is a
detailed, execution-driven simulator that supports out-of-order issue and exe-
cution. We have used the PISA ISA, which consists of 64-bit instructions. Each
instruction contains a 16-bit annotate field, which can be used to synthesize new
instructions without having to change and recompile the assembler. We have
synthesized MMX/SSE and MMMX instructions using this annotate field. More
detail about our extension to the SimpleScalar toolset can be found in Juurlink
et al. [2007].

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

Versatility of Extended Subwords and the Matrix Register File • 5:21

1 mov eax, 16

2 loop:

3 ; Pixels 0..7

4 movq mm1, [blk1]

5 movq mm3, [blk1+16]

6 movq mm2, mm1

7 movq mm4, mm3

8 punpcklbw mm1, mm0

9 punpcklbw mm3, mm0

10 movd mm5, [blk1+1]

11 movd mm6, [blk1+17]

12 punpcklbw mm5, mm0

13 punpcklbw mm6, mm0

14 .

15 .

16 packuswb mm1, mm2

17 psadbw mm1, [blk2]

18 ; Pixels 8..F

19 movq mm1, [blk1+8]

20 movq mm3, [blk1+24]

21 movq mm2, mm1

22 movq mm4, mm3

23 punpcklbw mm1, mm0

24 punpcklbw mm3, mm0

25 movd mm5, [blk1+9]

26 movd mm6, [blk1+25]

27 punpcklbw mm5, mm0

28 punpcklbw mm6, mm0

29 .

30 .

31 add blk1, 16

32 add blk2, 16

33 dec eax

34 jnz .loop

Fig. 14. The MMX/SSE program of the sum-of-absolute difference function using horizontal and
vertical interpolation.

The main objective is to compare the performance of an SIMD architecture
without extended subwords and the MRF to the same architecture with these
features. We remark that the correctness of the MMX and MMMX codes has
been validated by comparing their output to the output of C programs.

The main parameters of the modeled processors are depicted in Table IV.
We modeled processors by varying the issue width from 1 to 4 instructions per
cycle. When the issue width is doubled, the number of functional units is scaled
accordingly. For most parameters, we used the default values, except for the size
of the register update unit (RUU), which is 16 by default. Register renaming
and reordering of instructions are done using this unit. The goal of the RUU is
to always have enough instructions ready to feed the available functional units.
The default value of 16 is insufficient to find many independent instructions.
We, therefore, used an RUU size of 64 instead.

The latency and throughput of SIMD instructions are set equal to the latency
and throughput of the corresponding scalar instructions. This is a conservative

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

5:22 • A. Shahbahrami et al.

1 mov eax , 8

2 loop:

3 fld8u12 3mx1, [blk1]

4 fld8u12 3mx2, [blk1+8]

5 fld8u12 3mx3, [blk1+16]

6 fld8u12 3mx4, [blk1+24]

7 fadd12 3mx1, 3mx3

8 fadd12 3mx2, 3mx4

9 fld8u12 3mx3, [blk1+1]

10 fld8u12 3mx4, [blk1+9]

11 fld8u12 3mx5, [blk1+17]

12 fld8u12 3mx6, [blk1+25]

13 fadd12 3mx3, 3mx5

14 fadd12 3mx4, 3mx6

15 fadd12 3mx1, 3mx3

16 fadd12 3mx2, 3mx4

17 fsra12 3mx1, 2

18 fsra12 3mx2, 2

19 fld8u12 3mx3, [blk2]

20 fld8u12 3mx4, [blk2+8]

21 .

22 .

23 add blk1, 16

24 add blk2, 16

25 dec eax

26 jnz .loop

Fig. 15. The MMMX implementation of the sum-of-absolute difference function using horizontal
and vertical interpolation.

