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Abstract

With the availability of high-level declarative query

languages in an object-oriented database system

(OODB), the burden of choosing an efficient execu-

tion plan for a query is transferred from the user to

the database system. A natural first step is to use the

typing constraints imposed by the schema to trans-

form a query into an equivalent one that logically

accesses a minimal set of objects. We propose a class

of queries called conjunctive queries for 00DB ‘s. A

conjunctive query can be expressed as an equivalent

union of queries in a special form called terminal con-

junctive queries. We first characterize the contain-

ment, and hence equivalence, conditions for the class

of terminal conjunctive queries. We then study a sub-

class of conjunctive queries called positive conjunctive

queries. We characterize the containment and equiv-

alence conditions, as well as derive an algorithm for

finding an exact minimization for the class of positive

conjunctive queries. The equivalent minimized query

is expressed as a union of terminal positive conjunc-

tive queries with the property that the variable search

space is minimal among all the unions of positive con-

junctive queries.
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1 Introduction

The initial attempts at constructing Object-Oriented

Database Systems (OODB ‘s) provided only naviga-

tional programming languages for manipulating data

[25, 6], The lack of query languages likes those avail-

able in the relational systems has been criticized as

a major drawback of the object-oriented approach

[32, 4]. Consequently, recent research on OODB’S has

emphasized the importance and the design of high-

level declarative query languages [9, 12, 2, 5, 19, 17].

Most, if not all, of the second generation commercial

00DB’s provide or will provide some form of high-

level declarative query languages [27, 14, 26, 20, 21,

23].

The query languages, like those of the relational

model, transfer the burden of choosing an efficient

execution plan for a query to the database system.

This causes a resurrection of the study of query

optimization problem in the object-oriented setting

[15, 22, 28, 30, 8, 31, 7, 18]. Optimization of queries

in an 00DB is, for various reasons, inherently diffi-

cult [4, 15, 22]. Indeed, critics of the object-oriented

approach frequently point to the theoretical limita-

tions to query optimization as a major drawback of

the object-oriented approach as compared with the

relational approach

Although the optimization problem in general is in-

herently difficult for object-oriented queries, it would

be highly desirable if techniques could be developed

to assist the efficient processing of important sub-

classes of queries in such an environment. In an

00DB, classes are named collections of similar ob-

jects. A class could be refined into subclasses. Sub-

classes are specialization of their superclasses. Spe-

cialization of a class is achieved by refining and/or

adding properties to its superclasses. Since properties

of a superclass are also properties of its subclasses, a
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subclass is said to inherit the properties of its super-

classes. Class-subclass relationships form an acyclic

directed graph called inheritance or generalization hi-

erarchy. Properties areattributes or methods defined

on types; they are applicable only to instances of the

types. In effect, therefore, types are constraints im-

posed on objects in the classes. A natural first step

in query optimization is to use the typing constraints

implied by the schema to minimize the search space

for variables involved in the query. Properties are for-

mally denoted as attribute-type pairs in this paper.

Example 1.1 The following is a schema for a vehi-

cle rental database.

Vehicle

IId Int
Model Str
Maker Str, I

Auto ‘ Tratler Truck

am -

Chent

Normal Discount

‘E2E!E1

In thus application, Auto, Trailer and Truck are

subclasses of the superclass Vehicle. There is a sub-

class of clients, called discount customers, who receive

a special rate and are not required to make a deposit

on the vehicles rented. However, discount customers

only al!ow to rent automobiles, and not other types of

vehicles.

Suppose we want to find out all those vehicles

currently rented to discount clients. Express in a

calculus-like language, the query looks like { x ~ 3y

(XE Vehicle & rediscount @ xEy. VehRented)). Since

discount clients are allowed to rent Auto only, the

above query is equivalent to the following qaery: {

x [ 3y (zEAuto &’ y~Dwcount & Ky. VehRented)).

The latter query is considered more opttmal since the

search space for each vartable is minimal, given the

typing constraints imposed by the schema. ❑

Example 1.2 Let us consider the following database

schema and let us assume that objects in classes N1,

N2 and G are partitioned by objects in thetr corre-

sponding subclasses.

