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ABSTRACT
Context: There are many methods that input static code features
and output a predictor for faulty code modules. These data mining
methods have hit a “performance ceiling”; i.e., some inherent upper
bound on the amount of information offered by, say, static code
features when identifying modules which contain faults.

Objective: We seek an explanation for this ceiling effect. Per-
haps static code features have “limited information content”; i.e.
their information can be quickly and completely discovered by even
simple learners.

Method: An initial literature review documents the ceiling effect
in other work. Next, using three sub-sampling techniques (under-,
over-, and micro-sampling), we look for the lower useful bound on
the number of training instances.

Results: Using micro-sampling, we find that as few as 50 in-
stances yield as much information as larger training sets.

Conclusions: We have found much evidence for the limited in-
formation hypothesis. Further progress in learning defect predic-
tors may not come from better algorithms. Rather, we need to
be improving the information content of the training data, perhaps
with case-based reasoning methods.

Categories and Subject Descriptors
i.5 [learning]: machine learning; d.2.8 [software engineering]:
product metrics

General Terms
algorithms,experimentation, measurement
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Naive Bayes,under-sampling, over-sampling,defect prediction
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1. INTRODUCTION
The current state of the art in learning defect predictors is curi-

ously static. As shown below, better results have not been forth-
coming, despite the application of supposedly better data miners.

If better algorithms are not useful, perhaps it is time to better
understand the training data. Accordingly, instead of:

• Changing the data miners. . .
• .... this paper changes the training data.

Specifically, we study how throwing training data away effects the
performance of our defect predictors. The results are quite sur-
prising. In experiments with under/over-sampling and incremental
cross-validation, we found that much of the training data can be
discarded without losing effectiveness in defect prediction. This
leads to the following notion:

Hypothesis: Static code features have limited information content.

This, in turn, leads to three predictions:

Prediction1: The information from static code features can be quickly
and completely discovered by even simple learners.

Prediction2: More complex learners will not find new informa-
tion.

Prediction3: Further progress in learning defect predictors will
not come from better algorithms, but from improving the in-
formation content of the training data.

We provide empirical evidence for and discuss the validity of
Prediction1 and Prediction2. It turns out that a simple learner
like Naive Bayes can extract the embedded information in static
code features better than a number of sophisticated learners, includ-
ing more complex Bayesian learners. Prediction3 can be used to
greatly simplify the collection of more insightful training data. We
show that simple techniques like log filtering and feature weighting
can improve the prediction performance. The final discussion sec-
tion of this paper discusses methods for increasing the information
in the training data in detail.

2. BACKGROUND
For some time now, we have applied data miners to build defect

predictors from static code measures [4, 8, 20, 27–31, 33–37]. To
learn such predictors, tables of historical examples (like those in
Figure 1) are formed where one column has a boolean value for
“faults detected” and the other columns describe software features
such as (i) lines of code, (ii) number of unique symbols [18], or
(iii) max. number of possible execution pathways [26].



(# modules) .
data language examples features %defective
pc5 C++ 17,186 38 3.0
mc1 C++ 9,466 38 0.71
pc2 C++ 5,589 36 0.41
kc1 C++ 2,109 21 15.45
pc3 C++ 1,563 37 10.23
pc4 C 1,458 37 12.2
pc1 C++ 1,109 21 6.94
kc2 C++ 522 21 20.49
cm1 C++ 498 21 9.83
kc3 JAVA 458 39 9.38
mw1 C++ 403 37 7.69
mc2 C++ 61 39 32.29

40,422

Figure 1: Twelve tables of data, sorted in order of number of
examples. All these tables are in the PROMISE repository.

Each row in the table holds data from one “module”; i.e. the
unit of functionality. Depending on the language, modules may be
called “functions”, “methods”, “procedures” or “files”.

The data mining task is to find combinations of features that pre-
dict for the value in the defects column. Once such combinations
are found, managers can use them to determine where to best focus
their QA effort. Better yet, if they have already focused their QA
effort on the most critical portions of the system, the detectors can
“nudge” them towards areas that need the most attention. Note that
these data miners do not predict the total number of defects, just
the number of modules containing more than zero defects.

