
Proposing SQL Statement Coverage Metrics
Ben Smith Yonghee Shin Laurie Williams

Department of Computer Science, North Carolina State University
Raleigh, NC 27695-8206

+1 919 513 4151

ben_smith@ncsu.edu yonghee.shin@ncsu.edu williams@csc.ncsu.edu

ABSTRACT
An increasing number of cyber attacks are occurring at the
application layer when attackers use malicious input. These input
validation vulnerabilities can be exploited by (among others) SQL
injection, cross site scripting, and buffer overflow attacks.
Statement coverage and similar test adequacy metrics have
historically been used to assess the level of functional and unit
testing which has been performed on an application. However,
these currently-available metrics do not highlight how well the
system protects itself through validation. In this paper, we
propose two SQL injection input validation testing adequacy
metrics: target statement coverage and input variable coverage.
A test suite which satisfies both adequacy criteria can be
leveraged as a solid foundation for input validation scanning with
a blacklist. To determine whether it is feasible to calculate values
for our two metrics, we perform a case study on a web healthcare
application and discuss some issues in implementation we have
encountered. We find that the web healthcare application scored
96.7% target statement coverage and 98.5% input variable
coverage.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Testing Tools – coverage testing.

General Terms
Experimentation, Measurement, Security

Keywords
SQL, Coverage Criteria, Security, SQL Injection, Attack, Threat,
Test

1. INTRODUCTION
According to the National Vulnerability Database (NVD)1, more
than half of all of the ever-increasing number of cyber

vulnerabilities reported in 2002-2006 were input validation
vulnerabilities. As Figure 1 shows, the number of input validation
vulnerabilities is still increasing.

0

1000

2000

3000

4000

5000

6000

7000

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Year

of reported cyber vulnerabilities
of input validation vulnerabilities
of SQL injection vulnerabilities
of XSS vulnerabilities
of buffer overflow vulnerabilities

Figure 1. NVD’s reported cyber vulnerabilities2

Figure 1 illustrates the number of reported instances of each type
of cyber vulnerability listed in the series legend for each year
displayed in the x-axis. The curve with the square shaped points is
the sum of all reported vulnerabilities that fall into the categories
“SQL injection”, “XSS”, or “buffer overflow” when querying the
National Vulnerability Database. The curve with diamond-
shaped points represents all cyber vulnerabilities reported for the
year in the x-axis. For several years now, the number of reported
input validation vulnerabilities has been half the total number of
reported vulnerabilities. Additionally, the graph demonstrates
that these curves are monotonically increasing; indicating that we
are unlikely to see a drop in the future in ratio of reported input
validation vulnerabilities.
Input validation testing is the process of writing and running test
cases to investigate how a system responds to malicious input
with the intention of using tests to mitigate the risk of a security
threat. Input validation testing can increase confidence that input
validation has been properly implemented. The goal of input
validation testing is to check whether input is validated against

1 http://nvd.nist.gov
2 We counted the reported instances of vulnerabilities by using the

keywords “SQL injection”, “cross-site scripting”, “XSS”, and
“buffer overflow” within the input validation error category
from NVD.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SESS’08, May 17–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-042-5/08/05...$5.00.