Table IV. Processor Configuration

Parameter Value

Issue width 1/2/4
Integer ALU, SIMD ALU 1/2/4
Integer MULT, SIMD MULT 1/2/4
L1 Instruction cache 512 set, direct-mapped 64-byte line

LRU, 1-cycle hit, total of 32 KB
L1 Data cache 128 set, four-way, 64-byte line, 1-cycle

hit, total of 32 KB
L2 Unified cache 1024 set, four-way, 64-byte line,

6-cycle hit, total of 256 KB
Main memory latency 18 cycles for first chunk, 2 thereafter
Memory bus width 16 bytes
RUU (register update unit) entries 64
Load-store queue size 8
Execution out-of-order

assumption given that the SIMD instructions perform the same operation, but
on narrower data types. In addition, both latency and throughput of the fsum
instructions are set to 1, while the latency and throughput of the psadbw instruc-
tion are set to 4 and 1, respectively—the same as in the Pentium 4 processor.

In the experiments, three programs have been implemented and sim-
ulated using the SimpleScalar simulator for each kernel. Each program

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

Versatility of Extended Subwords and the Matrix Register File • 5:23

Fig. 16. Speedup of MMX and MMMX over the C implementation as well as the ratio of committed
instructions (C implementation to MMX and MMMX) for different kernels on the single issue
processor.

consists of three parts. One part is for reading the image, the second part
is the computational kernel, and the last part is for storing the trans-
formed image. One program is completely written in C. It was compiled us-
ing the gcc compiler targeted to the SimpleScalar PISA with optimization
level −O2. The reading and storing parts of the other two programs were
also written in C, but the second part was implemented using MMX/SSE and
MMMX. These programs will be referred to as C, MMX, and MMMX for each
kernel.

In addition, a whole image size has been used as input for some kernels. For
example, we have implemented the full search algorithm for motion estimation
on an image size of quarter common intermediate format (QCIF). The QCIF has
a size of 144 × 176. In order to determine the motion vectors for the reference
blocks in the current frame, we have used a macroblock of 8 × 8 pixel region as
the basic block and a search range of ±16 in the process of motion estimation.

6.2 Performance Evaluation Results

Figure 16 depicts the speedup of MMX and MMMX over the scalar implemen-
tation, as well as the ratio of committed instructions (C implementation to
MMX and MMMX). For all kernels, the speedup of MMX and MMMX is signifi-
cantly larger than one. This is because of the following reasons. First, MMX, as
well as MMMX, exploit DLP. Specifically, eight-way parallelism is used in the
MMMX code because of the extended subwords technique. In the MMX code,
the eight-way parallel psadbw instruction is employed for the SAD function and
four-way parallelism is employed in other workloads. Second, the number of
loop-overhead instructions has been reduced. Both MMX and MMMX reduce
a significant number of loop-overhead instructions, which increment or decre-
ment index and address values. Third, both MMX and MMMX codes use short
vector load and store instructions (8 bytes) compared to the C implementation
that load one unsigned char in each load instruction.

The figure also shows that MMMX performs better than MMX for all ker-
nels except SAD. The speedup of MMMX is between 8.51 and 13.30, while the
speedup for MMX is between 4.59 and 15.30. The most important reason why
MMMX improves performance compared to MMX is that it needs to execute
fewer instructions than MMX. In the SAD kernel, on the other hand, MMMX

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

5:24 • A. Shahbahrami et al.

Table V. Ratio of Total Instructions, SIMD Instructions, Scalar, and SIMD ld/st
Instructions of the MMX to the MMMX Implementationa

Kernels Ratio of total Ratio of SIMD Ratio of scalar Ratio of SIMD
instructions instructions instructions ld/st instructions

