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ABSTRACT 
Model-based development involves construction, integration, 
and maintenance of complex models. One of the key problems in 
model-based development is composing a set of distributed 
models into a single seamless model. In this paper we propose a 
declarative approach for model composition, which augments 
and strengthens existing structural and heuristic approaches. In 
our approach, the desired model compositions are constrained 
by a set of declarative properties, which drive the merge 
process. Only model compositions that satisfy the specified 
properties and, possibly, additional model composition 
restrictions are automatically generated and presented to the 
model analyst for a review and further modifications. Since our 
framework is iterative, properties and restrictions can be 
reviewed and refined as well. We illustrate our ideas by defining 
a proof-of-concept prototype implementation of the declarative 
model composition framework using the Alloy Analyzer. 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design tools and techniques. 

General Terms 
Design. 

Keywords 
Merging, matching, properties, Alloy. 

1. INTRODUCTION 
Due to the increased complexity of software development 
processes, models take a central role in today’s development 
environments. When dealing with complex systems, it is 
impractical to describe the whole system by a single model. 
Instead, analyzing and modelling a software system with 
separate views is a good practice to deal with complexity and 
maintainability. This, however, leads to the need to combine the 
developed views into a single, consistent and coherent model. 
Automatic model composition still remains one of the key 
problems in today’s model-based development.  

Model composition consists of two fundamental phases – model 
matching and model merging �[1]. In the model matching phase 
(also sometimes called model comparison) correspondences 
between similar elements of the source models are identified, 
e.g., an Employee in one model can correspond to a Worker in 
another. The merging phase uses these correspondences to 
produce a unified version of the model, e.g., the one that 
includes People in organization, whether they are called 
Workers in one model or Employees in another.  

Several approaches to model matching have been proposed, 
ranging from manual to fully automatic algorithms for detecting 
correspondences [3,7,8,9,11]. Most existing approaches to 

(semi)-automatic model matching and merging focus on 
structural similarities between the models. For example, 
matching and merging of conceptual database schemata are 
studied in �[9]; a general framework for merging visual design 
diagrams is proposed in �[8]; a generic framework for merging 
EMOF-based models is presented in �[3]; an algebraic approach 
for merging requirements views is described in �[11]; finally, a 
technique for matching architecture diagrams using machine 
learning is provided in �[7]. In general, these approaches treat 
models as graphical artefacts while largely ignoring their 
semantics.  

Some recent work on behavioural models has concentrated on 
establishing semantic relationships between models. For 
example, �[14] proposes the use of refinement relations for 
merging consistent state-machine models such that their 
behavioural properties are preserved. An approach to matching 
and merging hierarchical Statechart models using heuristics for 
finding terminological, structural, and semantic similarities 
between models is presented in �[10].  

All the above techniques to (semi)-automatic model composition 
use a set of predefined structural or heuristic procedures to drive 
the match and the merge algorithms. The implementation of 
these procedures is further supported by several rule-based 
languages and frameworks for model compositions, such as the 
Epsilon Merging Language �[6] or Kompose �[4]. However, all 
these approaches lack a declarative semantic definition of what 
the desired model compositions should be. Without a 
semantically-based declarative definition of such a result, one 
cannot be sure that the merge algorithm computes exactly what 
one needs. For example, when merging two business processes 
due to an acquisition of one company by another, the resulting 
merge can satisfy a variety of objectives: maintain a fixed 
number of parties with which the process converses, or maybe 
maintain the overall process size, or maybe maintain a specific 
order of activities.   

In this paper, we propose to augment the existing structural and 
heuristic match procedures by a new declarative procedure for 
model matching and merging. It allows the analyst to specify the 
properties of the desired model composition, such as “the 
activities of the merged process must be in the same order as of 
the original processes“, and uses these properties during the 
model composition process to produce proper results.  

We also propose an iterative framework for property-based 
construction of model compositions. In this framework, given 
two source models (we also refer to them as input models), the 
analyst can specify a set of the declarative properties mentioned 
above. The analyst can also provide additional restrictions by 
specifying a set of known match relationships between elements 
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of source models, if such information is available, or employ an 
existing match detection algorithm for identifying such 
relationships. Our framework uses all this information to 
construct a set of possible merges. These merges are then 
presented to the analyst for the evaluation and refinement. 
Properties and match relationships can be refined as well, which 
drives the next iteration of the model composition process. 