49

constraints given for the input. Input validation testing should test
both whether legal input is accepted, and whether illegal input is
rejected. A coverage metric can quantify the extent to which this
goal has been met. Various coverage criteria have been defined
based on the target of testing (specification or program as a target)
and underlying testing methods (structural, fault-based and error-
based) [19]. Statement coverage and branch coverage are well-
known program-based structural coverage criteria [19].
However, current structural coverage metrics and the tools which
implement them do not provide specific information about
insufficient or missing input validation. New coverage criteria to
measure the adequacy of input validation testing can be used to
highlight a level of security testing. Our research objective is to
propose and to validate two input validation testing adequacy
metrics related to SQL injection vulnerabilities. Our current input
validation coverage criteria consist of two experimental metrics:
input variable coverage, which measures the percentage of input
variables used in at least one test; and target statement coverage,
which measures the percentage of SQL statements executed in at
least one test.
An input variable is any dynamic, user-assigned variable which
an attacker could manipulate to send malicious input to the
system. In the context of the Web, any field on a web form is an
input variable as well as any number of other client-side input
spaces. Within the context of SQL injection attacks, input
variables are any variable which is sent to the database
management system, as will be illustrated in further detail in
Section 2. A target statement is any statement in an application
which is subject to attack via malicious input; for this paper, our
target statements will be all SQL statements found in production
code. Other input sources can be leveraged to form an attack, but
we have chosen not to focus on them for this study because they
comprise less than half of recently reported cyber vulnerabilities
(see Figure 1 and explanation).
In practice, even software development teams who use metrics
such as traditional statement coverage often do not achieve 100%
values in these metrics before production [1]. If the lines left
uncovered contain target statements, traditional statement
coverage could be very high while little to no input validation
testing is performed on the system. A target statement or input
variable which is involved in at least one test might achieve high
input validation coverage metrics yet still remain insecure if the
test case(s) did not utilize a malicious form of input. However, a
system with a high score in the metrics we define has a
foundation for thorough input validation testing. Testers can
relatively easily reuse existing test cases with multiple forms of
good and malicious input. Our vision is to automate such reuse.
We evaluated our metrics on the server-side code of a Java Server
Pages web healthcare application that had an extensive set of
JUnit3 test cases. We manually counted the number of input
variables and SQL statements found in this system and
dynamically recorded how many of these statements and variables
are used in executing a given test set.
The rest of this paper is organized as follows: First, Section 2
defines SQL injection attacks. Then, Section 3 introduces our
experimental metrics. Section 4 provides a brief summary of

3 http://www.junit.org/

related work. Next, Section 5 describes our case study and
application of our technique. Section 6 reports the results of our
study and discusses their implications. Then, Section 7 illustrates
some limitations on our technique and our metrics. Finally,
Section 8 concludes and discusses the future use and development
of our metrics.

2. BACKGROUND
Section 2.1 explains the fundamental difference between
traditional testing and security testing. Then, Section 2.2
describes SQL injection.

2.1 Testing for Security
Web applications are inherently insecure [15] and web
applications’ attackers look the same as any other customer to the
server [12]. Developers should, but typically do not, focus on
building security into web applications [10]. Security has been
added to the list of web application quality criteria [11] and the
result is that companies have begun to incorporate security testing
(including input validation testing) into their development
methodologies [3]. Security testing is contrasted from traditional
testing, as illustrated by Figure 2: Functional vs. Security Testing,
adapted from [17].

Figure 2. Intended vs. Actual Behavior, (adapted from [17])

Represented by the left-hand circle in Figure 2, the current
software development paradigm includes a list of testing
strategies to ensure the correctness of an application in
functionality and usability as indicated by a requirements
specification. With respect to intended correctness, verification
typically entails creating test cases designed to discover faults by
causing failures. Oracles tell us what the system should do and
failures tell us that the system does not do what it is supposed to
do. The right-hand circle in Figure 2 indicates that we validate not
only that the system does what it should, but also that the system
does not do what it should not: the right-hand circle represents a
failure occurring in the system which causes a security problem.
The circles intersect because some intended functionality can
cause indirect vulnerabilities because privacy and security were
not considered in designing the required functionality [17].
Testing for functionality only validates that the application
achieves what was written in the requirements specification.
Testing for security validates that the application prevents
undesirable security risks from occurring, even when the nature of
this functionality is spread across several modules and might be

50

due to an oversight in the application’s design. To adapt to the
new paradigm, companies have started to incorporate new
techniques. Some companies use vulnerability scanners, which
behave like a hacker to make automated attempts at gaining
access or misusing the system to discover its flaws [4]. A
blacklist is a representative or comprehensive set of all input
validation attacks of a given type (such as SQL injection, see
Section 2.2). These vulnerability scanners typically use a
blacklist to test potential vulnerabilities against all attacks (or a
set of representative attacks). Coverage criteria for target
statements can help companies assess how much of their system
has the framework for a range of input validation testing. A
vulnerability scanner is ineffective if its blacklist is not tested
against every target statement in the system.

2.2 SQL Injection Attacks
A SQL injection attack is performed when a user exploits a lack
of input validation to force unintended system behavior by
altering the logical structure of a SQL statement with special
characters. The lack of input validation to prevent SQL injection
attacks is known as a SQL injection vulnerability [2, 5, 6, 8, 9,
13-16]. Our example of this type of input validation
vulnerability begins with the login form presented in Figure 3.

