
Accepted to 6th Workshop on Software Quality, 30th International Conference on
Software Engineering, 2008.

An Effort and Time Based Measure of Usability

Dan Tamir
 Texas State University

San Marcos, TX 78666

01-512-245-7528

dt19@txstate.edu

Oleg Komogortsev
Texas State University

San Marcos, TX 78666

 01-512-245-0349

ok11@txstate.edu

Carl J. Mueller
Texas State University

San Marcos, TX 78666

01-512-245-8344

carl.mueller@txstate.edu

ABSTRACT
The hypothesis of this research is that usability relates to the

physical effort that is required in order to use software in the

accomplishment of interactive tasks. The implications of this

hypothesis are significant since effort is an objective quantity

that can be measured efficiently in a relatively non-expensive

and non-invasive fashion. Based on this hypothesis, this work

proposes metrics for measuring operability, learnability, and

understandability.

Usability testing is an essential element of a robust validation

process. Nevertheless, evaluating software usability is an

expensive and time consuming activity, frustrating both

developers and managers. Developers are frustrated because it

is a critical part of their work; yet, they do not have solid

information on how to address it. Managerial frustration lies in

the fact that correcting usability defects is an iterative process,

and the amount of preparation required can significantly delay a

project. Hence, wider utilization of usability testing requires

reducing the cost and simplifying the approach.

This paper proposes a framework for measuring effort and using

the effort measurements to assess usability. The framework has

two main components: One, bases effort on keystrokes and

mouse usage; the second uses a model of the eye muscles along

with eye-movement tracking to estimate eye effort. The two

components are independent, but they could be used in tandem.

Tracking time and effort may not be as precise an evaluation of

usability. Nevertheless, it can provide a good screening tool to

reduce development cost.

CATEGORIES AND SUBJECT

DESCRIPTORS
D.2.4 [Software/Program Verification]: Software/Program

Verification - Validation

GENERAL TERMS
Measurement, Human Factors, Verification, Testing

KEYWORDS
Quality, Metrics, Validation, Usability, Operability,

Learnability, Understandability

1. INTRODUCTION
Anyone who has ever used a computer can provide a “top ten

list” of web sites and programs that are not user-friendly. Poor

software usability not only causes user dissatisfaction but also

can lead to substantial development cost overruns [10].

Software developers can use a wide variety of tools

(prototyping, inspection, usability testing, iterative processes,

etc. [11]) to assure the software they produce has good usability.

The fact that so many systems present poor usability may point

to the conclusion that these techniques do not address the

problem efficiently. Furthermore, the challenges presented by

usability issues may not lie solely in the tools and techniques

used in the development process. Software usability is

perceived as a highly subjective attribute of software quality

since physiological and psychological characteristics and

sociological conditioning heavily influences it. This quality

attribute is heavily affected by factors that many software

engineers are not familiar with can make them uncomfortable

with the entire topic. Our work proposes an objective

methodology that can lead to efficient and relatively non-

expensive assessment of usability.

Because it includes a subjective quality attribute, an evaluation

of software usability requires observing a number of human

subjects using the system. Interpreting these observations

necessitates the need of adding a psychologist to the testing

team. Some developers do not view usability testing as

productive evaluation, because these evaluations usually

indicates general area where the subjects had problems and does

not necessarily point to a specific solution. This can make

developers and managers extremely frustrated, especially when

faced with short project deadlines and no way to determine how

much time and effort are required to increase the usability.

Because of the uncertainty and expense of usability evaluations,

some managers are reluctant to include formal usability testing

in the development plan. Instead of using testing, these

managers prefer to rely on best practices, templates, and

inspection to establish software usability.

