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ABSTRACT

Central to the problem frames approach is the distinction
of three different descriptions: requirements R, domain as-
sumptions W and specifications S, tied together with the so-
called frame concern, a proof obligation that has to hold be-
tween them if a problem diagram is to be correct: S, W F R.
The form this proof should take is not fixed a priori. It
might, however, be desirable to automate it in order to al-
low for an efficient analysis of large diagrams. To make this
possible, we follow some earlier suggestions to use the Event
Calculus as a suitable formalism for these descriptions. The
main contribution of the present paper is a set of consis-
tency rules as well as guidelines for passing from a problem
diagram to its formal description.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifica-
tions— Languages, Methodologies, Tools

General Terms

Design, Documentation, Languages

1. INTRODUCTION

A problem diagram [7] is made up of requirements, real-
world domains, a machine and the links of phenomena they
share. Jackson acknowledges that those elements of a di-
agram need to be described in further detail, i.e. by de-
scriptions R, W and S, respectively. However, he does not
fix the form these descriptions should take. In addition,
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there is the so-called frame concern, a fundamental relation-
ship between them introduced by Zave and Jackson in [18]
which has to hold for a diagram to be considered correct:
S, W F R. Again, the way this proof is discharged depends
on the form of the descriptions, and vice-versa. Given the
wide range of choices, there have been several suggestions as
to how to represent those detailed descriptions of a problem
diagram. Hall et al. use their own event model [4], Laney et
al. use a mix of natural language and pseudo-code [9], Seater
and Jackson use the Alloy Analyser and its language [16],
Salifu et al. suggest to use state-charts [15], and others the
Event Calculus [10, 11, 1, 2]. Each of these formalisms has
its advantages and limitations, and in the present paper we
focus on those of the Event Calculus (EC).

A key aspect of the previous approaches using the EC is
the idea of providing EC descriptions for the elements of a
problem diagram in order to reason about problem proper-
ties. Yet, they do not detail how to get from a diagram to
its EC formalisation, nor what the relation between them
is. With the present paper, we intend to fill this gap by
explaining clearly how the EC can be used as a “problem
description language”. In this, we consolidate the existing
work by suggesting consistency rules and guidelines for for-
malising problem diagrams with the EC. The contribution
of this paper is thus an approach that defines a standard for
representing problem diagram descriptions in the EC and
opens new possibilities for description reuse and/or sharing.

The paper is structured as follows. Section 2 gives a brief
overview of the EC. In Section 3 we first survey the exist-
ing uses of the EC in the problem frames (PFs) community
and then introduce our standard method. We discuss ad-
vantages and limitations of using the EC in Section 4 before
concluding the paper in Section 5.

2. THE EVENT CALCULUS

The EC was originally introduced by Kowalski and Ser-
got [8] as a formalism for representing events and their ef-
fects. The EC version we use is based on Mueller [13]
and Shanahan [17]. EC descriptions express relations be-
tween fluents, events and time points. Fluents are generally
boolean properties but can also be integer or real values.



Events are incidents that occur at specific time points, they
can cause changes to fluents, or other events. Time points
are simply integer values in discrete EC and real values in
normal EC.

The EC builds on first-order predicate calculus. There
are a number of predefined predicates, related by a set of
axioms, that allow us to express descriptions. These pred-
icates are represented in the upper part of Table 1. The
Happens predicate allows us to express what happens when;
Initiates, Terminates and Releases express the effects of
events; and ReleasedAt and HoldsAt describe when fluents
hold. According to the common-sense law of inertia [13], a
fluent subject to inertia can only be changed by the occur-
rence of events. A fluent released from inertia can change at
will. Integer or real typed fluents as well as time points can
be compared and manipulated using the common operators
of the natural or real numbers.

Table 1: Predicates and axioms of the discrete EC,
adapted from [17, 13].

