Second International Workshop on Ultra-Large-Scale Software-Intensive Systems (ULSSIS 2008),
at the International Conference on Software Engineering (ICSE 2008), Leipzig, Germany, May 2008, Pages 23-26

Visibility of Control in Adaptive Systems

Hausi Mller
Dep. of Computer Science
University of Victoria

hausi@cs.uvic.ca

ABSTRACT

Adaptive systems respond to changes in their internal state
or external environment with guidance from an underlying
control system. ULS systems are particularly likely to re-
quire dynamic adaptation because of their decentralized con-
trol and the large number of independent stakeholders whose
actions are integral to the system’s behavior. Adaptation
may take various forms, but the system structure will al-
most inevitably include one or more closed feedback loops.
We argue that adaptability is a characteristic of a solution,
not of a problem, and that the feedback loop governing con-
trol of adaptability should be explicit in design and analysis
and either explicit or clearly traceable in implementation.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/ Specifica-
tions; D.2.2 [Software Engineering]: Design Tools and
Techniques; D.2.4 [Software Engineering): Software/ Pro-
gram Verification— Validation; D.2.11 [Software Engineer-
ing]: Software ArchitecturesPatterns

General Terms

Design, Documentation, Languages, Management, Perfor-
mance, Reliability, Standardization, Theory, Verification

Keywords

Self-adaptive systems, autonomic systems, ultra-large scale
systems, software ecosystems, continuous evolution

1. INTRODUCTION

Ultra large scale (ULS) systems, by virtue of their many
participants, lack of central control, and inability to have
complete specifications, and usually cannot be specified pre-
cisely. Consequently they need capability to ensure that
system operation remains within the envelope allowed by
system policy. Architectures based on closed-loop feedback

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ULSSIS’08, May 10-11, 2008, Leipzig, Germany.

Copyright 2008 ACM 978-1-60558-026-5/08/05 ...$5.00.

Mauro Pezzé
Faculty of Informatics
University of Lugano
Victoria, BC V8W 3P6 Canada CH-6900 Lugano, Switzerland
mauro.pezze@unisi.ch

Mary Shaw
Inst. for Software Research
Carnegie Mellon University
Pittsburgh, PA, 15213 USA

mary.shaw@cs.cmu.edu

control offer appropriate capabilities to address this chal-
lenge. Despite recent attention to software-intensive sys-
tems that adapt to unexpected changes in their operating
environment or in their own state, development methods for
these systems do not yet provide sufficient explicit focus on
the feedback loop (control and data) that almost inevitably
controls the adaptation. Even though system designers ac-
knowledge the elements of a control loop and often speak
informally about feedback in their systems, alarmingly of-
ten the design documents do not show the feedback loops
explicitly. Layers of abstractions intended to hide complex-
ity frequently also hide the control loops. The resulting lack
of visibility makes it easy to neglect the control aspects in
design which is so critical for validation and verification.
Even worse, the lack of an explicit method makes it easy to
neglect critical aspects of the analysis of the control.

In software engineering venues such as the recent Dagstuhl
Seminar on Software Engineering for Self-Adaptive Systems
and ICSE workshop series on SEAMS, DEAS, and WOSS,
researchers often discuss the closed loop of control in their
system analysis, but the actual control loops are frequently
not evident in their architectural descriptions [8]. A major
exception is the IBM Architectural Blueprint for Autonomic
Computing which features the control loop as the central
architectural component (i.e., autonomic element) [6, 9]. In
contrast, the feedback loops in other engineering disciplines
(e.g., electrical, mechanical or systems engineering), consti-
tute an inherent and central part of design methodologies [3].
Perrow argues that tight coupling between components con-
tributes to system failure, and feedback loops create cou-
pling, especially if they are not visible in the system [11].
The idea of increasing the visibility of control loops in soft-
ware architectures and software methods is not new. Over a
decade ago, Shaw compared a software design method based
on process control to an object-oriented design method [12].
She introduced a new software organization paradigm based
on control loops with an architecture that is dominated by
feedback loops and their analysis rather than by the iden-
tification of discrete stateful objects. Unsurprisingly, the
process control pattern described in that paper resembles
an autonomic element. If the computing pioneers and pro-
gramming language designers had been control engineers by
training instead of mathematicians, modern programming
paradigms might feature process control elements.

