Towards an Integrated System Model
for Testing and Verification of Automation Machines:

Benjamin Hummel
hummelb@in.tum.de

Peter Braun
braunpe@in.tum.de

Institut fir Informatik, Technische Universitat Miinchen, Garching b. Minchen, Germany

ABSTRACT

Models and documents created during the development of
automation machines typically can be categorized into me-
chanics, electronics, and software. The functionality of an
automation machine is, however, realized by the interaction
of all three of these domains. So no single model covering
only one development category will be able to describe the
behavior of the machine thoroughly. For early planning of
machine design, virtual prototypes, and especially for the
formal verification of requirements an integrated functional
model of the machine is required. This paper introduces a
technique which can be used to model automation machines
on an abstract level, including coarse-grained descriptions
of mechanics, electronics and software aspects with special
focus on modeling domain-specific issues such as material
flow and collision response. The resulting models are de-
tailed enough to be simulated or verified but still suitably
abstract to allow fast creation and efficient simulation.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Specifications— Languages;
J.7 [Computers in other Systems|: Industrial control

General Terms
DESIGN, LANGUAGES

Keywords

Modeling, Automation Engineering

1. INTRODUCTION

An important step during the development of any system
is to check whether the system built actually adheres to its
requirements. This check can either be performed by verifi-
cation techniques, which are basically (machine supported)

*Parts of this work are the result of a research cooperation
with Siemens CT and Siemens A&D.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MiSE’08, May 10-11, 2008, Leipzig, Germany.

Copyright 2008 ACM 978-1-60558-025-8/08/05 ...$5.00.

proofs of certain properties of an abstract model of a sys-
tem, or by testing, which checks the properties only for a
finite set of inputs, and consequently can only show errors
of a system but never its correctness.

When looking at automation machines, e. g., for brick pro-
duction, a system consists not only of software, but also of
mechanical parts, sensors, and actors (to which we refer as
hardware here). Thus it is usually not sufficient to test the
software and hardware in isolation, but especially their in-
teraction has to be taken into consideration. For example an
object passing a sensor might trigger some software routine,
whose decisions cause some actor to influence the mentioned
object in some way.

Traditionally such machines could only be tested after as-
sembly when both the hardware and software have been
completed. This causes several problems, as any defects
found after assembly usually require more effort to be fixed,
potentially dangerous or destructive tests even might not be
performed at all due to the high cost of the machine, and
the testing process is hard to automate or parallelize. Dur-
ing the last decade several approaches have been proposed,
which include running real software (i. e., final code on the
actual controller) using a simulated machine (also known
as virtual commissioning), or simulating both software and
hardware' [1, 14]. However all of those approaches usually
treat the software and hardware separately, which is to some
part imposed by the development processes and tools in the
area of automation engineering which still separate mechan-
ical, electrical, and software design very strictly.

1.1 Problem Statement

We strongly believe that for understanding and reasoning
about automation machines, a single integrated model cov-
ering all of the mechanical, electrical, and software aspects is
needed, as only the connection of hardware and software be-
havior describes the functionality of the machine adequately.
This is in consensus with Jackson [10], who argues that re-
quirements usually capture not the behavior of the software
itself but the effect of the software to its environment. In this
paper we are trying to shift the boundary of our models to
include more of the software’s environment, which happens
to be the machine’s hardware.

We especially concentrate on the early planning phase of
automation machines, where we have to deal with coarse-
grained models of mechanical, electrical and software as-

!The combination of real hardware using simulated software
seems not to be actually used. A reason might be that such a
setup does not make potentially destructive tests more safe.

pects, as we think that early integration of these aspects
will help to get a single-minded development process. Fur-
thermore, such an abstract model could be used for testing
(which includes simulation), generating test-cases, or even
performing formal verification. As visualization and simula-
tion of the machine including material flow and collisions
is of central concern, dynamical and geometrical aspects
should be captured by the abstract model.