Predicate Description

Action a occurs at time ¢

Fluent f starts to hold after event
a at time ¢

Fluent f ceases to hold after event
a at time ¢

Fluent f holds at time ¢

Fluent f is released from inertia
after event a at time ¢

Fluent f is released from inertia at
time ¢

Happens(a,t)
Initiates(a, f,t)

Terminates(a, f,t)

HoldsAt(f,t)
Releases(a, f,t)

Released At(f,t)

Axioms

(EC1) HoldsAt(f,t+1) <

HoldsAt(f,t) A —ReleasedAt(f,t + 1))A

—Jde o (Happens(e, t) A Terminates(e, f,t))
HoldsAt(f,t+1) <

Happens(e,t) A Initiates(e, f,t)
—HoldsAt(f,t+ 1) <

—HoldsAt(f,t) N ~Released At(f,t + 1))A

—Je o (Happens(e,t) A Initiates(e, f, 1))
—HoldsAt(f,t+1) <

Happens(e,t) A Terminates(e, f,t))
ReleasedAt(f,t+1) <

ReleasedAt(f,t) A —=Je o (Happens(e, t)A

(Initiates(e, f,t) V Terminates(e, f,t)))
ReleasedAt(f,t+1) <

Happens(e,t) A Releases(e, f,t))
—ReleasedAt(f,t +1) <

—Released At(f,t)A

—Je o (Happens(e,t) A Releases(e, f,t))
—ReleasedAt(f,t + 1) <

Happens(e, t)A

(Initiates(e, f,t) V Terminates(e, f,t))

(EC2)

(EC3)

(EC4)

(EC5)

(EC6)

(ECT)

(ECS)

Coherence of these predicates is guaranteed by a set of
axioms, shown in the lower part of Table 1, which implement
the informal descriptions stated before. The axioms given
are those for the discrete EC; the axioms for the normal EC
are similar. The first one (EC1) says that a fluent f holds

at time ¢ + 1 if it held and was not released from inertia
at time t and if it was not terminated by an event at time
t. In addition to that, (EC2) states that a fluent also holds
at t + 1 if it was initiated by an event at ¢. The remaining
axioms are very similar, (EC3) and (EC4) express when a
fluent does not hold and (EC5) through (EC8) give the same
properties but for the ReleasedAt predicate.

3. FROM A PROBLEM DIAGRAM TO
EVENT CALCULUS FORMULAE

Laney et al. [10] first used the EC to derive specifica-
tions from requirements and domain assumptions. Laney et
al. use the EC as a means to reason about inconsistent re-
quirements and to solve interactions by prioritising these
requirements [11]. Classen et al. [1, 2] use the EC to for-
malise problem diagrams that detail features of a product
line in order to detect interactions between features.

One important pattern that can be recognised from EC us-
age in the above proposals is the coherence between shared
phenomena defined on a problem diagram and the fluents
and events used in the corresponding EC formulae: the flu-
ents and events used in the formulae generally exist as shared
phenomena in the problem diagram. Based on this observa-
tion, we will propose a set of consistency rules and general
principles in Section 3.1 which we illustrate using the traffic
light controller example in Section 3.2.

3.1 Towards a standard form

The observed pattern actually leads to the first of three
consistency rules:

(C1) Structural consistency. A set of formulae is associ-
ated to a problem diagram. Each formula is associated
to exactly one domain or requirement of the diagram.

(C2) Vocabulary consistency. Fluents and events in the
EC formulae associated to a diagram are identified by
their name which must be unique. These names have
to refer to shared or internal phenomena of domains
in the diagram.

(C3) Scope consistency. All events and fluents used in
a formula have to be visible to its associated domain
(i.e. they exist on its shared phenomena links or are
internal to that domain).

The purpose of these rules is to make sure that the formal
description is actually consistent with the problem diagram.
More precisely, they require the formulae to be a refinement
of the diagram. Without such rules it would be possible to
write formulae that have a vocabulary and a structure com-
pletely disjoint of the diagram. With these rules, we also
guarantee a certain modularity at the description level. Be-
cause of the predefined interfaces between domains, and by
the principle of information hiding [14], each domain can be
described separately and its description be independent from
the other domains. In addition, the consistency rules value
the decomposition of the problem diagram as it dictates the
structure of the formal descriptions, thereby facilitating also
traceability.