N, N2

m&lbd
G

/\

H I

Consider the following query:

Q: { x I ~Y ~s (xENI @ yEG @ sEH @ y=x.B &

ycx.A 6 sCX.A)}.

The quey Q retrieves all those objects in N1 such

that the A-component of the object contains its B-

component as we!! as an object from the class H. Since

x ranges over the class N1 and N1 is partitioned by its

subclasses, x is an object from Tl, T2 or T3. The ob-

ject denoted by x cannot be an object from T1 because

T1 does not have the attribute B. Then either x is an

ob]ect in the class T2 or an object in the class T3. If

x denotes an object from T3, then its A-component

contains objects from the class I. Consequently, the

condition ‘SEZ. A’ is unsatisfiable. Hence x can only

range over objects in class T2. In fact, Q is what

we will call a positive conjunctive query. By a result

in Section 4, Q is equivalent to the followzng unton of

queries: { x 13y (XET2 & ycH & y=x.B @ yGx.A)}U{

z I ~y IS (xGT2 @ YEI & sEH @ y=x. B 8 y~x. A @

SE X.A)J. The above union of queries is opttmal m the

sense that the variable search space M minimal among

all the unions ofpositiue conyanctive queries. ❑

Inequalities could be implied by conditions in a

query. This makes our problem even more complex.

Example 1.3 Let Cl T1 and T2 be distinct unrelated

classes an a schema with T1 and T2 are subtypes or

subclasses of the type of C.A, where A is an attribute

of C. Consider the following queries:

QI: { xl ~y~slt (xEC@yEC&s~Tl &tCT2 @

s=x.A @ t=y.A @ X#y)).

Q2: { Xi ~y~slt(XEC@yGC@s~T1 tYtGT2 @
s=x./i & t=y.A)}.
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Since T1 and T2 are distinct unre[ated classes, the

objects denoted by the variables s and t are distinct

objects. This implies the inequality of z and y in both

Q1 and Q2. By a result in Section 3, Q1 and Q2 are

in fact equivalent. •l

Most work on query optimization in the area of

object-oriented databases concentrated on complex

object optimization without considering the inher-

itance hierarchy [15, 22, 28, 30, 31, 7, 18]. Type

checking of queries in the presence of non-strict in-

heritance hierarchy was studied in [8]. Our work is

different from previous approaches in several impor-

tant respect. Firstly, we use the typing constraints

imposed by the inheritance hierarchy to study the

cent ainment and equivalence of queries. Secondly,

our optimization is an exact minimization while the

previous work are basically algebraic transformations

and/or heuristic [15, 22, 28, 30, 31, 7]. Lastly, we

derive algorithms for containment and minimization,

and not just studying the decidability of equivalence

as in [18]. However, in order to prove our results, we

restrict ourselves to a special kind of queries which

we will call positive conjunctive queries.

In the relational model, the class of conjunctive

queries [11, 3] represents a natural and important

subclass of relational queries that most often asked

by a user. In this paper, we propose an object-

oriented counterpart of conjunctive queries. The pro-

posed conjunctive queries are essentially constructed

from existential quantifiers, equalities, set member-

ships and negations. As was shown in Example 1.3

above, negations are inevitably implied by ‘positive’

conditions in a query in an object-oriented setting.

As a matter of fact, all the queries in the above ex-

amples are inst antes of conjunctive queries. We then

study the containment and minimization problems for

subclasses of such queries.

The next section defines the class of conjunctive

queries and some basic notation. In Section 3, we in-

vestigate the containment condition for terminal con-

junctive queries. We characterize the containment,

and hence equivalence, conditions for terminal con-

junctive queries as well as for some of its interesting

subclasses. In Section 4, we study the class of posi-

tive conjunctive queries and we find the containment

and equivalence conditions. We also derive an algo-

rithm for obtaining an exact minimization of posi-

tive conjunctive queries. The notion of minimization

captures the intuition of minimization of the variable

search space in a class of queries. Finally, we give our

conclusions in Section 5.