SAD 6499
8037 = 0.81 3808

5346 = 0.71 1314
1314 = 1 1377

1377 = 1

SAD with interpolation 23346
12978 = 1.8 17415

8343 = 2.1 1314
1314 = 1 4617

3321 = 1.4

SSD 14517
6741 = 2.2 11583

3807 = 3 1557
1557 = 1 1377

1377 = 1

SSD with interpolation 28206
13302 = 2.1 21951

8343 = 2.6 1638
1638 = 1 4617

3321 = 1.4

SAD for histogram 136
40 = 3.4 88

16 = 5.5 32
16 = 2 16

8 = 2

RGB-to-YCbCr 300
115 = 2.6 208

71 = 2.93 8
4 = 2 84

40 = 2.1

YCbCr-to-RGB 178
92 = 1.9 124

56 = 2.21 6
6 = 1 48

30 = 1.6

aThe numbers have been obtained for either to search one current block in a window search of the
reference frame in the full-search algorithm or to process 16 pixels in the CSCs and a 16 elements array
for SAD that is used for histogram similarity.

needs to execute more instructions than MMX. As Figure 16 shows, the ratio
of committed instructions for the SAD kernel is 13.18 and 11.07 using MMX
and MMMX, respectively. An SPI has been used in the MMX implementation
of the SAD function, while in the MMMX implementation this SPI has been
synthesized by a few general-purpose SIMD instructions. Thus, the SPI psadbw
provides little benefit if extended subwords are supported.

Table V depicts the ratio of total instructions, SIMD instructions, scalar,
and SIMD load/store (ld/st) instructions of the MMX implementation to the
MMMX implementation. SIMD instructions consist of SIMD ALU/MULT and
SIMD overhead, data-type conversions, and rearrangement instructions. For
SAD, SAD with interpolation, SSD, and SSD with interpolation, these numbers
correspond to a full search of the best matching block in a search window of
16 × 16 pixels. For the CSCs, these numbers correspond to processing 16 pixels
and, for the histogram SAD, the histogram size is 16 elements. As this table
shows, the MMMX architecture reduces the dynamic number of instructions
by up to 3.40 over the MMX architecture. This is the main reason why MMMX
provides a speedup of up to 3.00 over MMX.

This reduction of the dynamic instruction count is because of extended
subwords and the MRF. The MMMX implementation can employ eight-way
parallel SIMD instructions, while MMX can employ only four- or two-way
parallelism in all kernels, except the SAD. In other words, MMMX can
pack more arithmetic and logical operations into a single SIMD instruction.
In addition, MMMX avoids SIMD data-type conversion and rearrangement
instructions.

Table V shows that most of the reduction is because of the reduction of the
number of SIMD instructions. This means that MMMX improves the perfor-
mance of SIMD instructions more than the performance of other parts. Reduc-
tion of the scalar operations and SIMD ld/st instructions is much less than the

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

Versatility of Extended Subwords and the Matrix Register File • 5:25

Fig. 17. Speedup of MMX and MMMX over C implementation for different issue widths using
out-of-order execution. The speedup is relative to the time taken by the scalar implementation
when executed on the processor with the same issue width.

reduction of SIMD instructions. This is because some parts of the algorithms
cannot be vectorized and, therefore, scalar instructions have to be used. The
scalar instructions are used for conditional operations, boundary checking, up-
dating the pointers, and incrementing or decrementing index and address val-
ues. In addition, both architectures load or store 8 bytes simultaneously. This
means that, in some cases, the number of ld/st instructions is the same in both
architectures.

Figure 17 depicts the effect of increasing the issue width. It shows the
speedup of the MMX and MMMX implementations on out-of-order processors
with different issue widths. The speedup is relative to the time taken by the
scalar implementation when executed on the processor with the same issue
width. For the similarity measurements, increasing the issue width increases
the relative speedup. For the CSCs, however, increasing the issue width de-
creases the speedup over the scalar implementation for the same issue width.
The main reason is that there are many more scalar instructions in the similar-
ity measurements functions than in the CSCs, as shown in Table V. As depicted
in Table IV, when the issue width is doubled, the number of SIMD and scalar
functional units is scaled accordingly. This means that with increasing the is-
sue width for similarity measurements more instructions can be executed than
for CSCs.