Based on these rules, we propose two general principles.
They are particular patterns of formulae intended to be
guidelines for writing formulae:



(G1) Type principle. Phenomena expressing single oc-
currences or actions rather than properties should be trans-
lated into events in EC descriptions. Phenomena represent-
ing properties of domains, on the other hand, should be-
come fluents. For instance, requirements phenomena refer-
ring to properties of the real world would become fluents
and requirements phenomena referring to user actions be-
come events. Note that Jackson [7] also identifies different
types of phenomena on the annotations of basic PFs, namely
causal phenomena (C), symbolic phenomena (Y) and event
phenomena (E). Given this classification, causal phenom-
ena can translate into either fluents or events, depending on
how the causal relationship is expressed, symbolic phenom-
ena translate into fluents and event phenomena into events.

The light units domain description says how the light units
react to the RPulse and GPulse events received by the con-
troller. For this, we consult the manual that came with the
light units. We assume that it says (W1) RPulse switches
off the Go light and switches on the Stop light, (W2) GPulse
switches off the Stop light and switches on the Go light as
well as (W38) both lights will never be switched on at the
same time. Following G1, we assume RPulse and GPulse to
be events because they occur at specific time points and be-
cause they influence Stop and Go. The latter, on the other
hand, are fluents as they are properties that can be observed.
These definitions indeed satisfy C1, C2 and C3. The actual
domain description follows quite naturally:

(G2) Flow principle. EC descriptions should reflect the (W1) Vt,z. =12 Imtza.tes(RPulse[z], Stop[z],.t)
: X . . Vt,i =1..2 e Terminates(RPulse[i], Go[i],t)
active, reactive or passive nature of a domain, as presumed ‘ ‘ ‘
by the applicable frame (its control flow). For a required (W2) {Vt»? =12 Im'tia‘tes(GPulse[z},Go[z],t) )
behaviour PF, for instance, the control flow goes from the Vt,i = 1.2 e Terminates(GPulse[i], Stop[i],t)
left to the right as depicted in Figure 1. The machine has Vt,i=1.2 e HoldsAt(Goli],t) = ~HoldsAt(Stopli], t)
to bring about ch in the envi t—it is active. Its  (W3) i 1
g about changes 1n the environment—it 1s active. lts Vt,i =1..2 o HoldsAt(Stopl[i],t) = —HoldsAt(Goli],t)

specification will thus probably be written with Happens()
predicates, as only events can cause changes to fluents and
because the specification phenomena will likely be events.
The requirement, on the other hand, is passive. It will be
expressed in terms of requirements phenomena, probably flu-
ents, and is thus expressed with HoldsAt() predicates. The
domain then serves as a relay between the other two (it is
reactive), thus expressing the effects of the specification’s
events on the requirement’s fluents using Initiates(), Termi-
nates() or Releases() predicates.

Happens() Initiates(), Terminates(), Releases() HoldsAt()
PN
Control G Controlled | g G/ MReguired  \
Machine | coic Dormain ] \  Behaviour /
C Z -

—_ - -

Figure 1: Control flow and derived usage of EC
predicates in the required behaviour PF.

Note that there may be situations to which principles G1
and G2 do not apply. In practice, however, we found that
they are very helpful as a starting point

3.2 Ilustration

As a small illustration we will use Jackson’s traffic lights
controller example [7]. A traffic light unit has a stop and a
go light, the meaning of which is supposed to be known to
road-users. There are two such units, one at each end of a
single lane supposed to carry traffic in both directions. A
controller is connected to both units, which has to activate
the stop and the go light so that vehicles are never travelling
in both directions at the same time. A problem diagram for
this example, also taken from [7], is depicted in figure 2.

Specification Domain properties Requirement
- -~ <
Lights a Light |q £ _ -7 Lghts
controller units ] \  regme /
C ~ _

a: LC! {RPulsefi], GPulsefi}  b: LU! {Stop(il, Gofil}

Figure 2: The traffic lights controller.