2 Definitions and Notation

2.1 Classes and Schemas

In this section, we just briefly define some basic nota-

tion used throughout this discussion. Following [24],

we introduce the notion of schema. A schema S is a

triple (C, a, +), where C is a set of class names, ~ is

a function from C to tuple types, and < is a partial

order on C. Let type- ezpr(C) be the set of all types

that only involve class names in C. The mapping u

associates a class name a tuple type in type-e2pr(C)

which describes its structure. As noted in [16], there

is no loss of representation power by restricting the

structures of classes to tuple types. As in [24], we

only consider schemas that are consistent.

We have class names in a schema. The < relation-

ship among classes represents the user-defined inher-

itance or generalization hierarchy. A+B denotes the

class A is a subclass of B. Subclasses are obtained

by refining and/or adding properties to its super-

classes. We assume the hierarchy has no cycle of

length greater than 1. A class AEC is said to be

terminal if there is no other class B#A such that

B<A. Otherwise A is non-termmal. A class B is a

descendant of a class A if B<A. Following [2, 24], we

derive from this hierarchy a subtyping relation among

expressions in type-ezpr(C). Throughout the discus-

sion, we assume what we will call the Terminal Class

Partitioning Assumption. That is, given any legal

state, objects in every non-terminal class are parti-

tioned by objects in its terminal descendants. This

assumption was stated explicitly in Example 1.2.

2.2 A Class of Conjunctive Queries

with Negation

In this section, we define a calculus-like query lan-
guage for an object-oriented database. The language

defined below modeled after query languages in sys-

tems like 02 and Orion [27, 21], and is similar to a

language proposed for a complex object model [1].
In this query language, users extract data from ob-

jects in a state by specifying a condition in the query.

Query languages which allow explicit creation of ob-

ject identifiers are also proposed and studied in the

literature [2, 19, 17].

Queries are constructed from a set of variables,

equality operators ‘=) and ‘#’, membership opera-

tors ‘G’ and ‘@’, logical operators ‘&’ and ‘V’, as well

as existential quantifiers.

First we define the concept of term.

us to refer to a component in an object.

a term flz) is of the following form: z
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x is a variable and A an attribute.

An atom or an atomic formula is defined as one of

the following:

1.

2.

3.

It

Z6CI V.. V Cn, where 19is one of {~, ~}, C~’s

are class names, and x a variable. An atom XE Cl

v . . . V Cn is called a range atom and it asserts

that the variable z is an object in C;, for some

l<i<n. An atom X@CIV . . . V Cn is called a non-

range atom and it asserts that the object the

variable z represents cannot be a member of class

Ci, for any l<i<n.—.

g(~) @ h(v), where g(r) and h(y) are terms involv-

ing variables z and g, respectively, L9is one of {=,

#}. The atoms g(z) = h(y) and g(x) # h(y) are

called equah’ty and inequality atoms, respectively.

The equality atom asserts that the operands de-

note the identical object. Likewise, an inequality

atom asserts that the operands denote different

objects.

x 0 y.A, where 0 is one of {c, @}. The atoms

xEy.A and @y. A are called membership and non-

membership atoms, respectively. A membership

atom asserts that the object denoted by z is a

member of the set object denoted by y.A. A non-

membership atom asserts that ~ is not a member

of y.A,

is worth noting that path expressions of the form

X.Al. . . An, and at&s of ~he form y.A O Cl V . . . V C.

or of the form x.A O y.B, where L9is one of {E, ~}, can

be represented indirectly in our language. A formula

is constructed from atomic formulas, logical operators

‘&’ and ‘v’, as well as existential quantifiers. Bound

and free variables are defined in the usual manner. A

query is an expression of the form { so I flso, S1 , . . .

J %)}, where all occurrences of so are free and Si‘s,

1< i< m, are the set of bound variables in the formula

f. A query { so I f(so, S1 , . . . , s~)} is conjunctive

ifj(so, sl, .,. , s~) is of the form Qlsl...Q~s~(M),

where every QP SP is an existential quantifier, ~ is a

formula cent aining no quantifier, and M is a conjunc-

tion of atomic formulas. QI SI . . . Qmsm is called the

prefix and M is called the matrix of the formula or

the query. An atom is positive if it is a range, equal-

ity or membership atom. A conjunctive query { so

Iflso, sl, ..., Sin)} is posttive if it involves only

positive atoms.

