
 1

Declarative Approach for Model Composition
Julia Rubin

Marsha Chechik

Steve Easterbrook

ABSTRACT
Model-based development involves construction, integration,
and maintenance of complex models. One of the key problems in
model-based development is composing a set of distributed
models into a single seamless model. In this paper we propose a
declarative approach for model composition, which augments
and strengthens existing structural and heuristic approaches. In
our approach, the desired model compositions are constrained
by a set of declarative properties, which drive the merge
process. Only model compositions that satisfy the specified
properties and, possibly, additional model composition
restrictions are automatically generated and presented to the
model analyst for a review and further modifications. Since our
framework is iterative, properties and restrictions can be
reviewed and refined as well. We illustrate our ideas by defining
a proof-of-concept prototype implementation of the declarative
model composition framework using the Alloy Analyzer.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design tools and techniques.

General Terms
Design.

Keywords
Merging, matching, properties, Alloy.

1. INTRODUCTION
Due to the increased complexity of software development
processes, models take a central role in today’s development
environments. When dealing with complex systems, it is
impractical to describe the whole system by a single model.
Instead, analyzing and modelling a software system with
separate views is a good practice to deal with complexity and
maintainability. This, however, leads to the need to combine the
developed views into a single, consistent and coherent model.
Automatic model composition still remains one of the key
problems in today’s model-based development.

Model composition consists of two fundamental phases – model
matching and model merging �[1]. In the model matching phase
(also sometimes called model comparison) correspondences
between similar elements of the source models are identified,
e.g., an Employee in one model can correspond to a Worker in
another. The merging phase uses these correspondences to
produce a unified version of the model, e.g., the one that
includes People in organization, whether they are called
Workers in one model or Employees in another.

Several approaches to model matching have been proposed,
ranging from manual to fully automatic algorithms for detecting
correspondences [3,7,8,9,11]. Most existing approaches to

(semi)-automatic model matching and merging focus on
structural similarities between the models. For example,
matching and merging of conceptual database schemata are
studied in �[9]; a general framework for merging visual design
diagrams is proposed in �[8]; a generic framework for merging
EMOF-based models is presented in �[3]; an algebraic approach
for merging requirements views is described in �[11]; finally, a
technique for matching architecture diagrams using machine
learning is provided in �[7]. In general, these approaches treat
models as graphical artefacts while largely ignoring their
semantics.

Some recent work on behavioural models has concentrated on
establishing semantic relationships between models. For
example, �[14] proposes the use of refinement relations for
merging consistent state-machine models such that their
behavioural properties are preserved. An approach to matching
and merging hierarchical Statechart models using heuristics for
finding terminological, structural, and semantic similarities
between models is presented in �[10].

All the above techniques to (semi)-automatic model composition
use a set of predefined structural or heuristic procedures to drive
the match and the merge algorithms. The implementation of
these procedures is further supported by several rule-based
languages and frameworks for model compositions, such as the
Epsilon Merging Language �[6] or Kompose �[4]. However, all
these approaches lack a declarative semantic definition of what
the desired model compositions should be. Without a
semantically-based declarative definition of such a result, one
cannot be sure that the merge algorithm computes exactly what
one needs. For example, when merging two business processes
due to an acquisition of one company by another, the resulting
merge can satisfy a variety of objectives: maintain a fixed
number of parties with which the process converses, or maybe
maintain the overall process size, or maybe maintain a specific
order of activities.

In this paper, we propose to augment the existing structural and
heuristic match procedures by a new declarative procedure for
model matching and merging. It allows the analyst to specify the
properties of the desired model composition, such as “the
activities of the merged process must be in the same order as of
the original processes“, and uses these properties during the
model composition process to produce proper results.

We also propose an iterative framework for property-based
construction of model compositions. In this framework, given
two source models (we also refer to them as input models), the
analyst can specify a set of the declarative properties mentioned
above. The analyst can also provide additional restrictions by
specifying a set of known match relationships between elements

Department of Computer Science
University of Toronto

Toronto, ON M5S 3G4, Canada.