To the best of our knowledge no modeling technique sup-
porting the integrated modeling of software and hardware
in a way suitable to formally analyze automation machines
exists. Thus our goal is the development of such a tech-
nique. Obviously this would not be an entirely new lan-
guage, but rather a combination of several established for-
malisms, which is then forged to the domain of automation
machines. Typically most of the information captured by
the integrated model is already available distributed over
various models and documents. Our model is used to gather
those parts describing the machine’s behavior and its in-
teraction. This paper documents the current status of our
proposal of such a modeling language.

1.2 Outline

The next section introduces the domain of automation
machines (more specifically production machines), followed
by a list of requirements resulting from the the domain’s
specifics. Section 3 introduces our system model, succeeded
by some examples in Section 4. Finally we discuss the rela-
tionship of related work to our approach (Sec. 5) and con-
clude by future work (Sec. 6). For further details and figures
we refer to the extended version of this paper [2].

2. DOMAIN ANALYSIS

When proposing a new modeling technique one should al-
ways justify, why none of the existing techniques could be
used and yet another language had to be designed. To do
this, we will first give an overview of the domain of au-
tomation machines we are treating here, followed by specific
requirements for a modeling technique arising from it. A
discussion of related modeling techniques as well as the dif-
ferences to our approach will be postponed to Section 5.

2.1 Production Machines

While the overall scope of our work are automation ma-
chines, we focus on production machinery here, as all ma-
chines examined during the development of the modeling
technique were from this class. Production machines per-
form multiple transformation steps on a physical product,
thus the focus is on transportation and grouping of mate-
rial, dealing with congestion, and avoiding collisions between
multiple parts of the machine. While other sub-domains,
such as machine tools or process technology, are not treated
here, we expect to only need minor adjustments to our tech-
nique to support them.

The main aspect of production machines is a strong focus
on material and material flow, i. e., movement and modifi-
cation of material (products). Another characteristic is the
commonness of collisions between objects. While some colli-
sions are not desired, e. g., between robotic arms, many func-
tions of the machine depend on them. Examples are delaying
moving material on a conveyor with a stopper, queuing up
material, or starting actions as material passes a photoelec-
tric barrier (collision between object and light ray).

2.2 Model’s Requirements

Based on the specifics of production machines and the ap-
plications we have in mind, we assembled an informal list of
requirements for a suitable modeling technique. This sec-
tion includes only requirements, which are specific for the
domain of automation machines. Other requirements which
are quite common for modeling techniques describing reac-
tive systems are not listed. We are not yet sure whether
continuous time or a fully hybrid model, which allows com-
ponents to exchange time continuous functions, are required
to formulate useful abstractions of the machine, thus we ex-
cluded these from our list of requirements, until further case
studies provide clarity.

Explicit Modeling of Material. Material should be sup-
ported as a first class entity with position and state to ease
the visualization and tracing of the material flow. KEspe-
cially the exchange of material between components should
not be “simulated” using just status signals, as this makes
the model hard to comprehend for domain experts.

Implicit Collision Detection, Explicit Collision Han-
dling. Detecting collisions of arbitrarily shaped and ori-
ented objects in three dimensional space is not an easy prob-
lem. As such it should not be the responsibility of the user
to explicitly model collision detection, but rather the execu-
tion environment of the model should deal with it. Contrary
the reaction to a collision, especially whether it is allowed
or understood as harmful, has to be modeled explicitly, as
often only the domain experts can decide whether a collision
is expected. Furthermore this makes collisions implicitly re-
alizing parts of the functionality more visible.

Geometric Data. To make the detection of collisions pos-
sible, the components and material should have geometric
information attached. As the model is an abstract view of
the machine, coarse geometry should be sufficient for most
purposes. This geometric information can help visualizing
the model, which is a key requirement for making the model
understandable to non-experts.

3. THE SYSTEM MODEL

This section introduces the modeling elements used and
the intuitive meaning of them as far as possible. The sys-
tem model has been heavily influenced by Focus [4] and
its tool implementation AutoFocus [3]. Some examples are
provided in Section 4.

