
Continuous Coordination within the Context of

Cooperative and Human Aspects of Software Engineering
Ban Al-Ani, Erik Trainer, Roger Ripley, Anita Sarma, André van der Hoek, David Redmiles

University of California, Irvine
Department of Informatics

444 Computer Science Building
Irvine, CA 92697-3440 USA
Phone: +1(949) 824-2776

{balani, etrainer, rripley, asarma, andre, redmiles}@ics.uci.edu

ABSTRACT

We have developed software tools that aim to support the

cooperative software engineering tasks and promote an awareness

of social dependencies that is essential to successful coordination.

The tools share common characteristics that can be traced back to

the principles of the Continuous Coordination (CC) paradigm.

However, the development of each sprung from carrying out a

different set of activities during its development process. In this

paper, we outline the principles of the CC paradigm, the tools that

implement these principles and focus on the social aspects of

software engineering. Finally, we discuss the socio-technical and

human-centered processes we adopted to develop these tools. Our

conclusion is that the cooperative dimension of our tools

represents the cooperation between researchers, subjects, and field

sites. Our conclusion suggests that the development processes

adopted to develop like-tools need to reflect this cooperative

dimension.

Categories and Subject Descriptors

H.4.3 [Information Systems Applications]: Office Automation-

Groupware; H5.3 [Information Interfaces and Presentation]

Group and Organization Interfaces – Computer Supported

Cooperative Work.

General Terms
Management, Documentation, Design, Human Factors.

Keywords
Continuous coordination, awareness, social dependency,

collaboration, cooperation, software engineering.

1. INTRODUCTION
Software engineering (SE) by its very nature is a complex

cooperative process, which requires the collaboration of

stakeholder teams (e.g. managers, end-user, designers…etc). This

cooperation is made even more complex with the increase in the

number of stakeholders involved, which can lead to a failure in

coordination and a loss of information pertaining to social

dependencies amongst software engineers [2][7].

An increase in the size of the software engineering team can lead

to a diminished awareness of social dependencies within the team.

Awareness of the social dependencies is typically difficult to

recognize or to identify dynamically in software teams, yet they

are essential to the coordination process. Some studies have

concluded that the interactions that occur during various SE

activities create social dependencies that may continue throughout

the development lifecycle. Recognizing, defining and

documenting these dependencies can lead to heightened

awareness and can mean a more successful SE experience [5].

Our work is concerned with overcoming some of the challenges of

cooperative software engineering by implementing the principles

of the Continuous Coordination (CC) paradigm. Our

implementations provide alternative means of communication and

visually identifying social dependencies amongst stakeholders. In

previous work, we presented a report of the tools that implement

this paradigm within varying contexts and to support diverse

software engineering activities (e.g. [14] [1]). In this paper, we

report the development processes adopted to develop tools that

visualize the interdependencies that typically evolve during a

cooperative software engineering endeavor. Consequently, we

present an outline of the CC tools that visualize the social

interdependencies in the following section (Workspace Activity

Viewer, Ariadne and World View) and discuss the development

process activities in the final section of this paper

2. CONTINUOUS COORDINATION (CC):

VISUALIZING SOCIAL ASPECTS OF SE
The CC paradigm is based on four main principles, namely:

identifying how much of what information needs to be shared

with whom and when. We derived these principles from field

studies and from existing literature, namely: that software

engineers typically need differing levels of information

abstraction at different stages of development while carrying out

different developmental tasks. When implementing these

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

CHASE’08, May 13, 2008, Leipzig, Germany.

Copyright 2008 ACM 978-1-60558-039-5/08/05...$5.00

principles we sought to provide this information at a time suitable

to developers such that it unobtrusively becomes part of their

peripheral awareness.

We present an outline of the tools that implement these principles

and visualize the social aspects of cooperative software

engineering in the following sections, namely: Workspace

Activity Viewer (WAV), Adriane and World View (WV). Screen

shots of several of the CC tools are presented in-situ in figure 1.

Figure 1. An open discussion of the CC tools.

2.1 Workspace Activity Viewer (WAV)
The Workspace Activity Viewer project is based on our

observations of problems in the real world. It visualizes the

developers and artifacts in a project using a 3D metaphor and

gives managers an overview of ongoing activities in a project,

using information extracted directly from developers' workspaces.

The tool can visually represent either artifacts or developers as

stacks of cylinders. When artifacts are represented, each segment

of the cylinder denotes a developer that has modified that artifact.

Whereas when the tool represents developers, each segment of the

cylinder denotes an artifact that developer has touched. Thus, the

height of the stacks of cylinders represents the amount of changes

to the artifact or the reach of a developer's activity. As stacks

(artifacts or developers) become dormant, the associated stack of

cylinders slowly moves to the back of the display. WAV conveys

the magnitude of a change (currently calculated as the relative

number of lines of code that have changed) by the width of each

cylinder. Thus, the tool can visualize both the social evolution and

the social dependencies the developers are seeking

The WAV reveals social evolution by allowing its user to play

back the state of the project, showing what developers are active

when, and to which types of artifacts they contribute. The WAV

also shows social dependencies by revealing when developers are

simultaneously working on the same artifact. Since the tool

shows the state of a developer's local workspace, before the

changes are committed to the repository, it can show when

developers are working on the same artifacts at the same time.

We have utilized WAV to visualize ongoing activities in an open-

source project and observed the social aspects of development

evolving. For example, we observed that a particular developer

started the project, but then become inactive. Later, new

developers joined the project and one of them becomes the new

lead on the project and attracts additional developers. Some

developers primarily contributed graphics for the user interface,

while others focused on actual code.

2.2 Ariadne
Ariadne is a visual collaborative software development tool that

highlights the socio-technical relationships between source-code

artifacts and the developers implementing those artifacts. Based

on theoretical predictions and empirical studies (including our

own), we have observed that dependencies in source-code

artifacts create dependencies between the developers

implementing those artifacts. In response, we created Ariadne, a

tool that exploits the automated identification of dependencies in

the source-code and the automated mining of development teams’

CM repositories for authorship information. The tool utilizes

these exploitations to infer social dependencies between

developers. We define a social dependency as a dependency

between developers as a result of the calls to each other’s code.

Our previous field studies of collaborative software development

[6] highlight the fact that software development demands

awareness of the activities being conducted as well as knowledge

about who to talk to regarding these activities (even when the

right people are not available). Similar studies have confirmed

these results [8] [4]. Similarly, we found that developers needed

to know when other developers began to make calls to their code

so that they would have time to make final changes before a

release. Finally, our fieldwork shows that developers often spend

a good deal of time trying to determine who knows what

information.

Ariadne’s visualization is intended to aid users in finding answers

to these very questions. The tool’s interface displays a project’s

socio-technical dependencies, relating people to the artifacts they

use, which it arranges vertically along the longest screen

dimension. Thus, the tool allows developers and managers to

improve their coordination strategies and execute development

activities with greater awareness.

We have performed a preliminary evaluation of Ariadne’s

visualization using multiple inspection methods appropriate for

visual interfaces. The initial results suggest a need for clearer

status and feedback mechanisms, such as cues indicating that the

user can hover over certain elements to see more detailed

information, as well as features that allow the end user to

configure elements of the visualization in meaningful ways. We

hypothesize that by allowing the individual to arrange the

visualization in a way that closely matches a given project’s

configuration of social and technical resources, the better it will

inform coordination decisions. In our future work, we plan to test

this hypothesis by visualizing real-world software development

projects and showing the results to software development

practitioners.

2.3 World View (WV)
World View is a software development tool designed to support

distributed development. The tool provides managers, team

leaders and developers in general with a central repository that

can derive, retain and visualize the structure of distributed teams,

the availability of its members and their locality. Its development

process was fueled by existing coordination tools in addition to

the advent of new technologies. We adapted new technology that

allowed us to use the world map metaphor to present team

dynamics and social interdependencies in globally distributed

projects at varying levels of abstraction.

The tool derives the social interdependencies among teams from a

number of sources, such as IDEs and CM systems. It visually

represents each derived dependency as a color-coded line between

two dependent teams at the highest level of abstraction or between

two team members at a lower level of abstraction. A developer

can utilize the tool’s “zoom” feature to move from one level of

abstraction to another. The thickness of the lines represents the

extent of sharing and consequent social-interdependence: the

thicker the lines, the larger the number of shared artifacts.

The tool also visualizes the structure of development teams to

promote awareness of developers and their organizational roles

(displayed by “mousing over” a site). Developers can determine

the availability of others on two levels of abstractions, namely:

regional and local. WV visualizes the availability of teams within

a specific region by shading a region in the world map, thus

showing time zones and national holidays. The availability of

specific team members can also be determined by “zooming” in to

a particular team member, as each team member is represented

visually by a single node. Each node is labeled with the team

member’s name and includes their contact information, role

within the team in addition to their availability (e.g. online, busy

or offline).