Figure 17 also shows that a slightly higher speedup is achieved on the higher
issue width processors than on the lower-issue width processors for the SAD
function without interpolation compared to the SAD with interpolation and SSD
functions. This is because, as Table V shows, many more ld/st instructions have
been used for pixel averaging in the SSD and SAD functions with interpolation
than in the SAD function without interpolation. MMMX mainly reduces the
number of SIMD instructions and not the number of ld/st instructions.

The speedup of the higher-issue width processors is generally not signif-
icantly higher than the speedup of the lower-issue width processors for the
similarity measurements algorithms. Again we emphasize that the speedup
is relative to the scalar implementation executed on the same issue width. In
addition, for the CSCs the speedup on the four-way processor is slightly lower
than the speedup on the one- and two-way processors for both architectures. For
instance, on the one-way processor, MMMX obtains an average speedup of 8.42
over the C implementations for CSCs. On the four-way processor, the average
speedup over the C implementation running on the four-way processor is 6.18.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

5:26 • A. Shahbahrami et al.

The most important reason is that the scalar implementations achieve higher
instructions per cycle. In other words, the scalar implementations benefit more
from a higher-issue width than the MMX and MMMX implementations. Be-
cause MMX and MMMX pack several independent operations in a single SIMD
instruction (MMMX even more than MMX), the distance between dependent
instructions decreases. In other words, when the C implementation is executed
the available DLP is exploited as instruction-level parallelism. Furthermore,
because the C implementation executes more loop iterations than the MMX
and MMMX implementations, the branch prediction accuracy is higher.

As already discussed, MMMX reduces the number of scalar and SIMD ld/st
instructions much less than the number of SIMD instructions. On one hand,
the scalar instructions are necessary, while on the other, these instructions
prevent larger performance improvements. SIMD ld/st instructions consume
an average of 21 and 28% of the total instructions in the MMX and MMMX
implementations, respectively. In other words, the percentage usage of SIMD
ld/st instructions in MMMX is higher than MMX. In the following section, we
reduce the number of SIMD ld/st instructions by increasing the number of
registers.

6.3 Impact of the Number of Registers

It is well-known that for ISA legacy reasons, MMX has only eight architectural
registers. Because of this, the constants needed for performing CSCs and the
8×8 block of the current frame that is used by the full-search algorithm cannot
be kept in registers, but have to be reloaded from memory in each loop iteration.
Although the constants and the current block will be found in the cache most
of the time, the number of SIMD ld/st instructions is relatively large compared
to the number of total instructions. A larger register file would allow to keep
intermediate and constant values in the media registers during the entire exe-
cution of a program. Therefore, in this section, we consider the effect of adding
more registers to the MMMX architecture.

We have found that 13 extra media registers are sufficient to keep the critical
data in the register file. In the RGB-to-YCbCr kernel, 11 of these registers are
used to hold constants and 2 to hold intermediate results. Since two of the
constant coefficients in the YCbCr-to-RGB kernel are zero and three of them
are the same, for this kernel only 9 additional registers are needed. For the
similarity measurements kernels we employ 8 extra media registers. Thus, an
entire 8 × 8 candidate block can be stored in these 8 extra media registers, as
depicted in Figure 18.

Figure 19 illustrates the speedup of MMMX with 8 registers (MMMX-8) and
MMMX with 13 extra registers (MMMX-13) over MMX, as well as the ratio of
committed instructions (MMX implementation to MMMX) on the single-issue
processor. MMMX-13 yields speedups ranging from 1.37 to 3.64. Furthermore,
the performance improvement of MMMX-13 over MMMX-8 ranges from 1.38
to 1.57, and the ratio of committed instructions (MMMX-8 implementation to
MMMX-13) ranges from 1.22 to 1.56. Again, the main reason for these perfor-
mance improvements is the reduced number of instructions that need to be

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

Versatility of Extended Subwords and the Matrix Register File • 5:27

Fig. 18. The candidate block of the current frame can be stored in eight media registers to calculate
the motion vector at each 16 × 16 window search of the reference frame.

