
End-to-end performance management for scalable distributed
storage

David O. Bigelow, Suresh Iyer, Tim Kaldewey, Roberto C. Pineiro, Anna Povzner,
Scott A. Brandt, Richard A. Golding†, Theodore M. Wong†, Carlos Maltzahn

Computer Science Department, University of California, Santa Cruz
†IBM Almaden Research Center

{dbigelow,suresh,kalt,rpineiro,apovzner,scott,golding,tmwong,carlosm}@cs.ucsc.edu

1 Introduction

Many applications—for example, scientific simulation, real-time
data acquisition, and distributed reservation systems—have I/O per-
formance requirements, yet most large, distributed storage systems
lack the ability to guarantee I/O performance. We are working on
end-to-end performance management in scalable, distributed stor-
age systems. The kinds of storage systems we are targeting include
large high-performance computing (HPC) clusters, which require
both large data volumes and high I/O rates, as well as large-scale
general-purpose storage systems.

There are two main issues with performance management in such
systems: sharing resources among competing users, applications,
or tasks, and maintaining high performance. Sharing a computing
cluster and its associated storage among multiple concurrent jobs is
one example of resource sharing: each job should be able to work
at full speed without interference from the others. When multiple
jobs contend for the storage resource, it should be shared according
to a specified policy such that each gets the performance it requires.
This is in contrast withad hocschemes based on, for example, the
number of requests issued, which may permit a single poorly be-
haved application to effectively overwhelm the system. The need
for high performance comes from the need for storage to keep up
with computation: storage is often a performance bottleneck and
performance management must not in general come at the cost of
performance itself.

We are concerned with end-to-end performance management of
data as it moves through the system: from a client’s cache, through
the network, into a server cache, and onto disk (andvice versa).
Rather than building independent pieces that do not work together
or provide any way to reason about the performance that results
when they are composed, we are developing integrated mechanisms
that work together to provide overall performance, Our solutions
are based on formal real-time principles, allowing us to prove and
reason about the guarantees that our system will provide.

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Our approach is toreserveperformance for applications or users
centrally, thenmanagethe operation of each component in the sys-
tem according to those reservations in a distributed fashion. Where
users or applications care only aboutbest-effortperformance, the
system works to provide the best performance possible within the
available resources.

One possible objection to this approach is that application develop-
ers and/or system administrators cannot or will not develop perfor-
mance specifications. We note that in practice peopledo generally
think about and manage I/O performance—just in anad hocway,
without support from the system. Every IT installation we know
of does capacity planning when acquiring systems, benchmarks the
systems before putting them into production to assure they meet the
expected performance, and then monitors and tunes performance
after installation. Similarly, HPC developers and system admin-
istrators routinely monitor and adjust storage performance, and in
some systems specifically design the storage resource assignment
to ensure that jobs do not interfere with each other (if only by stag-
ing data onto and off of cluster-attached storage). Our approach
leads to a storage system that has support for performance manage-
ment built in, ensuring that the mechanisms at each step of the data
path work together to maintain the required I/O performance while
providing the best overall performance possible.

There are multiple ways to make use of performance management
in a large distributed storage system, some of which can work with
unmodified applications. One way to introduce performance man-
agement in HPC clusters is through the job scheduling system,
which can make reservations on behalf of an unmodified compute
job. Another way is through virtual machines, which can be pro-
visioned with a certain level of storage performance (i.e., a virtual
disk) on behalf of the software running within the VM.

At the same time, some applications are directly concerned with
performance and can benefit from a system that supports perfor-
mance reservations. Data acquisition and media streaming applica-
tions both need to write or read data to storage at a given sustained
rate in order to work properly. System housekeeping operations
such as backup and data recovery need to proceed at a minimum
rate to get their job done within a time window, but without inter-
fering with other concurrently executing applications.

In this paper, we discuss our work into mechanisms for end-to-end
performance management in our Ceph scalable file system. We dis-
cuss how to transform application-level requirements and behaviors
into I/O reservations and how to guarantee the reservations in each
component in the path from the client to the server and back, includ-
ing the client cache, the network, the server cache, and the disks.

client

cache

network

transportdisk
storage

cache

network

transport

flow control with one client;
connection management
between clients

IO selection and
head scheduling

prefetch and
writeback based on
utilization, QoS

app

app

I/O

scheduler

integration between
client and server cache

broker

requirements and
behaviors

(utilization, period)
reservations cache space

reservations

Figure 1. The stages in the data pipeline.