{mjulia,chechik,sme}@cs.toronto.edu

 2

of source models, if such information is available, or employ an
existing match detection algorithm for identifying such
relationships. Our framework uses all this information to
construct a set of possible merges. These merges are then
presented to the analyst for the evaluation and refinement.
Properties and match relationships can be refined as well, which
drives the next iteration of the model composition process.

To validate our ideas, we instantiated this framework using the
Alloy Analyzer �[5] – a software tool which can be used to
analyze specifications written in the Alloy language. The
Analyzer can generate instances of model invariants; simulate
the execution of operations defined as part of the model; and
check user-specified properties of a model. In the paper, we
describe our proof-of-concept prototype implementation and
comment on our experience.

The rest of the paper is organized as follows. In Section �2, we
present the working example used throughout the paper. Section
�3 describes the generic property-driven model composition
framework. In Section �4, we discuss a prototype implementation
of the proposed framework using the Alloy Analyzer and
demonstrate our prototype on the working example. Section �5
concludes the paper and presents directions for future work.

2. MOTIVATING EXAMPLE
Figure 1 presents two models depicting relations between
entities in an organization. Both models are represented in the
UML2 notation �[15], with the organizational entities represented
by UML2 classes. Model A (Figure 1(a)) includes a set of
Employees, each of whom works for a Company (composite
association), and one Director who also works for a Company
(composite association). Director is a type of Employee
(generalization relationship). Model B (Figure 1(b)) includes a
set of Employees, each of whom can work for one or more
Department (shared association). Each Department has a
Manager (composite association). Manager is a type of
Employee (generalization relationship).

These input models capture individual views of two different
stakeholders on the organizational structure. The goal of the
merge is consolidate these views to get a unified and consistent
perspective. There are several different alternatives for the
consolidation. Even if we assume that the Employee class of
model A matches the Employee class of model B (using the
name-based correspondence), there are seven merges possible,
as presented in Figure 2. For example, Figure 2(a) presents a
merge in which, in addition to the Employee classes that are
combined, the Director class from model A is combined with the
Manager class of model B, and the Company class of model A is
combined with the Department class of model B. Figure 2(b)
presents the case in which only the Employee classes are
combined.

Intuitively, matches in parts (a) – (d) of Figure 2 are reasonable,
whereas the remaining ones are not: Manager is matched with
Company, or Department is matched with Director. However,
since the semantics of the model composition is domain-specific
and depends on the system being modelled, there cannot be an
automatic way to decide, without any additional knowledge,
which of the above seven compositions represents the option
most preferred by the analyst.

(a) Model A

(b) Model B

Figure 1. Input models.

The goal of our work is to assist the analyst in the construction
of the desired model compositions based on semantic
restrictions that describe them. Once the desired model
compositions are characterized by a set of declarative properties,
our framework uses these properties and constructs only the
compositions that satisfy them.

Declarative model properties can be used for a variety of
purposes: some properties are structural and ensure well-
formedness of the model compositions; others are specific to the
domain being modelled, or even to the concrete application in
that domain; others ensure the correctness of the behavioural
semantics of the composed model, and so forth.

 In general, we differentiate between two types of properties:
meta-model level and model level. Properties specific to all
models in a certain domain are usually defined on a meta-model
level. In the example on Figure 1, some of these are:

 P1. A class cannot be owned by more than one other class
(ownership is defined with respect to the composite association
relationship);

 P2. A class cannot contain an element that it specializes
(containment is defined with respect to the composite or shared
association relationship);

 P3. Cyclic generalizations are not allowed;

 P4. Cyclic ownerships are not allowed.

Properties specific to a concrete system being modelled are
defined on a model level, e.g.,

 P5. Each Employee can work for more than one Department;

 3

Figure 2. Possible model compositions.
 P6. Each Department has one and only one Manager;

 P7. Each Company has one and only one Director.

In addition, some properties are intended, while others are
accidental. The former describe features which were
deliberately introduced into the model. Properties P1-P7 are in
this category. Intended properties are useful for automatic
finding of matches. On the other hand, accidental properties, for
example, the property

 P8. Each model has exactly three classes.

are just side-effects of various design choices and should not
necessarily be preserved by the composed model.