Figure 3. Example login form

Usernames typically consist of alphanumeric characters,
underscores, periods and dashes. Passwords also typically consist
of these character ranges and additionally allow for some other
non-alphanumeric characters such as $, ^ or #. The authentication
mechanism functions by a code segment resembling the one in
Figure 4. Assume there exists some table maintaining a list of all
usernames, passwords, and most likely some indication of the role
of each unique username.
//for simplicity, this example is given in PHP.
//first, extract the input values from the form
$username = $_POST[‘username’];
$password = $_POST[‘password’];

//query the database for a user with username/pw
$result = mysql_query(
 “select * from users where username =
 ‘$username’ AND password = ‘$password’”);

//extract the first row of the resultset
$firstresult = mysql_fetch_array($result);

//extract the “role” column from the result
$role = $firstresult[‘role’];

//set a cookie for the user with their role
setcookie(“userrole”, $role);

Figure 4. Example authentication code
The code in Figure 4 performs the following. First, query the
database for every entry with the entered username and password.
Typically, we use the first row of returned SQL results (which is
retrieved by mysql_fetch_array and stored in $firstresult)
because the web application (or the database management system)

will ensure that there are no duplicate usernames and will ensure
that every user name is given the appropriate role. Finally, we
extract the role field from the first result and give the user a
cookie4, which allows the login to be persistent (i.e., the user does
not have to login to view every protected page).
The example we have presented in Figure 4 performs no input
validation, and as a result the example contains at least three input
validation vulnerability locations. The first two are the username
and password fields as given in the web form in Figure 3. An
attacker could cause the code fragment change shown in Figure 5
simply by entering the SQL command fragment “‘ OR 1=1 --
AND" in the input field instead of any valid user name in Figure
3.

//from Figure 7; original code
$result = mysql_query(
 “select * from users where username =
 ‘$username’ AND password = ‘$password’”);

//code with inserted attack parameters
$result = mysql_query(
 “select * from users where username =
 ‘’ OR 1=1 -- AND password = ‘PASSWORD’”);

Figure 5. Example SQL statement, before and after
The single quotation mark (‘) indicates to the SQL parser that the
character sequence for the username column is closed, the
fragment OR 1=1 is interpreted as always true, and the hyphens
(--) tells the parser that the SQL command is over and the
fragment of the query after the hyphens is a comment. With these
values, the $result variable contains a list of every user in the
table (and their associated role) because the where clause is
always true. The first listing returned from the database is
unknown and will vary based on the database configuration.
Regardless, the role of the user in the first returned row will be
extracted and assigned to a cookie on the attacker’s machine. The
consequence is as follows: Assuming the attacker is not a
registered user of the system, he or she has just been granted
unauthorized access to the system with the role (and identity)
associated with the first username in the table. The password
field shown in Figure 3 is also vulnerable, but we do not
demonstrate this attack for space reasons. Because no input
validation was performed, the system can be exploited for a use
that was unintended by its developers.
The exploitation of the third vulnerability requires slightly more
work than the first two, but is more threatening. Presumably, the
developer of this example web application provides different
content to a given web user (or provides no content at all)
depending on the role parameter, which is stored in a cookie. An
example code for the design decision of using a cookie is Figure
6.
The $_COOKIE[‘role’] macro extracts the value stored on the
user’s machine for the parameter passed (in this case “role”). The
web application provides one set of content for users with the
administrator role and another set of content for those with the

4 A cookie is a piece of information that is sent by a web server

when a user first accesses the website and saved to a local file.
The cookie is then used in consecutive requests to identify the
user to the server. See http://www.ietf.org/rfc/rfc2109.txt.