2 System architecture

Our system is being developed in the context of the Ceph distributed
object-based storage system [2]. Ceph is a distributed file system
that provides both high performance and scalability. Ceph decou-
ples data and metadata operations, allowing each to be served by
specialized clusters and allowing clients direct, high-performance
parallel access to storage nodes. Ceph files are striped acrossob-
jects, each of which is stored on a storage device. Ceph’s storage
devices export a high-level object interface and locally manage low-
level storage management including block allocation and request
scheduling. EBOFS, the extent-based object file system, runs on
each Ceph storage device, providing high-performance object I/O
with significant intra-object locality (i.e., few intra-object seeks).

Ceph’s overall architecture is representative of many modern dis-
tributed file systems. Clients open a file by talking with a metadata
server cluster responsible for managing the file system namespace,
permissions, and other file metadata. If the requested operation is
permitted, clients are told which storage devices contain the data of
the specified file. Clients then perform I/O directly with the stor-
age devices containing the regions of the file they wish to access.
The tightly coupled cluster of metadata servers maintains a coherent
unified file system namespace and directory hierarchy. Object stor-
age is handled by a decentralized set of storage devices, allowing
a very high degree of parallelism between clients accessing differ-
ent files or regions of the same file and the potentially thousands of
storage devices containing them.

Adding performance management to Ceph involves managing five
key aspects of the data pipeline from the client to the storage devices
(Figure 1):

1. The I/O scheduleron each storage device. Guarantees on
disk I/O are challenging due to their non-preemptivity, stateful
and partially non-deterministic response times, and the orders
of magnitude differences between best-, average-, and worst-
case response times.

2. The server cacheon each storage device. Providing a buffer
between the network (and, further upstream, the client cache)
and the disk, the server cache buffers writes destined for the
disk and buffers read data prior to transfer to the client.

3. The network connectionbetween an individual client and a
storage device with which it is performing I/O. An individ-

ual network connection must transfer data between the client
cache and the server cache so as to guarantee the overall I/O
performance without overflowing either buffer or unnecessar-
ily stalling the application.

4. The set of concurrently active network reservationsbetween
potentially hundreds of thousands of clients and tens of thou-
sands of storage devices. The aggregate of all reservations
in the system cannot exceed the aggregate bandwidth of the
network, nor can the demand on any single link exceed its
capacity.

5. The client cacheon each compute or I/O node. The client
cache provides the first layer of performance management,
buffering client writes, storing data from client reads, and in-
teracting with the network and server cache managers to co-
ordinate transfer of data to and from the storage devices.

3 Reservations

We define a “performance reservation” simply and generally as a
guaranteed portion of the available resources in each component of
the I/O system that ensure a certain overall level of performance to
an application’s I/O requests. We are investigating whether reserva-
tions should be hierarchical or not, whether they should be associ-
ated with users, sets of files, jobs, or something else, how persistent
they should be, and so on. We ignore these questions in this discus-
sion and talk in general about reserving performance for ”applica-
tions,” whatever they may be.

Our reservation mechanism has two goals:generalityand device-
independence. Applications need to make reservations in terms
meaningful to them, recognizing that different applications may
specify their needs in different ways. For example, a real-time data
acquisition application may need to write some amount of data ev-
ery period, while a transaction-processing system may need to per-
form a minimum number of transactions per minute. And reserva-
tions should not depend upon applications having detailed knowl-
edge of the devices, since non-trivial scalable systems are generally
composed of heterogeneous populations of storage devices.

We separate the reservation problem into two parts:translationof
application requirements into a common representation andadmis-
sion control—testing for feasibility and permissability and allowing
or denying the reservation—on the basis of that representation.

translation

application A

translation

application B

spec 1 spec 2

reservation

common representation

resource

reservation

Figure 2. Structure of the broker for translating application
requirements into resource reservations.

