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ABSTRACT
We develop a framework of distributed and stateless solutions
for packing and covering linear programs, which are solved
by multiple agents operating in a cooperative but uncoordi-
nated manner. Our model has a separate “agent” controlling
each variable and an agent is allowed to read-off the current
values only of those constraints in which it has non-zero
coefficients. This is a natural model for many distributed
applications like flow control, maximum bipartite matching,
and dominating sets.

The most appealing feature of our algorithms is their sim-
plicity and polylogarithmic convergence. For the packing LP
max{c · x | Ax ≤ b, x ≥ 0}, the algorithm associates a
dual variable yi = exp[ 1

ε
(Aix

bi
− 1)] for each constraint i and

each agent j iteratively increases (resp. decreases) xj mul-
tiplicatively if A>

j y is too small (resp. large) as compared to
cj . Our algorithm starting from a feasible solution, always
maintains feasibility, and computes a (1 + ε) approximation

in poly( ln(mn·Amax)
ε

) rounds. Here m and n are number of
rows and columns of A and Amax, also known as the “width”
of the LP, is the ratio of maximum and minimum non-zero
entries Aij/(bicj). Similar algorithm works for the covering
LP min{b · y | A>y ≥ c, y ≥ 0} as well.

While exponential dual variables are used in several pack-
ing/ covering LP algorithms before [25, 9, 13, 12, 26, 16], this
is the first algorithm which is both stateless and has polylog-
arithmic convergence. Our algorithms can be thought of as
applying distributed gradient descent/ascent on a carefully
chosen potential. Our analysis differs from those of previ-
ous multiplicative update based algorithms and argues that
while the current solution is far away from optimality, the
potential function decreases/increases by a significant fac-
tor.
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1. INTRODUCTION
Achieving global goal using only local interactions has been

a focus of a lot of research in the last two decades [20, 23,
1, 22, 9, 24, 18]. A typical distributed system is composed
of loosely connected components taking decisions based on
their “local views”. Due to lack of central coordination, it
is often non-trivial to achieve any global objective in such a
system.

In this paper, we consider such distributed and stateless
solutions for packing and covering linear programming (LP)
problems, which are solved by multiple agents operating in
a cooperative but uncoordinated manner.

1.1 The model
Distributed Packing. Imagine trying to solve the follow-
ing packing LP in a distributed and dynamic environment:

max{c · x | Ax ≤ b, x ≥ 0}. (1)

Assume that c ∈ <n
+, A ∈ <m×n

+ , b ∈ <m
+ have non-negative

entries.
Analogous to [23, 21, 9, 18], we assume that there is an

agent controlling variable xj . The agent j is assumed to
know (upper bounds on) m and n, the jth column of A, the
value cj , and is provided with the current values of “relative
congestion” Aix

bi
for the constraints on which agent j has

non-zero influence, i.e., i for which the (i, j)th entry Aij 6= 0.
Here Ai denotes the ith row of A and we can safely assume
that bi > 0. This is the only information known to agents.
Note that the knowledge of these values does not disclose
directly information about other agents. In particular, an
agent j is oblivious to the existence of rows i for which Aij =
0, or other agents and their x values.



Model Problem [citation] Convergence time
Stateless Distributed

no no packing/covering LP [25, 13, 12, 26, 16] m · [ln(m)/ε]O(1)

no yes packing/covering LP [21, 9, 26, 17] [ln(m ·Amax)/ε]O(1), [ln(mn)/ε]O(1)

no yes multi-commodity flow routing [6, 5, 4] L · [ln(m · cmax)/ε]O(1)

yes yes multi-commodity flow control [14] cmax · [ln(bmax)/ε]O(1)

yes yes bipartite load balancing [2] [ln(m)/ε]O(1)

yes yes multi-commodity flow control [3] [ln(mn · cmax)/ε]O(1)

yes yes packing/covering LP [this paper] [ln(mn ·Amax)/ε]O(1)

Figure 1: A comparison of some combinatorial (1 + ε)-approximation algorithms for multicommodity flows,
bipartite load balancing, or packing/covering LPs. Here m and n denote the number of constraints and
variables resp., Amax (resp. cmax or bmax) is the ratio of maximum to minimum non-zero entries in A (resp. c
or b), L denotes the maximum-path-length.

One instance of packing LP is distributed optimization
of multi-commodity flow [9, 14, 3], or more precisely, flow
control over fixed paths. In case of flow control, an agent as-
sociated with each flow-path has to decide how much flow is
sent along that path, while a capacity constraint is enforced
for each edge. Each agent j observes the relative congestion
Aix
bi

only on the edges i on path j, and makes decision about

modifying the flow on its path based on this partial infor-
mation. Here Aij denotes how much flow results on edge i
due to unit flow on path j and bi denotes the capacity of
edge i.

Distributed Covering. We also consider solving the dual
covering LP

min{b · y | A>y ≥ c, y ≥ 0} (2)

in a similar model. An agent, in this case, controls a variable
yi and knows (upper bounds on) m and n, the ith column of
A>, the value bi, and is provided with the values of “relative

coverage”
A>j y

cj
for all constraints j for which Aij 6= 0. Here

A>
j denotes the jth row of A>.
One instance of covering LP is computing minimum-weight

fractional dominating set [19, 18], which is the first step in
obtaining randomized-rounding based distributed O(ln ∆)
approximation for the minimum-weight integral dominating
set problem (here ∆ is the maximum degree). In the natural
covering LP formulation of this problem, we have a variable
yi for every vertex i (indicating the extent to which that
vertex is picked in the solution) and a constraint for every
vertex (indicating that the total coverage of that vertex is
at least the required value). An agent for vertex i is aware
only of its neighbors in the graph and observes the relative

coverage
A>j y

cj
of these neighbors j. The agent i then decides

whether to increase/decrease yi based only on this informa-
tion. Here A>

ji = Aij denotes how much coverage vertex i
provides to its neighbor vertex j and cj denotes the total
coverage requirement of vertex j.

It is important to point out that, in our model, solving a
primal problem does not necessarily lead to solving the dual
problem. So separate solutions are needed for packing and
covering LPs above.

Stateless algorithms. Similar to [5, 3], we desire that a
distributed optimization is performed in a stateless manner.

That is, the decisions made by agents are not dependent on
the past; they are only dependent on the current local state
observable to the agents. This means, for example, that
the agents make their decisions in a cooperative but unco-
ordinated manner, without having access to a global clock
and without being able to properly initialize and synchronize
their individual executions.