The actual challenge of developing usable software may lie in

the lack of a clear and concise understanding of what too many

software engineers view as a fuzzy concept. Not all authorities

on software quality provide a definition of usability. Some

authorities recommend usability testing but only provide a

check-list of things to investigate [6, 9, 2]; and these authorities

are, for the most part, balancing the line between systems with

“card input” and interactive systems. Most quality models [4,

10, 3, 2, 8] provide a relatively consistent and concise definition

of usability, but the attributes used to characterize the many

facets of usability are not consistent. This research uses the

characterization of usability provided in the ISO/IEC 9126

because it is one of the more recent quality models, it is an

industry standard, and it provides a set of measurements and

metrics for each quality sub characteristic. Usability in the

ISO/IEC 9126 standard is defined as “the capability of the

software product to be understood, learned, used, and attractive

to the user when used under specified conditions” [4]. The

standard also provides the following usability characteristics:

Understandability, Learnability; Operability, Attractiveness, and

Compliance.

Understandability is the ability of a user to understand the

capabilities of the software and if it is suited to accomplish

specific goals. It is measured by providing the user with a

tutorial or software documentation and then evaluating the

users‟ knowledge to determine the users‟ level of understanding

of the software‟s functionality, operation, and data input and

output [5]. It also recommends using cognitive monitoring

techniques to evaluate the user response. Cognitive monitoring

techniques are using one-way mirrors or concealed cameras to

record the subject‟s behavior along with evaluation of the

findings by a psychology professional.

Learnability describes how easy it is for a user to learn to use the

software. For this characteristic, the standard measures how

long it takes to the user to learn and perform a task, the number

of functions used correctly, and the utility of the help facility

[5]. In addition to the measurements, the standard proposes

cognitive monitoring techniques.

Operability is the capability of a user to use the software to

accomplish a specific goal. To assess operability requires

measuring the following characteristics: Operational

consistency; Error correction; Error correction in use; Default

value availability in use; Message understandability; Self-

explanatory error messages; Operational error recoverability in

use; Time between human error operation in use; Undoability;

Customizability; Operation procedure reduction; and, Physical

accessibility [5]. Some of these metrics are objective

measurements, but many require cognitive monitoring

techniques to evaluate.

As the name implies, attractiveness is the appeal of the software

to a user. Attractiveness is possibly the most subjective of all

the usability characteristics, involving not only sociological and

psychological issues but gender and personal taste issues. The

ISO/IEC 9126 standard characterize attractiveness by providing

subjects with a questionnaire to evaluate the interface and by

observing subjects customizing the appearance to their

satisfaction [5].

Compliance measure how well the software adheres to external

and internal rules relating to usability. It is also the most

straightforward characteristic to evaluate. Developers compile a

list of the required standards, conventions, style guides, and

regulations, as well as, through functional testing, verify which

standards are meet [5].

Even from this short description of the metrics necessary to

evaluate usability, it is apparent that designing a usability test

would be an extremely time consuming and thereby expensive

task. This is also a test with potentially very high cost which

may not identify any specific design or implementation defects.

Reducing the high cost of usability testing is difficult because

each of the measures proposed by the ISO/IEC standard are

good and identify specific problems, and it is not possible to

eliminate the use of human test subjects. Another problem with

the number of measurements is how to create objective

specifications for so many diverse characteristics. Setting

objective measurements for all of these metrics would definitely

increase the time necessary to specify requirements. What may

be possible is to take a slightly different approach to usability

testing using techniques that developers and testers are more

comfortable with and could administer without requiring

cognitive evaluation techniques.

One possible approach to usability testing might be to set a

series of goals and to measure the effort and time necessary for a

subject to accomplish each goal. If developers estimate the

effort and time necessary to complete each goal, then it would

be possible to compare the observed effort with the estimated

effort. If the observed effort is greater than the estimated effort,

then there is a problem requiring further investigation. After

identifying the existence of a problem, developers could trace

the observation logs to find where the subjects experienced a

problem causing the expenditure of additional effort. Trying to

evaluate usability from effort and time to complete a goal may

be a bit overreaching, but understandability, operability, and

learnability should be within the scope of these measurements.

E
ff
o

rt

Goals

Eexp

Eavg

LT

t

U

1 n

L

Figure 1 Hypothetical Learning Curve

Using effort to measure operability assumes that software is

more operable the less effort it requires to accomplish a specific

goal. Consider the following example. Assume a set of 𝑛

subjects selected at random complete a set of 𝑘 tasks or goals.