We include explicit error states in our model which we
call error conditions. One goal of testing or verification is
to show that these conditions never occur. Two typical sit-
uations for errors are inconsistent material flow or collisions
that were not anticipated and specified by the modeler.

3.1 High Level View of the Model

The main elements of our model are quite similar to those
of other component-based descriptions, but the difference to
other modeling techniques will become obvious in the fol-
lowing sections. A machine is a component, whose syntactic
interface is described using ports, i. e., points on which in-
formation (in the broadest sense) is exchanged with the en-
vironment. This exchange is made explicit using channels,
linking an input to an output port. Ports and channels have
a type, defining the kind of information dealt with. Only
ports of compatible types may be connected.

<<enumeration>> Component
SolidType
+SOLID
+VIRTUAL
+LOGICAL PhysicalComponent

+shape: Geometry
+position: Position
+orientation: Orientation
+type: SolidType

+axis: MotionAxis

ComputationalComponent

+explicit: Boolean

Figure 1: The different component types

A component can be specified either by composition or by
primitive specification. Composition means, that the com-
ponent is described by other components and their interplay,
which leads to a hierarchical decomposition of the entire
machine. The specified component then acts as a wrapper
around its inner components, which in turn connect to the
ports of the surrounding component. If a component is not
split into further subcomponents, it has to be specified di-
rectly. We suggest the usage of hybrid automata, although
other techniques could be used in conjunction (e.g., table
based descriptions).

3.2 Component Types

For making the purpose of a component more explicit,
we distinguish between computational and physical compo-
nents as shown in Figure 1. Computational components are
used for describing purely logical aspects of a machine, such
as computations and decisions implemented in code or con-
trollers (which might be part of the hardware in the real
machine). Subcomponents of a computational component
also have to be computational.

Physical components represent those parts of the machine
residing in the physical world, i. e., having position, orien-
tation, and shape. They may contain further physical and
computational components, which allows us to keep parts of
the machine and the corresponding controller code together.

For the physical components there are three sub-types.
One are solid components, which means that the space de-
scribed by the component can not be penetrated by other
solid objects. These are used for modeling actuators or
structural mechanics. Next are virtual physical components,
which are not solid geometry but rather penetrable regions.
They are used for modeling light beams of sensors, or ranges
of RFID scanners. Finally there are logical components,
used for grouping other physical components.

3.3 Interface Description

As already stated, the syntactic interface of components
is specified using ports. Ports are labeled with a type and
can be connected using channels. Only ports of compati-
ble types may be connected. To enforce encapsulation, only
ports of components within the same scope (i. e., either be-
ing all top-level components or being subcomponents of the
same component) may be connected. The ports of a compo-
nent are available as inner ports to its subcomponents with
changed orientation, ¢. e., input ports becoming output ports
and vice versa, and act as a repeater for the signals or ma-
terial exchanged, i. e., have syntactical meaning only.

Similar to the components we differentiate between several
kinds of ports (Figure 2). Signal ports are used for exchang-
ing logical signals, modeling asynchronous function calls or

Port

+direction: InOut

S &

SignalPort MaterialPort

+type: SignalType +type: MaterialType

l TransportationPort l l CollisionPort l
[| [|
[] []

Figure 2: The different port types

bus communication. For signal ports each output port may
be connected to any number of input ports, as data can be
easily duplicated. However each input port may only have
one source output port, making merging of signals explicit.
The type of a signal port is described using classical type
systems (e. g., algebraic specifications [5]).

The remaining ports deal with material and may only be
used for physical components. As a type for those ports
the kind of material exchanged is given, where material is
currently only specified by its shape and some visualization
properties (such as color). On the long term however ex-
tensions for material state are planned. The material ports
are further divided into transportation ports and collision
ports. Transportation ports describe the actual flow of mate-
rial, 7. e., material is passed between components along these
ports. As material can not be duplicated, an output trans-
portation port may only be connected to one input port.
However (dual to the signal ports) the input ports may be
connected to any number of output ports, as material has a
position and thus merging of multiple objects is straightfor-
ward. Collision ports are used for describing which collisions
are allowed (Section 3.7). There are no restrictions on the
number of connections for collision ports.

