skip to main content
10.1145/1374376.1374484acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Optimal query complexity bounds for finding graphs

Published:17 May 2008Publication History

ABSTRACT

We consider the problem of finding an unknown graph by using two types of queries with an additive property. Given a graph, an additive query asks the number of edges in a set of vertices while a cross-additive query asks the number of edges crossing between two disjoint sets of vertices. The queries ask sum of weights for the weighted graphs. These types of queries were partially motivated in DNA shotgun sequencing and linkage discovery problem of artificial intelligence.

For a given unknown weighted graph G with n vertices, m edges, and a certain mild condition on weights, we prove that there exists a non-adaptive algorithm to find the edges of G using O(m log n / log m) queries of both types provided that m ≥ nε for any constant ε > 0. For an unweighted graph, it is shown that the same bound holds for all range of m.

This settles a conjecture of Grebinski [23] for finding an unweighted graph using additive queries. We also consider the problem of finding the Fourier coefficients of a certain class of pseudo-Boolean functions. A similar coin weighing problem is also considered.

References

  1. M. Aigner. Combinatorial Search. Wiley, New York, 1988.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. N. Alon and V. Asodi. Learning a hidden subgraph. In Proceedings of the 31st International Colloquium on Automata, Languages and Programming (ICALP 2004), pages 110--121, 2004.]]Google ScholarGoogle ScholarCross RefCross Ref
  3. N. Alon and V. Asodi. Learning a hidden subgraph. SIAM Journal on Discrete Mathematics, 18(4):697--712, 2005.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. N. Alon, R. Beigel, S. Kasif, S. Rudich, and B. Sudakov. Learning a hidden matching. In Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2002), pages 197--206, 2002.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. N. Alon, R. Beigel, S. Kasif, S. Rudich, and B. Sudakov. Learning a hidden matching. SIAM Journal on Computing, 33(2):487--501, 2004.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. D. Angluin and J. Chen. Learning a hidden graph using O(log n) queries per edge. In Proceedings of the 17th Annual Conference on Learning Theory (COLT 2004), pages 210--223, 2004.]]Google ScholarGoogle ScholarCross RefCross Ref
  7. D. Angluin and J. Chen. Learning a hidden hypergraph. Journal of Machine Learning Research, 7:2215--2236, 2006.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. L. Barabäsi and Z. N. Oltvai. Network biology: Understanding the cell's functional organization. Nature Reviews Genetics, 5:101--113, 2004.]]Google ScholarGoogle ScholarCross RefCross Ref
  9. R. Beigel, N. Alon, M. S. Apaydin, L. Fortnow, and S. Kasif. An optimal procedure for gap closing in whole genome shotgun sequencing. In Proceedings of the Fifth Annual International Conference on Computational Molecular Biology (RECOMB 2001), pages 22--30, 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. Bouvel, V. Grebinski, and G. Kucherov. Combinatorial search on graphs motivated by bioinformatics applications: A brief survey. In the 31st International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2005), pages 16--27, 2005.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. N. H. Bshouty and C. Tamon. On the Fourier spectrum of monotone functions. Journal of the ACM, 43(4):747--770, 1996.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Annals of Mathematical Statistics, 23:493--509, 1952.]]Google ScholarGoogle ScholarCross RefCross Ref
  13. S. S. Choi, K. Jung, and J. H. Kim. Almost tight upper bound for finding Fourier coefficients of k-bounded pseudo-Boolean functions. Submitted to the 21st Annual Conference on Learning Theory (COLT 2008), 2008.]]Google ScholarGoogle Scholar
  14. S. S. Choi, K. Jung, and B. R. Moon. Lower and upper bounds for linkage discovery. IEEE Trans. on Evolutionary Computation, 2008. In revision.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. S. Choi, Y. K. Kwon, and B. R. Moon. Properties of symmetric fitness functions. IEEE Trans. on Evolutionary Computation, 11(6):743--757, 2007.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. P. Erdos. On a lemma of Littlewood and Offord. Bulletin of the American Mathematical Society, 51:898--902, 1945.]]Google ScholarGoogle ScholarCross RefCross Ref
  17. C. G. Esseen. On the Kolmogorov-Rogozin inequality for the concentration function. Z. Wahrscheinlichkeitstheorie verw. Geb., 5:210--216, 1966.]]Google ScholarGoogle ScholarCross RefCross Ref
  18. C. G. Esseen. On the concentration function of a sum of independent random variables. Z. Wahrscheinlichkeitstheorie verw. Geb., 9:290--308, 1968.]]Google ScholarGoogle ScholarCross RefCross Ref
  19. W. Ewens. Mathematical Population Genetics. Springer Verlag, 1979.]]Google ScholarGoogle Scholar
  20. I. Franklin and R. Lewontin. Is the gene the unit of selection ? Genetics, 65:707--734, 1970.]]Google ScholarGoogle ScholarCross RefCross Ref
  21. M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems. Theoretical Computer Science, 1:237--267, 1976.]]Google ScholarGoogle ScholarCross RefCross Ref