The objective of each goal is to make travel reservations, and

each goal requires about the same effort. After the subjects

complete all of the goals, an average of the effort (𝐸𝑎𝑣𝑔) and the

time (𝑇𝑎𝑣𝑔) for each goal is calculated. The point on a graph,

illustrated by Figure 1, where the slope of the average effort

(𝐸𝑎𝑣𝑔) becomes zero (0) is the point where the subjects have

“learned” how to use the software. The difference between the

average effort (𝐸𝑎𝑣𝑔) and an estimated lower boundary on the

effort (𝐸𝑒𝑥𝑝) can indicate the understandability (𝑈) of the

software. The larger the difference, it is believed, the less the

user understands about capabilities of the software.

In the simplest form, effort can serve as the basis for static

usability measures which are used to tune up the user interface

at system design time. In a more advanced form, effort

measurement facilities installed at static time remain active and

serve as a part of a dynamic and adaptive mechanism for user

interface enabling improvement and adaptation to the specific

user. This paper concentrates on static usability measurements.

2. METHODS OF EFFORT

EVALUATION
For this research, effort is the physical activity performed by a

person while attempting to accomplish a specific goal. A

physical activity could include pressing a key on a keyboard,

moving a mouse, pressing a mouse button, or even just the

movement of a person‟s eye. The following sections describe

the conversion of physical activities to effort.

2.1 Effort from Keystroke/Mouse click
Several informal studies indicate that many system users

associate the “physical” effort required for accomplishing tasks

with usability of the software. In the case of interactive

computer tasks, it may be possible to calculate effort from a

weighted sum of mouse clicks, keyboard clicks, mickeys, etc.

The term mickey denotes the number of pixels (at the mouse

resolution) traversed by the user while moving the mouse from a

point 𝑥0, 𝑦0 to a point 𝑥1, 𝑦1 . In this research mouse pixels

are called mixels.

Our definition of effort uses continuous functions. In practice,

given the discrete nature of computer interaction, these measures

are quantized by converting integrals to sums. Assume that an

interactive task 𝑅 starts at time 𝑡0. We define the effort at time

𝑡 as:

𝐸 𝑡 =
1

𝑡 − 𝑡0
 𝑤1 × 𝑚𝑐 𝑡 + 𝑤2 × 𝑚𝑘 𝑡 + 𝑤3 × 𝑚𝑖𝑐 𝑡

𝑡

𝑡0

+ 𝑤4 × 𝑝(𝑡) 𝑑𝑡
Where: 𝑚𝑐(𝑡), 𝑚𝑘(𝑡), 𝑚𝑐(𝑡) are (respectively) the number of

mouse clicks, the number of keyboard clicks, and the number of

mixels traversed by the user during the time interval 𝑡 − 𝑡0.

Furthermore, 𝑝(𝑡) is a penalty factor that measures the number

of times the user switched from mouse to keyboard or vice versa

during the interval. Note that 𝐸(𝑡)

is a monotonically increasing

function.

2.2 Eye tracking in effort measurement
Eye tracking is a noninvasive technology, employing Web

camera-like devices without any parts affixed to the user‟s body.

An eye tracker can provide usability/effort data even in the

absence of overt behavior.

There are two eye tracker-based effort metrics proposed in this

paper. The first metric relates the path that the eye travels to the

length of the task:

𝐸𝑒𝑦𝑒 _𝑝𝑎𝑡 𝑡 =
 𝑥𝑖+1 − 𝑥𝑖

2 + 𝑦𝑖+1 + 𝑦𝑖
2𝑡

𝑖=𝑡0

𝑡𝑐 − 𝑡0

Where 𝑥𝑖 and 𝑦𝑖 are screen eye coordinates (measured in

pixels) at a time 𝑖. The second metric assumes that the force

exerted by each extraocular eye muscle is proportional to the eye

effort. Hence, the eye effort (normalized to the length of the

task) is given by:

𝐸𝑒𝑦𝑒 _𝑚𝑢𝑠𝑐𝑙𝑒
𝑗 𝑡 =

 𝑇𝑗
𝑡𝑐
𝑖=𝑡0

𝑡𝑐 − 𝑡0

where 𝑇𝑗 is the extraocular muscle force for the muscle 𝑗

measured at the moment 𝑖 [7].