Based on the RAD model [1], our reservations have two compo-
nents: abudget bspecifying an amount of resource required and
a period pspecifying a time granularity with which it is required,
e.g.10 Mbit/minute or 100 Gigabytes/hour,etc. Given knowledge
about the device serving the reservation, the system can translate
this reservation into a requiredutilization u= b/p and a set of
deadlines dat which that utilization must hold, each one period
apart. Explicitly specifying and controlling these two quantities al-
lows better control over the quantity and timing of the resources
delivered to applications and enables greater overall performance
because we no longer have to guess at application resource needs
or constraints,e.g.by scheduling a disk request simply because we
think the application that issued it might starve if we wait just a little
longer.

We are developing a library of algorithms to translate different ap-
plication requirements into this uniform representation. Key to the
translation is knowledge about application behavior, which is often
available for those applications, like multimedia, transaction pro-
cessing, or scientific applications, that require performance guar-
antees: transactions generally involve small, randomly located re-
quests, multimedia data is highly sequential, and scientific applica-
tions generally have very well-characterized access patterns.

As an example, consider a rate-oriented soft real-time specification
of i I/O requests per second on average. Given knowledge about the
application’s I/O locality, burstiness, allowed request latency,etc.,
this can be turned into a concrete specification of the application
resource reservationr consisting of a desired number of I/O’sn,
period p, and buffering capacityc. A mean execution time MET
can be derived from the locality and the characteristics of the disk
in question, allowing us to derive the desired disk utilizationu= n∗
MET/p. The translation also knows a worst-case execution (seek
and rotate) time WCET from the drive’s characteristics and adds a
small overhead factor to account for 2 inter-stream seeks per period
+ 1 extra worst-case execution time to ensure that the full desired
utilization will always be granted. The reserved disk utilization is
thus

u′ =
2·WCET+max(WCET,(n−1) ·MET+WCET)

p
(1)

Our current broker assumes homogeneous disks; we are working
to extend it to handle heterogeneity based on knowledge about the
location of the data being accessed.

4 Disk request scheduling

Disk request scheduling ultimately determines the performance
available to the applications. Caches can shape the traffic going
to the disk, but in the end the disk performance is a fundamental
limitation on overall storage system performance.

We have three goals for disk scheduling: that it meet each applica-
tion’s reservation; that it ensure isolation between the requests from
different applications; and that it provide good performance.

Our disk request scheduler, Fahrrad, meets these goals. By measur-
ing and accounting for all I/Os issued and seeks incurred, Fahrrad
ensures that each application gets the resources reserved for it. As
long as each application behaves as it indicated to the broker, this
ensures that it will get the performance it desired. If it breaks
the ”contract” with the broker and behaves otherwise, nothing is
guaranteed except that it will not interfere with any other appli-
cation. By correctly accounting for all seeks, including all ”con-
text switches”—seeks between request streams—Fahrrad ensures
isolation. By aggressively reordering requests based on explicit
knowledge of application requirements, Fahrrad is capable of per-
formance as good or better than best-effort disk schedulers.

Fahrrad works as follows. Requests are segregated into distinct
streams, each of which is associated with a reservation with a uti-
lization u and deadlinesdi . Fahrrad temporarily assumes that each
requests takes WCET, and moves all requests from each stream that
can be accomplished within the availablebudget b= u∗ p for the
current period and before the earliest deadline in the system into
a common buffer called the Disk Scheduling Set (DSS). These re-
quests can be executed in any order and can take any amount of
time (up to WCET) without jeopardizing any stream’s reservation.
Requests in the DSS are scheduled as aggressively as possible. As
each requests is completed, its actual execution time is measured,
and a new request from its stream may be moved into the DSS if
sufficient resources remain in the stream’s budget for the current
period.

Figure 3 illustrates the performance obtained with Fahrrad. It com-
pares a mixed-application workload running on a standard Linux
system (a) and one with Fahrrad (b). The workload combines two
“media” streams, a transaction processing workload with highly
bursty request arrivals, and a random background stream simulat-
ing backup or rebuild. Fahrrad meets both the utilization guarantees
and throughput requirements of the I/O streams and its throughput
exceeds that of Linux by about 200 I/Os per second.

5 Server cache

The server cache stores data as it moves between the network and
the disk. Traditionally, it allows reordering requests, speed match-
ing, and write coalescing. It also allows write-behind and read-
ahead, allowing the system to trade cache resources for disk perfor-
mance.

Short periods cause inefficiency by increasing the overhead for per-
period inter-stream seeks (the two extra seeks per period in Equa-
tion 1). We can lengthen the period of the disk reservation for
write-only streams by a factork by allocatingk times as many
cache buffers and absorbing that many periods worth of requests—
thus formalizing the intuition that write-behind can improve perfor-
mance. A similar argument applies to read-ahead and can be used to
reason about how far in advance to read-ahead, taking into account

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

T
hr

ou
gh

pu
t [

IO
s

pe
r

se
c]

Time [sec]

transaction
media 1
media 2

background

(a) Linux

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

T
hr

ou
gh

pu
t [

IO
s

pe
r

se
c]

Time [sec]

transaction
media 1
media 2

background

(b) Fahrrad

Figure 3. Behavior of mixed workload during 500 seconds, with and without Fahrrad. Points are the average for 5-second intervals.

the probabilistic accuracy of read-ahead.

Our goal is to identify the amount of buffer space required to satisfy
a given application’s reservation and understand how those buffers
can best be allocated across the different application streams. As
part of the admission control policy, the minimum capacity that
should be allocated for a particular stream must be known in or-
der to decide when to reject a new reservation.

The server cache must be coordinated with the disk scheduler be-
low it and with the network above. Since we are focused on a server
cache, where there is a client cache in front that absorbs read hits,
we are investigating the value of having the disk scheduler select
which cache buffers to process from a stream based on the effi-
ciency of head movement, rather than focusing on cache replace-
ment policies that focus on the likelihood of future buffer re-use.
We discuss the interface between server cache and the network in
the next section.

6 Network

Data moves between client and server caches over the network.
There are multiple problems to solve related to the network: getting
quality of service out of the underlying transport connections; man-
aging the transport connections in a large system; and flow control
to ensure that the receiving cache always has room for data when it
arrives (without interfering with other streams).

Existing storage protocols like iSCSI provide solutions for one-to-
one relationships between client and server, but large HPC systems
involve many clients—often more than the server’s network stack
can support at any given moment. In addition, if all the active
clients send requests at the same (low) rate, the server will have
very little data from each one at any given moment, eliminating any
possibility of taking advantage of locality within the requests from
an individual client. Both these issues suggest that the server should
manage the set of active connections and should get try to get more
requests from any one client at a given time while maintaining its
guarantees. ”Fairness”per seis guaranteed by setting appropriate
reservations and is thus a concern of the broker rather than the the
network or the servers.

We are currently investigating solutions to these issues, by building
on existing network protocols that reserve resources to provide ba-

sic quality of service. We are focusing onflow controlandconnec-
tion management. For flow control, we are investigating a server-
driven flow control model where clients provide indications of how
much data they have to move, and the server issues time-limited
flow control credits based on a prediction of how much cache buffer
space the server is expected to have available for servicing those re-
quests in the near future. We are also exploring different ways to get
larger batches of requests from individual clients. For connection
management, we are investigating an approach where clients send
out-of-band connection requests to the server and the server uses
a heuristic based on multi-resource job-shop scheduling to select
which connections to allow at any given time.

7 Client cache

The client cache stages data, works with the network protocols to
move data to and from the server, and provides the opportunity
for cache hits. The Ceph file system provides client cache coher-
ence mechanisms, so we focus on the interaction between the client
cache and the network and server caches.

The client cache uses flow control credits from the server to pace the
requests that it sends. It piggybacks information about the number
of read and write requests in cache that need to be processed to help
guide the flow control and connection management decisions at the
server.

8 Conclusion

We are working on end-to-end performance management for scal-
able, distributed storage systems. Our integrated solution is based
on centralized reservations and coordinated local resource manage-
ment.

9 References

[1] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson. Dynamic in-
tegrated scheduling of hard real-time, soft real-time and non-real-time
processes. InProceedings of the 24th IEEE Real-Time Systems Sympo-
sium (RTSS 2003), pages 396–407, Dec. 2003.

[2] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn.
Ceph: A scalable, high-performance distributed file system. In Pro-
ceedings of the 7th Symposium on Operating Systems Design and Im-
plementation (OSDI), Seattle, WA, Nov. 2006. USENIX.