3.4 Functional Description using
Communicating Hybrid Automata

To describe the behavioral aspects of a primitive com-
ponent, hybrid automata which use the signal ports of the
component for communication are proposed. The automa-
ton model used is influenced mostly by the one used in Auto-
Focus [3] and extended using ideas from [8]. An overview
diagram and details are given in [2].

The main difference over the automata used in Auto-
Focus is that each control state has a list of flow condi-
tions, which are first order differential equations defining the
derivatives for variables of continuous (double) type which
are applied while the automaton is in this control state. Ad-
ditionally there are some extensions described in the follow-
ing sections making them also define behavior for material
and material ports.

3.5 Geometry and Motion

To support visualization of the machine and detection
of collisions, geometric information is incorporated into the
model. A possible model which is just composed of geomet-
ric primitives is shown in Figure 3, however more complex
geometry models could be used as well, provided there are
algorithms for testing them for collisions.

All physical components have position, orientation, and
geometry. Additionally components can be augmented by
at most one motion axis describing one degree of freedom

Shape

Geometry

+position: Position
+orientation: Orientation

= LR
Cylinder

+width: Double
+length: Double
+height: Double

Sph
+height: Double LS

+radius: Double

+radius: Double

Figure 3: Simple model for describing geometry

(linear or rotational). The axis has a direction of motion
(or rotation) and associated minimal and maximal values.
The current position along this axis is made available to the
hybrid automaton of the component, which can then assign
new values to it or set its derivative in the flow conditions.

For modeling more complicated movements, a motion hi-
erarchy is used. The motion hierarchy describes for each
physical component its motion predecessor (if one exists).
A component always follows the movements of its motion
predecessor. This way joints with more than one degree of
freedom can be modeled. The motion hierarchy is modeled
explicitly for all physical components within one component
by giving for each one its motion predecessor. For compo-
nents without an explicit motion predecessor, their owning
component is the motion predecessor.

As described before, the motion of a component affects
both the component itself and its children in the motion
hierarchy. For some components (e. g., conveyor belts) we
want the movement to only affect children (and material as
described in the next section) but not the component itself.
We call such components static. Static components can still
be moved by their motion predecessors.

3.6 Dealing with Material

So far we described how components are modeled, but
mentioned material only in the context of material types for
ports. This is because the instances of material (which we
call material objects) are specified indirectly by the model
and its behavior and are only used during the execution
of the model. This is similar to “normal” types, where we
annotate ports with types while the actual values (instances
of a type) are seen during simulation only. As material is
central to our models and (contrary to typed signals) its
usage has not been described in the literature before, we
will detail its usage and handling in this section.

Material objects are instances of a material type and are
physical objects, that is they have position and orientation.
The geometry is given by the material type. Each material
object is managed by exactly one physical component, which
we call its owner and which controls the life cycle of material
objects controlled by it. There are new and delete opera-
tions, which are used for creating material or deleting owned
material in a transition of the component’s automaton. The
new operation takes the material type created and initial po-
sition and orientation relative to the position of the creating
component. The delete operation gets the set of components
to delete as a parameter. This set is defined using predicates
evaluated on all owned material objects. Material can be
selected based on type, state, or location. To simplify the
definition of location, a component defines locators, which
are geometric objects positioned relative to the component

(4. e., following every movement). The predicates may select
material objects intersecting a given locator.

The motion of material objects is defined by their owning
component. For the physical motion they follow every move
of their owner component, unless their path is blocked. The
logical motion (4. e., the change of ownership) is supported
by the operation push, which takes a set of owned mate-
rial objects and a transportation output port. All objects
are then transfered to the target component, which becomes
the new owner. The target component is unique, as trans-
portation output ports are connected to at most one input
port. If no input port is present this is an error condition.
A component may reject new material by means of accep-
tance filters, describing which kinds of material objects are
accepted from which transportation port. These filters can
be set for each state, so for example a gripper might accept
material while it is near the ground but not while in midair.
If material is pushed to a component which does not accept
it, this also is an error condition.