The requirement expresses the light regime, i.e. the fact
that one light unit displays the start light for a certain time,
say 50 seconds, and then switches to the stop light. After a
delay of 10 seconds, the other unit does the same, and after
another 10 seconds the cycle restarts. Each cycle thus takes
two minutes. We assume that the time in EC formulae is
represented in seconds. All fluents being defined, we can
immediately express the formal requirement:

(R) Vt e t mod 120 =0= HoldsAt(Gol[l],t)
A HoldsAt(Stop[2],t)
A HoldsAt(Stopl[1],t + 50)
A HoldsAt(Gol2],t + 60)
A HoldsAt(Stop[2],t + 110)

—_ = = =

We can now derive a specification for the machine using
the axioms introduced above. Actually, (EC1) and (EC2)
state that a fluent holds if it already held the moment be-
fore and was not terminated or released, or if it was initiated
the moment before. This means that in order to have Gol[l]
holding at time ¢, we need GPulse[l] to happen at t — 1.
More precisely, refining the requirement can be done by us-
ing the axioms of Table 1 as rewriting rules. The result of
the refinement is the EC specification of the machine:

(S) Vt e t mod 120 =0 = Happens(GPulse[l],t — 1)

(
A Happens(RPulse[2],t — 1)

A Happens(RPulse[l],t — 1 4 50)
A Happens(GPulse[2],t — 1 + 60)
A Happens(RPulse[2],t — 1+ 110)

4. DISCUSSION AND FUTURE WORKS

One of the main benefits of using the EC is its ease of
use for expressing properties of the real world when those
properties mostly consist of cause/effect relations [13]. In
addition, the meaning of EC predicates is rather straight-
forward, resulting in a lower learning curve than for other
formalisms of temporal logic. This also makes it relatively
easy to translate a natural language description into formu-
lae. Another benefit of using a formal language such as the
EC is its amenability to automated reasoning. Several im-
plementations of the EC exist. We chose Mueller’s Decrea-
soner [13] and implemented an Eclipse plugin on top of it
(available at www.classen.be/work/mscthesis). The plugin



actually features a dedicated EC editor, an augmented De-
creasoner syntax with constructs for distinguishing S, W and
R as well as a push-button interface for performing proofs
of the type S,W F R. Yet another benefit, as proposed by
Laney et al. [10, 11] and as demonstrated in Section 3.2,
is the possibility to derive a correct specification from the
requirement and the domain properties through abductive
reasoning. Proceeding this way has the advantage that the
specification obtained satisfies the S, W F R relation by con-
struction, making a proof unnecessary. It also matches the
PF semantics [5] in that S is determined by W and R.

Most limitations can be seen as restrictive ontological com-
mitments. The discrete EC assumes (i) that the time is
linear and (ii) that it is discrete. The latter is actually no
restriction in expressiveness as discrete and continuous EC
are provably equivalent [13], but can pose problems in terms
of “naturalness” of a description. The first point, however,
is indeed a restriction because branching time calculi such
as the situation calculus [12] are more expressive than linear
time calculi (reasoning about hypothetical events and situa-
tions, for instance). Furthermore, EC descriptions generally
do not distinguish between input and output of the mod-
elled system, as other formalisms such as statecharts do. It
is thus not possible to verify whether the system can actually
accept every possible input. Pre-/Post-condition reasoning
is also rather hard to do in the case of the EC.

In an attempt to validate our proposal, i.e. the claimed
advantages of the EC as well as the suggested guidelines, we
are planning field experiments with MSc students.

S. CONCLUSION

Based on what we found in the literature we defined a set
of consistency rules and guidelines for the formalisation of a
problem diagram using the EC. The goal of this proposal is
twofold. On the one hand, we intend to provide a reference
framework that, if used consistently, allows for better struc-
tured and modular descriptions leading to new possibilities
for description reuse and/or sharing. On the other hand, we
want to show the usefulness of the EC as a formalism for
describing problem diagrams.

Our proposal is similar to the work by Seater and Jackson
on requirement progression [16]. In contrast to our proposal,
however, Seater and Jackson focus on the process of deriv-
ing a specification from a requirement. They also use the
Alloy Analyser and its language [3] instead of the EC. A
complementary approach is the work on Problem-Oriented
Software Engineering by Hall et al. [6]. Just as Jackson,
they leave the choice of a formalism to the analyst. The EC
would thus integrate well into their approach as a problem
sequent is quite similar to Jackson’s frame concern.

We showed that EC and problem diagram ontologies are
closely related and that concepts used in descriptions flow
naturally from those of a diagram. We thus believe that the
EC can indeed be used as a problem description language
with significant benefits.
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