An eye tracker can be employed to provide the values for the

force 𝑇𝑗 based on the model developed by Komogortsev and

Khan [7]. This model relates measured eye gaze position and

the type of the eye movement to the individual extraocular

muscle force [7]. It is important to state that muscular load

metric calculated by extraocular muscle force output is more

stable and accurate than the metric based on the activity of the

limb muscles. This fact comes from the eye anatomy that

ensures that the same muscular effort is required for the eye to

travel from one point to the next, no matter how many times

such movement is repeated as long as the path remains the same.

In case the of the hand movement various groups of muscles can

be activated with different innervations (the neural stimulation

of a muscle) levels for the hand to travel the same point to point

path [1]. We have adapted the second model since it provides

more information and better precision.

Using the definition of effort related to keyboard / mouse and

the definition of eye effort we can provide a measure of effort

that combine both. We define the user effort as:

𝐸 𝑡 =
1

𝑡 − 𝑡0
 𝑤1 × 𝑚𝑐 𝑡 + 𝑤2 × 𝑚𝑘 𝑡 + 𝑤3 × 𝑚𝑖𝑐 𝑡

𝑡

𝑡0

+ 𝑤4 × 𝑝 𝑡 + 𝑤5 × 𝑒 𝑡 𝑑𝑡

The new equation adds the term 𝑤5 × 𝑒 𝑡 representing a

weighted value of the eye effort measured according to the

second eye effort model described above. In systems with no

eye-tracking instrumentation, we set 𝑤5

to 0.

3. FORMALIZATION OF ATTRIBUTES
The hypothesis of this research is that usability, and in specific,

operability, learnability, and understandability can be derived

from the effort as defined above. One of the goals of this

research is to establish the relations between 𝐸 𝑡 and

traditional measures of operability, learnability and

understandability. Additional objectives are to identify the

appropriate values for 𝑤1, 𝑤2, 𝑤3 , 𝑤4

and 𝑤5.

In the current research, we are considering only static measures

of usability. This means that the usability of a system is

determined at design time and cannot be changed. Another

direction of future research is to consider a dynamic scenario

where the system adapts to the user and enables user specific

improvements in usability at run time.

Under the assumption of static usability we can ignore the

“shape” of the curve of)(tE , and only use the “final” effort;

that is, the accumulated effort at time of completion of tasks.

Let R be a given interactive task. In order to derive the relation

between)(tE and static usability, we define the effort

associated with a task R in the following way:

𝐸𝑅
 𝑡 =

1

𝑡𝑐 − 𝑡0
 𝑤1 × 𝑚𝑐 𝑡 + 𝑤2 × 𝑚𝑘 𝑡 + 𝑤3

𝑡𝑐

𝑡0

× 𝑚𝑖𝑐 𝑡 + 𝑤4 × 𝑝 𝑡 + 𝑤5 × 𝑒 𝑡 𝑑𝑡

where 𝑡𝑐 is the time of task completion for the task 𝑅. Note that

the division by the factor 𝑡𝑐 − 𝑡0 eliminates the dependency of

𝐸𝑅

in the „time to completion‟ factor.

In addition, we assume that 𝑚𝑐 𝑡0 = 𝑚𝑘 𝑡0 = 𝑚𝑖𝑐 𝑡𝑡0 =
𝑝 𝑡0 = 𝑒 𝑡0 = 0 and define the total effort associated with 𝑅,

to be:

𝐸𝑅
 =

1

𝑡𝑐 − 𝑡0
× 𝑤1 × 𝑚𝑐 𝑡𝑐 + 𝑤2 × 𝑚𝑘 𝑡𝑐 + 𝑤3 × 𝑚𝑖𝑐 𝑡𝑐

+ 𝑤4 × 𝑝 𝑡𝑐 + 𝑤5 × 𝑒 𝑡𝑐

We normalize 𝐸𝑅
 , and define 𝐸𝑅 (the normalized effort

associated with R) by setting 𝑡𝑐 = 0 and 𝑡0 = 1. At this stage

of the research, we assume that 𝑤1 = 𝑤2 = 𝑤3 = 𝑤4 = 𝑤5 =
1. Finally, we denote 𝑓(1) by 𝑓 to obtain:

𝐸𝑅 = 𝑚𝑐 + 𝑚𝑘 + 𝑚𝑖𝑐 + 𝑝 + 𝑒

where 𝑚𝑐, 𝑚𝑘, 𝑚𝑖𝑐, and 𝑝 denote the total number of mouse

clicks, keyboard clicks, mickeys, and switches from mouse to

keyboard and keyboard to mouse throughout the process of

completing the task 𝑅.

3.1 Designer expected effort
In order to associate 𝐸𝑅 with operability, learnability, and

understandability we define the term: „the designer expected

effort‟. Let 𝑅 𝑥

be a task with a parameter vector 𝑥 and let 𝑆

be a sequence of user interactions that can accomplish

𝑅 𝑥 from scratch. For example, 𝑅 𝑎, 𝑏 can denote the task of

reserving a flight from a city 𝑎 to a city 𝑏, then 𝑆 can include

interactions related to subtasks such as checking prices for

different airlines, at slightly different arrival / departure times, or

from different airports within the cities. The designer expected

effort for 𝑅 𝑥 is defined to be:

𝐸𝑒𝑥𝑝 = 𝐸𝑅 𝑥 𝑠∈𝑆
𝑚𝑖𝑛

We assume that when the system is released, the system

designer knows 𝐸𝑒𝑥𝑝 . In fact, we would like to assume that the

system designer is designing the system in a way that provides

the best 𝐸𝑒𝑥𝑝 over several possible designs. Thus, the designer

expected effort is a single number that represents the “ideal”

(with respect to minimum effort) way to interact with the system

in order to accomplish 𝑅 𝑥 .
We now define operability, learnability, and understandability in

terms of 𝐸𝑒𝑥𝑝 .

3.2 Operability
The operability of a system is measured by 𝐸𝑒𝑥𝑝 of the system.

To elaborate, consider two possible designs (𝐷(1) and 𝐷(2)) of

an interactive system for flight reservation enabling the

task 𝑅(𝑎, 𝑏). Let 𝐸𝑒𝑥𝑝
(1)

 and 𝐸𝑒𝑥𝑝
(2)

 denote the designer expected

effort for the designs 𝐷(1) and 𝐷(2) respectively and assume

that 𝐸𝑒𝑥𝑝
(1)

< 𝐸𝑒𝑥𝑝
(2)

. Then, per our definition of operability, the

operability of design 𝐷(1) is better than the operability of

design 𝐷(2).

3.3 Learnability
Learnability is measured by the rate of convergence of user

effort to 𝐸𝑒𝑥𝑝 (see Figure 1). To measure learnability, we

consider a large set of tasks of the form 𝑅 𝑥 . In the flight

reservation system, two of these tasks can be 𝑅(𝑎, 𝑏) and

𝑅(𝑐, 𝑑) (reserving a flight from 𝑎 to 𝑏 and from 𝑐 to 𝑑). To

simplify the discussion, we assume that the cities are similar and

hence, that 𝐸𝑒𝑥𝑝 is independent of the actual cities. We focus

our attention on a user that performs the task 𝑅(𝑢, 𝑣)

repeatedly for many cities 𝑢 and 𝑣. We expect that in the

beginning of the process the effort related to completing a task

),(vuR will be higher than 𝐸𝑒𝑥𝑝 . As the user repeats 𝑅(𝑢, 𝑣)

(with different cities 𝑢 and 𝑣), and learns the system, we expect

that his effort would converge to 𝐸𝑒𝑥𝑝 .

Figure 1 illustrates the process through a hypothetical learning

curve. The figure shows the result of measuring effort made by

the user while completing a set of very similar tasks (e.g., flight

reservation for many pairs of cities). The figure shows a

hypothetical exponential learning curve where the user

performance improves along with repeating the task (or with

time).

Hence, we can measure learnability as the rate of convergence

of the actual user effort 𝐸 to the ideal effort 𝐸𝑒𝑥𝑝 . Alternatively,

we can define learnability in terms of the root mean square error

where the error is measured as the difference between the user

effort and the designer expected effort at a given task. Yet,

another (and similar) measure can be the area of the difference

between the learning curve and the curve formed by the fixed

line at 𝑦 = 𝐸𝑒𝑥𝑝 . Figure 2 depicts the learnability (and

understandability) curve.

Due to understandability deficiencies, it is possible that the user

learning curve does not converge to 𝐸𝑒𝑥𝑝 . Hence, the area is

measured up to the point where the user learning curve flattens.
3.4 Understandability
Lack of understandability may result in non-efficient usage of

the system or using the system for a task that is different than

any task defined at design time. In this case, the user effort may

converge to a value that is higher than 𝐸𝑒𝑥𝑝 . The difference

between the minimal effort value, achieved by the user,

and 𝐸𝑒𝑥𝑝 may be a useful measure for understandability. This is

depicted in Figure 2. We will check this assumption through the

planned experiments.

Figure 2 System's Learnability and Understandability

4. PROPOSED EXPERIMENTS
We are developing an infrastructure for instrumenting

measurement of user effort related to interactive tasks. At the

low level, the infrastructure enables keyboard, mouse, and eye

tracking. Raw data collected is interpreted accordingly to reflect

effort, operability, learnability, and understandability. In

addition, a limited number of informal studies collecting effort

data is currently ongoing.

We have selected a travel planning system as the underlying

application. The application enables the user to perform four

main tasks:

1. One way and round trip flight reservation

2. Hotel reservation

3. Rental car reservation

4. Scheduling of visits to attractions and purchasing

tickets if applicable

Each of these tasks requires a multitude of user input parameters

such as destination cities, dates, number of travelers, their

respective ages, etc. The system interacts with the user,

provides a list of “recommendations” (e.g., a list of flights that

complies with the user parameters), enables sorting the list,

allows changing input parameters, and facilitates selecting list

elements. Overall, the system includes numerous options.

Generally, specific tasks (for example round trip reservation)

can be accomplished through several different interactions

sequences, each requiring a different effort.

The system is developed by students as a part of a team project

administrated in the “Graphical User Interface” course. The

students receive a set of requirements for the reservation

capabilities of the system along with requirements for

instrumenting the tracking of user activities (mouse clicks,

mickey‟s, etc.). The system requirements include general

usability requirements. They do not include specific

requirements for “reducing the user effort.” Nevertheless, we

assume that as a result of the requirement for instrumentation,

the students are aware of issues related to user effort and may be

taking them into account when they design and implement their

system.

The system enables collecting data related to the following

events:

 Keyboard click: key clicked, time stamp, relevant

widget, and relevant interaction module

 Mouse click: mouse button, time stamp, mixel,

relevant widget, and relevant interaction module

 Mouse dragging: A “dense” time sequence of mouse

mixels, mapping of mixels to widgets, and to

interaction modules performed at the time instances.

 Eye movement: A “dense” time sequence of eye

location coordinates, mapping of eye locations to

widgets, and to interaction modules performed at the

time instances.

The effort has started this semester, and more than one team is

working on the project. We expect several implementations of

the instrumented reservation system in current and future

semesters.

After completing the design and implementation of the travel

reservation system, students and instructors operate the

developed systems and run a large set of interactive tasks. Raw

data related to user activities, described above, is collected, and

stored.

The data collected is processed in order to supply higher levels

of information including effort, learnability, etc. The data and

information gathered are visualized through graphs and tables.

We expect to collect information to support and quantify our

hypothesis as well as data to be used to calibrate parameters of

our models (e.g., the weights associated with the effort

function).

5. CONCLUSIONS AND FUTURE

RESEARCH
We have performed a number of informal studies to assess the

hypothesis that usability is a function of effort and time.

Clearly, an elaborate set of experiments is required in order to

assess the specific nature of the relationships between effort and

usability. The research has matured to a level where peer

reviews can produce beneficial feedback to make further

research more effective.