In theory, such defect predictors are not useful. Fenton offers
an insightful example where the same functionality is achieved us-
ing different programming language constructs resulting in different
static measurements for that module [13].

In practice, they are quite effective, at least for the NASA code
we have studied [20, 28, 30, 31, 33–37, 41–43]. In those data sets,
our fault prediction models find defect predictors [35] with a prob-
ability of detection (pd) and probability of false alarm (pf ) of
mean(pd, pf) = (71%, 25%). These values are much higher then
known industrial averages for manual defect detection [11, 40].

In January 2007, we published a study [35] that defined a repeat-
able experiment in learning defect predictors. The intent of that
work was to offer a benchmark in defect prediction that other re-
searchers could repeat/ improve/ refute. That experiment used:

• Public domain data sets (from the the PROMISE repository;
• Open source data mining tools (the WEKA toolkit [44]);
• Randomly sorting training data rows (stops order effects);
• 10-way cross-validation (to test on data not used in training);
• Learning via multiple types of machine learning algorithms

(rule learners, decision tree learners, Bayes classifiers);
• Assessment via multiple criteria such as probability of detec-

tion (pd), probability of false alarm (pf ), and balance that
combines {pd, pf} (balance is defined in Figure 2);

• Statistical hypothesis tests over the assessment criteria;
• Novel visualization methods for the results;
• Feature subset selection to find the most important subset of

the static code features;

Surprisingly, very simple Bayes classifiers (with a simple pre-
processor for the numerics) out-performed the other studied meth-
ods. Since that study, we have tried to find better data mining al-
gorithms for defect prediction. To date, we have failed. Our recent
(as yet, unpublished) experiments have found no additional statisti-
cally significant improvement from the application of the following

If {A, B, C, D} are the true negatives, false negatives, false positives,
and true positives (respectively) found by a defect predictor, then:

pd = recall = D/(B + D) (1)
pf = C/(A + C) (2)

bal = balance = 1−

√
(0− pf)2 + (1− pd)2

√
2

(3)

All these values range zero to one. Better and larger balances fall closer
to the desired zone of no false alarms and 100% detection.
Other measures such as accuracy and precision were not used since,
as shown in Figure 1, the percent of defective examples in our tables was
usually very small (median value around 8%). Accuracy and precision
are poor indicators of performance for data were the target class is so
rare (for more on this issue, see [33, 35]).

Figure 2: Performance measures.
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Figure 3: Experiments with training set size vs balance.

data mining methods: logistic regression; average one-dependence
estimators [15]; under- or over-sampling [10] random forests [2],
RIPPER [6], J48 [39], OneR [19] and bagging [3]. Only boost-
ing [14] on discretized data offers a statistically better result than
a Bayes classifier. However, we cannot recommend boosting: the
median improvement is quite negligible and boosting is orders of
magnitudes slower than a simple Bayes classifier.

Other researchers have also failed to improve our results. Due to
our connection with PROMISE, we are aware of studies by other
researchers (currently under review) that tried other data mining
methods. Those studies investigated the statistical difference of the



results from two dozen learners on the same datasets. The simple
Bayesian method discussed above ties in first place along with 15
other methods.

How can we explain all these failed attempts to improve fault
prediction models in repeatable experiments using same (PROMISE)
data sets? One lesson from the above is that exploring better algo-
rithms may not be productive. Hence, we explored the data that the
algorithms were processing.

Elsewhere [32] we checked how little information was required
to learn a defect predictor. Defect predictors were learned from
N = 100, N = 200, N = 300.. instances then Tested on another
100 instances. For each N , 10 experiments were performed where
training was conducted on |Train| = 90% ∗N instances and test-
ing on |Test| = 100 (and Train ∩ Test =). For all experiments,
the N, Train, Test instances were selected at random.

This study was conducted on the twelve data sets of Figure 1.
Space does not permit showing all the results but a representative
sample are shown in Figure 3 [32]. In that figure, the X-axis is the
size of training set and the Y-axis is the balance measure defined in
Figure 2. Note that the performance does not change much regard-
less of whether the model is inferred from 100 instances or from
up to several thousand instances. In fact, learning from too many
training examples was actually detrimental (witness the widening
variance as the training set increases). A Mann Whitney U test [25]
(95% confidence) confirms the visual pattern apparent in Figure 3:
static code features used as the basis for predicting module’s fault
content reveal all that they can reveal after as little as 100 instances.

