
Pattern Matching by

to

Rs-Operations: Towards a Unified Approach

Querying Sequenced Datat

(Extended Abstract)

Seymour Ginsburg and Xz’aoyang Wang

Computer Science Department

University of Southern California

Los Angeles, CA 90089-0781

{ginsburg,xywang} f2pollux.UsC.edU

Abstract

A family of sequence operations (rs-operations), based on

pattern matching and including most of the “natural”

operations on sequences, is introduced. In order to apply

rs-operations to calculu~like query languages, a logic about

sequences (SL) is defined by converting rs-operations to

special predicates. To illustrate the applicability of our

concepts to database queries, rs-operations and SL are used

in an algebra and a calculus, respectively, over an extended

relational data model containing sequences.

1 Introduction

It is generally accepted that sequences (or lists) are use-

ful in many database applications [4, 14, 15]. Because

of this, “new-generation” database systems, e.g., EX-

ODUS [6], Galileo [3], 02 [5, 8] and Vbase [12], usu-

ally support “sequenced data.” In order to query the

sequenced data, these systems require appropriate se-

quence operations. However, the sequence operations

in the systems are usually chosen in an ad hoc manner.

Also, the essential properties of the selected operations,

such as “expressiveness, “ “completeness” and “indepen-

dence,” are not well understood. A major underlying

cause for this situation may be the lack of a unifying

theoretical mechanism for defining and studying most,

if not all, of the desired operations. The purpose of this

paper is to show that “pattern matching” of a simple

t ‘J’& ~esewch ~aS supported in pwt by the National Science

Foundation under the grants CCR-861S907 and IRI-8920930 and

the Air Force Office of Scientific Research under the graut 89-0244.

Permission to copy without fee ail or part of this material is
grented provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or spacific permission.

11th Principles of Database Systems/6/92/San Diego, CA
B 1992 ACM 0-89791 .520.8 /92/0006 /0293 . ..$1 .50

kind can be used as such a mechanism to specify and

investigate most of the “natural” sequence operations.

Sequence operations in database query languages

tend to be “high-level” in nature (in contrast to those

in programming languages such as C, Lisp and Prolog).

For example, in the EXCESS algebra of EXODUS [17],

HEAD and SUBARRAY are employed to obtain the

head and a subinterval of a sequence, respectively. Such

operations specify results of “processes” rather than the

processes themselves. The specification of the results

of such high-level sequence operations can be viewed

as a type of “pattern mat thing.” For instance, let u

be a sequence of length at least 1. Clearly, one of the

sequences in the regular sets al C$, say ala;, is of the

same length as u. Therefore, al al “matches” u and

al “matches” the first element of u. Thus, crl a; can be

“used” to retrieve (by “pointing at” al) the first element

of u, i.e., the HEAD operation on u.

The above pattern matching mechanism can be

found in text editors “vi” and “emacs,” and the AWK

programming language [2] (usually in UNIX systems).

Both editors and AWK use regular expressions in their

search-and-substitute commands. In these commands, a

pair of special symbols retrieve a portion of the matched

sequence. The sequence operations introduced in this

paper are similar to, but more powerful than, this

“retrieving” mechanism.

Pattern matching is used extensively in text process-

ing, e.g., [1], and (although in a different manner) in

information retrieval systems, e.g., [11]. One paper em-

ploying pattern matching in database queries is [13],

where regular patterns serve as “maskings” in an ex-

tended NF2 query language to deal with sequences (as

well as sets). However, the roles of pattern matching in

5We as~-e that the reader is fafiliar with the standard

concepts related to regulm sets [10].

293

http://crossmark.crossref.org/dialog/?doi=10.1145%2F137097.137895&domain=pdf&date_stamp=1992-07-01

these systems are as conditions rather than operations.

In this paper, a formal treatment of sequence oper-

ations, based on pattern matching, is initiated. It is

intended as a unified approach towards specifying and

studying operations on sequenced data. As a first step,

a family of operations is defined based on a simple pat-

tern matching mechanism with regular sets as “pattern

languages.” ‘This family (i) includes most of the “natu-

ral” sequence operations and (ii) is easy to extend. Also,

the family can be characterized by a type of mechanical

device called “generic a-transducer” (described in the

full paper).

Many database systems provide two ways of querying

the stored data: one through an algebraic language and

the other through a calculus-like language. The calculus

provides a high-level user interface while the algebra

gives a procedure interpretation of the queries expressed

in the calculus. It turns out that rs-operations can be

used not only as algebraic operations (in algebraic query

languages) but also as predicates over sequences (in

calculus-like query languages). To illustrate this, a logic

system (SL) using rs-operations is presented. The use of

rs-operations in algebraic query languages and calculus-

like query languages (through SL) is exemplified in an

extended relational data model.

The current presentation is an extended abstract of

the full paper. The rest of this extended abstract is

arranged as follows. In Section 2, rs-operations are

defined and their properties exhibited. In Section 3,

a sequence logic (SL) is introduced. To illustrate the

use of the rs-operations and SL in database queries,

an extended relational data model with sequences is

introduced in Section 4. Also, an algebraic and a

calculus-like query language are presented on the data

model.

2 Rs-operations

We start by defining some preliminary notions, A

sequence v of length n > 0 over a nonempty set A of

elements is a mapping from {1, n} to A, and is

usually written as al ., . an where ai = v(i) for each

1 < i < n. The symbol E represents the sequence

of length O (i.e., the empty sequence). Sequences are

denoted by u, v and w etc., possibly with subscripts.

Given a sequence v, Iv/ denotes the length of v. For

each set A of elements, let A“ = {vlv(i) c A for all

1< i < Ivl} u{&}.

We now informally describe a “merging process.”

Suppose we have a sequence w = crlalaxalcr~ (called

a patiern) of special symbols al and az. Intuitively,

this sequence gives the name “al” to positions 1, 2 and

4, and “az” to positions 3 and 5. Now let U1 and U2

be two sequences. A sequence u is a “merging” of U1

and U2 according to w if the subsequence of u formed

by the elements at the ai-positions is Ui for i = 1,2.

Thus, u = abcde is a merging of abd and ce according

to w since the elements of u at the al positions (i.e.,

positions 1, 2 and 4) is abd, and the elements at the CY2-

positions (i.e., positions 3 and 5) is ce. Figure 1 below

illustrates the above merging.

In order to formally define the above merging process,

we assume a fixed infinite alphabet Xm (whose elements

are denoted by a, b, etc., possibly subscripted) and a

fixed, countably infinite set of special symbols Vm =

{cIi/~ > 1}. For each n >1, we will use Vn to denote

the set consisting of the first n elements of Vm, i.e.,

Vn= {al,... ,an}. We also define a special mapping on

sequences. For all sequences w in V& and u in EL, with

Iwl = Ivl, and element cr in Vm, let T2rr$1=a(w @ U) =

U(il) , . .U(ik), where 1 <il < . . . <ik < IwI, W(~j) =a

for each 1 < j < k and w(i) # a for each i in

{l,..., [wl}-{i,,..., i~}.

We are now able to formally define the notion of a

merger.

Definition Let n > 1 be a positive integer and W a

subset of V:. Then the construct [W]n is called an n-

ary (sequence) merger. For subsets LI, Ln of XL,

let [W’]n(L1, . . .,Ln) =

{u c 2&13w c W’V’I < i s n(7r2c7$,na,(w @ U) E L)}.

The mapping defined thereby is called an (n-ary]

merger mapping.

AS an example, let W = (~la2)*, LI = {ah, Ubcd} and

L2 = {cd, ef, cdef}. Then u = acbd is in [W] Z(LI, h)

since ab and cd are in L1 and L2, respectively, and

u is the merging of ab and cd according to a1a2a1 az

in W. Similarly, it is easy to see that aebf, acbdcedf

are also in [W]2(L1, L2). Therefore, [W’]2(LI, .Cz) =

{acbd, aebf, acbdcedf}, i.e., the set consisting of the

“perfect” shutlies of the sequences from L1 and L2.

Now consider the “inverse” of a merger.

Definition Let [W]n be an n-ary merger and 1 <

i < n. Then the construct [W]; l is called a (sequence)

294

From al-positions a b d +- Equal to u]
From az-positions + Equal to uz

7 7

The pattern w al al ~z al ffz

Ll!jjThe merging result

Figure 1: The merging of abdandce according toalalaaalaz.

extractor. For each subset Lof!Z~, let[W]~l(L) =

{U,13UEL3U2 ,.. .,ln(uEu E [J’V]n({ul},{un}))}.