  22. D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley, 1989.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. V. Grebinski. On the power of additive combinatorial search model. In Proceedings of the 4th Annual International Conference on Computing and Combinatorics (COCOON 1998), pages 194--203, 1998.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. V. Grebinski and G. Kucherov. Optimal query bounds for reconstructing a Hamiltonian cycle in complete graphs. In the Fifth Israel Symposium on the Theory of Computing Systems (ISTCS 1997), pages 166--173, 1997.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. V. Grebinski and G. Kucherov. Optimal reconstruction of graphs under the additive model. In Proceedings of the 5th Annual European Symposium on Algorithms (ESA 1997), pages 246--258, 1997.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. V. Grebinski and G. Kucherov. Reconstructing a Hamiltonian cycle by querying the graph: Application to DNA physical mapping. Discrete Applied Mathematics, 88:147--165, 1998.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. V. Grebinski and G. Kucherov. Optimal reconstruction of graphs under the additive model. Algorithmica, 28:104--124, 2000.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. R. B. Heckendorn and A. H. Wright. Efficient linkage discovery by limited probing. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2003), pages 1003--1014, 2003.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. R. B. Heckendorn and A. H. Wright. Efficient linkage discovery by limited probing. Evolutionary Computation, 12(4):517--545, 2004.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. Jackson. An efficient membership-query algorithm for learning DNF with respect to the uniform distribution. Journal of Computer and System Sciences, 55(3):42--65, 1997.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. H. Kargupta and B. Park. Gene expression and fast construction of distributed evolutionary representation. Evolutionary Computation, 9(1):1--32, 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. S. A. Kauffman. Adaptation on rugged fitness landscapes. In D. Stein, editor, Lectures in the Sciences of Complexity, pages 527--618. Addison Wesley, 1989.]]Google ScholarGoogle Scholar
  33. S. A. Kauffman and S. Levin. Towards a general theory of adaptive walks on rugged landscapes. Journal of Theoretical Biology, 128:11--45, 1987.]]Google ScholarGoogle ScholarCross RefCross Ref
  34. R. Lewontin. The Genetic Basis of Evolutionary Change. Columbia University Press, 1974.]]Google ScholarGoogle Scholar
  35. B. Lindström. On B2-sequences of vectors. Journal of Number Theory, 4:261--265, 1972.]]Google ScholarGoogle Scholar
  36. B. Lindström. Determining subsets by unramified experiments. In J. N. Srivastava, editor, A Survey of Statistical Designs and Linear Models, pages 407--418. North Holland, 1975.]]Google ScholarGoogle Scholar
  37. J. E. Littlewood and A. C. Offord. On the number of real roots of a random algebraic equation. III. Mat. Sbornik, 12:277--285, 1943.]]Google ScholarGoogle Scholar
  38. C. A. Macken and A. S. Perelson. Protein evolution on rugged landscapes. In Proceedings of the National Academic of Science, USA, volume 86, pages 6191--6195, 1989.]]Google ScholarGoogle ScholarCross RefCross Ref
  39. Y. Mansour. Learning Boolean functions via the Fourier transform. In V. Roychowdhury, K. Y. Siu, and A. Orlitsky, editors, Theoretical Advances in Neural Computation and Learning, pages 391--424. Kluwer Academic, 1994.]]Google ScholarGoogle ScholarCross RefCross Ref
  40. H. Mühlenbein and T. Mahnig. FDA -- A scalable evolutionary algorithm for the optimization of additively decomposed functions. Evolutionary Computation, 7(1):45--68, 1999.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. M. Pelikan, D. E. Goldberg, and E. Cantü-Paz. Linkage problem, distribution estimation, and Bayesian networks. Evolutionary Computation, 8(3):311--340, 2000.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. L. Reyzin and N. Srivastava. Learning and verifying graphs using queries with a focus on edge counting. In Proceedings of the 18th International Conference on Algorithmic Learning Theory (ALT 2007), pages 285--297, 2007.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. B. A. Rogozin. An estimate for concentration functions. Theory of Probability and its Applications, 6(1):94--97, 1961.]]Google ScholarGoogle ScholarCross RefCross Ref
  44. B. A. Rogozin. On the increase of dispersion of sums of independent random variables. Theory of Probability and its Applications, 6(1):97--99, 1961.]]Google ScholarGoogle ScholarCross RefCross Ref
  45. H. S. Shapiro and S. Söderberg. A combinatory detection problem. American Mathematical Monthly, 70:1066--1070, 1963.]]Google ScholarGoogle ScholarCross RefCross Ref
  46. M. J. Streeter. Upper bounds on the time and space complexity of optimizing additively separable functions. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2004), pages 186--197, 2004.]]Google ScholarGoogle ScholarCross RefCross Ref
  47. H. Tettelin, D. Radune, S. Kasif, H. Khouri, and S. L. Salzberg. Optimized multiplex PCR: Efficiently closing a whole-genome shotgun sequencing project. Genomics, 62:500--507, 1999.]]Google ScholarGoogle ScholarCross RefCross Ref
  48. D. Thieffry, A. M. Huerta, E. Perez-Rueda, and J. Collado-Vides. From specific gene regulation to genomic networks: A global analysis of transcriptional regulation in Escherichia coli. BioEssays, 20(5):433--440, 1998.]]Google ScholarGoogle ScholarCross RefCross Ref
  49. J. L. Walsh. A closed set of orthogonal functions. American Journal of Mathematics, 55:5--24, 1923.]]Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Optimal query complexity bounds for finding graphs

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        STOC '08: Proceedings of the fortieth annual ACM symposium on Theory of computing
        May 2008
        712 pages
        ISBN:9781605580470
        DOI:10.1145/1374376

        Copyright © 2008 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 17 May 2008

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        STOC '08 Paper Acceptance Rate80of325submissions,25%Overall Acceptance Rate1,469of4,586submissions,32%

        Upcoming Conference

        STOC '24
        56th Annual ACM Symposium on Theory of Computing (STOC 2024)
        June 24 - 28, 2024
        Vancouver , BC , Canada

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader