
A State Coverage Tool for JUnit

Ken Koster
Agitar Software Laboratories

450 National Avenue
Mountain View, California 94043

kenk@agitar.com

ABSTRACT
We present a JUnit test runner that informs users of miss-
ing behavior checks in their tests. The tool tracks variable
updates and definitions over the course of a test execution
and determines which variables influence which assertions
via dynamic taint analysis. The program statements that
set outputs which do not influence the outcome of any test
assertions are reported as state coverage inadequacies. With
traditional code coverage tools, users can ensure that tests
execute all program statements; with this tool, they can ad-
ditionally ensure that program output is checked, in one way
or another, by a test.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging–testing tools; D.2.8
[Software Engineering]:Metrics

General Terms: Measurement, Reliability

Keywords: Coverage, state coverage, structural testing,
taint analysis, test adequacy criteria, unit testing

1. INTRODUCTION
State coverage is a test adequacy criterion that requires

tests to check programs’ output variables [3]. All variables
still defined when executing in test scope (even those which
are not visible, such as private fields of objects) are consid-
ered by state coverage. Each program statement that sets an
output variable (referred to as an output-defining statement,
or ODS) which is not subsequently checked by a test is a
state coverage inadequacy. Each inadequacy points to a test
weakness; since the test does not specify the behavior of an
uncovered ODS, the ODS might be faulty or might become
faulty in the future despite its execution by the test.

In the example JUnit1 test below, the test of the min

method, testMinWithoutCheck, does not fail despite its ex-
ecution of a fault.

Without a programmatic assertion on the return value of
min, such as assertEquals(1, x), human inspection is re-
quired to discover its erroneous behavior. A state coverage
report, however, would flag the executed return statement
of min as an inadequacy of testMinWithoutCheck.

We have developed a tool that runs JUnit tests and pro-
duces a state coverage report, identifying all unchecked ODS.

1http://junit.org

Copyright is held by the author/owner(s).
ICSE’08, May 10–18, 2008, Leipzig, Germany.
ACM 978-1-60558-079-1/08/05.

int min(int a, int b) {

if (a < b) // check should be: a > b

return b;

else

return a;

}

public void testMinWithoutCheck() {

int x = min(3, 1);

System.out.println("min(1,3):" + x);

}

Programmers can improve their tests by adding assertions in
a directed fashion to inadequate tests. Even if programmers
are not inclined to revise their tests, state coverage can be
used by software development managers as a metric to assess
the thoroughness of test suites.

2. STATE COVERAGE REPORTS
A state coverage report lists the ODS that were executed

for each test run. For each ODS, it indicates whether it
was covered, and if so, by which assertions. Figure 1 is
a representation of a state coverage report of a Java class,
HumanName, and its JUnit test.

The HumanName class has seven potential ODS. Statements
that set variables that will still be defined from a test’s
scope are potential ODS. Java’s potential ODS are returns
from non-private, non-void methods; field assignments (both
static and instance fields); and constructor returns (although
Java constructors do not have explicit return statements,
they implicitly return the object being constructed). The
HumanName constructors contribute three ODS each, two from
field assignments and one from an implicit constructor re-
turn. The method isCelebrity has one return statement,
and thus one ODS.

The test method testCelebrity executes four ODS and
checks three of them. By checking isCelebrity’s return
value, it directly checks the executed isCelebrity output-
defining return statement of line 17. Because the return
value of isCelebrity is derived from the value of first,
the executed assignment of that field on line 13 is indirectly
checked. Since the assertTrue statement dereferences the
object returned from the constructor, it indirectly checks the
return ODS of that object’s constructor (by acting as an im-
plicit assertNotNull check of the variable pele). However,

1
2
3
4
5
6
7
8 }
9
10
11
12
13
14 }
15
16
17
18 }
19 }

 }

public class HumanName {
 public final String first, last;
 public HumanName(String firstName,
 String lastName) {
 last = lastName;
 first = firstName;

 public HumanName(
 String oneNameCelebrity) {
 last = oneNameCelebrity;
 first = null;

 public boolean isCelebrity() {
 return first == null;

 public void testCelebrity() {
 HumanName pele =
 = new HumanName("Pele");
 assertTrue(pele.isCelebrity());

U
nc

ov
er

ed
 O

D
S

C
ov

er
ed

 O
D

S

Figure 1: Example State Coverage Report

the assignment of the field last goes unchecked by the test,
and is flagged by the tool as an uncovered ODS.