51

employee role. If the role parameter is anything else, the user is
redirected to authrequired.html, which presumably contains
some type of message to the user that authentication is required to
access the requested page. The vulnerability stems from the
relatively well-known fact that HTTP cookies are usually stored
in a text file on the user’s machine. In this case, the attacker need
only to edit this file and see that there is a parameter named “role”
and a reasonable guess for the authentication value would be
“admin”. The consequence is as follows: If the attacker succeeds
in guessing the correct value, the system provides content to a
user who was unauthorized to view it and the system has been
exploited.

if ($_COOKIE[‘role’] == ‘admin’)
{
 //give admin access
}
else if ($_COOKIE[‘role’] == ‘employee’)
{
 //give employee access
}
else
{
 //no role or unrecognizable role,
 //redirect to an error page.
 header(“Location: authrequired.html”);
}

Figure 6. Example authentication persistence
A countermeasure for the form input field vulnerability is simply
to escape all control characters (such as ‘ or #) from the input
variables. For the cookie vulnerability, a countermeasure would
be to dynamically generate a unique identifier for the current
session and store that in the cookie as well as the associated user
role. Because these vulnerabilities can be prevented with input
validation, they are known as input validation vulnerabilities.
Figure 6 is not a SQL injection attack; however it still represents
an input validation vulnerability. We have included it here in the
interest of completeness, but we will not focus on this type of
vulnerability in the rest of this paper.
Although a number of techniques exist to mitigate the risks posed
by SQL injection vulnerabilities [2, 6, 8, 9, 13, 14], none of these
techniques propose a methodology of adequacy as ensured by
measuring how many commands issued to a database
management system are tested by the test suite.

3. COVERAGE CRITERIA
We define two criteria for input validation testing coverage.
Client-side input validation can be bypassed by attackers [7].
Therefore, we only measure the coverage of server-side code.
The followings are basic terms to be used to define input
validation coverage criteria.

• Target statement: A target statement (within our context) is a
SQL statement which could cause a security problem when
malicious input is used. For example, consider the statement

java.sql.Statement.executeQuery(String sql)

A SQL injection attack can happen when an attacker uses
maliciously-devised input as explained in Section 2. Let T be the
set of all the SQL statements in an application.

• Input variable: An input variable is any variable in the server-
side production code which is dynamically user-assigned and
sent to the database management system. Let F represent the
set of all input variables in all SQL statements occurring in the
production code.

3.1 Target Statement Coverage
Target statement coverage measures the percentage of SQL
statements executed at least once during execution of the test
suite.

Definition: A set of input validation tests satisfies target
statement coverage if and only if for every SQL statement t ∈ T,
there exists at least one test in the input validation test cases
which executes t.

Metric: The target statement coverage criterion can be measured
by the percentage of SQL statements tested at least once by the
test set out of total SQL statements.

Server-side target statement coverage = * 100

of t#
of Test(t)#

where Test (t) is a SQL statement tested at least once.

Coverage interpretation: A low value for target statement
coverage indicates that testing was insufficient. Programmers
need to add more test cases to the input validation set for untested
SQL statements to improve target statement coverage.

3.2 Input Variable Coverage
Input variable coverage measures the percentage of input
variables used in at least one test at the server-side. Input variable
coverage does not consider all the constraints for the input
variable.

Definition: A set of tests satisfies input variable coverage
criterion if and only if for every input variable f ∈ F, there exists
at least one test that uses that input variable at least once.

Metric: The input variable coverage criterion can be measured by
the percentage of input variables tested at least once by the test set
out of total number of input variables found in any target
statement in the production code of the system.

Input variable coverage = *100
f # of

fTest# of

)(

where Test(f) is an input variable used in at least one test.

Coverage interpretation: A low value for input variable
coverage indicates that input validation testing is insufficient.
Programmers need to add more test cases for untested input
variables to improve input variable coverage.
We note here that a test set which achieves 100% input variable
coverage and 100% target statement coverage may not contain
any tests with malicious input. Consider a test set which satisfies
both coverage criteria and leverages a blacklist to test for input
validation attacks. This test set ensures that every input variable
in every target statement is tested with every attack in the
blacklist.
The relationship between target statement coverage and input
variable coverage is not yet known; however, we contend that
input variable coverage is a useful, finer-grained measurement.

52

Input variable coverage has the effect of weighting a target
statement which has more input variables more heavily. Since
most input variables are each a separate potential vulnerability if
not adequately validated, a target statement which contains more
input variables is of a higher threat level.