While in principle it might be possible to detect an exhaustive
list of all properties of the input models, there is no automatic
way to distinguish between intended and accidental properties.
Therefore, in this work, we assume that the analyst explicitly
specifies the list of intended properties that are to be preserved
by the composition.

3. PROPERTY-DRIVEN FRAMEWORK
FOR MODEL COMPOSITION
This section describes the property-driven framework and the
process of the property-driven model composition, depicted in
Figure 3.

The model composition engine takes input from both the analyst
and a central meta-data repository which stores predefined meta-
information about model compositions. The information
includes the supported merge operation types, such as a “union”
merge that produces models containing all elements of both
input models; a predefined set of supported modelling domains
– either general purpose, like UML, or domain-specific, like
business processes or IP telephony services; and, if available,
sets of domain-specific properties for each of the stored
domains. The information can be added to the repository for
each new merge type, new modelling domain or a family of
applications in a domain. We assume that the analyst has partial
knowledge about the models being composed. Given two
source models, the analyst might be able to specify a set of
positive and negative match relationships between elements of
the input models – relationships between elements that should
be combined into one in the model composition and elements
that should not be combined, respectively. Such relationships
can be defined by the use of structural of heuristic match
detection algorithms, such as in �[3] or �[10], or done by hand, or
skipped altogether.

In the example on Figure 1, the Employee class of model A has a
positive match relationship to the Employee class of model B,
which can be established by a simple name-based
correspondence detection. The Department and the Director
classes have a negative match relationship.

 4

Figure 3. Property-driven model composition process.

Next, the analyst defines a set of semantic properties that
describe the desired model composition. Using these properties
and an optional set of positive and negative match relationships,
our framework constructs the set of match relationships between
all elements of the input models and computes a merge by
applying an appropriate merge algorithm.

Since creation of the complete list of desired composition
properties is a non-trivial task, the model composition process is
iterative. At the end of each iteration, possible merges are
presented to the analyst for further examination, which may lead
to the discovery of new properties and match relationships, or
the invalidation of some of the existing ones. The analyst may
then want to start a new iteration by revising the properties and
executing the subsequent activities.

In our example, assume that the analyst identifies the Employee
class of model A and the Employee class of model B in Figure 1
as a positive match. For this model composition configuration,
which we refer to as MCC1, the system produces all possible
model compositions shown in Figure 2. Further, the analyst adds
property P2 defined in Section �2 as an additional constraint on
the merge (we refer to the obtained configuration as MCC2).
The system automatically produces all possible model
compositions corresponding to the cases (a) – (d) in Figure 2.
Model compositions (e), (f) and (g) are eliminated because each
of them violates the defined property P2: case (e) is eliminated
because the Manager/Company class contains the Employee
class; case (f) – because the Department/Director class contains
the Employee class, case (g) – because of both of these reasons.
If the analyst had used the property P1 to constrain the
composition (we refer to this configuration as MCC3), cases (b),
(d), (e), (f) and (g) would have been eliminated, leaving only
cases (a) and (c) to be presented to the analyst. Finally, if,
instead of properties P1 or P2, the analyst had defined a negative
match relationship between the Manager and the Company
classes, and between the Department and the Director classes
(we refer to this configuration as MCC4), cases (e), (f) and (g)
would have been eliminated as well, leaving only cases (a) – (d)
to be presented to the analyst.

It is essential for a model composition framework to provide
traceability between the merged model elements and their
sources. To keep track of the origins of the elements in a merge,
our framework should store proper traceability links in the

merged model elements. For example, the Department/Company
class in Figure 2(a) should be able to trace back to the Company
class of model A and to the Department class of model B in
Figure 1.

We also suggest capturing positive and negative feedback
provided by the analyst at the end of each model composition
iteration, while she examines the results suggested by the
system. A simple form of such feedback could be a set of
positive and negative match relationships inferred by observing
the presented results. The captured information can be used by
the framework in subsequent iterations.