One interpretation of the uncovered HumanName ODS is
that the test does not specify the behavior of the constructor
with respect to the field last. The pessimistic interpretation
of this uncovered ODS is that there are potential faults in the
assignment of last. In either case, users of the test runner
receive feedback about unchecked program output.

The tool’s reports are based on dynamic state coverage.
Although HumanName has seven potential ODS, only the four
that were executed by tests figure in the report; the three
ODS from the unexecuted two-argument constructor are not
included in the state coverage calculation.

3. IMPLEMENTATION
State coverage was originally defined in terms of program

slices [3, 6]. Given the challenge of implementing a highly
performant and scalable dynamic slicing algorithm, and the
relative success with which dynamic taint analysis has been
applied to large programs, we chose to implement Stacoru
via a lightweight Java virtual machine in Java with hooks
for dynamic taint analysis [1, 2, 7].

Data taint analysis – and more generally information flow
– has been a focus of study by the security community [5],
but has also seen use in other activities, such as testing and
debugging. A taint analysis marks data values coming from
sources of interest [4]. Whenever a tainted value is used to
compute another value, taints from the tainted value prop-
agate to the new value. This propagation can be based on
data-flow (when a new value derives directly from a tainted
value) or on control-flow (when tainted values are used in
conditions). Ultimately, tainted values are traced to sinks,

Implicit constructor return, line 14

assertTrue(pele.isCelebrity() T13, T14, T17)
Dereference of pele pointer T14

T14

Return of isCelebrity, line 17 T13, T17

Result of first == null, line 17 T13

Assignment first = null, line 13 T13

Figure 2: Taint Propagation in testCelebrity

where the impact of using tainted values is evaluated. A
canonical example comes from web application security: web
forms for user data entry are taint sources; values entered
on those forms are tainted; those taints are tracked to sinks
such as database and file system operations.

The state coverage test runner uses ODS as taint sources
and assertions as taint sinks. The taints processed by sinks
lead to covered ODS, while those that do not end up in any
sinks correspond to uncovered ODS. The tool propagates
taints through both control-flow and data-flow.

Figure 2 depicts the taint propagation pathway for the
testCelebrity example, from their sources on lines 13, 14,
and 17, to their processing by the assertTrue sink. In the
figure, taint names are formed with the letter“T”and the line
number of the ODS taint source (e.g. “T13” for a taint from
line 13), appear as superscripts, and are in bold typeface at
their source.

The test runner currently runs tests approximately 70
times slower than the standard JUnit test runner. Of this
slowdown, more than half is due to running in an interpreter
that is written in Java; the other half is due to the taint
analysis. In practice, this slowdown is not prohibitive for in-
teractively running the small scope, unit-level tests for which
state coverage is designed.

4. REFERENCES
[1] J. Clause, W. Li, and A. Orso. Dytan: a generic

dynamic taint analysis framework. In ISSTA, 2007.

[2] V. Haldar, D. Chandra, and M. Franz. Dynamic taint
propagation for java. In Proceedings of the 21st Annual
Computer Security Applications Conference, pages
303–311, 2005.

[3] K. Koster and D. C. Kao. State coverage: A structural
test adequacy criterion for behavior checking. In
ESEC/FSE, 2007.

[4] V. B. Livshits and M. S. Lam. Finding security
vulnerabilities in java applications with static analysis.
In Proceedings of the 14th Conference on USENIX
Security Symposium, pages 18–18, 2005.

[5] A. Sabelfeld and A. Myers. Language-based
information-flow security. IEEE Journal on Selected
Areas in Communications, 2003.

[6] M. Weiser. Program slicing. In ICSE, 1981.

[7] X. Zhang, N. Gupta, and R. Gupta. Pruning dynamic
slices with confidence. In Conference on Programming
Language Design and Implementation, 2006.