To validate our ideas, we instantiated this framework using the 
Alloy Analyzer �[5] – a software tool which can be used to 
analyze specifications written in the Alloy language. The 
Analyzer can generate instances of model invariants; simulate 
the execution of operations defined as part of the model; and 
check user-specified properties of a model. In the paper, we 
describe our proof-of-concept prototype implementation and 
comment on our experience. 

The rest of the paper is organized as follows. In Section �2, we 
present the working example used throughout the paper. Section 
�3 describes the generic property-driven model composition 
framework. In Section �4, we discuss a prototype implementation 
of the proposed framework using the Alloy Analyzer and 
demonstrate our prototype on the working example. Section �5 
concludes the paper and presents directions for future work. 

2. MOTIVATING EXAMPLE 
Figure 1 presents two models depicting relations between 
entities in an organization. Both models are represented in the 
UML2 notation �[15], with the organizational entities represented 
by UML2 classes. Model A (Figure 1(a)) includes a set of 
Employees, each of whom works for a Company (composite 
association), and one Director who also works for a Company 
(composite association). Director is a type of Employee 
(generalization relationship). Model B (Figure 1(b)) includes a 
set of Employees, each of whom can work for one or more 
Department (shared association). Each Department has a 
Manager (composite association).  Manager is a type of 
Employee (generalization relationship).  

These input models capture individual views of two different 
stakeholders on the organizational structure. The goal of the 
merge is consolidate these views to get a unified and consistent 
perspective. There are several different alternatives for the 
consolidation.  Even if we assume that the Employee class of 
model A matches the Employee class of model B (using the 
name-based correspondence), there are seven merges possible, 
as presented in Figure 2. For example, Figure 2(a) presents a 
merge in which, in addition to the Employee classes that are 
combined, the Director class from model A is combined with the 
Manager class of model B, and the Company class of model A is 
combined with the Department class of model B. Figure 2(b) 
presents the case in which only the Employee classes are 
combined. 

Intuitively, matches in parts (a) – (d) of Figure 2 are reasonable, 
whereas the remaining ones are not: Manager is matched with 
Company, or Department is matched with Director. However, 
since the semantics of the model composition is domain-specific 
and depends on the system being modelled, there cannot be an 
automatic way to decide, without any additional knowledge, 
which of the above seven compositions represents the option 
most preferred by the analyst. 

 

(a) Model A 

 

 

(b) Model B 

Figure 1. Input models. 

The goal of our work is to assist the analyst in the construction 
of the desired model compositions based on semantic 
restrictions that describe them. Once the desired model 
compositions are characterized by a set of declarative properties, 
our framework uses these properties and constructs only the 
compositions that satisfy them.  

Declarative model properties can be used for a variety of 
purposes: some properties are structural and ensure well-
formedness of the model compositions; others are specific to the 
domain being modelled, or even to the concrete application in 
that domain; others ensure the correctness of the behavioural 
semantics of the composed model, and so forth. 

 In general, we differentiate between two types of properties: 
meta-model level and model level. Properties specific to all 
models in a certain domain are usually defined on a meta-model 
level. In the example on Figure 1, some of these are:  

   P1. A class cannot be owned by more than one other class 
(ownership is defined with respect to the composite association 
relationship);    

   P2. A class cannot contain an element that it specializes 
(containment is defined with respect to the composite or shared 
association relationship);    

   P3.  Cyclic generalizations are not allowed; 

   P4.  Cyclic ownerships are not allowed. 

Properties specific to a concrete system being modelled are 
defined on a model level, e.g.,  

   P5. Each Employee can work for more than one Department; 
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Figure 2. Possible model compositions. 
   P6. Each Department has one and only one Manager; 

   P7.  Each Company has one and only one Director. 

In addition, some properties are intended, while others are 
accidental. The former describe features which were 
deliberately introduced into the model. Properties P1-P7 are in 
this category. Intended properties are useful for automatic 
finding of matches. On the other hand, accidental properties, for 
example, the property  

      P8.  Each model has exactly three classes. 

are just side-effects of various design choices and should not 
necessarily be preserved by the composed model. 

While in principle it might be possible to detect an exhaustive 
list of all properties of the input models, there is no automatic 
way to distinguish between intended and accidental properties. 
Therefore, in this work, we assume that the analyst explicitly 
specifies the list of intended properties that are to be preserved 
by the composition.   

3. PROPERTY-DRIVEN FRAMEWORK 
FOR MODEL COMPOSITION 
This section describes the property-driven framework and the 
process of the property-driven model composition, depicted in 
Figure 3.  