Fig. 19. Speedup of MMMX with 8 registers (MMMX-8) and MMMX with 13 extra registers
(MMMX-13) over MMX (8 registers) as well as the ratio of committed instructions (MMX im-
plementation to MMMX) on the single-issue processor.

executed. Because the data that is needed very often can be kept in registers,
fewer ld/st instructions need to be executed. The largest performance improve-
ment is achieved for the SAD function. For this kernel the speedup is 0.87 and
1.37 using MMMX-8 and MMMX-13, respectively. Although the MMX code that
uses the SAD SPI is faster than the MMMX-8 implementation, the MMMX-13
code yields more performance.

7. CONCLUSIONS AND FUTURE WORK

In this paper we have shown that the MMMX architecture, which features ex-
tended subwords and a matrix register file (MRF), can also be used to acceler-
ate color space conversions and different similarity measurement functions.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

5:28 • A. Shahbahrami et al.

The MRF was proposed to improve the efficiency of 2-D block-based algo-
rithms, which are used in many media applications. In this paper, it is shown,
however, that it can also be used to rearrange strided data, as is needed in
color space conversion. In this way, many rearrangement instructions needed by
conventional SIMD extensions are eliminated. In addition, it was shown that
if extended subwords are supported and a few general SIMD instructions, then
special-purpose instructions, such as the SAD instruction, provide little addi-
tional benefit. Specifically, the speedup of the MMX/SSE implementation of the
SAD kernel that uses the SPI psadbw is only 15% faster than the MMMX imple-
mentation. Furthermore, the usefulness of the SPI psadw is limited, since it can
only be used for the SAD kernel. It can, for example, not be used to calculate the
SAD of two histograms, since the histogram elements are wider than 8 bits. In
other words, we have shown that the MMMX architecture is very versatile. We
remark that we do not claim that SPIs are not useful. However, when extended
subwords are supported, their usefulness is limited.

Results have been obtained by synthesizing the MMX and MMMX instruc-
tion sets in the sim-outorder simulator of the SimpleScalar toolset. They show
that MMMX improves performance compared to MMX by a factor of up to 3.0.
The main reason for this performance improvement is the reduction of the dy-
namic number of instructions. The use of extended subwords avoids conversion
overhead between different packed data types and, furthermore, allows more
operations to be packed in a single SIMD instruction and the MRF avoids rear-
rangement overhead. The results also show that using, at most, 13 extra media
registers yields an additional performance improvement ranging from 1.38 to
1.57. Although it is well-known that the small number of architectural registers
is a limitation of the MMX architecture, it is somewhat surprising that using a
larger register file can provide a speedup of up to 1.57.

As future work, we consider investigating ways to either reduce the number
of scalar instructions or to overlap their execution with the execution of SIMD
instructions. In addition, data accesses in many multimedia kernels, for exam-
ple, motion estimation and compensation, are inherently misaligned. Therefore,
new techniques are needed to improve the efficiency of misaligned accesses.

REFERENCES

AUSTIN, T., LARSON, E., AND ERNST, D. 2002. SimpleScalar: An infrastructure for computer system
modeling. IEEE Comput. 35, 2, 59–67.

BARON, M. 2005. Cortex-A8: High speed, low power. Microprocessor Rep. 11, 14, 1–6.
BARTKOWIAK, M. 2001. Optimizations of color transformation for real time video decoding. In

Proceedings of the EURASIP Conference on Digital Signal Processing for Multimedia Communi-
cations and Services.

BENSAALI, F. AND AMIRA, A. 2005. Accelerating colour space conversion on reconfigurable hard-
ware. Image Vision Comput. 23, 935–942.