The above results motivated new experiments, reported below.

3. EXPERIMENTS
The goal of these experiments was two-fold:

1. Can we confirm the effects of Figure 3; i.e. that ignoring
large amounts of the training data is not harmful?

2. Can we exploit that effect to build better defect predictors?

Goal #1 was achieved and we have a promising lead on Goal #2.

3.1 Experiment #1: Over- & Under- Sampling
The Figure 3 experiment randomly discarded training data. Per-

haps a more controlled sub-sampling method would not damage
the information content of the data. If so then, contrary to Figure 3,
increasing the sample size will improve performance.

Over- and under-sampling [5, 10] are examples of “more con-
trolled sub-sampling methods”. Both methods might be useful in
data sets with highly imbalances class frequencies. For example,
in Figure 1, the frequency of the target class is very low (median
value lies between 6.94% and 7.69%).

To sub-sample, a target class is selected; in this study, we se-
lected defective modules as the target class. The sampling program
runs in two passes through the data. In pass 1, a table of frequency
counts is built. If the desired goal is reached in fewer instances than
the other classes, a second pass is taken through the data. This is
where the two sampling techniques differ:

• In the case of under-sampling, instances are selected until the
combined number of instances with other classes is equal to
the number of instances with the desired goal. This results
in a much smaller dataset, but the desired goal is no longer
buried inside a larger set of other classes.

• Over-sampling follows a similar procedure but, instead of
limiting the number of instances with other classes, the sam-
pling program adds randomly selected examples of the target
class back into the data set. Where as under-sampling pro-
duces smaller data sets, over-sampling grows the size of the

quartiles
min median max

treatment 0 25% 50% 75% 100%

NB/ none 21.9 67.7 74.6 81.9 100.0 u
NB/ under 19.9 67.1 74.1 81.6 100.0 u
J48/ under 21.6 64.8 73.6 82.6 100.0 u
NB/ over 17.5 42.0 62.5 72.2 100.0 u
J48/ over 0.0 29.3 45.6 56.2 100.0 u
J48/ none 0.0 29.3 42.3 54.5 100.0 u

Figure 4: Over- & under- & no sampling results. Sorted de-
scending by median balance results. Visually, there is clear
loser (J48/none) and a three-way tie for the winning method
(NB/none, NB/under, J48/under). These visual impression are
confirmed by the statistical tests of Figure 5.

data set until the minority class has the same frequency as
the majority class.

Regardless of the which of sub-sampling method is used, the result
is a data set with an equal number of target and non-target classes.

Over- and under-sampling experiments were conducted on the
Figure 1 data using 10*10-way cross-validation1. This study used
a simple Bayes classifier (since it was useful in our prior exper-
iment [35]) plus a C4.5-like decision tree learner, J4.8 [44] (since
that was used in prior under- and over- sampling experiments [10]).

The balance results (defined in Figure 2 for each treatment
(data miner, plus sampling policy) were sorted and displayed as
quartile charts of Figure 4. To generate these charts, the balance
results for some treatment are sorted and labeled as follows:

q1︷ ︸︸ ︷
4︸︷︷︸

min

, 7, 15, 20, 31, 40︸︷︷︸
median

, 52, 64,

q4︷ ︸︸ ︷
70, 81, 90︸︷︷︸

max

In a quartile chart, the upper and lower quartiles are marked with
black lines; the median is marked with a black dot; and a vertical
bar is added to mark the 50% value. The above numbers would
therefore be drawn as follows:

0% u 100%

We prefer quartile charts of performance deltas to other summa-
rization methods for M*N studies. They offer a very succinct sum-
mary of a large number of experiments.

The Figure 4 results are consistent with certain prior results:

• The simple Naive Bayes we recommended previously [35]
performed as well as anything else. In a result consistent
with the limited information hypothesis discussed in the in-
troduction, seemingly cleverer learning schemes did not out-
perform simple Bayesian classifiers.