A component of an object may have an unknown

value. Consequently, we introduce the null value ‘A’

as a possible attribute value for an object. With null

values are allowed, a logic, called 3-value logic, is used

to evaluate queries [13].

Given a state s, an answer to a query is defined in

the usual way. That is, the free variable in the query

is first mapped to an object via an assignment a. An

answerof { so ]fiso, S1 , . . . , Sin)} w.r.t. s via a is

a(so), if the closed formula fla(so), S1 , . . . , s~) is

evaluated to true in s using the 3-value logic. If Q

is a query and s is a state, the answer of the query

w .r.t, s, denote Q(s), is the collection of answers of

the query w.r.t. s. A query Q is satasjiable if there

is a state s such that Q(s) is non-empty. Given two

queries F and G (on a schema S), F is said to contain

G, denotes Fa G, if F(s) z G(s), for all states s on

S. Two queries F and G are said to be equivalent,

denotes 1% G, if they contain each other.

2.3 Well-formed Conjunctive Queries

We consider only those queries in which each term

either denotes an object, or a set of objects, but not

both. We called such class of queries well-formed

queries. Well-formed queries include safe as well as

unsafe queries that produce infinite answers [33]. The

following defines when a query is well-formed.

Given a conjunctive query, additional equalities

among terms can be inferred with the following al-

gorithm. The edges labelled with ‘=’ in a graph in

the following algorithm are called equality edges.

Algorithm Equality Graph: Given a conjunctive

query, generate additional implied equality

edges.

Input: A conjunctive query Q.

Outputi A graph E(Q), called the complete equahty

relationship graph for Q.

Method:

(1) Generate a graph with terms in Q as nodes. Gen-

erate equality edges by applying the following

three steps exhaustively to the graph until no

more edges can be derived.

(i) For each term fix), derive the equality edge

fi~)=flz). For each equality atom ‘flz)=g(y)’,

generate an equality edge, between the node

‘fir)’ and the node ‘g(y)’, if no such edge exists

between them.

(ii) If f(x)=g(y) and g(y)=h(z) are equality edges,

then derive the equality edge fix) =h(r), if no such

edg~ exists between them.

(iii) If z and y are variable nodes, z = y is an

equality edge, and both x.A and y.A are nodes

in the graph, then derive the equality edge x.A

= y.A, if no such edge exists between them.
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(2) Output the graph constructed.

Given the complete equality relationship graph

E(Q) for a conjunctive query Q, define an equivalence

relation as follows. For each term j(x) in E( Q), define

~z)] to be {g(y) I g(y) is a node in -E(Q) and there is

an equality edge between j-(z) and g(y)}. Since equal-

ity is an equivalence relation, it partitions terms in

E(Q). The equivalence classes defined above are said

to be equivalence classes in E( Q).

Let Q be a query. An occurrence of a term j(y)

in the matrix of Q is a set occurrence if the occur-

rence appears on the right-hand side of a member-

ship or non-membership atom. All other occurrences

in the matrix of Q are object occurrences. A term fix)

is an object term if there is an object occurrence of

g(g)g~z)] in the query. A term f(z) is an set term if

there is a set occurrence of g(g)E ~z)] in the query.

A conjunctive query Q is well-formed if (i) every

term in Q is either an object term or a set term, but

not both, (ii) each object term of the form z.A is

equated to some variable, that is, there is a variable z

in the equivalence class [z. A], and (iii) every variable

in Q ranges over exactly one disjunction of classes,

that is, there is exactly one range atom associated

with each variable.

The conditons (ii) and (iii) are not really restric-

tions, since an object term can always be equated to

some distinct variable and every variable can range

over all classes in the schema. If there is a vari-

able ranges over more than one disjunction, then

by introducing new variables and equalities of vari-

ables, the original query can be converted into an

equivalent query in which every variable ranges over

exactly one disjunction. These two conditions are

needed to simplify the discussion in the subsequent

sections. Throughout this discussion, we use the term

a conjunctive query to mean a well-formed conjunc-

t ive query.

2.4 Transforming

Conjunctive Queries into Unions

of Terminal Conjunctive Queries

A conjunctive query Q is terrnin al if range atoms in

Q are of the form ‘ZC C“, where C is a terminal class

name. Given a conjunctive query Q, it can always be

converted into an equivalent union of terminal con-

junctive queries.