CHATTERJI, S., NARAYANAN, M., DUELL, J., AND OLIKER, L. 2003. Performance evaluation of two
emerging media processors: VIRAM and Imagine. In Proceedings of the 14th IEEE International
Symposium on Parallel and Distributed Processing. 229–235.

DEB, S. 2005. Video Data Management and Information Retrieval. IRM Press, Hershey, Penn-
sylvania, USA.

DIEFENDORFF, K., DUBEY, P. K., HOCHSPRUNG, R., AND SCALES, H. 2000. AltiVec extension to powerPC
accelerates media processing. IEEE Micro 20, 2, 85–95.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

Versatility of Extended Subwords and the Matrix Register File • 5:29

FLACHS, B., ASANO, S., DHONG, S. H., HOFSTEE, H. P., GERVAIS, G., KIM, R., LE, T., LIU, P., LEENSTRA, J.,
MICHAEL, J. L. B., OH, H. J., MUELLER, S. M., TAKAHASHI, O., HATAKEYAMA, A., WATANABE, Y., YANO,
N., BROKENSHIRE, D. A., PEYRAVIAN, M., VANDUNG, T., AND IWATA, E. 2006. The microarchitecture
of the synergistic processor for a cell processor. IEEE J. Solid-State Circuits 41, 63–70.

GOODACRE, J. AND SLOSS, A. N. 2005. Parallelism and the ARM instruction set architecture. IEEE
Comput. 38, 7, 42–50.

GSCHWIND, M., HOFSTEE, H. P., FLACHS, B., HOPKINS, M., WATANABE, Y., AND YAMAZAKI, T. 2006. Syn-
ergistic processing in cell’s multicore architecture. IEEE Micro 26, 2, 10–24.

GWENNAP, L. 1996. Digital, MIPS add multimedia extensions. Microprocessor Rep. 10, 15, 24–28.
HUANG, L., LAI, M., DAI, K., YUE, H., AND SHEN, L. 2007. Hardware support for arithmetic units

of processor with multimedia extension. In Proceedings of the IEEE International Conference on
Multimedia and Ubiquitous Engineering. 633–637.

IBM 2007. Synergistic Processor Unit Instruction Set Architecture. IBM. Version 1.2.
JENNINGS, M. D. AND CONTE, T. M. 1998. Subword extensions for video processing on mobile sys-

tems. IEEE Concurrency 6, 3, 13–16.
JUURLINK, B., BORODIN, D., MEEUWS, R. J., AALBERS, G. T., AND LEISINK, H. 2007. The Sim-

pleScalar Instruction Tool (SSIT) and the SimpleScalar Architecture Tool (SSAT). Available via
http://ce.et.tudelft.nl/~shahbahrami/

KOZYRAKIS, C., GEBIS, J., MARTIN, D., WILLIAMS, S., MAVROIDIS, I., POPE, S., JONES, D., PATTERSON, D., AND

YELICK, K. 2000. Vector IRAM: A media-oriented vector processor with embedded DRAM. In
Proceedings of the 12th International Conference on Hot Chips.

KUHN, P. 1999. Algorithms, Complexity Analysis and VLSI Architectures for MPEG-4 Motion
Estimation. Kluwer Academic Publ. Boston, MA.

LARSEN, S. AND AMARASINGHE, S. 2000. Exploiting superword level parallelism with multimedia
instruction sets. In Proceedings of the ACM Conference on Programming Language Design and
Implementation. 145–156.

LEE, A. J. T., HONG, R. W., AND CHANG, M. F. 2004. An approach to content-based video retrieval.
In Proceedings of the IEEE International Conference on Multimedia and Expo. Vol. 1. 273–276.

LEE, J., VIJAYKRISHNAN, N., IRWIN, M. J., AND WOLF, W. 2004. An architecture for motion estimation
in the transform domain. In Proceedings of the 17th IEEE International Conference on VLSI
Design.