3.7 Collisions and Collision Response

As stated in Section 2, collisions should be explicitly treated
by our model. The detection of collisions is the task of the
execution environment (simulator or verifier), while the re-
sponse to such collisions has to be modeled explicitly. There
are three different cases of collisions. First are collisions be-
tween two material objects, which cause a material object to
be stopped if its path of motion is blocked. Additionally the
material objects’ owners are queried whether material man-
aged by them may collide. If any of them disallows collisions
(which may depend on the current state), this is an error
condition. This way one can model parts of the machine
where collisions are allowed (e. g., queuing up material) or
disallowed as they might lead to damage or congestion.

Second are collisions between material object and physi-
cal component. If there is a channel between the material
object’s owner and the colliding component, a reference to
the colliding object is made available on the corresponding
ports, which then can be queried in the transitions of the
automata of the colliding component and the owning com-
ponent. If no such channel exists, this is an error condition,
i. e., such a collision is not allowed. Additionally the mate-
rial object is stopped, if a solid component blocks its way.

Finally for collisions between physical components the re-
sponse depends on the solidity of the components. If both
components are solid, this is an error condition. If none of
the components is solid, the collision is ignored. For colli-
sions between solid and non-solid components, the situation
is similar to the second case. The collision does not lead to
an error condition only if there is a collision channel from the
solid to the non-solid component. The type of this channel
has to be component object. The collision is then reported
on the corresponding collision port.

4. EXAMPLES

This section contains examples how various parts of an
automation machine can be modeled using our approach.
To provide these models, a concrete syntax is required. For
the automata we propose the usage of the usual ellipses con-
nected by arrows, for components we use boxes (labeled with
the type of component) and show ports by symbols on the
border of the components. The symbols we are using in
here are summarized in Figure 4. All other elements, such

O Signal input port . Signal output port

|:| Transportation input port - Transportation output port C Transition

{} Collision input port ’ Collision output port
:] Component © State

Figure 4: Symbols used for components and ports

— Channel

Photoelectric barrier: physical component [virtual]
coll: MAT: coll?x/ coll?-/
senseltrue @ senselfalse

Figure 5: Model of a photoelectric barrier

sense: BOOL

as transition conditions, are given textually. We will not
provide a concrete syntax for them, but hope that they are
understandable from the examples.

4.1 Photoelectric Barrier

A photoelectric barrier consists of a source of directed
light and a receiver unit. If something is blocking the path
between source and receiver, the receiver detects this and
sends corresponding signals. Thus this barrier is just a con-
verter from collisions (with the light beam) to signals.

A possible model is given in Figure 5. The collision input
port is of some type MAT and the signals sent are boolean
values. The geometry attached to the component (which is
not shown) resembles the area of the light beam. The light
source and the receiver are not relevant to us, and thus not
modeled. The automaton consists of a single state only. If
some material collides (is “received” at the collision input
port (coll?x)) we send true to indicate detected material,
otherwise (we use coll?- to check for no values at the port)
the value false is sent on the sense port.

4.2 Conveyor Belt

Our next example is a conveyor belt for material MAT,
shown in Figures 6 and 7. It has one signal input accepting
a value for transportation speed. In the single state of the
automaton the derivative of the motion of the component
x’ (its speed) is set to v and it is defined that all material
entering the conveyor at m_in is accepted. As we only want
the material to move and not the conveyor belt itself, the
component is marked static. The direction of motion is given
as a vector (linear axis) in the geometric description.

The first transition of the automaton pushes all material
intersecting with the locator loc_end to the next compo-
nent connected to m_out. This locator is also defined in the
geometric view and is at the end of the conveyor. The sec-
ond transition is active if a new speed value is present at
the v_in port, which is stored in v and material is pushed
forward just as in the first transition.