Example 2.1 Consider the cony-inctive query in Ex-

ample 1.1: { x I 3y (XE Vehac!e & yCDiscouni @

ZEY. VehRented)}. Vehicle is not a termtnal class

while Discount is. Since there are three types of ve-

hicles and assummg that ali vehzcle objects are par-

titioned by objects m these subclasses, then the query

is equivalent to the following union of terminal con-

junctive quertes:

{ x ~3y (x~Auto & yGDtscount @ x~y. VehRented)]

u{

x ~ 3 y (XE Trailer &’ rediscount & xey. VehRented)J

u{ x ~ 3y (XG Truck & y~Discount &

x~y. VehRented)}. ❑

Proposition 2.1 Let Q = { t I 3s h(s, t)} be a con-

junctive query. Then Q can always be converted into

an equivalent union of queries of the following form:

QI={ t I % h,(s, t)} U U Qn={ t I % hn(s, t)},

where each Qi is terminai and con~ttnctive.

[Proof]: Omitted. ❑

2.5 Testing Satisfiability of Terminal

Conjunctive Queries

In this subsection, we turn to the problem of deter-

mining if a terminal conjunctive query is satisfiable.

Theorem 2.2 There is an eficient algorithm for de-

termining if a terminal conjunctive query is satisfi-

able.

[Proof]: See [10]. ❑

Given a satisfiable terminal conjunctive query Q,
the non-range atoms in Q can be removed without

changing the answer of Q. We assume from now on

that a satisfiable terminal conjunctive query has no

non-range atom.

3 Containment of Terminal

Conjunctive Queries

In this section, we study and characterize the contain-

ment condition for two terminal conjunctive queries

in our language. We assume in this section that a

given terminal conjunctive query is satisfiable. The

containment condition is characterized by what we

will call non-contradictory variable mappings.

3.1 Non-Contradictory Variable Map-

pings

Let Q= {tlh(s, t)} be a query and S= {Al , . . . . An}

a set of atoms defined on variables in Q. We denote

Q&Sas {tl h(s, t) & Al & Az &.&An}.

We now define the concept of derivability of positive

atoms from a given query. Recall that an atom is

206



positwe if it is of the form CK C’, ‘fix) = g(y)’, or

‘x~g(y)’. Let Q be a terminal conjunctive query and

E(Q) be the complete equality relationship graph for

Q
Q is said to dertve x= C, denoted as QI-xE C, if and

only if ‘XE C’ is an atom in Q.

Q is said to derive fix)= g(y), denoted as Qhflz) =

g(Y), if and only if there are SE [z] and tE[y] such that

f(s) and g(i) are object terms in Q and fis)e[g(t)].

Q is said to derive xEy.A, denoted as QFxEy.A, if

and only if there is SC[Z] and t=[Y]such that ‘sct,A’

is an atom in Q.

We define when a query contradicts an inequality

or non-membership atom as follows. As pointed out

in Section 2.5, we do not have to consider non-range

atoms.

Q does not contradict fl~)+g(y) if and only if there

are sc [x], t~[y]such that fis) and g(t) are both object

terms in Q and Q&{fls)#g(t)} is satisfiable.

Q does not contradict x@y.A if and only if x is a

variable in Q and there is t~[y]such that t,A is a set

term in Q and Q&{x@t.A} is satisfiable.

Let H be a variable mapping from Qz to QI.

The mapping p from Q2 to Q1 is said to be non-

contradictory if for every positive atom A in Q2, Q1

Fp(A), and for every non-membership or inequality

atom in Q2, Q1 does not contradict p(A). Otherwise

p is contradictory.

Let Q be a terminal conjunctive query. A function

T on variables in Q is said to be a standardization

function if for any pair x and y of variables in any

equivalence class [g(z)] in E( Q), where g(z) is an ob-

ject term in Q, ~(x) = ~(y) = m, where m is a variable

in [g(z)].

3.2 Main Results

The containment condition

contradictory mappings.

is defined via non-

Example 3.1 Let C and D be terminal classes and

let {D} be a subtype of type(C’. B), where B is an

attribute of C. Consider the following two terminal

queries:

QI: { $ I all ~z (xEc @ yEc @ zED & %=y.A @

.zEy. B & X+}.