4. RELATED WORK
Halfrond and Orso [7] introduce an approach for evaluating the
number of database interaction points which have been tested
within a system. Database interaction points are similar to target
statements in that they are defined by Halfrond and Orso as any
statement in the application code where a SQL command is issued
to a relational database management system. These authors chose
to focus on dynamically-generated queries, and define a command
form as a single grammatically distinct structure for a SQL query
which the application under test can generate. Using their tool
DITTO on an example application, Halfrond and Orso demonstrate
that it is feasible to perform automated instrumentation on source
code to gather command form coverage, which is expressed as the
number of covered command forms divided by the total number
of possible command forms.
Willmor and Embury [18] assess database coverage in the sense
of whether the output received from the relational database
system itself is correct and whether the database is structured
correctly. The authors contend that the view of one system to one
database is too simplistic; the research community has yet to
consider the effect of incorrect database behavior on multiple
concurrent applications or when using multiple database systems.
The authors define the All Database Operations criteria as being

satisfied when every database operation, which exists as a control
graph node in the system under test, is executed by the test set in
question.

5. CASE STUDY
Research Question: Is it possible to manually instrument an
application which interacts with a database, marking each target
statement and input variable, and then dynamically gather the
number of target statements executed by a test set?
To test answer our research question, we performed a case study
on iTrust5, an open source web application designed for storing
and distributing healthcare records in a secure manner. Section
5.1 describes the architecture and implementation specifics of
iTrust. Then, Section 5.2 gives more information about how our
case study was conducted.

5.1 iTrust
 iTrust is a web application which is written in Java, web-based, and
stores medical records for patients for use by healthcare
professionals. Code metrics for iTrust Fall 2007 can be found in
Table 1. The intent of the system is to be compliant with the Health
Insurance Portability and Accountability Act 6 privacy standard,
which ensures that medical records be accessible only by authorized
persons. Since 2005, iTrust has been developed and maintained by
teams of graduate students in North Carolina State University who
have used the application as a part of their Software Reliability and
Testing coursework or for research purposes. As such, students
were required in their assignments to have high statement coverage,
as measured via the djUnit7 coverage tool.

5 http://sourceforge.net/projects/iTrust
6 US Pub. Law 104-192, est. 1996.
7 http://works.dgic.co.jp/djunit/

Table 1. Code Metrics for iTrust Fall 2007 (7707 LoC in 143 classes Total)
Package Java Class LoC Statements Methods Variables Test

Cases
Line
Coverage

AccessDAO 156 6 8 1 12 100%
AllergyDAO 61 2 3 2 5 100%
AuthDAO 184 8 10 2 23 98%
BkpStandardsDAO 61 1 5 4 0 0%
CPTCodesDAO 123 4 5 2 8 100%
EpidemicDAO 141 2 5 1 6 100%
FamilyDAO 112 3 5 2 6 100%
HealthRecordsDAO 65 2 3 2 6 100%
HospitalsDAO 180 7 8 2 18 88%
ICDCodesDAO 123 4 5 2 1 100%
NDCodesDAO 122 4 5 2 8 100%
OfficeVisitDAO 362 15 20 6 30 99%
PatientDAO 322 14 15 4 38 100%
PersonnelDAO 196 10 8 3 15 100%
RiskDAO 126 3 8 1 3 100%
TransactionDAO 135 5 7 3 10 93%

edu.ncsu.csc.itrust.dao.mysql

VisitRemindersDAO 166 2 3 1 6 100%
DBUtil 29 1 2 0 1 69% edu.ncsu.csc.itrust.dao
DAO Classes: 20 Total 2378 93 125 40 196 92%