4.3 Grouping Unit

Finally a grouping unit is composed from the components
defined so far using a logical component. The purpose of
this unit is to preprocess a stream of material objects with
random distances between them and form a material stream
consisting of groups of n material objects with each group
separated by a gap of given length.

One solution to this problem is to use two conveyor belts
positioned next to each other, whose speed is carefully con-

Conveyor belt: physical component [solid, static]

v_in: DOUBLE .
v_in?-/ © MAT
m_in: MAT push(m_out, loc_end) m_out:
coll_in: MAT coll_out: MAT

main
m_in: accept any
X' =v

v_in?x/v:=k
var v: DOUBLE =0 push(m_out, loc_end)

locator loc_end

Figure 6: Model of a conveyor belt

M ect . . Locator loc_end
Motion axis R

[Conveyor geometry |

Figure 7: Simplified geometry of the conveyor belt

trolled to form the required groups. Basically we keep ma-
terial at the beginning of the second conveyor and halt it,
until the front most material object on the first conveyor
has the correct position. Then both conveyor belts move at
same speed until one more material object is handed over.
Position of material objects on both conveyors is located
by photoelectric barriers. A realization is shown in Fig. 8,
where conveyor belts and photoelectric barriers are the com-
ponents described before. The controller is a computational
component adjusting the speed of the conveyors based on
signals from the photoelectric barriers and commands re-
ceived via a third input port (specification omitted).

S. RELATED WORK

Our work was heavily influenced by the Focus modeling
theory [4] whose primary purpose is the description of reac-
tive systems. There also is a modeling language and a tool
based on Focus, called AutoFocus [3]. Our entire high-
level meta-model is similar to the one of AutoFocus and if
we eliminate physical components and material ports from
our model the remainder is nearly the same.

For describing the software part of the machines we also
could have used any of the well-known approaches for mod-
eling systems, such as state charts [7], I/O automata [11],
Petri nets [13], process algebras (e.g., CSP [9]), or any of
the many variants of them including hybrid extensions.

However none of the techniques listed so far has a notion
of material, geometry, or collision detection and response.

J\Grouping unit: physical component [logical]
J

Grouping controller:
computational component
[explicit]

Conveyor belt 2:
physical component
[solid, static]

Conveyor belt 1:
physical component
[solid, static]

Y v

Photoelectric barrier 1: Photoelectric barrier 2:
physical component physical component
[virtual] [virtual]

Figure 8: Model of a grouping unit

Thus they can in principle be used to describe these ma-
chines, but place a high burden on the modeler who has to
close the gap between these domain concepts and the pro-
vided (rather low level) modeling concepts.

SysML (Systems Modeling Language) [12] is a language
for modeling systems by the Object Management Group. It
is based on UML and as such shares some of its drawbacks,
such as (partially) unclear semantics and an overwhelming
multitude of modeling constructs. Additionally the objec-
tions given for all other techniques before also apply here,
as support for material flow and collisions is missing.

Simulation models used for virtual commissioning (software-

in-the-loop test with controller hardware and simulated ma-
chine) are another source for modeling techniques. Exist-
ing industrial solutions however do not couple the geome-
try tightly to the machine’s components, but only describe
reactions of a visualization model to state changes of the
machine. For example the SEMI project (Simultaneous En-
gineering for Development of Machines with Micro-systems)
[1] used ROOM and C++ for modeling the simulated ma-
chine. Consequently support for continuous changes within
the machine, material flow, or collision detection and re-
sponse had to be simulated somehow by the modeler.

Collision detection and response are one of the main ar-
eas treated by physical simulations. A common drawback
is their missing support for discrete changes, which may be
caused by collisions or logical signals. The modeling lan-
guage Modelica [15] supports both continuous flows and dis-
crete changes (hybrid modeling). For collision detection and
response an extension is proposed in [6]. What makes these
models inappropriate for our purposes is the high level of
detail required for physically exact simulation (e.g., mass,
moment of inertia, friction coefficients) which is often not
available during early planning stages. Furthermore this
makes it hard to model parts of the machine at different
levels of abstraction, as we always have to respect physics
(which we may violate in our models).