Statelessness is attractive since it implies a number of
other important features, which are very desirable in dis-
tributed systems with unreliable components:

Self-stabilization. It is a classical and a very elegant notion
in the theory of robust distributed systems [10, 15, 11, 8,
7]. It means that the solution can withstand adversarial
but finite sequence of “hard reset” events, namely, crashes
accompanied with loss of all memory contents, except of
course the code of the program to be executed. Note that
a self-stabilizing solution allows some of the agents to fall
asleep for an undetermined period of time, and then to wake
up. Also it means that the algorithm does not need to be
initialized.

Incremental and local adjustment. Our dynamic model al-
lows existing agents to “leave” and new agents to “join”
over time. This corresponds to deleting/adding a variable
from/to the LP. It also allows adding or deleting constraints.
Even if such changes occur in the system, the algorithm does
not need to be restarted. Rather, the algorithm adjusts the
state (its variables) in a local and incremental manner, with-
out disrupting the variables that are not affected.

No global clock. Algorithms are not driven by a global clock
and can proceed asynchronously.

1.2 Existing work
A summary of existing work on designing combinatorial

approximation schemes for packing and covering LPs or multi-
commodity flow problems is given in Figure 1. The last row
refers to the results in this paper.

Statefull algorithms. In centralized or distributed set-
ting, efficient“primal-dual”algorithms in the statefull model
have been widely studied in the past, both for general pack-
ing/covering LPs [25, 13, 21, 9, 17, 26, 16] and for network
flows [13, 12, 26, 6, 4]. Most of these algorithms share fea-
tures like exponential dual variables with our algorithms.
However, these algorithms crucially depend on maintaining
a state, e.g., proper initialization or some global information



about the current solution, and perform globally optimum
updates in each round. Many of these algorithms initialize
the variables/flows to zero. Thus they have to be restarted
whenever the instance changes due to addition/deletion of
variables/constraints; and do not satisfy the incremental and
local adjustment property. These algorithms also increment
only the “best” variables w.r.t. the current dual solution;
and these variables are identified based on some global in-
formation. For example, in many multi-commodity flow al-
gorithms [25, 13, 12, 26], flow is increased only along (ap-
proximately) shortest paths w.r.t. the current (dual) length
function. The packing/covering LP algorithm of Plotkin-
Shmoys-Tardos [25] or the multi-commodity flow algorithm
of Awerbuch and Khandekar [5] fall short of being stateless
since they have to keep track of the maximum violation in a
constraint or the global maximum congestion of the current
solution. The algorithm of [25] converges in time linear in
the width1 Amax and that of [5] in time linear in the maxi-
mum path-length.

Stateless algorithms. Garg and Young [14] presented a
stateless flow control algorithm. While their algorithm re-
sembles ours in the case of flow control, the convergence time
of their algorithm depends linearly on the ratio cmax/cmin

of the maximum and minimum benefit of the flows. This
linear dependence is inherent to their algorithm due to a
severe limit on how much flow of a commodity is allowed to
increase in a single round. Furthermore, their algorithm is
based on the packet drop-rates at various routers/links and
it is not clear how to generalize their techniques to arbitrary
packing/covering LPs.

A stateless flow control algorithm with polylog(cmax/cmin)
convergence is given in a recent work of the authors [3]. The
current paper greatly simplifies the proofs of [3], generalizes
these techniques to arbitrary packing/covering LPs and im-
proves the convergence time. Recently, Awerbuch, Azar, and
Khandekar [2] presented a stateless algorithm for a special
case of load balancing in bipartite graphs. Their algorithm
and techniques, which do not use any exponential duals, do
not appear to generalize to arbitrary LPs and hence new
techniques are required.

2. OUR RESULTS AND TECHNIQUES
Reduction to the normal form: max{1 · x | Ax ≤

1, x ≥ 0} and min{1 · y | A>y ≥ 1, y ≥ 0}. Let 1k denote
the k-dimensional vector with all entries 1; we often omit the
dimension from the notation when it is clear from the con-
text. Consider the dual pair of packing and covering LPs (1)
and (2). To simplify the description of our algorithms, we
assume that b = 1 and c = 1. For the packing LP, this can
be done, without loss of generality, by replacing entry Aij

by Âij = Aij/(bicj) and working with variables x̂j = cjxj .
Note that we can assume that bi > 0 for all i (otherwise all
variables xj with Aij > 0 must be set to zero) and cj > 0 for
all j (otherwise xj can be set to zero w.l.o.g.). We emphasize
that our algorithm can be modified appropriately to work in
the described model even without such scaling. This is true
since the feedback Aix

bi
in the original (packing) LP is same

as the feedback Âix̂ in the new LP.

1In [25], the width of a polytope is defined slightly differently.
However in our case, it becomes equal to Amax.

Start with any solution x ∈ <n
+ such that Ax ≤ 1.

Repeat forever:

1. Let yi = exp

[
µ ·

(
Aix− 1

)]
for all i.

2. For 1 ≤ j ≤ n do:

(a) If A>
j y ≤ 1− α, then xj ← max{xj(1 + β), δ}.

(b) If A>
j y ≥ 1 + α, then xj ← xj(1− β).

Figure 2: Algorithm for the packing LP: max{1 · x |
Ax ≤ 1, x ≥ 0}. The parameters µ, α, β, and δ are
given in Section 3.

For technical reasons, we also assume that the smallest
non-zero entry in A is at least 1. Let Amax denote (an upper
bound on) the largest entry in A; this is often referred to as
the “width”1 of the LP [25]. We assume that Amax is known
to all agents. A similar reduction holds for the covering LP.

Main result. Our algorithms for the packing and cover-
ing LPs are given in Figures 2 and 3 and our main results
are Theorems 2.1 and 2.2. These algorithms are stateless,
fast converging, and very simple to describe and implement.
A round refers to one execution of the Repeat loop. The
convergence time, measured in terms of number of rounds,
is, strictly speaking, polynomial in the input ln(Amax) and
1/ε. However, if Amax is polynomially bounded in n and m
(as is the case in many applications), the convergence time
depends poly-logarithmically on n and m and polynomially
on 1/ε.

Although the algorithms are described in a centralized set-
ting, it is easy to verify that they fit into the model described
in the previous section. In case of packing LP, for example,
each agent j simply evaluates the variables yi for i such that
Aij 6= 0, computes A>

j y, and updates xj as stated. The
algorithms also work in asynchronous manner—the conver-
gence time in that case is given by the number of rounds of
the slowest agent.

The algorithms can also be made to work in the dynamic
model as follows. For the packing LP, a new arriving variable
is set to 0. If a new constraint arrives, all the variables in
that constraint are set to 0. For the covering LP, on the other
hand, a new arriving variable is set to 1. If a new constraint
arrives, all the variables in that constraint are set to 1. It is
easy to see that, this way, we always maintain feasibility on
the arrival of variables/constraints. Theorems 2.1 and 2.2
state that once the system stabilizes, i.e., no new arrivals or
departures, the near-optimality is achieved quickly.