Q2: { Y I ~Z (yEC & ZGD @ %=y.A)}.

The query Q2 retrieves ob~ects m class C with a

non-null A-component. There is a non-contradictory

mapping p from Q2 to Q1. The mapping p is dejined

as follows: p(y) = z and p(z) = z. We need to show

that for each atom A in Qz, Qlkp(A).

When A is y~ C, P(A) is XE C which is clearly dertv-

able from Q1. Similarly when A is ZED.

When A M z = y.A, p(A) M z = x.A, Since y~[x]

in E(Q1) and y.A is an object term in Q1, zc[y.A] in

E(Q1). Therefore Qltz = x.A.

By a result in this section, Q1~ Qz. Informallyj

whenever there is a satisfying assignment a for Q1,

a maps y.A (or x.A) to a non-null value. Hence

Q1GQ2.
The only variable mapping p from Q1 to Q2 that

preserves range atoms is to map x and y to the vari-

able y and map z to z. However, p(z)Gp(y.B) =

Kp(y). B = z Ey. B which is not derivable from Q2.

By a result in this section, Q2~ Q1. ❑

The presence of inequality and non-membership

atoms makes our characterization more complicated.

Example 3.2 Let C be a terminal class. Consider

the following three terminal conjunctive queries:

Ql:{X12Y ~Z(XEC&yEC&ZEC&+y @

y+z)}.

Q2: { x I qY (x~C@yEC&x#y)}.

Q3: { xl ~Y~z(x~C@YEC&zEC&@y@y+z
& X#z)}.

At the first glance, perhaps the first two queries are

not equivalent. It is easy to see that QIL Q2. How-

ever, Q2S Q1 since the condztion in Q1 only requires

the existence of two dzstinct ob~ects to be saiisjiabie.

Q3 is not equivalent to Q1 stnce the condition in Q3

requires the existence of three distinct objects. Clearly

QS~Q1, ❑

Example 3.3 Let T1 and T2 be distinct termi-

nal classes in a schema with T1 as a subclass of

type(T2.A). Consider the following two terminal con-

junctive quen’es:

QI: { $ I ~Y (xETI & yETz)}.

Q2: { ~ I ~y (x~Tl u YGTZ ~ x@y.A)}.
It is easy to see that Q2G Q1. The reason that

QI fZ Q2 is due to the fact that there iS some stute

in which there is a satwfying mapping p from Q1 to

ob~ect identtjiers in the state with p(x) as a member

of ,u(y. A), but there is no satisfying mapping a from

Q2 to s with cr(x) = p(x). For states like these, an

answer generated by Q1 need not be generated by Q2.

❑

Example 3.3 suggests that to determine if Q1 ~ Qz,

we may have to augment Q1 with some membership

as well as equality atoms to represent all possible

states from which the same answer is generated for

QI ~
Let Q be a query and S be a (possibly empty) set of

equalities of variables from Q. Then Q&S is said to be

a consistent augmentation of Q if Q&S is satisfiable.

We are now ready to state the containment condi-

tion for two terminal conjunctive queries.
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Theorem 3.1 Let Q?l = { tl I Ml} and Qz = { t2 I

Mz} be terminal conjunctive queries. Q1~ Q2 tf and

only if for every consistent augmentation QI 8’S of

Ql, and for every subset W of T, where T = { xGt.P

~ Q&S/Y{ xet.P) is satisfiable, t.P is a set term and x

is a variable in QI @S}, there is a variable mapptng p

from Q2 to QI tYStY W satisfying the foltowing:

(i) r(p(tz)) = r(tl), for any standardization func-

tion T on QI tYS&W, and

(ii) p is non-contradictory.

[Proof]: Omitted. ❑

An atom is said to be a non-m equahty atom if it is

not an inequality atom.