53

In a recent refactoring effort, the iTrust architecture has been
formulated to follow a paradigm of Action and Database Access
Object (DAO) stereotypes. As shown in Figure 7, iTrust contains
JSPs which are the dynamic web pages served to the client. In
general, each JSP corresponds to an Action class, which allows the
authorized user to view or modify various records contained in the
iTrust system. While the Action class provides the logic for
ensuring the current user is authorized to view a given set of
records, the DAO provides a modular wrapper for the database.
Each DAO corresponds to a certain related set of data types, such as
Office Visits, Allergies or Health Records. Because of this
architecture, every SQL statement used in the production code of
iTrust exists in a DAO. iTrust testing is conducted using JUnit v3.0
test cases which make calls either to the Action classes or the DAO
classes. Since we are interested in how much testing was performed
on the aspects of the system which interact directly with the
database, we focus on the DAO classes for this study.
iTrust was written to conform to a MySQL8 back-end. The MySQL
JDBC connector was used to implement the data storage for the web
application by connecting to a remotely executing instance of
MySQL v5.1.11-remote-nt. The java.sql.PreparedStatement
class is one way of representing SQL statements in the JDBC
framework. Statement objects contain a series of overloaded
methods all beginning with the word execute: execute(…),
executeQuery(…), executeUpdate(…), and executeBatch().
These methods are the java.sql way of issuing commands to the
database and each of them represents a potential change to the
database. These method calls, which we have previously introduced
as target statements, are the focus of our coverage metrics.
The version of iTrust we used for this study is referred to as iTrust
Fall 2007, named by the year and semester it was built and
redistributed to a new set of graduate students. iTrust was written to
execute in Java 1.6 and thus our testing was conducted with the
corresponding JRE. Code instrumentation and testing were
conducted in Eclipse v3.3 Europa on an IBM Lenovo T61p running
Windows Vista Ultimate with a 2.40Ghz Intel Core Duo and 2 GB
of RAM.

5.2 Study Setup
The primary challenge in collecting both of our proposed metrics is
that there is currently no static tool which can integrate with the test
harness JUnit to determine when SQL statements found within the
code have been executed. As a result, we computed our metrics
manually and via code instrumentation.
The code fragment in Figure 8 demonstrates the execution of a SQL
statement found within an iTrust DAO. Each of the JDBC execute
method calls represents communication with the DBMS and has the
potential to change the database.
We assign each execute method call a unique identifier id in the
range 1, 2, … , n where n is the total number of execute method
calls. We then instrument the code to contain a call to
SQLMarker.mark(id). This SQLMarker class interfaces with a
research database we have setup to hold status information for each
statically identified execute method call. Before running the test

8 For our case study, we used MySQL v5.0.45-community-nt

found at http://www.mysql.com/

suite, we load (or reload) a SQL table with records corresponding to
each unique identifier from 1 to n. These records all contain a field
marked which is set to false. The SQLMarker.mark(id)
method changes marked to true. If marked is already true, it
will remain true.
Using this techniuque, we can monitor the call status of each
execute statement found within the iTrust production code. When
the test suite is done executing, the table in our research database
will contain n unique records which correspond to each method call
in the iTrust production code. Each record will contain a boolean
flag indicating whether the statement was called during test suite
execution. The line with the comment instrumentation shows
how this method is implemented in the example code in Figure 8.
SQLMarker.mark is always placed immediately before the call to
the execute SQL query (or target statement) so the method’s
execution will be recorded even if the statement throws an exception
during its execution. There are issues in making the determination
of the number of SQL statements actually possible in the production
code; these will be addressed in Section 7.
To calculate input variable coverage, we included a second variable
in the SQLMarker.mark method which allows us to record the
number of input variables which were set in the execute method.
Initially, the input variable records of each execute method are set to
zero, and the SQLMarker.mark method sets them to the passed
value. iTrust uses PreparedStatements for its SQL statements and
as Figure 8 demonstrates, the number of input variables is always
clearly visible in the production code because PreparedStatements
require the explicit setting of each variable included in the
statement. As with the determination of SQL statements, there are

Figure 7. General iTrust Architecture

java.sql.Connection conn =
 factory.getConnection();
java.sql.PreparedStatement ps =
 conn.prepareStatement("UPDATE
 globalVariables set SET VALUE = ? WHERE
 Name = ‘Timeout’;");

ps.setInt(1, mins);

SQLMarker.mark(1, 1); //instrumentation

java.sql.ResultSet rs = ps.executeQuery();

Figure 8. Code Instrumentation

54

similar issues with determining the number of SQL input variables
which we present in Section 7.