Theorem 2.1. With parameters µ, α, β, δ given in Sec-
tion 3, the algorithm in Figure 2 starts from any feasible so-
lution Ax0 ≤ 1, always maintains a feasible solution for (1),
and satisfies that the number of rounds in which the solution
x is not (1 + ε)-approximate for (1) is

Õ

(
ln2(m ·Amax) · ln2(n ·Amax)

ε5

)
.

Here Õ hides lower order terms like ln ln(mn · Amax) and
ln(1/ε).



Start with any solution y ∈ <m
+ such that A>y ≥ 1.

Repeat forever:

1. Let xj = exp

[
µ ·

(
1−A>

j y

)]
for all j.

2. For 1 ≤ i ≤ m do:

(a) If Aix ≥ 1 + α, then yi ← max{yi(1 + β), δ}.
(b) If Aix ≤ 1− α, then yi ← yi(1− β).

Figure 3: Algorithm for the covering LP: min{1 · y |
A>y ≥ 1, y ≥ 0}. The parameters µ, α, β, and δ are
given in Section 4.

Theorem 2.2. With parameters µ, α, β, δ given in Sec-
tion 4, the algorithm in Figure 3 starts from any feasible
solution A>y0 ≥ 1, always maintains a feasible solution
for (2), and satisfies that the number of rounds in which
the solution y is not (1 + ε)-approximate for (2) is

Õ

(
ln2(n ·Amax) · ln2(mn ·Amax · ymax)

ε5

)
.

Here ymax = maxi(y0)i.

Intuition. Consider, for example, the algorithm for the
packing LP given in Figure 2. With each constraint Aix ≤ 1,
we associate a dual variable yi that has an exponential de-
pendence on how tightly that constraint is satisfied—tighter
the constraint, higher the dual variable. The algorithm can
be thought of as working toward satisfying the dual feasi-
bility: A>y ≥ 1 and complementary slackness conditions:
xj > 0 implies A>

j y = 1. Thus it increases xj if A>
j y is

too small as compared to 1 and decreases it if it is too large
as compared to 1. If A>

j y is close to 1, then xj is left un-
changed. For fast convergence, it is critical that this increase
and decrease be multiplicative. Since the multiplicative in-
crease is ineffective when a variable is very small, we also
allow a tiny additive increase by δ.

Even though we do not prove convergence to a fixed point,
it is easy to see that any fixed point (x∗, y∗) of this algorithm
constitutes a pair of near-optimal primal and dual solutions.
Since (1 − α) · 1 < A>y∗ < (1 + α) · 1, the solution y∗

is approximately dual feasible. Moreover since every non-
zero entry in A is at least 1, we get y∗i < 1 + α for all

i. Therefore Aix
∗ − 1 < ln(1+α)

µ
for all i and hence x∗ is

also approximately primal feasible. Furthermore, we have
1 · x∗ > (1 − α) · y∗>Ax∗ ≥ (1 − α)(1 − 4ε) · 1 · y∗, where
the second inequality follows from the fact that yi is a fast-
growing function of Aix (see Lemma 3.2 for the proof). Thus
the primal objective value 1 · x∗ is not much less than the
dual objective value 1 · y∗, and hence x∗ and y∗ form near-
optimal primal and dual solutions respectively.

Distributed gradient descent/ascent. It is not enough
to study the properties of a fixed point without understand-
ing whether/how fast the algorithm converges to the fixed
point or any approximation. The main purpose of this pa-
per is to analyze the convergence of the algorithm to a near-
optimum solution. To this end, we introduce the following

potential function:

Φ(x) = 1 · x− 1 · y
µ

.

The intuition behind this potential function lies in the ob-
servation that the partial derivative of Φ w.r.t. a variable
xj is given as

∂Φ

∂xj
= 1− 1

µ

∑
i

∂yi(x)

∂xj

= 1− 1

µ

∑
i

µ ·Aij · yi(x)

= 1−A>
j y(x).

Note that the RHS is precisely the term on which the deci-
sion to increase/decrease xj is based. Ignoring the second
(and higher) order terms, we can then approximate2 the in-
crease ∆Φ in the potential in a single round by

∆Φ ≈
∑

j

∂Φ

∂xj
·∆xj

=
∑

j

(1−A>
j y(x)) ·∆xj

≥ Ω(α) ·
∑

j

|∆xj |

where ∆xj denotes the (possibly negative) increase in xj .
The above inequality follows from the fact that ∆xj > 0 only
if 1 − A>

j y(x) ≥ α and ∆xj < 0 only if 1 − A>
j y(x) ≤ −α.

Thus our algorithm can be thought of as distributed gradient
ascent on Φ.

Any “significant” change in the x-values thus leads to a
“significant” increase in the potential. Since the potential
is bounded, this cannot happen consistently. We thus con-
clude that there must be so-called “stationary” interval of
at least logarithmic number of rounds in which the x-values
(and hence y-values) do not change significantly. We then
argue that the current solution is near-optimal as follows. If
on the contrary the solution is not near-optimal, we prove
that there must be a variable xj (on which optimum out-
performs the current solution) which satisfies A>

j y ≤ 1 − α
consistently. However in this case, the variable xj would
increase multiplicatively over the logarithmic interval. This
in turn contradicts the fact that the solution is always fea-
sible. A similar line of argument has been used in [5, 2] in
the context of multi-commodity flows and load balancing in
bipartite graphs.

Organization. The rest of the paper is organized as fol-
lows. In Section 3, we prove Theorem 2.1—in Section 3.2, we
prove that the potential increases whenever the“state”of the
system changes “significantly” and in Section 3.3, we prove
the convergence results. A similar proof for Theorem 2.2
is given in Section 4. Finally, we conclude with some open
questions in Section 5.

3. PROOF OF THEOREM 2.1
Given x ∈ <n

+, let y(x) = (y1(x), . . . , ym(x))> ∈ <m
+ to be

the vector defined in step 1 of Figure 2,

yi(x) = exp

[
µ ·

(
Aix− 1

)]
. (3)

2A rigorous proof is given in Section 3.