Corollary 3.2 Let QI = { tl I Ml} and Q2 = { t2

I A42} be terminal conjunctive queries and that Q2

involves on~y non-inequality atoms. Let T = { x~t. P

I Q&{r~t.P} is satisfiable, t.P is a set term and x is

a variable in Ql}. QIGQz if and only if for every

subset W of T, there is a varaable mapping p from

Q2 to QI @ W satisfying the following:

(i) r(p(t2)) = r(tl), for any standardization func-

tion T on Q1 &W, and

(ii) p is non-contradictory.

[Proof]: Omitted. ❑

Corollary 3.3 Let QI = { tl I Ml} and Q2 = { t2]

M2] be terminal conjunctive queries and that Q2 in-

volves only posdzve and inequality atoms. QI ~ Q2 if

and only if for every consistent augmentation Q1 /3S,

there is a variable mapping p from Q2 to QI /YS sat-

isfying the following:

(i) r(p(tz)) = r(tl), for any standardization func-

tion r on QI /3S, and

(ii) p is non-contradictory.

[Proof]: Omitted. ❑

The characterization of containment of positive ter-

minal conjunctive queries is simpler.

Corollary 3.4 Let QI = { tl I Ml} and Q2 = { t2

I Mz} be terminal conjunctive queries and that Q2

is positwe. QI c Qz if and only if there is a vartable

mapping p from Q2 to Q1 satisfying the followtng:

(a) r(’(t2)) = r(tl), for any standardization func-

tion T on Ql, and

(zi) p M non-contradictory.

[Proof]: Omitted. •I

4 Containment and Minimiza-

tion of Positive Conjunctive

Queries

In this section, we first characterize the containment

condition for positive conjunctive queries. We then

derive an algorithm that, given a positive conjunctive

query as the input, finds an optimal equivalent query

among all the unions of positive conjunctive queries.

The optimal query is expressed as a union of terminal

positive conjunctive queries.

Theorem 4.1 Let M = QI U ~. uQ, and N = PI

U. ~. UPt be two unions of terminal positive conjunc-

tive queries. M&N if and only if for each Q% in M,

there is a Pj in N such that Qi~Pj.

[Proof]: Omitted. ❑

In the rest of this section, we derive an algorithm

that finds an exact minimization for the class of pos-

itive conjunctive queries. The techniques used here

are similar to those in [29], except that we have set

membership operators and we do not use tableaux in

the minimization process.

Let Q be a conjunctive query and x be a variable in

Q. Define term- class( Q, r) = {El x= Cl V . ~. V(& is

the range atom involving x in Q and E is a terminal

descendant of some C’i }. Informally, term- class( Q, x)

gives the terminal descendent classes over which the

variable x is ranging in the query.

We are now ready to define our notion of optimal-

ity. Let Q and P be two queries. Q is said to be more

optimal than P, denote Q< P, if

1.

2.

Q and P are equivalent and

for each terminal class name C’, the total number

of occurrences of C in term- class( Q, y), for every

variable y in Q, is less than or equal to the total

number of occurrences of C in term- class(P, z),

for every variable z in P.

A query Q is search-space-optimal among a set of

queries S if for all P in S such that P< Q, Q< P. For

search-space-optimal queries, the sets of objects log-

ically accessed by the queries are minimal among all

queries in S.

The following example illustrates the main idea be-

hind our optimization technique.

Example 4.1 Let us consider the database schema

in Example 1.2. We argued that the following query

is not mintmal in the variable search space,

Q: { z ~~Y ~s (xENI @ yEG @ sEH &’ y=x.B &

yEx.A & S~X.A)}.
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Q is not a terminal query, by Propostt~on 2.1, Q

is equivalent to the following union of terminal con-

junctive queries.

Ql:{ x I ~?l 3s (Z~Tl & yEH @ sEH @ y=z.B &

YELA 8 sEx.fi)}.

Q2:{ x I ~y Zs (xET2 & YEH @ sEB @ y=x.B &

YEZ.A 8 sEx.A)}.

Q3:{ x I 3% as (xET3 @ YEH @ sEH & y=x.B @

YEX.A @ sEx.A)}.

Q4:{ x I ~y ~s (X~Tl &’ YEI @ sEH @ y=x.B &’

YEZ.A 8 sEx.A)}.

Q5:{ $ I d!l 3s (zET2 @ YEI @ sEH & y=z.B (%’

YGX.A & sGx.A)}.

Q6:{ x 1 3Y ~S (xET3 & y~~ @ sEH & y=x.B &

YEX.A @ sEx.A)}.

QI and Q4 are unsatisfiable since B is not an at-

tribute of T1. Q3 and Q6 are unsatisjlable since T3.A

is of type {I} and therefore the condition ‘SCX. A’ is

unsatisfiable. Hence Q is equivalent to Q21JQ5. In

fact, Q2uQs is nonredundant since neither one con-

tains the other. Q2 can be minamized by mapping z

to itseif and by mapping y and s to y. The resulting

mintmtzed query M Q2 ‘: { x I 3y (XETz & yEH &

y=x. B & ycx. A)}. By a result proven in this sectton,

Q2 ‘ and Q~ cannot be minimized any more. More-

over, Q2’ UQ5 M search-space-optimal among all the

untons of positive conjunctive queries. ❑

A union of queries Ql(s, t)U... UQn(s, t) is nonre-

dundant if there are no Qi and Q3, i#j, such that

QiGQj. Since we know the containment condition

for terminal conjunctive queries, finding a nonredun-

dant union for a union of terminal positive conjunc-

tive queries can be done algorithmically. The fol-

lowing is an important property about nonredundant

unions of terminal positive conjunctive queries.

Theorem 4.2 Let M = QI U... UQ, and N = PI

u... UPt be two unions of nonredundant positive ter-

minal conjunctive queries. M~N if and only zf for

each Qi in M, there is a unzque Pj m N such that

Qi~Pj and vice versa. Moreover, s=t.

[Proof]: Omitted. D

Obtaining a nonredundant union is only the first

step in finding a search-space-optimal query. The

next step is to minimize the number of variables in

each of the remaining subqueries. A mmimal termi-

nal conjunctive query of Q is an equivalent terminal

conjunctive query with the minimal number of vari-
ables. We now show how to find minimal terminal

positive conjunctive queries.

Let Q be a conjunctive query and p be a variable

mapping on Q. Then p(Q) is a conjunctive query ob-

tained by transforming the variables and atoms in Q

with the mapping H in the natural manner. A map-

ping ~ is said to preserve a variable x if p(z)~[z].

Theorem 4.3 Let Q be a terminal positive conjunc-

tive query. Suppose there is a non-contradictory vari-

able mapping from Q to itself that preserves the free

variabie. Then P(Q) is equivalent to Q.

[Proof]: Omitted. ❑

Corollary 4.4 A terminal positive conjunctive query

Q is minimal if for all non-contradictory variable

mappmgs from Q to itself that preserve the free vari-

able are btjective.

[Proof]: Omitted. ❑

The following theorem describes an important

property about minimal terminal positive conjunctive

queries.

‘Theorem 4.5 Let QI and Q2 be minimal termmal

posttwe conjunctwe queries. Suppose Q1 z Qz. Then

for al! non-contradictory variable mappings from one

query to the other, the mapping is a btjective function.

[Proof]: Omitted. ❑

The resulting union of terminal positive conjunc-

tive queries after removing redundant subqueries and

minimizing the variables in the remaining subqueries

is search-space-optimal among all the unions of posi-

tive conjunctive queries. The argument follows from

Theorem 4.2 and Theorem 4.5.

5 Conclusion

Query optimization is an important and yet diffi-

cult problem in an OODB. The types of attributes

in an inheritance hierarchy can be considered as con-

straints imposed on objects in a state. In this paper,

we studied the containment and minimization prob-

lems for a class of natural queries called conjunctive

queries. A conjunctive query can be expressed as an

equivalent union of terminal conjunctive queries. We

first characterized the cent ainment, and hence equiv-

alence, conditions for the class of terminal conjunc-

tive queries. We then studied a subclass of conjunc-

tive queries called positive conjunctive queries. We

characterized the containment and equivalence con-

ditions, as well as derived an algorithm for finding

an exact minimization for the class of positive con-

junctive queries. The equivalent minimized query is

expressed as a union of terminal positive conjunctive

queries with the property that the variable search

space is minimal among all the unions of positive

conjunctive queries. We shall investigate the mini-

mization problem for conjunctive queries in general

based on the result obtained in this paper.
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