The model composition engine takes input from both the analyst 
and a central meta-data repository which stores predefined meta-
information about model compositions. The information 
includes the supported merge operation types, such as a “union” 
merge that produces models containing all elements of both 
input models; a predefined set of supported modelling domains   
– either general purpose, like UML, or domain-specific, like 
business processes or IP telephony services; and, if available, 
sets of domain-specific properties for each of the stored 
domains. The information can be added to the repository for 
each new merge type, new modelling domain or a family of 
applications in a domain. We assume that the analyst has partial 
knowledge about the models being composed.  Given two 
source models, the analyst might be able to specify a set of 
positive and negative match relationships between elements of 
the input models – relationships between elements that should 
be combined into one in the model composition and elements 
that should not be combined, respectively. Such relationships 
can be defined by the use of structural of heuristic match 
detection algorithms, such as in �[3] or �[10], or done by hand, or 
skipped altogether. 

In the example on Figure 1, the Employee class of model A has a 
positive match relationship to the Employee class of model B, 
which can be established by a simple name-based 
correspondence detection. The Department and the Director 
classes have a negative match relationship.  
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Figure 3. Property-driven model composition process.  

Next, the analyst defines a set of semantic properties that 
describe the desired model composition. Using these properties 
and an optional set of positive and negative match relationships, 
our framework constructs the set of match relationships between 
all elements of the input models and computes a merge by 
applying an appropriate merge algorithm.  

Since creation of the complete list of desired composition 
properties is a non-trivial task, the model composition process is 
iterative. At the end of each iteration, possible merges are 
presented to the analyst for further examination, which may lead 
to the discovery of new properties and match relationships, or 
the invalidation of some of the existing ones. The analyst may 
then want to start a new iteration by revising the properties and 
executing the subsequent activities.  

In our example, assume that the analyst identifies the Employee 
class of model A and the Employee class of model B in Figure 1 
as a positive match. For this model composition configuration, 
which we refer to as MCC1, the system produces all possible 
model compositions shown in Figure 2. Further, the analyst adds 
property P2 defined in Section �2 as an additional constraint on 
the merge (we refer to the obtained configuration as MCC2). 
The system automatically produces all possible model 
compositions corresponding to the cases (a) – (d) in Figure 2. 
Model compositions (e), (f) and (g) are eliminated because each 
of them violates the defined property P2: case (e) is eliminated 
because the Manager/Company class contains the Employee 
class; case (f) – because the Department/Director class contains 
the Employee class, case (g) –  because of both of these reasons. 
If the analyst had used the property P1 to constrain the 
composition (we refer to this configuration as MCC3), cases (b), 
(d), (e), (f) and (g) would have been eliminated, leaving only 
cases (a) and (c) to be presented to the analyst. Finally, if, 
instead of properties P1 or P2, the analyst had defined a negative 
match relationship between the Manager and the Company 
classes, and between the Department and the Director classes 
(we refer to this configuration as MCC4), cases (e), (f) and (g) 
would have been eliminated as well, leaving only cases (a) – (d) 
to be presented to the analyst. 

It is essential for a model composition framework to provide 
traceability between the merged model elements and their 
sources. To keep track of the origins of the elements in a merge, 
our framework should store proper traceability links in the 

merged model elements. For example, the Department/Company 
class in Figure 2(a) should be able to trace back to the Company 
class of model A and to the Department class of model B in 
Figure 1.  

We also suggest capturing positive and negative feedback 
provided by the analyst at the end of each model composition 
iteration, while she examines the results suggested by the 
system. A simple form of such feedback could be a set of 
positive and negative match relationships inferred by observing 
the presented results. The captured information can be used by 
the framework in subsequent iterations. 

Finally, to provide our framework with an additional flexibility, 
we suggest to also present to the analyst the results that do not 
satisfy all the defined properties, but are “close enough”. The 
analyst can then inspect these results and create a desired model 
composition by applying simple manual modifications on the 
compositions created automatically. Towards this end, we 
suggest assigning weights to the properties of the model 
compositions and defining some threshold on the summary 
weight of the properties satisfied by the resulting model 
composition. Only those compositions that pass the threshold 
are presented to the analyst. Of course, the threshold can always 
be set high enough, so that any result that does not satisfy all the 
defined properties will be eliminated. 