6. CONCLUSION AND FUTURE WORK

In this paper we argued in favor of an integrated system
model for describing automation machines in a manner suit-
able for simulation and reasoning about the machine (test-
ing and verification). We presented requirements for such
a modeling language and proposed a possible technique for
describing such machine models. Of course the model pre-
sented in this paper is only the first step towards a method-
ology for testing and verifying automation machines, and as
such still leaves many open questions.

A first set of questions deals with extending or refining
our system model, e.g., by including continuous channels
between components (4. e., instead of single values, functions
over time are transmitted). Before taking further steps in
this direction however, we first have to gain more experi-
ence in modeling different kinds of real machines to better
understand the limitations of our approach. This is also
a precondition for extending the language from production
machines to other sectors of automation machines, such as
machine tools or process technology, for which we especially
expect to extend the material type system, e. g., supporting
non-integral material quantities.

The other set of questions covers actual usage of the model,
for which we might need the definition of formal seman-
tics. These include test-case generation and verification of

properties, which were the driving applications for creat-
ing our model. However, there are other possible applica-
tions of such a model, starting from discussing requirements
with a customer or acting as the main point of communica-
tion during the development process, to using the model for
the analysis of possible failures or planning of maintenance
tasks. Some of these applications might require extensions
to the model, such as annotations of fault behavior and error
probability for components.

7. REFERENCES
[1] J. Albert, K. Bender, T. Holzmiiller, B. Jiinger,

O. Kaiser, W. Kriesel, O. Prinz, C. Schaich,

J. Schullerer, and J. Tomaszunas. Echtzeitsimulation
zum Test von Maschinensteuerungen. Herbert Utz
Verlag, 1999.

[2] P. Braun and B. Hummel. Towards an integrated
system model for testing and verification of
automation machines. Technical Report TUM-10802,
Technische Universitdat Miinchen, 2008.

[3] M. Broy, F. Huber, and B. Schétz. AutoFocus — Ein
Werkzeugprototyp zur Entwicklung eingebetteter
Systeme. Informatik Forschung und Entwicklung,
13(13):121-134, 1999.

[4] M. Broy and K. Stglen. Specification and Development
of Interactive Systems: Focus on Streams, Interfaces,
and Refinement. Springer, 2001.

[5] H. Ehrig and B. Mahr. Fundamentals of Algebraic
Specification 1: Equations and Initial Semantics,
volume 6 of Monographs in Theoretical Computer
Science. Springer, 1985.

[6] V. Engelson. Tools for Design, Interactive Simulation,
and Visualization of Object-Oriented Models in
Scientific Computing. PhD thesis, Linkdpings
Universitet, 2000.

[7] D. Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming,
8(3):231-274, 1987.

[8] T. Henzinger. The theory of hybrid automata. In
Verification of Digital and Hybrid Systems, NATO
ASI Series F: Computer and Systems Sciences 170,
pages 265-292. Springer, 2000.

[9] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[10] M. Jackson. Testing the machine in the world. In
Proc. of Haifa Verification Conference 2006, pages
198-203, 2006.

[11] N. A. Lynch. Input/output automata: Basic, timed,
hybrid, probabilistic, dynamic, .. In Proc. 14th Int.
Conf. on Concurrency Theory (CONCUR’03), pages
187-188, 2003.

[12] Object Management Group. OMG SysML
specification v. 1.0, May 2006.

[13] C. A. Petri. Kommunikation mit Automaten. PhD
thesis, Universitdt Bonn, 1962.

[14] W. Schloegl. Bringing the digital factory into reality —
virtual manufacturing with real automation data. In
Proc. of International Conference on Changeable,
Agile, Reconfigurable and Virtual Production, pages
187-192, 2005.

[15] M. Tiller. Introduction to Physical Modeling with
Modelica. Springer, 2001.