WV demonstrates the feasibility of providing a visual

contextualized representation of inter-dependencies, roles, locality

and availability in an integrated environment by implementing CC

principles of non-obtrusive integration, socio-technical issues, and

multiple views. The tool’s design and implementation contributes

to developers’ awareness about co-workers. The need for such

awareness has been identified as one of the most frequently

sought information [8].

We are planning on working with industry partners to evaluate the

tool in real world setting. We also plan to conduct controlled

experiments in order to assess its usefulness and gather

information on how to improve it. Future work includes

integrating World View with different tools that provide

additional project-related information, such as issue trackers and

task management systems.

3. A HUMAN AND COOPERATIVE

RESEARCH PROCESS
The CC paradigm and each of the tools discussed in this paper

address different aspects of the human and collaborative nature of

software development. However, in reflecting on the concepts and

systems, we realized that our research process also represented,

and perhaps necessarily so, a human and even cooperative

approach. Although human-centered design [12] and socio-

technical design [16] are not novel concepts, they represent a

meta-issue not to be overlooked in this workshop. These

approaches vary greatly nowadays. Our concepts and systems

provide a valuable data point and examples for other researchers

in the area to consider.

A key component to our research approach is observation in the

field. During the development of Ariadne, two key field studies

were performed over consecutive years, each 2-3 months in

duration. The first year’s study provided insight into our defining

continuous coordination, revealing the critical nature of

awareness and informal communication in collaborative software

engineering. The second reified the ideas from the first, but

brought out in both sets of data the role of dependencies in

coordinating work. These summaries are glossing over many

details, but the important point is that no system was proposed

until after the second field study. The system arose out of the field

observations similar to a grounded theory approach [17].

Like many systems, Ariadne went through iterative development.

As the interface stabilized, it could be demonstrated to colleagues

to make general suggestions. However, to keep the evaluation and

further refinement linked to human needs, we adapted usability

inspection methods [10] and cognitive theories [13] to evaluate

the interface against typical usage tasks observed in the original

field studies. We were able to make use of cognitive walkthrough

[19], cognitive dimensions [13], heuristic evaluation [11], and

general visualization principles [18]. Inspection methods are not a

substitute for eventual trials with real users, but they play a critical

role that subject evaluations can not always support. Namely, they

provide a rationale or even a “mapping” between system features /

design choices and human users’ needs. Observations with human

subjects provide different types of performance data. However, in

complex tasks (such as software engineering) these observations

often leave the rationale for the performance slightly speculative.

In many cases, an idea for a system comes from a general problem

known to the community. Such was the case for the WAV system.

It is commonly known that different developers contribute

different amounts of code, at different times, over the lifetime of a

project during software development (and particularly open

source projects). WAV visualizes the history of development.

WAV went through an iterative development process. However,

the iterations involved particular types of evaluation. A rough

characterization of this iterative refinement process would be a

competitive usability analysis [9]. For example, we compared

parts of WAV to related projects in visualization research during

iterations. Consequently, related systems become a comparison

point as the purpose of the interface emerged.

Finally, WV development was initiated as a result of observing

general problems in the real world (typically associated with

distributed development) and motivated by advances in

technology. The iterative, and ongoing, development process is

driven by the need to overcome the challenges reported in related

literature and the integration of new tools as they emerge. We

have made use of general visualization principles and plan further

evaluations through cognitive walkthroughs. Consequently, it is

possible to conclude that WV evolved as a result of a hybrid of

the approaches adopted to develop both WAV and Ariadne.

Influencing real world developers to adopt research tools is an

ongoing challenge in the research community. We sought to

overcome this challenge by performing and intending to perform

more trials with real world data and in real world settings. We

applied both Ariadne and WAV against open source projects and

gathered feedback from industry partners to assess the usefulness

of WV. In some cases, the results of the application were provided

to participants in those projects for comment. We consider these

steps towards a complete human-centered approach an effective

approach to recommending tools to real world developers.

Furthermore, future work we are undertaking includes integrating

our tools with Jazz-based applications. Conducting this up-stream

integration can also increase our chances for real world adoption.

In the beginning of this section, we mentioned that our research

process was both human-centered and cooperative. The human-

centered aspect was emphasized in the intervening paragraphs.

The cooperative dimension in this context refers to the

cooperation between researchers, subjects, and field sites. We

would like to suggest (in the spirit of socio-technical design) that

ultimately, our systems are for improving the quality of

experience for real end users as well as the quality of the process

and product.