• Just like the Figure 3 results, throwing away data (i.e. under-
sampling) does not degrade the performance of the learner.
In fact, in the case of J48, throwing away data improved the
median balance performance from around 40% to over 70%.

• Under-sampling beat over-sampling for both J48 and Naive
Bayes. This result is consistent with Drummond & Holte’s

1Ten times, randomize the order of the instances in the data. Each
time, divide data into i bins. For each bin j ∈ 1..i. Let test be
bin j and let train be the remaining bins. Learn on train then
evaluate on test.
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Figure 6: Micro-sampling results

learner / sampler win - loss win loss ties
NB / none 3 3 0 2

NB / under 3 3 0 2
J48 / under 3 3 0 2

NB / over -1 2 3 0
J48 / over -3 1 4 0
J48 / none -5 0 5 0

Figure 5: Statistical tests on the Figure 4 results. Mann-
Whitney [25] compared the median ranks of all the balance
values seen in Figure 4. Two treatments tied if their median
ranks were statistically insignificantly different (95% confi-
dence). Otherwise, medians were compared numerically to as-
sign “win” or “loss”. Table sorted descending on total number
of win− loss for each treatment against the other five.

sub-sampling experiments [10] and the sub-sampling classi-
fication tree experiments of Kamei et.al. [21]2.

However, Figure 4 has some new results which, as far as we are
aware, have not been reported elsewhere:

• Observe how NB/none is one of the topped-ranked meth-
ods. That is, sub-sampling decision tree learning does not
out-perform Naive Bayes.

• NB/none ties with NB/under. That is, while sub-sampling
offers no improvement over un-sampled Bayesian learning,
under-sampling does not harm classifier performance,

2Due to differences in experimental methods, we find we cannot
compare our results to the regression tree and LDA analysis of [21].

This last point is the most significant. It means effective detec-
tors can be learned from a very small sample of the available data-
an issue we explore below.

3.2 Experiment #2: Micro-sampling
In order to determine the lower-limit on the number of cases that

require manual inspection, we performed another experiment. An-
other under-sampling policy was employed, which we call micro-
sampling. Given N defective modules in a data set,

M ∈ {25, 50, 75, .} ≤ N

defective modules were selected at random. Another M non-defective
modules were selected, at random. The combined 2M data set was
then passed to a 10*10-way cross validation.

Formally, under-sampling is a micro-sampling where M = N .
Micro-sampling explores training sets of size up to N, standard
under-sampling just explores once data set of size 2N .

For this study we used Naive Bayes since, in all the above work,
it seems to be doing as well as anything else. Figure 6 shows the
results of an under-sampling study where M ∈ {25, 50, 75, ...}
defective modules were selected at random, along with an equal M
number of defect-free modules. Note the same visual pattern as
before: increasing data does not necessarily improve balance.

Mann-Whitney tests were applied to test this visual pattern. De-
tectors learned from small M instances do as well as detectors
learned from any other number of instances.

• For eight data sets, {CM1,KC2, KC3,MC1, MC2, MW1,
PC1, PC2}, micro-sampling at M = 25 did just as well as
anything larger sample size.



• For one data sets, {PC3}, best results were seen at M = 75.
However , in many cases 8

11
, M = 25 did just as well as

anything else.
• For three data sets {PC4,KC1,PC5} best results were seen

at M = {200, 575, 1025}, respectively. However, for these
three data sets, in all by one case M = 25 did as well as any
larger value.

In summary, the number of cases that must be reviewed in order
to arrive at the performance ceiling of defect predictor is very small:
as low as 50 randomly selected modules (25 defective and 25 non-
defective).

4. DISCUSSION
There exist numerous incremental case-based reasoning tools [7,

23, 24] that ask humans to audit a stochastic sample of real-world
cases. Insights gained from those sessions are automatically gener-
alized and applied to another random sample, Experts then review
the classifications made on the new sample, and offer further re-
finements. As far back as 1999, software metrics experts Fenton
and Neil [12] postulated that such human-machines-based system
might out-perform systems based on on static code measures (since
other features/metrics could be accounted for that cannot currently
be addressed using static code metrics).