4. PROPERTY-BASED COMPOSITION 
PROTOTYPE USING ALLOY 
In order to demonstrate the viability of the ideas presented in 
Section �3, we implemented a proof-of-concept prototype of the 
declarative model composition framework using the Alloy 
Analyzer �[5]. Alloy Analyzer is a tool developed for analyzing 
models written in the Alloy language – a structural modelling 
language based on first-order logic. The tool can generate 
instances of invariants, simulate the execution of operations, and 
check user-specified properties of a model.  

Figure 4 presents an overview of our prototype, as an instance of 
the generic model composition framework in Figure 3. Several 
translators are used to express various input artefacts in the 
Alloy language. Translate1 specifies an input meta-model in 
Alloy. This meta-model is then used by Translate2 and 
Translate6 to create a meta-model of possible input 
compositions (merge meta-model) and to encode the input 
models. The merge meta-model is used by Translate4, 
Translate3 and Translate5 to specify a set of positive and 
negative match relationships, and a set of domain-specific and 
model-specific composition properties. Currently all of the 
above translations are done manually, but they could be 
automated in the future.  

Next, we use the Alloy Analyzer to automatically produce the 
described model compositions. The results generated by the 
Alloy Analyzer are processed and presented back to the analyst.   

The following sections describe these steps in more details and 
illustrate them on a working example. 

4.1 Defining Input 
Figure 5 presents a simple meta-model for class diagrams in 
Figure 1, defined in Alloy. It defines an Element, which has two 
sets of properties – those that are associated with it using 
composite associations and using shared associations.  An  
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Figure 4. Model composition process in Alloy. 

Element can specialize at most one other element.  In this meta-
model, multiple specializations are not allowed. In addition, the 
meta-model defines two generic elements – LeftElement and 
RightElenent, which are used as a base for all elements of the 
first and the second input model, respectively. Both LeftElement 
and RightElement extend the generic Element type. 

The meta-model in Figure 5 does not represent the complete 
UML2 class diagram meta-model, but it is expressive enough to 
illustrate our ideas. In the future, we plan to explore using and 
extending the UML2Alloy project �[1] to define and process 
general UML2 models. 

Now we can encode input models in Figure 1 as instances of the 
above defined meta-model. Figure 6 presents two fragments 
taken from the definition of the input model in Figure 1(a).1 The 
fragment in Figure 6(a) defines input model classes Employee,  
Company and Director. Further, it defines the internals of each 
input model class via an instantiation of the meta-model 
Element. The Company class, for example, does not specialize 
any other input model classes, and thus does not have any 
generalization relations. It does not have any shared association 
relations either. It does have a composite association relation to 
a set of Employees and a composite association relation to 
exactly one Director. 

This fragment specifies the multiplicity of only one end of 
association relations. For example, it says that Company has 
exactly one Director. We use an additional Alloy fact to capture 
the multiplicity of the other relation’s end. The fragment shown 
in Figure 6(b) further specifies the model and states that each 
Director works for exactly one Company. 

4.2 Defining Merge Meta-Model 
Using the input meta-model, we construct the meta-model of 
possible input compositions. Figure 7 presents a fragment of the 
composition model, each element of which is essentially a  
 
                                                                 
1 The complete definition is available at 

http://www.cs.toronto.edu/~mjulia/DMCinAlloy/ 

 

 

Figure 5. Expressing a simple class meta-model. 

 

(a) Input model classes 

 

(b) Multiplicity definition 

Figure 6. Definition of an input model. 

merge of two matching input model elements. A composition 
model element traces to a LeftElement and a RightElement 
which it combines – elements of the first and the second input 
models, respectively. We also allow the composition model to 
contain elements that do not have correspondences in the other 
model, but rather represent elements of only one of the input 
models. This is supported via composing left or right elements 
with None. In addition, the first fact in Figure 7 states that each 
element of an input model should be represented in the 
composition model; thus, the composition model is a “union” of 
two input models. The second fact states that all relationships 
between CombinedElements are "unions” of the corresponding 
relationships between the original elements. 

At this stage, if we ask the Alloy Analyzer to produce instances 
of the meta-model we just defined, we get arbitrary merges 
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which match any element of the first input model with any 
element of the second. So, the next step is to specify restrictions 
on the model compositions.  

4.3 Restricting Model Compositions 
Restricting the model composition using the specified merge 
meta-model is quite straightforward. Figure 8(a) and Figure 
8(b), for example, specify in Alloy the model composition 
configuration MCC2, defined in Section �3. The former defines a 
positive match relationship between the Employee classes of 
models A and B. The later presents a definition of a declarative 
property P2 from Section �2. Figure 8(c) specifies two negative 
match relationships (between the Manager and the Company 
classes, and between the Department and the Director classes). 
This, together with the positive match relationship shown in 
Figure 8(a), represents the model composition configuration 
MCC4 from Section �3. 