Finally, to provide our framework with an additional flexibility,
we suggest to also present to the analyst the results that do not
satisfy all the defined properties, but are “close enough”. The
analyst can then inspect these results and create a desired model
composition by applying simple manual modifications on the
compositions created automatically. Towards this end, we
suggest assigning weights to the properties of the model
compositions and defining some threshold on the summary
weight of the properties satisfied by the resulting model
composition. Only those compositions that pass the threshold
are presented to the analyst. Of course, the threshold can always
be set high enough, so that any result that does not satisfy all the
defined properties will be eliminated.

4. PROPERTY-BASED COMPOSITION
PROTOTYPE USING ALLOY
In order to demonstrate the viability of the ideas presented in
Section �3, we implemented a proof-of-concept prototype of the
declarative model composition framework using the Alloy
Analyzer �[5]. Alloy Analyzer is a tool developed for analyzing
models written in the Alloy language – a structural modelling
language based on first-order logic. The tool can generate
instances of invariants, simulate the execution of operations, and
check user-specified properties of a model.

Figure 4 presents an overview of our prototype, as an instance of
the generic model composition framework in Figure 3. Several
translators are used to express various input artefacts in the
Alloy language. Translate1 specifies an input meta-model in
Alloy. This meta-model is then used by Translate2 and
Translate6 to create a meta-model of possible input
compositions (merge meta-model) and to encode the input
models. The merge meta-model is used by Translate4,
Translate3 and Translate5 to specify a set of positive and
negative match relationships, and a set of domain-specific and
model-specific composition properties. Currently all of the
above translations are done manually, but they could be
automated in the future.

Next, we use the Alloy Analyzer to automatically produce the
described model compositions. The results generated by the
Alloy Analyzer are processed and presented back to the analyst.

The following sections describe these steps in more details and
illustrate them on a working example.

4.1 Defining Input
Figure 5 presents a simple meta-model for class diagrams in
Figure 1, defined in Alloy. It defines an Element, which has two
sets of properties – those that are associated with it using
composite associations and using shared associations. An

 5

Figure 4. Model composition process in Alloy.

Element can specialize at most one other element. In this meta-
model, multiple specializations are not allowed. In addition, the
meta-model defines two generic elements – LeftElement and
RightElenent, which are used as a base for all elements of the
first and the second input model, respectively. Both LeftElement
and RightElement extend the generic Element type.

The meta-model in Figure 5 does not represent the complete
UML2 class diagram meta-model, but it is expressive enough to
illustrate our ideas. In the future, we plan to explore using and
extending the UML2Alloy project �[1] to define and process
general UML2 models.

Now we can encode input models in Figure 1 as instances of the
above defined meta-model. Figure 6 presents two fragments
taken from the definition of the input model in Figure 1(a).1 The
fragment in Figure 6(a) defines input model classes Employee,
Company and Director. Further, it defines the internals of each
input model class via an instantiation of the meta-model
Element. The Company class, for example, does not specialize
any other input model classes, and thus does not have any
generalization relations. It does not have any shared association
relations either. It does have a composite association relation to
a set of Employees and a composite association relation to
exactly one Director.

This fragment specifies the multiplicity of only one end of
association relations. For example, it says that Company has
exactly one Director. We use an additional Alloy fact to capture
the multiplicity of the other relation’s end. The fragment shown
in Figure 6(b) further specifies the model and states that each
Director works for exactly one Company.

4.2 Defining Merge Meta-Model
Using the input meta-model, we construct the meta-model of
possible input compositions. Figure 7 presents a fragment of the
composition model, each element of which is essentially a

1 The complete definition is available at

http://www.cs.toronto.edu/~mjulia/DMCinAlloy/

Figure 5. Expressing a simple class meta-model.

(a) Input model classes

(b) Multiplicity definition

Figure 6. Definition of an input model.

merge of two matching input model elements. A composition
model element traces to a LeftElement and a RightElement
which it combines – elements of the first and the second input
models, respectively. We also allow the composition model to
contain elements that do not have correspondences in the other
model, but rather represent elements of only one of the input
models. This is supported via composing left or right elements
with None. In addition, the first fact in Figure 7 states that each
element of an input model should be represented in the
composition model; thus, the composition model is a “union” of
two input models. The second fact states that all relationships
between CombinedElements are "unions” of the corresponding
relationships between the original elements.

At this stage, if we ask the Alloy Analyzer to produce instances
of the meta-model we just defined, we get arbitrary merges

 6

which match any element of the first input model with any
element of the second. So, the next step is to specify restrictions
on the model compositions.

4.3 Restricting Model Compositions
Restricting the model composition using the specified merge
meta-model is quite straightforward. Figure 8(a) and Figure
8(b), for example, specify in Alloy the model composition
configuration MCC2, defined in Section �3. The former defines a
positive match relationship between the Employee classes of
models A and B. The later presents a definition of a declarative
property P2 from Section �2. Figure 8(c) specifies two negative
match relationships (between the Manager and the Company
classes, and between the Department and the Director classes).
This, together with the positive match relationship shown in
Figure 8(a), represents the model composition configuration
MCC4 from Section �3.

4.4 Analyzing the Results
We ran the Alloy Analyzer on various model composition
configurations and analyzed the obtained results. Alloy model
which corresponds to the MCC2 configuration produces four
non-equivalent model composition instances. As expected, all
composition instances satisfy the defined properties and
correspond to one of the possible model compositions in Figure
2– either one of the cases (a) – (d).

An example of a produced composition instance is shown in
Figure 9(a). Each CombinedElement traces to the input model
elements which it represents: CombinedElement1 represents the
Company class; CombinedElement3 represents the Department
class; CombinedElement2 represents the Manager/Director
class; CombinedElement0 and CombinedElement2 both
represent the Employee class.

Figure 9(b) shows the same composition model instance in
which we filtered out the input model elements and augmented
CombinedElements with the names of the source elements they
represent. This composition instance corresponds to the model
composition in Figure 2(d). Multiplicity of association ends is
also preserved by the generated instance model, and can be
obtained by querying it. However, the process of deducing the
composition model from its instance, produced by Alloy, is
currently done manually. Automating it is our next step.

Model composition configuration MCC4, similarly to MCC2,
produces four non-equivalent configurations, corresponding to
cases (a) – (d) in Figure 2 as well. MCC1 produces all cases in
Figure 2, as expected.

The performance of the Alloy Analyzer is tightly coupled with
the specified number of model element instances. For example,
for the MCC2 configuration, we restricted the scope of the Alloy
Analyzer model to exactly one Company and one Department,
exactly three Employees from the first input model and three
Employees of the second input model. A simple calculation
shows that the minimal total number of elements required to
accommodate all possible model compositions is 18. Generation
of results then took around 4 seconds on a 1.59GHz, 2.00GB of
RAM machine. The same configuration with the total number
of up to 30 model elements took Alloy around 35 seconds. A
configuration with exactly two Companies, two Departments,
exactly six Employees in each model and a total number of up to
36 model elements took Alloy around 56 seconds.

Figure 7. Merge meta-model.

(a) Positive match

(b) Declarative property

(c) Negative match

Figure 8. Composition model restrictions.

5. DISCUSSION AND FUTURE WORK
In this paper, we sketched a property-based model composition
framework. The input to our framework consists of two models
being merged, a set of positive and negative matches between
input model elements, and a set of declarative properties that
constrain and drive model compositions. The output is an
automatically generated set of possible model compositions,
each of which satisfies the properties and restrictions defined by
the analyst. These model compositions can be reviewed and
further modified by the analyst. Properties and restrictions can
be reviewed and refined as well. We have also presented a
prototype implementation developed using Alloy.

 7

The composition approach described in this paper currently
handles only homogeneous models, those that share the same
meta-model. It would be interesting to extend this approach to
handle heterogeneous input models as well. Also, we are
currently dealing only with one-to-one match relationships
between input model elements. We plan to investigate the
extension of our approach for handling many-to-many match
relationships. We also plan to extend our framework to provide
a better support for the iterative match and merge process, and
captures positive and negative results of previous iterations.