4. ACKNOWLEDGMENTS
This research was supported by the U.S. NSF under grants

0534775 and 0205724.

5. REFERENCES
[1] Almeida da Silva, I., M. Alvim, R. Ripley, A. Sarma, C.M.L.

Werner, and A. van der Hoek, Designing Software Cockpits

for Coordinating Distributed Software Development, First

Workshop on Measurement-based Cockpits for Distributed

Software and Systems Engineering Projects, August 2007,

14–19.

[2] Brooks, F., No silver bullet: essence and accidents of

software engineering, Computer 20:4, Apr. 1987, 10-1.

[3] Carmel, E. and Agarwal, R. 2001. Tactical approaches for

alleviating distance in global software development. IEEE

Software. 18, 2 (Mar. 2001), 22-2.

[4] Cataldo, M., Wagstrom, P.A., Herbsleb, J.D. and Carley,

K.M. Identification of Coordination Requirements:

implications for the Design of Collaboration and Awareness

Tools, 20th Conference on Computer Supported Cooperative

Work, ACM Press, Banff, Alberta, Canada, 2006.

[5] de Souza, C. R., Redmiles, D., Cheng, L., Millen, D., and

Patterson, J. 2004. Sometimes you need to see through walls:

a field study of application programming interfaces. In

Proceedings of the 2004 ACM Conference on Computer

Supported Cooperative Work (Chicago, Illinois, USA,

November 06 - 10, 2004). CSCW '04. ACM, New York, NY,

63-71.

[6] de Souza, C.R.B., Quirk, S., Trainer, E. and Redmiles, D.

Supporting Collaborative Software Development through the

Visualization of Socio-Technical Dependencies , ACM

Conference on Supporting Group Work, ACM Press, Sanibel

Island, FL, 2007.

[7] Dunbar, R.I.M The social brain hypothesis. Evolution.

Anthropology. 19986: 178-190.

[8] Ko, A. J.; DeLine, R.; Venolia, G., Information Needs in

Collocated Software Development Teams," Software

Engineering, 2007. ICSE 2007. 29th International

Conference on , pp.344-353, 20-26 May 2007

[9] Nielsen, J., A home-page overhaul using other Web sites2,

IEEE Software, V. 12, N. 3, May 2995, pp. 75-78.

[10] Nielsen, J., Mack, R., Usability Inspection Methods, John

Wiley & Sons, Inc., New York, 1994.

[11] Nielsen, J.K. Heuristic Evaluation., in J. Nielsen, R. Mack

(eds.), Usability Inspection Methods, John Wiley & Sons,

Inc., New York, 1994.

[12] Norman, D.A., Draper, S.W. (eds.), User Centered System

Design, New Perspectives on Human-Computer Interaction,

Lawrence Erlbaum Associates, Hillsdale, NJ, 1986.

[13] Petre, M., A. Blackwell, T. Green, Cognitive questions in

software visualization, in Software Visualization:

Programming as a Multi-Media Experience, MIT Press,

Cambridge, MA, 1997, pp. 453–480.

[14] Redmiles, D.; van der Hoek, A.; Al-Ani, B.; Hildenbrand, T.;

Quirk, S.; Sarma, A.; Filho, R.S.S.; de Souza, C. & Trainer,

E., Continuous Coordination: A New Paradigm to Support

Globally Distributed Software Development Projects. In:

Wirtschaftsinformatik Journal, Vol. 49 (2007), S28–S38.

[15] Scacchi, W., Socio-Technical Design, in W. S. Bainbridge

(ed.), The Encyclopedia of Human-Computer Interaction,

656-659, Berkshire Publishing Group, 2004.

[16] Scacchi, W., Socio-Technical Design, in W. S. Bainbridge

(ed.), The Encyclopedia of Human-Computer Interaction,

656-659, Berkshire Publishing Group, 2004.

[17] Strauss, A. and J. Corbin (1998). Basics of Qualitative

Research: Techniques and Procedures for Developing

Grounded Theory. SAGE Publications, Thousand Oaks, CA.

[18] Tufte, E., Beautiful Evidence. Graphics Press, Cheshire, CT..

2006.

[19] Wharton, C., Rieman, J., Lewis, C., Polson, P., The

Cognitive Walkthrough Method: A Practitioner's Guide, in J.

Nielsen, R. Mack (eds.), Usability Inspection Methods, John

Wiley & Sons, Inc., New York, 1994.