When is case-based reasoning preferable to automatic data min-
ing? While there are many answers to this question, this paper can
make specific comments about one particular issue. Case-based
reasoning methods require humans to examine and comment on
specific cases. This is impractical if learning adequate theories re-
quires examining a very large number of cases.

The results of experiment #1 suggest that, for static code mea-
sures, it is not necessary to manually inspect thousands of cases. In
fact, just a few hundred may suffice. Consider the 9,466 modules
of MC1. This data set has a defective module rate of 0.71% ; i.e.
9.466*0.71/100=67 modules:

• When under-sampling, a data set of 134 modules is created
(all the defective, plus 67 others, selected at random).

• When micro-sampling, the results of Experiment #2 suggest
that 50 modules would suffice (any 25 defective modules, but
any other 25- selected at random).

These results raise the possibility that a human-in-the-loop case-
based reasoning environment might perform as well as automatic
methods, despite the automatic methods exploring more examples.

Based on other recent research, we go further and hypothesize
that such an environment might perform better than automatic meth-
ods. Elsewhere, we have explored combining static code measures
with other measures that, serendipitously, a particular domain may
contain. For example, at ISSRE 2007 [20], we reported experi-
ments where static code measures were combined with results from
an ultra-lightweight text miner. Figure 7 shows how a remark-
able improvement in learner performance was achieved by applying
combinations of requirements and code features. Other results are
analogous to Figure 7:

• In the JMLR special issue on feature selection, Guyon and
Elisseeff provide simple examples showing that the infor-
mation content of data can be significantly increased when
features are used together rather than individually [17]. In
the context of this paper, we would re-express that result as:
using features from different sources, e.g. requirements and
source code, can significantly increase the information con-
tent of SE data.

Figure 7: {pd, pf} curves seen when using code and/or require-
ments features. Results from CM1 and PC1 after a 10-way
cross validation. The ideal spot on these ROC curves is top left;
i.e. no false alarms and perfect detection ({pd, pf} = {1, 0}).
The dashed lines on those plots show {pd, pf} results when
fault prediction models used features mined from requirements
text, or features mined from static code measures (in isolation).
The solid lines show the results of models which used these two
kinds of features in combination. From [20].

• Face recognition differentiates from other image processing
research by using facial properties such as the location of
the nose, lips, eyes etc. Combination of facial characteris-
tics from such different sources improves the performance
of face detectors that solely use i.e. pixel values of the im-
age [16]. We argue that SE domain should make use of do-
main specific knowledge (when possible) to differentiate from
general data mining tasks.

Note that the lesson of Figure 7 is not “always augment static
code features with requirements features”. This is impractical ad-



Figure 8: Comparison of three Naive Bayes schemes. LNB is the log-filtered Naive Bayes used in our IEEE TSE 2007 paper [35]. IG
and GR are two variants on Naive Bayes where some oracle has weighted the attributes: IG uses an InfoGain oracle and GR uses a
Gain Ratio oracle. Box plots for three learners after 10x10 cross validation. Balance values can be improved by weighting static code
features. Feature subset selection corresponds to 0−1 hard weight assignment. Weights of non-informative features are automatically
assigned 0. Other features are assigned a soft weight value in [0..1] interval according to their defect related information content.
Note that, in 7

8
of these results, the weighted schemes have higher medians or higher maximum values, or both.

vice since not all domains allow data mining specialists access to
source code and the requirements that produced them; e.g. very few
open source projects have detailed textual requirements documents.

Rather, the lesson of Figure 7 is that it can be very useful to
let experts access and combine features from whatever sources are
locally available. Such an “explore whatever” environment is not
an automatic black box data miner. Rather, it is a human-in-the-
loop case-based reasoning (CBR) environment where humans re-
flect on the specifics of particular cases, connect to different data
sources, and (sometimes) run automatic data miners on combina-
tions or subsets of a variety of types of features.

Two prior PROMISE papers [1, 9] suggest how such CBR envi-
ronments might operate:

• At PROMISE 2006, Amor et.al. [1] describe an incremental
classification cycle where, in round i, an expert classifies a
random selection of the available data. A classifier learned
from this examples is then applied to other, randomly se-
lected examples. Then, in round i + 1, the expert reviews
the results of that those classifications to fix any incorrect
classifications from round i (formally, this is boosting where
humans are used to identify examples that were harder to
classify in the proceeding rounds).

• At PROMISE 2007, Dekhtyar et.al. [9] showed improvement
in the performance of a traceability environment after several
rounds of an expert reviewing results automatically inferred
in a prior round.

Both Amor et.al. and Dekhtyar et.al. report that it took hundreds
of examples and several rounds to generate useful detectors. Nei-

ther team experimented with (a) decreasing the number of exam-
ples seen in each round; or (b) micro-sampling the examples from
each round. Based on this paper, we would speculate that policies
(a) and (b) would significantly decrease the time required by an
expert to achieve performance plateaus.

Another role for human experts in a CBR environment is to in-
struct the learner how combinations of attributes can work together
to provide solutions. For example a standard Naive Bayes classifier
gives equal weights to all attributes then uses frequency counts to
learn the relative importance of each attribute. Elsewhere [42, 43]
we have allowed an oracle to offer unequal attribute weights. In
this scheme, instead of feature subset selection [22], we have used
all attributes with weights assigned to them. We have converted
the information gain and gain ratio of features into weight values.
The results are compelling such that the performance can improve
over standard Naive Bayes, and there is also no need for dealing
with feature subset selection. Though the improvements in Fig-
ure 8 are not ground-breaking, they provide a hint regarding the
value of unequal treatment of information sources. In the case of
Figure 8, weights are assigned by the model. As Fenton and Neil
warn us, the weights provided by models may not be meaningful
to humans in the process [12]. However, we argue that weights
assigned to different information sources by human experts with
business knowledge can increase the quality of solutions.

5. CONCLUSIONS
The development of fault prediction models has been a very ac-

tive research area. The reason for such a significant attention to au-
tomated quality predictors lays in their practical importance. Cur-



rent models are useful, as they allow software project managers
to better guide the allocation usually meager quality assurance re-
sources to artifacts which need them the most.

Recent results now indicate that this current research paradigm,
which relied on relatively straightforward application of machine
learning tools, has reached its limits. Building software quality
predictors via data mining is essentially an inductive generalization
over past experience. According to Mitchell’s classic model of data
mining [38], any inductive generalization explores a version space
of possible theories. All data miners hit a performance ceiling ef-
fect when they cannot find additional information that better relates
software measure with fault occurrence.

To build better quality predictors that break through ceiling ef-
fects, we must introduce more topology into the search space. Stan-
dard machine learning algorithms lack the business knowledge which
characterizes software projects. To add that business knowledge,
we propose human-in-the-loop CBR tools. We expect that this ap-
proach will allow software managers to safely focus on the appli-
cation of quality assurance techniques of choice, confident that au-
tomated quality predictors will raise alerts about the artifacts where
quality issues actually exist.

Three results make us advocate this kind of CBR tool:

• The environment would impractical if the human operator
must examine a very large number of cases. The micro-
sampling results suggest that this might not be the case. In-
deed, as few as 50 randomly selected instances might suffice.

• The environment would run fast. If 50 instances are enough,
then training should be virtually instantaneous. A human
user could explore a very large number of features or combi-
nations of features, all the while getting very rapid feedback.

• The environment, or some other new direction, is required.
As argued above, our current generation of AI algorithms
have hit a ceiling effect. We doubt that further progress will
be made using better algorithms. Instead, we would advocate
methods (like the CBR tool briefly described above), that in-
crease the information content of the training data.

6. FUTURE WORK
In summary, we think it is time to change the subject of the which

question. Rather than which learner we should focus on which
data.

In this context, our future direction is clear- build a human-in-
the-loop CBR environment for learning defect predictors, then bench-
mark that environment against automatic methods.

Other candidates for future work are

• To better understand the attribute weighting schemes explored
in Figure 8.

• To improve on the randomized sampling strategies used in
this paper. It may be possible to increase the performance of
defect predictors with wiser sampling strategies (e.g. some
initially clustering to find a small number of most represen-
tative, or most unusual, instances).
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