4.4 Analyzing the Results 
We ran the Alloy Analyzer on various model composition 
configurations and analyzed the obtained results. Alloy model 
which corresponds to the MCC2 configuration produces four 
non-equivalent model composition instances. As expected, all 
composition instances satisfy the defined properties and 
correspond to one of the possible model compositions in Figure 
2– either one of the cases (a) – (d). 

An example of a produced composition instance is shown in 
Figure 9(a). Each CombinedElement traces to the input model 
elements which it represents: CombinedElement1 represents the 
Company class; CombinedElement3 represents the Department 
class; CombinedElement2 represents the Manager/Director 
class; CombinedElement0 and CombinedElement2 both 
represent the Employee class.  

Figure 9(b) shows the same composition model instance in 
which we filtered out the input model elements and augmented 
CombinedElements with the names of the source elements they 
represent. This composition instance corresponds to the model 
composition in Figure 2(d). Multiplicity of association ends is 
also preserved by the generated instance model, and can be 
obtained by querying it. However, the process of deducing the 
composition model from its instance, produced by Alloy, is 
currently done manually. Automating it is our next step.  

Model composition configuration MCC4, similarly to MCC2, 
produces four non-equivalent configurations, corresponding to 
cases (a) – (d) in Figure 2 as well.  MCC1 produces all cases in 
Figure 2, as expected. 

The performance of the Alloy Analyzer is tightly coupled with 
the specified number of model element instances. For example, 
for the MCC2 configuration, we restricted the scope of the Alloy 
Analyzer model to exactly one Company and one Department, 
exactly three Employees from the first input model and three 
Employees of the second input model. A simple calculation 
shows that the minimal total number of elements required to 
accommodate all possible model compositions is 18. Generation 
of results then took around 4 seconds on a 1.59GHz, 2.00GB of 
RAM machine.  The same configuration with the total number 
of up to 30 model elements took Alloy around 35 seconds. A 
configuration with exactly two Companies, two Departments, 
exactly six Employees in each model and a total number of up to 
36 model elements took Alloy around 56 seconds. 

 

Figure 7. Merge meta-model. 

 

(a) Positive match 

 

(b) Declarative property 

 

(c) Negative match 

Figure 8. Composition model restrictions. 

5. DISCUSSION AND FUTURE WORK 
In this paper, we sketched a property-based model composition 
framework. The input to our framework consists of two models 
being merged, a set of positive and negative matches between 
input model elements, and a set of declarative properties that 
constrain and drive model compositions. The output is an 
automatically generated set of possible model compositions, 
each of which satisfies the properties and restrictions defined by 
the analyst. These model compositions can be reviewed and 
further modified by the analyst. Properties and restrictions can 
be reviewed and refined as well. We have also presented a 
prototype implementation developed using Alloy. 
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The composition approach described in this paper currently 
handles only homogeneous models, those that share the same 
meta-model. It would be interesting to extend this approach to 
handle heterogeneous input models as well. Also, we are 
currently dealing only with one-to-one match relationships 
between input model elements. We plan to investigate the 
extension of our approach for handling many-to-many match 
relationships. We also plan to extend our framework to provide 
a better support for the iterative match and merge process, and 
captures positive and negative results of previous iterations. 

An additional issue that we would like to investigate involves 
providing the analyst with an ability to explicitly specify how 
elements of different input models relate to each other. In our 
example, the analyst could define a containment relation 
between the Company class of one input model and the 
Department class of the other. This relation could restrict a set 
of possible matches and produce results that are closer to the 
analyst’s intention.  

Our current Alloy implementation also has several limitations. 
First, we still need to automate deduction of the composition 
model from the generated composition instance. We also need to 
refine and extend the process of converting input models into 
Alloy. We plan to evaluate using UML2Alloy for that purpose.  

In addition, it is not clear yet how to define the minimal 
sufficient scope required for the Alloy Analyzer to find all the 
desired results. Since the Alloy Analyzer performs model-
finding over a finite, user-defined scope (i.e., the number of 
instances which Alloy manipulates), it is incomplete by design, 
meaning that it can miss results that are out of the defined scope. 
Automatic deduction of the minimal required scope is still a 
research challenge.  

We also want to look beyond Alloy as an implementation engine 
for our property-based composition framework.  
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