The mapping defined thereby is called an eztractor

mapping.

To illustrate, let W= alct~ and L= {abc, de.fgh}.

Then [W]~l(L) = {a, d}, i.e, the set consisting of the

first element of the given sequences.

Each sequence merger and extractor defined above

consists of an arbitrary set W of patterns. Obviously,

the mergers and extractors thus defined are very power-

ful, and may be hard to compute and/or represent. For

practical purposes, the set W should be tractable. In

this paper, W will be restricted to the “regular sets.”

There are two major reasons for this: Regular sets de-

scribe most of the natural patterns encountered in prac-

tice; and one of their representations, namely “regular

expressions, “ is easy to use in query languages. We now

formally define the central notion of the paper.

Definition A regular sequence operation, or rs-

operation, is either a merger [W]n or an extractor

[W]~l, where W is regular.

Henceforth, all mergers and extractors are assumed

to be rs-operations.

We now present several examples of rs-operations and

their compositions.

Examples In the following, u and w are assumed to be

sequences in X&.

(1)

(2)

(3)

u~Y4({~}! {~})= {uV}.

[@$c&]~l({~}) k the Prefix of u of length k,

~a~a~l~l({u}) is the suffix of u of length k, and

[a~a~j~’({u}) is the set of all prefixes of u.

[(al U a2)*];1({tJ}) is the set of all subsequences of

u.

(4)

(5)

Let SL(U, V) = [(alcr2)”]~1([(alcr2)*]2({u}, {w})).

Obviously, SL(U, v) = {u} if Iul = Ivl, and

SL(U, v) = 0 otherwise.

Let Half (u) = SL(Prefix(u), [(alcrz)”]~l({u})),

where Prefix(u) = [a~a~]~l({u}). It is easily seen

that Half(u) returns the first half of u if u is of even

length, and Half(u)=O if u is of odd length. For

example, Half(abcd) = {ah}.

Using the above examples, it is easy to see that all

the sequence operations defined in [9] can be simulated

by our rs-operations.

Since regular sets are defined by “mechanical devices”

(i.e., finite state automata), it is natural to seek some

similar devices to describe the rs-operations. Indeed,

a type of transducers, called “generic a-transducers,”

is used in the full paper to characterize rs-operations.

Because of the length limitation, generic a-transducers

are omitted in this extended abstract.

It is shown in the full paper that the set of mergers

(extractors, respectively) are closed under composition.

The question arises as to whether there exists a

finite subset of mergers (extractors and rs-operations,

resp.) which yields all merger (extractors and rs-

operations, resp.). In order to answer these questions,

the decomposition of the rs-operations is studied.

A merger (extractor, resp.) is said to be decomposable

if it is equivalent to a composition of some other mergers

(extractors, resp.). The first result is

Theorem 1 For each n > 3, there exists an n-ary

merger which is not decomposable.

Proof. (delch) For each n >3, let

W’n = (Crlf2’2 UflZ~3U . .. UQ!n_lfln)*.

It can be shown (proof omitted) that [Wn]n is not

decomposable for each n ~ 3. •l

295

A corollary of the above theorem is

Theorem 2 There is no jinate set of mergers which

yields a[[mergers by composition.

The decomposability of extractors is more compli-

cated because we need to get rid of the “trivial” de-

compositions. First, we have the following notions.

For each subset W of V~ and k >1, let

W<~ = {w E W[lwl < k}

and Wzk = {w c wIIwI ~ k}. let -k be the relation—
on the set of all extractors defined by $1 -k $2 if

t$l(L)n (~~)~k = ~2(L)n(!E~)~~ for each subset L of

~~. For extractors ~1 and $2, let 81 w $.2 if $1 ‘k ~2

for some k ~ O. For each extractor S, {~}~ denotes

the set {S’lg’ - S}. An extractor ~ is said to be a

pseudo-identity if ~ is in {[a~]~l}w.

Definition Let ~ be an extractor. A list S1, ~m

of extractors is said to be a decomposition of S if

t(L) = $m(. . .$,(L))

for each subset L of XL. A decomposition $1, , , ., Sm

of 8 is said to be trivial if either Ei is a pseudo-identity

orga~gforsomel<i< m.

We are now ready to show the following:

Theorem 3 There is no finite set of extractors which

yields ail extractors by composition.

Proof. (sketch) Let &(iJ = [a\cr2cr~]~l for each i ~ O.

It can be shown (proof omitted) that if 8 is in {E(k)}m

for some k ~ O and SI, t$z is a decomposition of ~, then

either ~z N ~ or ~2 is a pseudo-identity. It is then easily

seen that each decomposition of $(i) is trivial for each

i~o.

Suppose there exists a finite set 7 = {Zl, gm} of

extractors such that each extractor is a composition of

some extractors in X. Thus, ~fk) is a composition of

extractors in T for each k ~ O. It can be shown (proof

omitted) that there exists k > 0 such that

{~(k)}w nr = 0.

Since t(k) is a composition of extractors in 7 and each

decomposition of t(k) is trivial, it follows that (proof

omitted) {~(k)}~ n Y # 0. This is a contradiction, ❑

Furthermore, we have the following result about the

rs-operations in general.

Theorem 4 There is no finite set of rs-operations

which yields all rs-operations by composition.

Proof. (sketch) It can easily be shown that a

composition of mergers and extractors not equivalent

to mergers is not equivalent to a merger. Therefore,

the mergers in the set generating rs-operations must

generate all mergers. This is a contradiction. •l

By the above results, there is no “finite generating

set” for mergers and/or extractors. Therefore, if a set .F

of sequence operations does have a finite generating set,

then X either contains some operations which are not

rs-operations or is a proper subset of the rs-operations.

One open problem is to find “interesting” sets of mergers

(extractors and rs-operations, resp.) which have finite

generating sets.

The previous results also show that in using rs-

operations in query languages, we need an infinite

number of them to have the power of the rs-operations.

In the remainder of this extended abstract, we use all

the rs-operations in the query languages.

3 A Sequence Logic: SL

In order to construct calculus-like query languages over

databases involving sequences, a sequence logic (SL) is

(informally) introduced here. (SL is formally defined in

the full paper.)

SL is a first-order logic. The rs-operations are used in

SL as special predicates. Specifically, each [W]n, where

n ~ 1 and W is a regular subset of V.*, is used as an

(n+
Each

form

The

1)-ary predicate and called a sequence predzcate.

atomic formula involving [W]n is written in the

tn+l e [W]n(tl, .,tn).

“structures” for SL languages are to “assign”

a sequence to each constant and a subset of n-ary

tuples (over sequences) to each n-ary non-sequence

predicate. The meaning of a sequence predicate [W]n

is determined by the mapping defined by the merger

[W]~. For example, z c [alaz]z(zI, 22) is true if ab is

assigned to Z, a to Z1 and b to X2, and is false if ab is

assigned to x, b assigned to both xl and X2.

We now use two examples to illustrate SL.

296

Examples Sequence logic formulas are used to specify

or declare properties of sequences or sets of sequences.

The following are two examples. (The symbol “-” in

the atomic formulas stands for “there exists some.” For

instance, P(–, y) is an abbreviation of %eP(z, y).)

(1)

(2)

A sequence can be viewed as a multiset~. Let x ~ y

denote the formula

V.z(x E [(al U @Z)*]2(–, z) A EQ(z)

+ y G [(al u a2)*]2(-, z)),

where EQ(.z) = Vyl, VZ(Z C u@@’l~2~~]3(Yl, Y21’)

+ (Y1 = YZ))). It is easily seen that (1) EQ(u) is

true if and onIy if u is in a* for some a, and (2)

U1 E U2 is true if and only if U1 is a subset of U2

when viewed as multisets.

Now suppose < is a total order relation on basic

elements. Let Sorted(z) =

(VZ, y)(z E u~;~2~3@3(-, ~, Y) + ~ < Y).

Clearly, Sorted(u) is true if and only if u is sorted

according to ~. Now let Sort (z, y) be the formula

(x ~ y) A (y ~ z) A Sorted(y).

Intuitively, Sort(ul, U2) is true if and only if U2 is a

result of sorting U1 according to <,

At the end of Section 1, the operation Half was

expressed using rs-operations. Here, an SL formula

is used to describe the property that one sequence

is the first half of another. Let Samelength(z, y) be

the formula – c [(ala2)*]2(z, y) and Prefix(z, y)

the formula y E [a;a;]z(z, –). Since ~(a1~2)*]2

represents the operation of “perfect shuffle,” it is

easy to see that

Samelength(ul, U2)

is true if and only if U1 and U2 are of the same length.

It is also easy to see that Prefix(ul, U2) is true if and

only if U1 is a prefix of U2. Now let Half(z, y) be the

formula

Prefix(x, y) A dz(y ~ [(ci~az)”]z(-, %)

ASamelength(z, z)).

WA ~U/~iset is a set having possible duplicate elements. For

example, {a, a, b} and {a, a, b, b} are both multisets. Let S1 and

S2 be multisets. Then S1 is a subset of 52 (in the multiset sense)
if, for each a, a occurs in S2 at least as often as it occurs in .sI,
For instance, {a, a, b) is a subset of {a, a, b, b}.

4

Clearly, Half(ul, UZ) is true if and only if uz is of

even length and U1 is the first half of U2. ❑

An Extended Relational Data Model

In this section, we extend the “standard” relational data

model to include sequences. Using the rs-operations, we

then construct two query languages over the extended

relational data model.

To motivate the discussion, consider the following:

Example Figure 2 describes the tour schedules of a

travel agency. For each tour, the number in column

TOUR_NO is its identification and the number in column

COST its price. For each tour, the list in column

CITY specifies the cities to be visited, and the lists in

columns ARRIVAL and DEPARTURE show the arrival and

departure dates of these cities. Note that the order in

which the cities are to be visited is significant. ❑

To formally model such tables as in Figure 2, let U

be a non-empty set of elements called atoms (sometimes

called atomic vahtes). Atoms are usually denoted by a

and b etc., possibly subscripted. For each n > 0, a

mapping t from {1, n} to U* is called an (n-ary)

sequence tuple, abbreviated tuple, and is customarily

written in the form of (UI, Un), where Ui = t(i)

for each 1 < i < n, Thus, (ah, cbbc, bcab) is a 3-

ary tuple. For each n ~ O and finite set I of n-ary

sequence tuples, (n, 1) is called an (n-ary) s-instance

and abbreviated 1 when n is understood. For example,

(2, {(a, b)}) and {(ah, cbbc), (bba, abca)} are both binary

s-instances. Clearly, the table in Figure 2 (ignoring the

column names) is a 5-ary s-instance.

Finally, let 7? be a nonempty set of elements caUed

s-relation names. Let arity be a mapping from 7? to

the positive integers. For each R in 7?, the integer

arity(R) is called the arity of R. Each finite subset

of 7? is called an s-database scheme and usually denoted

by D, possibly subscripted. Each mapping ID from an

s-database scheme D to the set of all s-instances, where

ID(R) is an arity(R)-ary s-instance for each R in D, is

called an s-database instance (of D).

The data model defined above is a simple and natural

extension of the relational data model [7]. We now

define an algebraic query language, called “s-algebra,”

over s-database instances. S-algebra is essentially the

297

TOUR-NO CITY ARRIVAL DEPARTURE COST

356 New York 3/14/90 3/16/90 1004

Miami 3/16/90 3/20/90

456 Los Angeles 3/18/90 3/20/90 1409

Santa Barbara 3/20/90 3/22/90

San Francisco 3/22/90 3/27/90

556 San Francisco 3/21/90 3/23/90 699

Los Angeles 3/23/90 3/29/90

Figure 2: Tour schedules.

relational algebra [7, 16] with rs-operations used to deal

with sequences. The first use of rs-operations is in the

“merger reconstructions.” Formally, let 1 be an n-ary,

n ~ 1, s-instance. For each list ~ = il, . . .,ik of k ~ 1

numbersin {l, ..., n} and each k-ary merger [W]k, let

[W] f(l), called a merger reconstruction (of 1), be the

(n+ 1)-ary s-instance

u,~~{(w, . . . ,Un, Un+l)[Ui = t(i) for 1< i < n and

un+l is in [W]~({u~l}, {u~~})}.

For example, u~~~~U~j~y]23({(al), ~cd, a)})= {(ah, bed,

a, bcda), (ah, bed, a, abed)} (since bcda and abed are in

[a~~JUa~+]2({bcd}, {a})) and [ajatj]aa({(a, b, c)}) =

{(a, b,c, cc)}.

The next ractor reconstructions” of s-inst antes are

defined similarly. Specifically, let 1 be an n-ary, n ~ 1,

s-instance. For each integer k, 1 < k < n, and extractor

[W];’, let [W]-’(l), called an .edmctor reconstruction

(oj 1), be the (n+ 1)-ary s-instance

u,~~{(w, Un, Un+I)[Ui = t(i) for 1< i < n

and Un+l is in {W]~l({u~})}.

For example, [~;~~]-z({(ab, bc, a)}) = {(ah, bc, a, E),

(abc, bc, a, b), (abc, bc, a, be)}.

The operations “union,” “intersection,” “difference,”

“cross product” and “projection” over s-instances are

exactly the same as those in the relational algebra.

The “selection” operations use the following “selection

conditions:”

1.

2.

71 = 72 is a selection condition if yi (i = 1,2) is in

t-l” or is of the form $j,

(Cl V C2), (CI A C2) and (~CI) are all selection

conditions if both Cl and C2 are selection conditions.

Using the above six operations plus the merger

and extractor reconstructions, we can define “s-algebra

expressions” similar to the relational algebra (formal

definitions omitted). Each n-ary s-algebra expression

over D represents a mapping from each s-database

instance over D to an n-ary s-instance,

Turning to the calculus-like query language, we

convert SL formulas as queries. Formally, an s-calculus

query over the s-database scheme D is a construct of the

form

T={(zl,zn)lF}.

where F is a formula of SL with relation names in D

as predicates, and cl, Zn are the free variables in

F. The “value” of an s-calculus query over D on an

s-instance lD of D, denoted TIID], is defined similar to

the relational calculus.

To illustrate s-algebra and s-calculus, we formulate

some specific queries over the s-instance in Figure 2.

Examples Suppose R is a 5-ary relation name

whose first column corresponds to TO UR_NO, second

column CITY, third column ARRIVAL, fourth column

DEPARTURE and fifth column COST (cf. Figure 2). The

following are some queries addressed to R. The answer

given for each query is the value of the query over the

s-instance shown in Figure 2.

(1) “Print the numbers of those tours whose second city

is Atlanta.” Expressed in s-algebra:

ml U$6e(lAt1anta~[a2~l~;]-2(R)

and in s-calculus:

{ (z)13y(R(z, y,–, –, –)A

Y = ~~1~2~;]2(–, “Atlanta’’))}.

298

(2)

The answer is the set {(“356’’)}.

“Give the numbers and costs of those tours which

visit Los Angeles and later San Francisco.’) Ex-

pressed in s-algebra:

~1 ,Su$cn CChsAngeles, San fi?inCkCO , [(cl, u CY,)*]-’(R)

and in s-calculus:

{ (z, y)13r(R(z,z,–, –,y) A z c [(al Ua’)”]’(-,

“LOS Angeles, San Francisco”)) }.

The answer to this query is the set {(“456”, “1409”)}.

u

S-calculus is a very powerful language, perhaps too

powerful, Indeed, we have:

Theorem 5 There exists an s-calculus query T over

an s-database scheme D such that it is undecidable to

determine for an arbitrary s-instance ID whether TII~]

is empty.

Analogous to relational calculus, a computable subset

of s-calculus, called “safe s-calculus,” is defined below.

In order to define the notion of safe s-calculus,

the “active domain” of each s-calculus query is first

presented.

Let T = {(zI,. ... zn)l F} be a query over the s-

database scheme D and ID an s-database instance over

D. Then the active domain of T over ID, denoted

adom(T, ID), is the set

{a E Ula appears in For in lD(R) for some R in F}.

Let adorrz~(T, ID) =

{UIU in adom(T, ~D)* and Iul < k}

for each k >1.

The active domain of a query over an s-database

instance consists of all elements used in the formula

and all elements in the s-instances of the relation

names appearing in the formula. Intuitively, the answer

set of a query over an s-instance should consist of

only these elements, i.e., no “new” elements should be

“invented. ” Furthermore, the answer set should not

contain arbitrary long sequences. These observations

lead to the notion of “safe s-calculus queries.” First

though, the following technical term is needed. An SL

formula F1 is said to be a subformula of an SL formula

F if either (i) F1 = F, (ii) F = (F’ V F“) and F’l is

a subformula of either F’ or F“, or (iii)

F = IxF’ and F1 is a sub formula of F’.

We are now ready for the notion of safe

F = TF’ or

s-calculus.

For each k z 1, an s-calculus query

T={(xl,..., zn)lF}

over the s-database scheme D is said to be k-safe if T

satisfies both of the following two conditions for each

s-database instance ID:

(1) If(ul,..., Un) is in T[l~], then Ui is in adomk(T) ID)

for each 1< i < n.

(2) If (3cFl) is a subformulaof F and z, ZI, ,.., z~ are

the free variables in F1, then that (u, ul, u*) is

in T1[ID], where T’l = {(z, z1, . . .,z~)lF1} and ui is

in adomk (T, ID) for 1 < i < n, implies that u is in

adomk (T, ID).

A query T is said to be safe if it is k-safe for some k ~ 1.

The collection of all safe-s-calculus queries is called safe

s-caiculus.

Similar to the equivalence of the relational algebra

and the safe relational calculus [16], we have

Theorem 6 Safe s-calculus and s-algebra are equiva-

lent in expressive power.

The above notion of safe s-calculus is defined by the

means of a semantical restriction. In the full paper,

a different notion of safe s-calculus, depending on a

set syntactic conditions, is presented and shown to be

equivalent to s-algebra.

5 Conclusion

A theoretical study is initiated on the sequence opera-

tions used in database query languages. Specifically, a

set of special sequence operations (rs-operations) is in-

troduced and shown to be readily applicable to database

query languages.

299

Acknowledgment

The authors wish to thank Paris Kanellakis for bringing

our attention to the AWK programming language.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

A. Aho, J. Hopcroft, and J. Unman. The Design

and Analysis of Computer Algorithms. Addison-

Wesley, 1974.

A. V. Aho, B. W. Kernighan, and P. J. Weinberger.

The A WK programming language. Addison-Wesley,

1988,

A. Albano, L. Cardelli, and R. Orisini. Galileo: A

strongly typed language for complex objects. ACM

Transactions on Database Systems, 10(2):230-260,

1985,

M. Atkinson, F. Bancilhon, D. DeWitt, K. Dit-

trich, D. Maier, and S. Zdonik. The object-oriented

database manifesto. In Proceedings of the Inter-

national Conference on Deductwe and Object Or-t-

ented Databases, 1989.

F. Bancilhon, S. Cluet, and C. Delobel. A

query language for the Oz object-oriented database

system. In Database Programming Languages: l?nd

International Workshop. Morgan-Kaufmann, Inc.,

June 1989.

M. J. Carey, D. J. DeWitt, and S. L. Vandenberg.

A data model and query language for EXODUS.

In Proc. of SIGMOD International Conference on

Management of Data, pages 413-423, 1988.

E. F. Codd. A relational model for large shared

data banks. Communications of ACM, 13(6):377-

387, 1970.

0. Deux et al. The Oz system. Communications of

ACM, 34(10):34-48, October 1991.

S. Ginsburg and C. Tang. Canonical forms for

interval functions. Theoretical Computer Sctence,

54:299-313, 1987.

J. E. Hopcroft and J. D. Unman. Formal languages

and their relation to automata. Addison-Wesley,

1969.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

D. Metzler and S. Haas. The constituent object

parser: Syntactic structure matching for informa-

tion retrieval. ACM Trans. on Information System,

7(3):292-316, 1989.

Ontologic, Inc. Vbase Technical Overview, version

1,0 edition, March 1987.

P. Pistor and R, Traunmueller. A database

language for sets, lists and tables. Information

Systems, 11(4):323-336, 1986.

A. Silberschatz, M. Stonebraker, and J. D. Unman.

Database systems: Achievements and opportunities.

SIGMOD Record, 19(4):6-22, 1990.

The Committee for Advanced DBMS Function.

Third-generation database system manifesto. SIG-

MOS Record, 19(3):31-44, 1990.

J. D. Unman. Principles of Database and

Knowledge-base Systems. Computer Science Press,

1988.

S. Vandenberg and D. DeWitt. Algebraic support

for complex objects with arrays, identity, and in-

heritance. In Proceedings of the 1991 ACM SIG-

MOD International Conference on Management of

Data, Denver, Colorado, 1991.

300