Truex et al. suggested in a thought-provoking CACM pa-
per that the problem with evolving software systems may lie
in an incorrect goal set that we all have accepted [13]. The
assumption that “software systems should support organi-

zational stability and structure, should be low maintenance,
and should strive for high degrees of user acceptance” might
be flawed. They suggest an alternate view that assumes
“software systems should be under constant development,
can never be fully specified, and are subject to constant
adjustment and adaptation”. Certainly ULS systems match
this view. Several studies conducted in 2006 seem to confirm
that this notion of continuous evolution is taking hold [1, 2,
10]. In particular, the highly regarded Carnegie Mellon Soft-
ware Engineering Institute (SEI) study on ULS systems sug-
gests that traditional top-down engineering approaches are
insufficient to tackle the complexity and evolution problems
inherent in decentralized, continually evolving software [10].

To be able to observe and possibly orchestrate the contin-
uous evolution of software systems in a complex and chang-
ing environment, we need to push the monitoring of evolving
systems to unprecedented levels and increase the visibility
of the control loops driving continuous evolution.

2. PROBLEMS VS. SOLUTIONS

Following Jackson [7] we begin with a distinction between
problems and solutions.

e Solutions require effects on the domains of the prob-
lem. These effects are usually specified as phenomena
in the problem domain, not explicitly as adaptations.

e “Adaptiveness” is a property of solutions: the design
of the solution incorporates mechanisms to instrument
and monitor the solution and its environment and to
change the system behavior in response to observed
changes.

e Some problems can be solved with either adaptive or
nonadaptive systems. For some problems, adaptive so-
lutions may be especially appropriate, but some prob-
lems admit of both adaptive and non-adaptive solu-
tions.

We propose, therefore, to use the adjective “adaptive” to
refer to properties of solutions and to find other adjectives
to describe problems that might (or might not) be solved
adaptively. Attributes of problems that tend to suggest con-
sidering adaptive solutions include:

e Uncertainty in the environment, especially uncertainty
that leads to substantial irregularity or other disrup-
tion; that may arise from external perturbations, rapid
irregular change, or imprecise knowledge of the exter-
nal state.

e Nondeterminism in the environment, especially of a
sort that requires significantly different responses at
different times.

e Requirements, especially extra-functional requirements,
that can best be satisfied through regulation of com-
plex, decentralized systems (as opposed to traditional,
top-down engineering) especially if substantial trade-
offs arise among these requirements.

e Incomplete control of system components, for example
because the system incorporates embedded mechani-
cal components, the task involves continuing action,
or humans are in the operating loop (they are only
biddable, not fully controllable.)

Implementations of adaptive systems are often “reflective”.
Reflective systems maintain an explicit representation of
their system state and can refer to that state in order to
modify their behavior. This can be an appropriate way to
implement the model of internal state that is required for a

feedback loop. So reflective mechanisms are often appropri-
ate for adaptation, but the presence of reflection does not
necessarily mean that a system is adaptive.
Implementations of adaptive systems cover significant de-
sign spaces from continuous to discrete control systems and
from closed to open systems. A closed system is specified
completely in terms of its behaviour, given internal state
and I/0 interface. In contrast, the specification of an open
system must be developed in tandem with a description of
the real-world domain in which it operates. An open system
interacts with this world via sensors and actuators; it is of-
ten safety-critical, and its specification can be a challenge.
Fly-by-wire and engine control systems are two examples of
open systems. ULS systems cover this entire space of control
systems. In this paper we concentrate open systems.

3. MAKE FEEDBACK LOOPS EXPLICIT

Software engineers are trained to develop abstractions that
hide complexity. Hiding the complexity of a feedback loop
seems obvious and natural. It follows that feedback loops,
which are the bread and butter of adaptive systems and
hence software-intensive and ultra-large systems, should be
made first class design elements. We feel that designers will
reap significant benefits by raising the visibility of control
loops in the design and implementation of adaptive systems.
ULS’s are particularly prone to require feedback due to a di-
verse and varying set of stakeholders with independent goals,
decentralized control, and uncertainty in the operating en-
vironment leading to evolving requirements, nonuniformity,
inconsistency, instability, and rich tradeoff spaces.

Feedback Architectures

The purpose of a simple feedback process control system,
which includes a control loop with sensors and actuators, is
to maintain specified properties of the outputs of the pro-
cess at (or sufficiently close to) a given reference value called
the set point. For physical processes in the real world, it is
rarely possible to do this with a preset sequence of controls
(i.e., an open loop system). Instead, it is usually necessary
to monitor the process and change settings of the operat-
ing controls to keep the outputs in the desired range. The
feedback loop allows the control system to adapt to varying
circumstances. Figure 1 shows a simple feedback loop.

Shaw identified a software architecture style based on sim-
ple process control that addresses problems with the at-
tributes identified in Section 2 [12].

Self-adaptive Architecture

In Figure 1 the controller embodies a static model. Figure 2
depicts a model-reference adaptive system (MRAS).
In a typical MRAS, the parameters of the controller are

Input Variables

Controller
Asto
- Process >
Set Point M\f;:r'glgf‘ed Controlled
es Variables

Figure 1: Simple process feedback control.

adjusted to satisfy the specifications of the reference model [4].