An additional issue that we would like to investigate involves
providing the analyst with an ability to explicitly specify how
elements of different input models relate to each other. In our
example, the analyst could define a containment relation
between the Company class of one input model and the
Department class of the other. This relation could restrict a set
of possible matches and produce results that are closer to the
analyst’s intention.

Our current Alloy implementation also has several limitations.
First, we still need to automate deduction of the composition
model from the generated composition instance. We also need to
refine and extend the process of converting input models into
Alloy. We plan to evaluate using UML2Alloy for that purpose.

In addition, it is not clear yet how to define the minimal
sufficient scope required for the Alloy Analyzer to find all the
desired results. Since the Alloy Analyzer performs model-
finding over a finite, user-defined scope (i.e., the number of
instances which Alloy manipulates), it is incomplete by design,
meaning that it can miss results that are out of the defined scope.
Automatic deduction of the minimal required scope is still a
research challenge.

We also want to look beyond Alloy as an implementation engine
for our property-based composition framework.

6. REFERENCES
[1] K. Anastasakis, B. Bordbar, G. Georg and I. Ray.

“UML2Alloy: A Challenging Model Transformation”. In
Proceedings of MoDELS’07, 2007.

[2] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and M.
Sabetzadeh. “A Manifesto for Model Merging”. In Proceedings of
Wkshp. on Global Integrated Model Mgmt. (GAMMA’06), 2006.

[3] F. Fleurey, B. Baudry, R. France and S. Ghosh. “A Generic
Approach for Automatic Model Composition”. In Proceedings of
11th Int’l Workshop on Aspect-Oriented Modeling
(AOM@MoDELS’07), 2007.

[4] F. Fleurey, R. Reddy, R. France, B. Baudry and S.Ghosh.
“Kompose: a Generic Model Composition Tool”.
http://www.kermeta.org/kompose/

[5] D. Jackson. Software Abstractions: Logic, Language, and Analysis.
MIT Press. Cambridge, MA. March 2006.

[6] D. S. Kolovos, R. F. Paige and F. A.C. Polack. “Merging Models
with the Epsilon Merging Language (EML)”. In Proceedings of
MoDELS’06, volume 4199 of LNCS, pp. 215-229, 2006.

[7] D. Mandelin, D. Kimelman, and D. Yellin. “A Bayesian Approach
to Diagram Matching with Application to Architectural Models”.
In Proceedings of ICSE’06, pp. 222–231, 2006.

[8] A. Mehra, J. Grundy, and J. Hosking. “A Generic Approach to
Supporting Diagram Differencing and Merging for Collaborative
Design”. In Proceedings of ASE’05, pp. 204–213, 2005.

(a)

(b)

Figure 9. Generated model compositions.
[9] S. Melnik. Generic Model Management: Concepts And

Algorithms. Volume 2967 of LNCS. Springer, 2004.

[10] S. Nejati, M. Sabetzadeh, M.Chechik, S. Easterbrook and P. Zave.
“Matching and Merging of Statechart Specifications”. In
Proceedings of ICSE’07, pp. 54-64, 2007.

[11] M. Sabetzadeh and S. Easterbrook. “View Merging in the Presence
of Incompleteness and Inconsistency”. Requirements Engineering
Journal, 11(3), pp. 174-193 2006.

[12] M. Sabetzadeh, S. Nejati, S. Easterbrook, and M. Chechik. “A
Relationship-Driven Approach to ModelMerging”. In Proceedings
of MiSE'07, May 2007.

[13] M. Sabetzadeh, S. Nejati, S. Liaskos, S. Easterbrook, and M.
Chechik. “Consistency Checking of Conceptual Models via Model
Merging”. In Proceedings of RE'07, 2007.

[14] S. Uchitel and M. Chechik. “Merging Partial Behavioural Models”.
In Proceedings of SIGSOFT FSE’04, pp. 43–52, 2004.

[15] Unified Modelling Language (UML).
http://www.omg.org/technology/documents/formal/uml.hml