We chose the parameters µ, α, β, and δ as follows. Let

µ =
1

ε
· ln mAmax

ε
and α =

ε

4

where ε is the given error parameter. The parameters β and
δ are chosen so that, assuming that x satisfies Ax ≤ 1 in
the beginning of a round, the maximum change (increase or
decrease) in that round, in the value of A>

j y(x) for any j
is at most by factor α

4
. Assume that the solution x in the

beginning of a round is feasible: Ax ≤ 1. Note that the
maximum increase or decrease in Aix in any single round is
at most β + n · Amax · δ. Thus yi(x) increases to at most
yi(x) ·exp[µ(β +n ·Amax ·δ)]. We ensure that this is at most
yi(x) · (1 + α

4
) by setting

β =
α

10µ
= Θ

(
ε

µ

)
, and (4)

δ =
α

10µ · n ·Amax
= Θ

(
ε

µ · n ·Amax

)
. (5)

Hence A>
j y(x) increases to at most A>

j y(x) · (1 + α
4
). Sim-

ilarly with the values of β and δ as in (4) and (5), we can
argue that the maximum decrease in A>

j y(x) is by a factor
at most α

4
.

3.1 Preliminaries

Lemma 3.1. During the course of the algorithm, the so-
lution x always remains feasible, i.e., x ≥ 0 and Ax ≤ 1.

Proof. We prove this by induction on the rounds. Since
we start from a feasible solution, it is true in the beginning
of the algorithm. Assume now that Ax ≤ 1 holds in the
beginning of a round r and assume on the contrary that
Aix > 1 for some i after round r. This is possible only
due to an increase in some variable xj such that Aij > 0.
Since xj is increased in round r, we have A>

j y(x) ≤ 1 − α

in the beginning of round r. Since A>
j y(x) increases in any

single round by a factor of at most α
4
, we conclude that

A>
j y(x) < 1 after round r. Now recall that Aij > 0 in fact

implies that Aij ≥ 1. Thus we have yi(x) < 1 after round r.
This contradicts the fact that Aix > 1 after round r since,
by definition, yi(x) = exp[µ · (Aix− 1)]. Hence the proof is
complete.

The following lemma states that after poly-logarithmic
number of rounds, at least one constraint is approximately
tight, which is necessary for near-optimality. Recall that
the complementary slackness conditions state that yi > 0
implies Aix = 1, i.e., yi · Aix = yi. The following lemma
states that after poly-logarithmic number of rounds, these
conditions hold in an approximate and aggregate sense.

Lemma 3.2. After first τ0 = O( 1
β

ln 1
δ
) rounds, it is al-

ways true that

• maxi Aix ≥ 1− 2ε, and

• 1 · y ≥ y>Ax ≥ (1− 4ε) · 1 · y.

Proof. While maxi Aix < 1 − ε, we have maxi yi <
exp[−µ · ε] ≤ ε

mAmax
. Thus for all j, it holds that A>

j y(x) <

ε < 1−α. Thus all xj increase by a factor of at least (1+β).
Since the minimum non-zero entry in A is at least 1 and each
xj increases to at least δ in a single round, in τ0 rounds, we

get maxi Aix ≥ 1−ε. For maxi Aix to decrease in any round,
some xj must decrease. Thus for some j, it must hold that
A>

j y ≥ 1 + α, and hence it must hold that maxi Aix ≥ 1− ε
before the round. Since the maximum decrease in Aix in
any single round is at most βAix ≤ β < ε, it implies that
maxi Aix ≥ 1− 2ε always holds thereafter.

Since Aix ≤ 1, we always have 1 · y ≥ y>Ax. Now fix
a round t ≥ τ0 and let S = {i | Aix < maxi′ Ai′x − ε} in
round t. For i ∈ S, we have yi < exp[−µ · ε] · maxi′ yi′ ≤
ε
m
· maxi′ yi′ . Therefore

∑
i∈S yi < ε · maxi′ yi′ and hence

1 · y < (1 + ε)
∑

i6∈S yi. Thus we have

(1− 2ε) · 1 · y < (max
i

Aix) · (1 + ε)
∑
i6∈S

yi

≤ (1 + ε)
∑
i6∈S

yi(Aix + ε)

≤ (1 + ε) · y>Ax + ε(1 + ε) · 1 · y.

After simplifying this, we get the desired inequality.

3.2 The potential
We work with the following potential:

Φ(x) = 1 · x− 1 · y(x)

µ
. (6)

The following fact is an elementary property of a differen-
tiable convex function and approximates the potential by
the linear term in Taylor series.

Fact 3.3. For a differentiable convex function f : <k →
<, for any x0, x1 ∈ <k we have

f ′(x0) · (x1 − x0) ≤ f(x1)− f(x0) ≤ f ′(x1) · (x1 − x0)

where f ′(x) = ( ∂f
∂x1

, . . . , ∂f
∂xk

)> denotes the gradient evalu-

ated at x.

Proof. Using convexity, for η ∈ [0, 1], we have f(x0 +
η(x1 − x0)) = f((1 − η)x0 + ηx1) ≤ (1 − η)f(x0) + ηf(x1).
Now subtracting f(x0) from both sides, then dividing by η
on both sides, and then taking limit as η → 0, we get the
inequality on the left. The inequality on the right follows
from exchanging the roles of x0 and x1.

Lemma 3.4 (Potential increase). The potential Φ does
not decrease during the course of the algorithm. Moreover,
if Φ0 (resp. Φ1), x0 (resp. x1), and y(x0) (resp. y(x1))
denote the values of Φ, x, and y(x) before (resp. after) a
round, then

Φ1 − Φ0 ≥ Ω

(
α

µ

)
·
∑

i

|yi(x
1)− yi(x

0)|, (7)

Φ1 − Φ0 ≥ Ω(β) ·
[
(1− α) · 1 · x0 − y(x0)>Ax0

]
, (8)

Φ1 − Φ0 ≥ Ω(β) ·
[
y(x0)>Ax0 − (1 + α) · 1 · x0

]
. (9)

Proof. The negative potential −Φ is a differentiable con-
vex function of x. Using Fact 3.3, we conclude that

Φ1 − Φ0 = −Φ0 − (−Φ1)

≥ −Φ′(x1) · (x0 − x1)

=
∑

j

(x1
j − x0

j ) · (1−A>
j y(x1)). (10)



Let S+ = {j | A>
j y(x0) ≤ 1− α} and S− = {j | A>

j y(x0) ≥
1 + α}. Note that x1

j = x0
j if j 6∈ S+ ∪ S−.

Case j ∈ S+: We have x1
j − x0

j > 0. Since A>
j y(x) does

not change by a factor of more than α
4
, we conclude that

A>
j y(x1) ≤ A>

j y(x0) · (1 + α
4
) ≤ (1− α) · (1 + α

4
) < 1− 3α

4
.

Thus 1−A>
j y(x1) ≥ 3α

4
= Ω(α).

Case j ∈ S−: We have x1
j − x0

j < 0 and A>
j y(x1) ≥

A>
j y(x0)·(1−α

4
) ≥ 1+ α

2
. Thus 1−A>

j y(x1) ≤ −α
2

= −Ω(α).

Now we prove inequality (7). Denote z = A>
j y(x1) > 0.