Feedback loops of this sort are used in almost all engineered
devices to bring about desired behavior despite undesired
disturbances.

At the 2007 Dagstuhl Seminar on Software Engineering for
Self-Adaptive Systems, Shaw presented the feedback control
architecture depicted in Figure 3. It is an MRAS that dis-
tinguishes between the executing process and its context or
operating environment. Moreover, the sensors into the ex-
ecuting process and its context include sensors into current
states and predictions about their future to reflect an ac-
curate model of current and future state. Sensor events are
filtered and stored in the model to remember the past and to
predict the future. The controller compares goals of the feed-
back control system with the model and devises a plan of ac-
tion to change the controller and the process. Representing
the control explicitly in this form reveals obligations that
fall on various activities of design and development:

In Requirements: Specify the goals in terms of functional
and non-functional requirements (e.g., using goal models),
including tolerances, trade-offs, time constants, stability and
convergence conditions, hysteresis specifications, and con-
text uncertainty.

In Design: Clearly identify all control and data elements
of the adaptive system explicitly, preferably in a separate
architectural control view. Choose an adaptation strategy
to determine the model and plan to effect the adaptation.
For example, Litoiu identifies four different kinds of per-
formance models and corresponding implementation tech-
niques [9]. Choose a monitoring strategy, including event
formats, sampling rates (fixed/variable) and filters, to ob-
serve the state of the executing system and its context.

In Analysis/VE&V: Validate how the current state is mod-
eled from sensor data. Validate the correction plan. Show
how corrections can be achieved with the available com-
mands. Show that the corrections will have desired effects
(i.e., global stability and convergence). Verify time con-
stants.

In Implementation: Clearly map from elements of design
to elements of implementation. Control is not necessarily a
separate implementation component.

4. EXAMPLES

IBM developed an architectural blueprint for autonomic,
self-managed systems [6]. The IBM architectural blueprint
identifies the autonomic element as a fundamental build-
ing block for designing self-configuring, self-healing, self-
protecting and self-optimizing systems. An autonomic el-
ement uses sensors and effectors, and is composed of a mon-
itor, an analyzer, a planner and an executor that share a

Adaptive
Algorithm

Model

output
Controller
parameter:

Figure 2: Model-reference adaptive control.

Output
_>

Plan
Correction

Model of current | €——
and future state
. '\.
Sensors: N\,

Predictions

Operating
Environment

. Executing
System

Effect .
Correction

o)

Commands

Figure 3: Feedback control for adaptive systems.

knowledge base. The goals for the control loop are specified
through effectors (typically through parameters or policies).
The monitor senses the managed process and its context, fil-
ters the accumulated sensor data, and stores relevant events
in the knowledge base for future reference. The analyzer
compares event data against patterns in the knowledge base
to diagnose symptoms, and stores the symptoms for future
reference in the knowledge base. The planner interprets the
symptoms and devises a plan to execute the change in the
managed process through the effectors. An interface consist-
ing of a set of sensors and effectors is called a manageability
endpoint. To facilitate collaboration among autonomic el-
ements, the control and data of manageability interfaces is
standardized across managed elements and autonomic build-
ing blocks.

Garlan et al. have developed a technique for using feed-
back for self-repair of systems [5]. Figure 4 shows their sys-
tem. This mapping identifies the feedback loop in Garlan’s
system:

Model Example

Executing system with run-
time manager

Executing system in its operating
environment

Sensors Monitoring mechanisms
Predictions (System is not predictive)
Objectives, model of current state | Architectural model
Compare Analyzer

Plan correction Repair handler

Effect Correction, commands Translator, runtime manager

S. NEXT STEPS

Fatterns for Adaptive Applications

Designers of software-intensive adaptive systems will already
realize significant benefits by raising the visibility of control
loops to first class and specifying the major components of
the control loop explicitly (i.e., goal specification, model of
past, current and future state, process and context mon-
itoring and event filtering capabilities, analysis, reasoning
and planning engines). Further benefits could be realized
by identifying common forms of adaptation and then distill-
ing design and V&V obligations for specific patterns.

As a first step, the adaptive control loops discussed above
should be refined into a reference model, which in turn is
reconciled with other reference models. Secondly, control
theory has a long history with huge successes in all branches
of engineering. Mining the rich experiences in these fields
and applying them to software-intensive adaptive systems is

Architecture Manager

Repair
Handier

T Architectural Style I

<—»|| Analyzer

— S
Style API S @l Arch.
Interpreter l-écu <{ Model

X
6 | Translator 2
Monitoring
Mechanisms

Style API Executing)

Interpreter System
N 3

Figure 4: Self-repairing system with feedback.

a key step [4]. As a third step, we should identify design pat-
terns that are used in practice, and codify them as patterns
to make the structure and obligations explicit.

Multiple Control Loops

Systems often have multiple control loops. Good engineer-
ing practice calls for making them independent whenever
possible. Sometimes they can operate independently, and
sometimes they form a coherent hierarchy, but other types
of interaction are possible.

When multiple control loops interact, system design and
analysis must cover their interactions. As control grows
more complex, it is especially important for the design and
analysis to be explicit. For example, Litoiu [9] discusses hi-
erarchical control in a class of quality of service and service
oriented architecture applications.

Catalogs

Engineering practice relies on good reference material, so the
classes of simple and multiple control loops should be cat-
aloged systematically. Identifying common forms of control
loops and defining patterns are still largely open research
topics. Here, we draft few illustrative examples.

Control loop patterns depend on adaptation goals. For
example, a class of self-optimizing control loops can be de-
vised by expressing obligations as performance thresholds
to be met at system level, and by defining mechanisms to
dynamically collect performance data at component execu-
tion level, instantiate models to relate performance data at
component level with system level obligations, and develop
relocation mechanisms to reduce component execution time
to avoid violations of system level obligations. V&V obli-
gations are based on proofs that the relocation mechanisms
can reduce execution time of the critical components without
interfering with the performance of other components, and
that improving component performances impact positively
on the overall performance obligations. Such control loops
may be applied at different abstraction levels, but would
always require the availability of performance data at the
lower level and the possibility of dynamic component relo-
cation to enact adaptation strategies.

Self-healing control loops can be devised by expressing

obligations as assertions at user level, and by defining mech-
anisms to map assertion from system to component level,
identify elements that affect assertion validity, define mech-
anisms that eliminate components that cause assertion vio-
lations from the execution. V&V obligation may compute
the impact of component workaround on system functional-
ity.

Acknowledgments

This work grew out of discussions at Dagstuhl Seminar 08031
on Software Engineering for Self-Adaptive Systems (13-18
January 2008). We thank the Dagstuhl participants, espe-
cially Luciano Baresi, Yuriy Brun, Giovanna Di Marzo Seru-
gendo, Cristina Gacek, Holger Giese, Holger Kienle, Marin
Litoiu, and Andreas Rasche, for stimulating discussions that
led to the insights reported here. This work was funded
in part by the National Science Foundation (ITR-0325273)
via the EUSES Consortium and under Grants CCF-0438929
and CNS-0613823 and National Sciences and Engineering
Research Council (NSERC) of Canada (CRDPJ 320529-04)
and IBM Corporation via the CSER Consortium and the
Swiss National Foundation via the PerSeOs project.

6. REFERENCES

[1] B. Boehm. A view of 20th and 21st century software
engineering. In Proceeding of the 28th International
Conference on Software Engineering, 2006.

[2] M. Broy, M. Jarke, M. Nagl, and D. Rombach.
Manifest: Strategische Bedeutung des Software
Engineering in Deutschland. Informatik-Spektrum,
29(3):210-221, 2006.

[3] R. S. Burns. Advanced control engineering.
Butterworth-Heinemann, 2001.

[4] G. A. Dumont and M. Huzmezan. Concepts, methods
and techniques in adaptive control. In Proceedings of
the 2002 American Control Conference, 2002.

[5] D. Garlan, S. Cheng, and B. Schmerl. Increasing
system dependability through architecture-based
self-repair. Architecting Dependable Systems, 2003.

[6] IBM. An architectural blueprint for autonomic
computing, June 2005.

[7] M. Jackson. Problem frames:analyzing and structuring
software development problems. Addison-Wesley, 2001.

[8] J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. In Future of Software
Engineering, 2007.

[9] M. Litoiu, M. Woodside, and T. Zheng. Hierarchical
model-based autonomic control of software systems.
SIGSOFT Software Engineering Notes, 30(4), 2005.

[10] L. Northrop, P. Feiler, R. P. Gabriel, and et al.
Ultra-Large-Scale systems - the software challenge of
the future. Technical report, Software Engineering
Institute, Carnegie Mellon, June 2006.

[11] C. Perrow. Normal Accidents: Living with High-Risk
Technologies. Princeton Univ. Press, September 1999.

[12] M. Shaw. Beyond objects: a software design paradigm
based on process control. SIGSOFT Software
Engineering Notes, 20(1):27-38, 1995.

[13] D. P. Truex, R. Baskerville, and H. Klein. Growing
systems in emergent organizations. Communications
of the ACM, 42(8):117-123, 1999.