LEE, R. B. AND SMITH, M. D. 1996. Media processing: A new design target. IEEE Micro 16, 4, 6–9.
MORENO, J. H., ZYUBAN, V., SHVADRON, U., NEESER, F. D., DERBY, J. H., WARE, M. S., KAILAS, K., ZAKS,

A., GEVA, A., BEN-DAVID, S., ASAAD, S. W., FOX, T. W., LITTRELL, D., BIBERSTEIN, M., NAISHLOS, D., AND

HUNTER, H. 2003. An innovative low-power high-performance programmable signal processor
for digital communications. IBM J. Res. Develop. 47, 2/3, 299–326.

Motorola Inc. 1998. AltiVec Technology Programming Environments Manual. Motorola Inc.
Rev.0.1.

NAISHLOS, D., BIBERSTEIN, M., DAVID, S. B., AND ZAKS, A. 2003. Vectorizing for a SIMdD DSP Ar-
chitecture. In International Conference on Compilers, Architectures and Synthesis for Embedded
Systems. 2–11.

PELEG, A., WILJIE, S., AND WEISER, U. 1997. Intel MMX for Multimedia PCs. Commun. ACM 40, 1,
24–38.

POYNTON, C. 1996. A Technical Introduction to Digital Video. Wiley, New York.
RABBANI, M. AND JONES, P. W. 1991. Digital Image Compression Techniques. Bellinghan,

Washington.
RAMAN, S. K., PENTKOVSKI, V., AND KESHAVA, J. 2000. Implementing streaming SIMD extensions

on the Pentium 3 processor. IEEE Micro 20, 4, 47–57.
SESHAN, N. 1998. High VelociTI Processing. IEEE Signal Processing Mag. 15, 2, 86–101.
SHAHBAHRAMI, A., JUURLINK, B., BORODIN, D., AND VASSILIADIS, S. 2006a. Avoiding conversion and

rearrangement overhead in SIMD architectures. Intern. J. Parallel Programming 34, 3, 237–260.
SHAHBAHRAMI, A., JUURLINK, B., AND VASSILIADIS, S. 2006b. Accelerating color space conversion us-

ing extended subwords and the matrix register file. In Proceedings of the 8th IEEE International
Symposium on Multimedia. 37–46.

SHAHBAHRAMI, A., JUURLINK, B., AND VASSILIADIS, S. 2006c. Limitations of special-purpose instruc-
tions for similarity measurements in media SIMD extensions. In Proceedings of the ACM

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

5:30 • A. Shahbahrami et al.

International Conference on Compilers, Architecture and Synthesis for Embedded Systems.
293–303.

SHANABLEH, T. AND GHANBARI, M. 2000. Heterogeneous video transcoding to lower spatio-temporal
resolutions and different encoding formats. IEEE Trans. Multimedia 2, 2, 101–110.

SLINGERLAND, N. AND SMITH, A. J. 2002. Measuring the performance of multimedia instruction
sets. IEEE Trans. Comput. 51, 11, 1317–1332.

TAMHANKAR, A. AND RAO, K. R. 2003. An overview of H.264/MPEG-4 Part 10. In Proceedings of the
4th International Conference on Video and Image Processing and Multimedia Communications.
1–51.

Texas Instruments 2007. TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide.
Texas Instruments. Literature Number: SPRU732D.

TREMBLAY, M., 0’CONNOR, J. M., NARAYANAN, V., AND HE, L. 1996. VIS speeds new media processing.
IEEE Micro 16, 4, 10–20.

WANG, L., ZHANG, Y., AND FENG, J. 2005. On the euclidean distance of images. IEEE Trans. Pattern
Anal. Machine Intell. 27, 8, 1334–1339.

ZHANG, D. AND LU, G. 2003. Evaluation of similarity measurement for image rretrieval. In Pro-
ceedings of the IEEE International Conference on Neural Networks and Signal Processing. Vol. 2.
928–931.

Received March 12, 2007; revised August 8, 2007; accepted November 30, 2007

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 5, Publication date: May 2008.