If j ∈ S+, we have 1 − z ≥ 3α
4

which implies 1 − z ≥
3α
4
· z = Ω(α) · z. If j ∈ S−, we have 1 − z ≤ −α

2
which

implies 1 ≤ z(1 + α
2
)−1 which, in turn, implies that 1− z ≤

z · [(1 + α
2
)−1 − 1] = −α

2
· z · (1 + α

2
)−1 = −Ω(α) · z. Thus

the expression in (10) is at least

Ω(α) ·
∑

j

|x1
j − x0

j | ·A>
j y(x1). (11)

Now using Fact 3.3 for the convex function yi(x) we conclude

yi(x
0) · µ · (Aix

1 −Aix
0) ≤ yi(x

1)− yi(x
0)

≤ yi(x
1) · µ · (Aix

1 −Aix
0).

Therefore∑
i

|yi(x
1)− yi(x

0)|

≤
∑

i

max{yi(x
0), yi(x

1)} · µ · |Aix
1 −Aix

0|

≤
∑

i

max{yi(x
0), yi(x

1)} · µ ·
∑

j

Aij |x1
j − x0

j |

= O(µ) ·
∑

j

|x1
j − x0

j | ·A>
j y(x1). (12)

The equation (12) follows from the fact that yi(x
0) ≤ (1 −

α
4
)−1 · yi(x

1) and by interchanging the order of summations
over i and j. From equations (11) and (12), we conclude

that Φ1−Φ0 ≥ Ω
(

α
µ

)
·
∑

i |yi(x
1)− yi(x

0)|. Thus the proof

of (7) is complete. Now we prove (8). From (10), we know

Φ1 − Φ0 ≥
∑

j

(x1
j − x0

j ) · (1−A>
j y(x1))

≥
∑

j∈S+

(x1
j − x0

j ) · (1−A>
j y(x1)).

Since A>
j y changes by a factor of at most α/4 in a single

round, the RHS above is at least∑
j∈S+

(x1
j − x0

j ) · (1− (1 +
α

4
) ·A>

j y(x0))

≥
∑

j∈S+

Ω(β) · x0
j · ((1− α)−A>

j y(x0)) (13)

≥
∑

j

Ω(β) · x0
j · ((1− α)−A>

j y(x0)) (14)

= Ω(β)
[
(1− α) · 1 · x0 − y(x0)>Ax0

]
.

The inequality (13) follows since x0
j (for j ∈ S+) increases

by a factor of at least β; inequality (14) follows from the def-
inition of S+. The proof of (9) is similar and is omitted.

3.3 Convergence of the dynamics
Let x(t), y(t), and Φ(t) denote the values of x, y(x), and

Φ(x) respectively at the beginning of round t. In light of
the potential increase lemma 3.4, we consider the following
definition.

Definition 3.5 (Stationary interval). Consider t0 ≥
τ0. We call an interval T = [t0, t1] of rounds stationary if

• For all t ∈ T , we have (1−2α)·1·x(t) ≤ y(t)>Ax(t) ≤
(1 + 2α) · 1 · x(t), and

• For all t ∈ T , we have
∑

t′∈T
∑

i |∆yi(t
′)| ≤ α

2
·1·x(t),

where ∆yi(t
′) = yi(t

′ + 1)− yi(t
′).

We call an interval unstationary if it is not stationary.

Now we prove two of our main lemmas. Lemma 3.6 states
that the potential Φ increases significantly in any unstation-
ary interval (and hence there cannot be too many disjoint
unstationary intervals) while Lemma 3.7 states that a sta-
tionary interval of logarithmic length implies near-optimality
throughout the interval.

Lemma 3.6. During any unstationary interval T = [t0, t1],

the potential increases by at least Ω(α2

µ
) · 1 · x(t) for some

t ∈ T .

Proof. By definition, the interval T is unstationary be-
cause either y(t)>Ax(t) < (1− 2α) · 1 · x(t), or (1 + 2α) · 1 ·
x(t) < y(t)>Ax(t), or

∑
t′∈T

∑
i |∆yi(t

′)| > α
2
· 1 · x(t) for

some t ∈ T . In any case, from Lemma 3.4, we get that the

potential increases by either Ω(β)·α·1·x(t) = Ω(α2

µ
)·1·x(t)

or Ω(α
µ
) · α

2
· 1 · x(t) = Ω(α2

µ
) · 1 · x(t).

Lemma 3.7. Suppose there is a stationary interval T =
[t0, t1] such that t0 ≥ τ0 and that has length t1−t0 ≥ τ0 where
τ0 = O( 1

β
ln 1

δ
). Then for all rounds t̂ ∈ T , the solution x(t̂)

is an (1 + 6ε)-approximate solution to the packing LP (1).

Proof. Fix a round t̂ ∈ T and let x0 and y0 denote x(t̂)
and y(t̂) respectively. Let x∗ be the optimum solution to the
packing LP (1). Let γ = 1 · x∗/1 · x0 be the approximation
factor of the solution x0. Assume, on the contrary, that
γ > 1 + 6ε. We have

(1 + 2α) · 1 · x∗ = (1 + 2α) · γ · 1 · x0

≥ γ · y>0 Ax0 (since T is stationary)

≥ γ · (1− 4ε) · 1 · y0 (from Lemma 3.2)

≥ 1

1− ε
· 1 · y0 (since γ > 1 + 6ε)

≥ 1

1− 4α
· y>0 Ax∗ (since Ax∗ ≤ 1)

Thus ∑
j(y

>
0 A)j · x∗j∑

j x∗j
≤ 1− 2α. (15)

Furthermore, from the definition of stationary interval, we



have
∑

t∈T
∑

i |∆yi(t)| ≤ α
2
· 1 · x0 < α

2
· 1 · x∗. Thus∑

j

x∗j ·
∑
t∈T

|(y(t + 1)>A)j − (y(t)>A)j |

≤
∑

j

x∗j ·
∑
t∈T

∑
i

Aij · |yi(t + 1)− yi(t)| (16)

=
∑
t∈T

∑
i

|yi(t + 1)− yi(t)| ·Aix
∗

≤
∑
t∈T

∑
i

|yi(t + 1)− yi(t)|

<
α

2
· 1 · x∗. (17)

The inequality (16) follows from the “triangle inequality”
|
∑

i ai −
∑

i a′i| ≤
∑

i |ai − a′i| for real numbers ai, a
′
i ∈ <.

From inequalities (15) and (17), we conclude that

1∑
j x∗j

∑
j

x∗j ·

[
(y>0 A)j +

∑
t∈T

|(y(t + 1)>A)j − (y(t)>A)j |

]
< 1− 2α +

α

2
< 1− α.