6. RESULTS AND DISCUSSION
We found that 90 of the 93 SQL statements in the iTrust server-
side production code were executed by the test suite, yielding a
SQL statement coverage score of 96.7%. We found that 209 of
the 212 SQL input variables found in the iTrust back-end were
executed by the test suite, yielding a SQL variable coverage score
of 98.5%. We find that iTrust is a very testable system with
respect to SQL statement coverage, because each SQL statement,
in essence, is embodied within a method of a DAO. This
architectural decision is designed to allow the separation of
concerns. For example the action of editing a patient’s records via
user interface is separated from the action of actually updating
that patient’s records in the database. We find that even though
the refactoring of iTrust was intended to produce this high
testability, there are still untested SQL statements within the
production code. The Action classes of the iTrust framework
represent procedures the client can perform with proper
authorization. Since iTrust’s line coverage is at 91%, the results
for iTrust are actually better than they would be for many existing
systems due to its high testability.
The three uncovered SQL statements occurred in methods which
were never called by any Action class and thus are never used in
production. Two of the statements related to the management of
hospitals and one statement offered an alternate way of managing
procedural and diagnosis codes. The uncovered statements
certainly could have eventually been used by new features added
to the production and thus the fact that they are not executed by
any test is still pertinent.

7. LIMITATIONS
Certain facets of the JDBC framework and of SQL in general
make it difficult to establish a denominator for the ratio described
for each of our coverage metrics. For example, remember that in
calculating SQL statement coverage, we must find, mark and
count each statically occurring SQL statement within the
production code. The fragment presented in Figure 9 contains
Java batch SQL statements. Similar to batch mode in MySQL,
each statement is pushed into a single batch statement and then
the statements are all executed with one commit. Batch

statements can be used to increase efficiency or to help manage
concurrency. We can count the number of executed SQL
statements in a batch: a dummy variable could be instrumented
within the for loop demonstrated in Figure 9 which increments
each time a batch statement is added (e.g., ps.addBatch()).
How many SQL statements are possible, though? The numerator
will always be the same as the number of DiagnosisBeans in
the variable updateDiagnoses. These beans are parsed from
input the user passes to the Action class via the JSP to make
changes to several records in one web form submission. The
denominator is potentially infinite, however.
Additionally, the students who have worked on iTrust were
required to use PreparedStatements, which elevates our resultant
input variable coverage because PreparedStatements require
explicit assignment to each input variable, and this may not be the
case with other SQL connection methodologies. Furthermore, our
metrics do not give any indication of how many input values have
been tested in each input variable in each target statement.
This technique is currently only applicable to Java code which
implements a JDBC interface and uses PreparedStatements to
interact with a SQL database management system. Finally, we
recognize that much legacy code is implemented using
dynamically generated SQL queries and while our metric for
target statement coverage could be applied, our metric for input
variable coverage does not contain an adequate definition for
counting the input variables in a dynamically generated query.
Our approach will be repeatable and can generalize to other
applications matching the above restrictions.

8. CONCLUSION AND FUTURE WORK
We have shown that a major portion of recent cyber
vulnerabilities are occurring due to a lack of input validation
testing. Testing strategies should incorporate new techniques to
account for the likelihood of input validation attacks. Structural
coverage metrics allow us to see how much of an application is
executed by a given test set. We have shown that the notion of
coverage can be extended to target statements and their input
values. Finally, we have answered our research question with a
case study which demonstrates that using the technique we
describe, it is possible to dynamically gather accurate coverage
metric values produced by a given test set.
Future improvements can make these metrics portable to different

public void updateDiscretionaryAccess(List<DiagnosisBean> updateDiagnoses)
{
 java.sql.Connection conn = factory.getConnection();
 java.sql.PreparedStatement ps = conn.prepareStatement("UPDATE OVDiagnosis SET
 DiscretionaryAccess=? WHERE ID=?");

 for (DiagnosisBean d : updateDiagnoses) {
 ps.setBoolean(1, d.isDiscretionaryAccess());
 ps.setLong(2, d.getOvDiagnosisID());
 ps.addBatch();
 }

 SQLMarker.mark(1, 2);
 ps.executeBatch();
}

Figure 9. Batch SQL Statements

55

database management systems as well as making them usable in
varying development languages. We would first like to determine
the target statement coverage and input variable coverage for
other open source applications which are not as well-tested or
testable as iTrust, to determine whether these applications’ test
sets actually test most target statements. We would also
eventually extend our metric to evaluate the percentage of all
sources of user input that have been involved in a test case. Also,
we want to augment our set of metrics with other, more stringent
metrics, such as input value coverage, which would provide some
indication of the amount of values (out of all legal values) which
have been tested for a given input variable.
In addition, we would like to automate the process of collecting
SQL statement coverage into a tool or plug-in, which can help
developers rapidly assess the level of security testing which has
been performed, as well as find the statements that have not been
tested with any test set. This work will eventually be extended to
cross-site scripting attacks and buffer overflow vulnerabilities.
Finally, we would like to integrate these coverage metrics with a
larger framework which will allow target statements and variables
which are included in the coverage to be tested against sets of pre-
generated good and malicious input.

9. ACKNOWLEDGMENTS
This work is supported by the National Science Foundation under
CAREER Grant No. 0346903. Any opinions expressed in this
material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

10. REFERENCES
[1] B. Beizer, Software testing techniques: Van Nostrand

Reinhold Co. New York, NY, USA, 1990.
[2] S. W. Boyd and A. D. Keromytis, "SQLrand: Preventing

SQL injection attacks," in Proceedings of the 2nd Applied
Cryptography and Network Security (ACNS) Conference,
Yellow Mountain, China, pp. 292-304, 2004.

[3] B. Brenner, "CSI 2007: Developers need Web application
security assistance," in SearchSecurity.com, 2007.

[4] M. Cobb, "Making the case for Web application
vulnerability scanners," in SearchSecurity.com, 2007.

[5] W. G. Halfond, J. Viegas, and A. Orso, "A Classification of
SQL-Injection Attacks and Countermeasures," in
Proceedings of the International Symposium on Secure
Software Engineering, March, Arlington, VA, 2006.

[6] W. G. J. Halfond and A. Orso, "AMNESIA: analysis and
monitoring for NEutralizing SQL-injection attacks," in
Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, Long
Beach, CA, USA, pp. 174-183, 2005.

[7] W. G. J. Halfond and A. Orso, "Command-Form Coverage
for Testing Database Applications," Proceedings of the IEEE
and ACM International Conference on Automated Software
Engineering, pp. 69–78, 2006.

[8] Y. W. Huang, S. K. Huang, T. P. Lin, and C. H. Tsai, "Web
application security assessment by fault injection and
behavior monitoring," in Proceedings of the 12th
International Conference on World Wide Web, Budapest,
Hungary, pp. 148-159, 2003.

[9] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic, "SecuBat: a
web vulnerability scanner," in Proceedings of the 15th
international conference on World Wide Web, Edinburgh,
Scotland pp. 247-256, 2006.

[10] G. McGraw, Software Security: Building Security in. Upper
Saddle River, NJ: Addison-Wesley Professional, 2006.

[11] J. Offutt, "Quality attributes of Web software applications,"
IEEE Software, vol. 19, no. 2, pp. 25-32, 2002.

[12] E. Ogren, "App Security's Evolution," in DarkReading.com,
2007.

[13] T. Pietraszek and C. V. Berghe, "Defending against injection
attacks through context-sensitive string evaluation," in
Recent Advances in Intrusion Detection (RAID). Seattle,
WA, 2005.

[14] F. S. Rietta, "Application layer intrusion detection for SQL
injection," in Proceedings of the 44th annual southeast
regional conference, New York, NY, pp. 531-536, 2006.

[15] D. Scott and R. Sharp, "Developing secure Web
applications," Internet Computing, IEEE, vol. 6, no. 6, pp.
38-45, 2002.

[16] Z. Su and G. Wassermann, "The essence of command
injection attacks in web applications," in Proceedings of the
Annual Symposium on Principles of Programming
Languages, Charleston, SC, pp. 372-382, 2006.

[17] H. H. Thompson and J. A. Whittaker, "Testing for software
security," Dr. Dobb's Journal, vol. 27, no. 11, pp. 24-34,
2002.

[18] D. Willmor and S. M. Embury, "Exploring test adequacy for
database systems," in Proceedings of the 3rd UK Software
Testing Research Workshop, Sheffield, UK, pp. p123-133,
2005.

[19] H. Zhu, P. A. V. Hall, and J. H. R. May, "Software Unit Test
Coverage and Adequacy," ACM Computing Surveys, vol. 29,
no. 4, 1997.

56