This paper provides various metrics that describe effort,

understandability, learnability and operability. These metrics are

defined in terms of basic user input actions such as key strokes,

mouse dragging, eye movements, and extraocular muscle force

output. Several experiments are proposed for the accurate

assessment of metric validity. Successful estimation will allow

measuring software operability as a function of physical effort,

opening new opportunities for investigation in this domain. We

feel that the impact of the proposed research will touch such

areas as automated effort estimation, goal design templates,

interface quality assessment and others.

There are several directions that the research can take. First, a

facility to measure the amount of information that the system

provides to the user (i.e., system output) as a function of the user

effort can be instrumented. This facility can be used as an

additional or alternative operability measure. Another direction

for future research includes dynamic and adaptive usable

systems. Under this framework, effort-measurement facilities

installed at static time remain active and serve as a part of a

dynamic and adaptive mechanism for user interface

improvement and adaptation to a specific user.

A user pattern of interaction is a sequence of the form

{(𝑢1, 𝑠1), (𝑢2, 𝑠2), … (𝑢𝑛 , 𝑠𝑛)} where 𝑢𝑖 is a user activity (e.g.,

clicking on a push button widget), and 𝑠𝑖 is a system activity

(e.g., producing a list of flights). Under the dynamic model, the

system utilizes pattern recognition techniques to identify the

repetitive sequences / patterns of interaction. This can be used

to set system defaults, reduce required effort, and improve

consistency.

Two modes of dynamic systems can be considered. In mode

one, referred to as the off-line mode, usability information

collected at run time from the current software release is used by

the system designers to modify and improve the next software

release. In the second mode, referred to as the adaptive mode,

the user interface is designed with redundant (extra) widgets.

These widgets assume the role of dynamically simplifying user

interface and reducing user effort. Default values and frequent

sequences of interaction are assigned in run time to the extra-

widgets in a way that better utilizes default values and converts

a sequence of user interaction activities into a single user

interaction activity

Using the traditional methods to evaluate usability, there are

dozens of indirect measurements requiring analysis. Even with

all of these measurements, Tom DeMarco‟s famous quote: “You

can‟t control what you can‟t measure”, may actually apply to

usability with a slight modification “You can‟t control what you

can‟t directly measure”.

6. REFERENCES
[1] Bahill, A. T. Development, validation and sensitivity

analyses of human eye movement models. CRC

Critical Reviews in Bioengineering , 4, 1980.

[2] Boehm, B., et al, Characteristics of Software Quality,

North Holland Publishing Co., NY, 1978.

[3] Robert Grady, Practical Software Metrics for Project

Management and Process Improvement. Prentice-Hall,

1992.

[4] Anonymous, Software Engineering-Product Quality-

Part 1: Quality Model. International Standards

Organization, Geneva Switzerland, 2001

[5] Anonymous, Software Engineering-Product Quality-

Part 2: External Metrics. International Standards

Organization, Geneva Switzerland, 2001

[6] Kit, E., Software Testing in the Real World, Addison-

Wesley, Reading, MA. 1995

[7] Komogortsev, O., & Khan, J. Eye Movement

Prediction by Kalman Filter with Integrated Linear

Horizontal Oculomotor Plant Mechanical Model. To

appear in Eye Tracking Research & Applications

Symposium 2008. at the moment paper accesible at

http://www.cs.txstate.edu/~ok11/ETRA08KoKh.pdf.Sa

vannah, GA, 2008.

[8] McCall, J.; Richards, P.; Walters, G., “Factors in

Software Quality,” three volumes, NTIS AD-A049-

OI4, AD-A049-OI5, AD-A049-055, November 1977.

[9] Myers, G., The Art of Software Testing, John Wiley &

Sons, New York, NY, 1979.

[10] Nielsen, J., Usability Engineering, Academic Press,

Inc., San Diego, CA. 1993.

[11] Pressman, R., Software Engineering A Practitioner‟s

Approach, 6th Edition, McGraw-Hill, New York, NY.,

2005.