Now think of the LHS above as the (weighted) average of
the terms in square brackets. Since the average is less than
1− α, there exists j such that[

(y>0 A)j +
∑
t∈T

|(y(t + 1)>A)j − (y(t)>A)j |

]
< 1− α.

Since the first term in the square bracket above is the value of
A>

j y at round t̂ and the second term is the absolute change in

it throughout the interval, we conclude that A>
j y(t) < 1−α

for all t ∈ T . Thus the variable xj in the algorithm must
be increased by a factor of at least 1 + β in each of the
τ0 = Θ( 1

β
ln 1

δ
) rounds in T . Note that xj increases to at

least δ in a single round and therefore would become larger
than 1 in τ0 rounds, which when combined with the fact
that every non-zero entry in A is at least 1, contradicts the
fact that x(t) always remains feasible for Ax ≤ 1. Thus our
assumption that γ > 1+6ε must be incorrect; this completes
the proof.

We are now ready to prove our main theorem.

Theorem 3.8. After O( µ
α2 · 1β ln 1

δ
·ln(n·Amax)) = Õ( 1

ε5
ln2(m·

Amax) · ln2(n ·Amax)) rounds, there must exist a round t such
that x(t) forms an (1+6ε)-approximate solution to the pack-
ing LP (1). Moreover the total number of rounds in which
the solution is not (1 + 6ε)-approximate is also at most the
above bound.

Proof. The proof is based on Lemmas 3.6 and 3.7 and
the fact that the potential is always between −m/µ and n.

After first τ0 rounds, the conditions in Lemma 3.2 hold.
Consider now the duration in which Φ < 0. Thus we have
y>Ax ≥ (1− 4ε) ·1 · y > (1− 4ε) ·µ ·1 ·x. From Lemma 3.4-
Eqn. (9), we have that the potential in each round increases
by Ω(β) · 1 · y. Thus the negative potential −Φ decreases
by a factor of Ω(βµ). Note also that Lemma 3.2 states that
maxi Aix ≥ 1−2ε, which implies that 1 ·x ≥ (1−2ε)/Amax.
Thus in O( 1

βµ
ln mAmax

µ
) rounds, the potential must become

non-negative. A similar argument in fact shows that the
potential becomes Ω(1/Amax) in O( 1

βµ
ln mAmax

µ
) rounds.

Now consider the duration in which Φ = Ω(1/Amax). Par-
tition the rounds into contiguous intervals of length τ0 each.
If an interval is stationary, from Lemma 3.7, we have near-
optimality throughout the interval. If an interval T = [t0, t1]
is unstationary, from Lemma 3.6, for some t ∈ T , the po-

tential Φ increases by Ω(α2

µ
· 1 · x(t)) ≥ Ω(α2

µ
· Φ(t)) ≥

Ω(α2

µ
·Φ(t0)) in this interval. Thus after encountering O( µ

α2 ·
ln(n · Amax)) unstationary intervals, the potential becomes
more than n. This contradicts the fact that x always remains
feasible and hence Φ ≤ 1 · x ≤ n. Thus the total number of
unstationary intervals is at most O( µ

α2 · ln(n ·Amax)). Hence
the proof is complete.

4. PROOF OF THEOREM 2.2
Given y ∈ <m

+ , let x(y) = (x1(y), . . . , xn(y))> ∈ <n
+ to be

the vector defined in step 1 of Figure 3,

xj = exp

[
µ ·

(
1−A>

j y

)]
. (18)

Now we let

µ =
1

ε
ln

nAmax

ε
and α =

ε

4
.

We set

β =
α

20µ
= Θ

(
ε

µ

)
, and

δ =
α

20µ ·m ·Amax
= Θ

(
ε

µ ·m ·Amax

)
.

With these values, we ensure that if A>
j y ≤ 3 in the begin-

ning of a round, then in this round A>
j y changes by at most

α
5µ

and xj changes by a factor of at most exp
[

α
5

]
≤ 1 + α

4
.

4.1 Preliminaries

Lemma 4.1. During the course of the algorithm, the so-
lution y always remains feasible, i.e., y ≥ 0 and A>y ≥ 1.

Proof. We prove this by induction on the rounds. The
solution y is feasible in the beginning of the algorithm. As-
sume, on the contrary, that A>y ≥ 1 holds in the beginning
of round r and A>

j y < 1 holds for some j after round r. This
is possible only due to a decrease in some variable yi such
that Aij > 0. Since the variables yi decrease by a factor of at
most 1−β, we have that A>

j y < 1
1−β

must hold in the begin-

ning of round r. Thus xj > exp[µ · −β
1−β

] > 1− µβ
1−β
≥ 1−α.

Since Aij ≥ 1, we get that Aix > 1−α holds in the beginning
of round r. This implies, from the algorithm, that the vari-
able yi cannot decrease, in contradiction to our assumption.
Thus the proof is complete.

Analogous to Lemma 3.2, the following lemma states that
after poly-logarithmic number of rounds, at least one con-
straint is approximately tight and the complementary slack-
ness conditions: xj > 0 implies A>

j y = 1 hold in an approx-
imate and aggregate sense.

Lemma 4.2. Let ymax be the maximum value of any yi in
round 0. After first τ1 = O( 1

β
ln ymax

δ
) rounds, it is always

true that

• minj A>
j y ≤ 1 + 3

2
ε, and



• 1 · x ≤ x>A>y ≤ (1 + 4ε) · 1 · x.

Proof. While minj A>
j y > 1 + ε, we have maxj xj <

exp[−µ · ε] ≤ ε
nAmax

. Thus for all i, it holds that Aix(y) <

ε < 1− α. Thus all yi decrease by a factor of (1− β). Since
the minimum non-zero entry in A is at least 1, in O( 1

β
ln(m ·

Amax · ymax)) ≤ O( 1
β

ln ymax
δ

) rounds, we get minj A>
j y ≤

1 + ε.
For minj A>

j y to increase in any round, some yi must in-
crease. Thus for some i, it must hold that Aix ≥ 1 + α, and
hence minj A>

j y ≤ 1 + ε holds before that round. From the

values of β and δ, the maximum increase in A>
j y ≤ 1+ε in a

single round is at most α
5µ

< ε
2
, it implies that minj A>

j y ≤
1 + 3

2
ε always holds thereafter.

Since A>
j y ≥ 1, we always have 1 · x ≤ x>A>y. Now fix

a round t ≥ τ1 and let j0 = j be the index such that A>
j y is

minimum and let S = {j | A>
j y > A>

j0y + ε} in round t. For
j ∈ S, we have xj < exp[−µ · ε] · xj0 ≤ ε

n
· xj0 . Therefore∑

j∈S xj < ε · xj0 and hence 1 · x < (1 + ε)
∑

j 6∈S xj . Thus
we have(

1 +
3

2
ε

)
· 1 · x ≥ (min

j
A>

j y) ·
∑
j 6∈S

xj

≥
∑
j 6∈S

xj(A
>
j y − ε)

≥
∑
j 6∈S

xjA
>
j y − ε · 1 · x

≥ (1− ε(1 + ε)) · x>A>y − ε · 1 · x.

The last inequality follows from the fact that for each j ∈ S,

the definition of xj implies that xjA
>
j y < ε(1+ε)

n
· xj0A>

j0y;

hence x>A>y < (1+ ε(1+ ε)) ·
∑

j 6∈S xjA
>
j y. After simplify-

ing the above expression, we get the desired inequality.

4.2 The potential
We work with the following potential:

Ψ(y) = 1 · y +
1 · x(y)

µ
. (19)

Note that Ψ(y) is a convex function of y and that
∂Ψ

∂yi
=

1 − Aix holds. We argue that the potential Φ does not
increase after first τ1 rounds.

Lemma 4.3 (Potential decrease). The potential Ψ
does not increase after first τ1 rounds. Moreover the follow-
ing holds after first τ1 rounds. If Ψ0 (resp. Ψ1), y0 (resp.
y1), and x(y0) (resp. x(y1)) denote the values of Ψ, y, and
x(y) before (resp. after) a round, then

Ψ0 −Ψ1 ≥ Ω

(
α

µ

)
·
∑

j

|xj(y
1)− xj(y

0)| (20)

Ψ0 −Ψ1 ≥ Ω(β) ·
[
(1− α) · 1 · y0 − x(y0)>A>y0

]
, (21)

Ψ0 −Ψ1 ≥ Ω(β) ·
[
x(y0)>A>y0 − (1 + α) · 1 · y0

]
. (22)

Proof. The potential Ψ is a differentiable convex func-
tion of y. Using Fact 3.3, we conclude that

Ψ0 −Ψ1 ≥ Ψ′(y1) · (y0 − y1)

=
∑

i

(y0
i − y1

i ) · (1−Aix(y1)). (23)

Let S+ = {i | Aix(y0) ≥ 1 + α} and S− = {i | Aix(y0) ≤
1− α}. Note that y1

i = y0
i if i 6∈ S+ ∪ S−.

Case i ∈ S−: We have y0
i − y1

i > 0. We know that 1 −
Aix(y0) ≥ α. We now argue that 1 − Aix(y1) ≥ Ω(α).
If A>

j y0 ≤ 3, then from the way β and δ is defined, xj

changes by at most factor of 1 + α
4
. If on the other hand,

A>
j y0 > 3, then A>

j y1 > 3(1−β) and hence xj(y
1) is smaller

than exp[−µ(3(1 − β) − 1)]. Recall from Lemma 4.2 that
minj′ A

>
j′y ≤ 1 + 3

2
ε and hence maxj′ xj′ ≥ exp[µ · −3

2
ε].

Therefore the contribution of xj(y
1) for which A>

j y0 > 3 to

Aix(y1) is at most α
10

fraction. Thus Aix(y) changes by at

most α
2

factor in this round and hence 1−Aix(y1) ≥ Ω(α).

Case i ∈ S+: We have y0
i − y1

i < 0. We know that 1 −
Aix(y0) ≤ −α. By a similar argument as above, we argue
that 1−Aix(y1) ≤ −Ω(α).

Now we prove inequality (20). Denote z = Aix(y1) > 0. If
i ∈ S−, we have 1−z ≥ Ω(α) which implies 1−z ≥ Ω(α) ·z.
If i ∈ S+, we have 1 − z ≤ −Ω(α) which implies 1 − z ≤
−Ω(α) · z. Similar expressions also hold with z = Aix(y0).
Thus the expression in (23) is at least

Ω(α) ·
∑

i

|y0
i − y1

i | · (Aix(y0) + Aix(y1)). (24)

Now using Fact 3.3 for the convex function xj(y) we conclude

xj(y
0) · µ · (A>

j y0 −A>
j y1) ≤ xj(y

1)− xj(y
0)

≤ xj(y
1) · µ · (A>

j y0 −A>
j y1).

Therefore∑
j

|xj(y
1)− xj(y

0)|

≤
∑

j

max{xj(y
0), xj(y

1)} · µ · |A>
j y0 −A>

j y1|

≤
∑

j

(xj(y
0) + xj(y

1)) · µ ·
∑

i

Aij |y0
i − y1

i |

= O(µ) ·
∑

i

|y0
i − y1

i | · (Aix(y0) + Aix(y1)). (25)

The equation (25) follows by interchanging the order of sum-
mations over i and j. From equations (24) and (25), we
conclude that

Ψ0 −Ψ1 ≥ Ω

(
α

µ

)
·
∑

j

|xj(y
1)− xj(y

0)|.

Thus the proof of (20) is complete. Now we prove (21).
From (23), we know

Ψ0 −Ψ1 ≥
∑

i

(y0
i − y1

i ) · (1−Aix(y1))

≥
∑

i∈S−

(y0
i − y1

i ) · (1−Aix(y1))

≥
∑

i∈S−

(y0
i − y1

i ) · (1− (1 +
α

2
) ·Aix(y0)) (26)

≥
∑

i∈S−

Ω(β) · y0
i · ((1− α)−Aix(y0)) (27)

≥
∑

i

Ω(β) · y0
i · ((1− α)−Aix(y0)) (28)

= Ω(β)
[
(1− α) · 1 · y0 − x(y0)>A>y0

]
.



The argument for inequality (26) is similar to the one de-
scribed in case i ∈ S− above and uses the fact that Aix
changes by a factor of α

2
in a single round; inequality (27)

follows since y0
i (for i ∈ S−) decreases by a factor of β; in-

equality (28) follows from the definition of S−. The proof
of (22) is similar and is omitted.

4.3 Convergence of the dynamics
Let y(t), x(t), and Ψ(t) denote the values of y, x(y), and

Ψ(y) respectively at the beginning of round t. In light of
the potential decrease lemma 4.3, we consider the following
definition.

Definition 4.4 (Stationary interval). Consider t0 ≥
τ1. We call an interval T = [t0, t1] of rounds stationary if

• For all t ∈ T , we have (1−2α)·1·y(t) ≤ x(t)>A>y(t) ≤
(1 + 2α) · 1 · y(t), and

• For all t ∈ T , we have
∑

t′∈T
∑

j |∆xj(t
′)| ≤ α

2
·1·y(t)

where ∆xj(t
′) = xj(t

′ + 1)− xj(t
′).

We call an interval unstationary if it is not stationary.

Analogous to Lemma 3.6, Lemma 4.5 states that the po-
tential Φ decreases significantly in any unstationary interval
(and hence there cannot be too many disjoint unstationary
intervals) while Lemma 4.6 states that a stationary interval
of logarithmic length implies near-optimality throughout the
interval.

Lemma 4.5. During any unstationary interval T = [t0, t1],

the potential decreases by at least Ω(α2

µ
) · 1 · y(t) for some

t ∈ T .

Proof. By definition, the interval T is unstationary be-
cause either x(t)>A>y(t) < (1−2α) ·1 ·y(t), or (1+2α) ·1 ·
y(t) < x(t)>A>y(t), or

∑
t′∈T

∑
j |∆xj(t

′)| > α
2
·1 · y(t) for

some t ∈ T . In any case, from Lemma 4.3, we get that the

potential decreases by either Ω(β)·α·1·y(t) = Ω(α2

µ
)·1·y(t)

or Ω(α
µ
) · α

2
· 1 · y(t) = Ω(α2

µ
) · 1 · y(t).

Lemma 4.6. Suppose there is a stationary interval T =
[t0, t1] such that t0 ≥ τ1 and that has length t1−t0 ≥ τ0 where
τ0 = O( 1

β
ln 1

δ
). Then for all rounds t̂ ∈ T , the solution y(t̂)

is an (1 + 6ε)-approximate solution to the covering LP (2).

Proof. Fix a round t̂ ∈ T and let y0 and x0 denote y(t̂)
and x(t̂) respectively. Let y∗ be the optimum solution to the
covering LP (2). Let γ = 1 · y0/1 · y∗ be the approximation
factor of the solution y0. Assume, on the contrary, that
γ > 1 + 6ε. Note that A>y∗ ≥ 1. We now divide jth row
of A> by A>

j y∗ for every j to obtain a matrix Â>. Thus we

have Â>y∗ = 1 and hence x>0 Â>y∗ = 1 · x0. Thus

(1− 2α) · 1 · y∗ =
1− 2α

γ
· 1 · y0

≤ 1

γ
· x>0 A>y0 (since T is stationary)

≤ 1 + 4ε

γ
· 1 · x0 (from Lemma 4.2)

=
1 + 16α

γ
· x>0 Â>y∗.

Thus∑
i Âix0 · y∗i∑

i y∗i
=

∑
i(x

>
0 Â>)i · y∗i∑

i y∗i
> γ · (1− 18α). (29)

Furthermore, from the definition of stationary interval, we
have

∑
t∈T

∑
j |∆xj(t)| ≤ α

2
· 1 · y0 = α

2
· γ · 1 · y∗. Thus∑

i

y∗i ·
∑
t∈T

|Âix(t + 1)− Âix(t)|

≤
∑

i

y∗i ·
∑
t∈T

∑
j

Âij · |xj(t + 1)− xj(t)|

=
∑
t∈T

∑
j

|xj(t + 1)− xj(t)| · Â>
j y∗

=
∑
t∈T

∑
j

|xj(t + 1)− xj(t)|

≤ α

2
· γ · 1 · y∗. (30)

From inequalities (29) and (30), we conclude that

1∑
i y∗i

∑
i

y∗i ·

[
Âix0 −

∑
t∈T

|Âix(t + 1)− Âix(t)|

]
> γ ·

(
1− 18α− α

2

)
≥ 1 + α.

The last inequality holds since γ > 1 + 6ε = 1 + 24α. Now
think of the LHS above as the (weighted) average of the
terms in square brackets. Since the average is greater than
1 + α, there exists i such that[

Âix0 −
∑
t∈T

|Âix(t + 1)− Âix(t)|

]
> 1 + α,

and hence Âix(t) ≥ 1 + α for all t ∈ T . Since the entries in

A are at least the corresponding entries in Â, we conclude
that Aix(t) > 1 + α for all t ∈ T . Thus the variable yi in
the algorithm must be increased by a factor of at least 1+β
in each of the Θ( 1

β
ln 1

δ
) rounds in T . Note that yi increases

to at least δ in a single round and therefore would become
larger than 2 in τ0 rounds. This when combined with the
fact that every non-zero entry in A is at least 1, implies that
A>

j y would become larger than 2 for all j such that Aij > 0.
Thus xj for such j would become smaller than exp[−µ]. This
in turn contradicts the fact that Aix(t) > 1+α in all rounds
t ∈ T .

Theorem 4.7. After O( µ
α2 · 1β ln 1

δ
·ln(mn·Amax ·ymax)) =

Õ( 1
ε5

ln2(n ·Amax) ln2(mn ·Amax · ymax)) rounds, there must
exist a round t such that y(t) forms an (1+6ε)-approximate
solution to the covering LP (2). Moreover the total number
of rounds in which the solution is not (1 + 6ε)-approximate
is also at most the above bound.

Proof. The proof is based on Lemmas 4.5 and 4.6 and
the fact that the potential is always between 1

Amax
and m ·

ymax + n
µ
.

Partition the rounds into contiguous intervals of length
τ0 each. If an interval is stationary, from Lemma 4.6, we
have near-optimality throughout the interval. If an interval
T = [t0, t1] is unstationary, from Lemma 4.5, the potential

reduces by Ω(α2

µ
·1·y(t)) for some t ∈ T . If 1

µ
·1·x(y(t)) ≤ 1·

y(t), we get that the potential in T reduces by Ω(α2

µ
·Ψ(t)) ≥

Ω(α2

µ
·Ψ(t1)). On the other hand, if 1 · x(y(t)) > µ ·1 · y(t),

we get x(y(t))>A>y(t) ≥ 1 · x(y(t)) > µ · 1 · y(t). Thus
from Lemma 4.3-Eqn. (22), we conclude that the potential
decreases by Ω(β) ·1 ·x(y(t)) = Ω(βµ) ·Ψ(t) ≥ Ω( 1

µ
) ·Ψ(t1).



In either case, the potential reduces by a factor of Ω(α2

µ
) in

T .
Since the the potential is always between 1

Amax
and m ·

ymax + n
µ
, we get that the total number of unstationary in-

tervals is at most O( µ
α2 · ln(mn · Amax · ymax)). Hence the

proof is complete.

5. CONCLUSIONS
We presented stateless algorithms for packing/covering

LPs in a natural distributed model. Our algorithms are ar-
guably simpler than the previous algorithms and have poly-
logarithmic convergence guarantees. We feel that the dis-
tributed gradient descent technique developed in this paper
should generalize to larger class of mathematical programs,
e.g., general LPs or convex programs including SDPs. Can
we show that similar algorithms work for implicitly given
packing/covering linear programs, e.g., multi-commodity flows
with unspecified paths, without associating separate agents
for separate paths?
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