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ABSTRACT
We address the cost incurred in increasing the transport ca-
pacity of wireless ad hoc networks over what can be attained
when sources and destinations communicate over multi-hop
paths and nodes can transmit or receive at most one packet
at a time. We define the energy efficiency η(n) as the bit-
meters of information transferred in the network for each
unit energy. We compute the energy efficiency of many dif-
ferent techniques aimed at increasing the capacity of wireless
networks and show that, in order to achieve higher transport
capacity, a lower energy efficiency must be attained. Using
the physical model, we compute the throughput capacity
of random wireless ad hoc networks in which nodes are en-
dowed with multi-packet reception (MPR) capabilities. We

show that λ(n) = Θ
(

(R(n))(1−2/α)

n1/α

)
bits per second con-

stitutes a tight upper and lower bound for the throughput
capacity of random wireless ad hoc networks, where α > 2 is
the path loss parameter in the physical model, n is the total
number of nodes in the network, and R(n) is the MPR re-
ceiver range. In doing so, we close the gap between the lower
and upper bounds for the throughput capacity of wireless
networks in the physical model. Compared to the original
result derived for plain routing by Gupta and Kumar, MPR

achieves a capacity gain of at least Θ
(
(log n)

α−2
2α

)
when

R(n) = Θ
(√

log n/n
)
.

1. INTRODUCTION
The seminal work by Gupta and Kumar [8] on the scaling

laws of wireless ad hoc networks show that forwarding infor-
mation from sources to destinations over multihop paths in
which each relay is able to transmit or receive at most one
packet at a time is not scalable. As a result, there has been
a growing interest in the study of the capacity of ad hoc
wireless networks and methods that can be used to improve
the order capacity of such networks.
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In this paper, we focus on the cost incurred by approaches
aimed at increasing the order capacity of a wireless ad hoc
network subject to multiple unicast flows. Section 2 provides
a survey of such schemes, which include: Taking advantage
of the in-network storage available in mobile nodes [7], in-
creasing the available bandwidth of the network as the num-
ber of nodes increases [13], and establishing various forms of
cooperation among senders and receivers (e.g., [1, 14]).

Multi-packet reception (MPR) is a cooperative approach
that enables each receiver to decode multiple concurrent
transmissions within its reception radius. Ghez et al. [5, 6]
and Tong et al. [17] present the first model of MPR in a
framework for many-to-one communication. In this context,
multiple nodes cooperate to transmit their packets simulta-
neously to the same node using directional antennas, mul-
tiuser detection (MUD), or multiple input multiple output
(MIMO) techniques [15, 20, 21]. The receiver node utilizes
MUD and successive interference cancelation (SIC) to de-
code multiple packets [18]. Recently, we [4] have shown that
the throughput capacity with MPR is tightly bounded by
Θ (R(n)) under the protocol model. This represents a min-
imum gain of Θ(log n) compared to the capacity bounds
obtained by Gupta and Kumar for point-to-point communi-
cation under the protocol model. However, this work does
not address the physical model.

Another cooperative technique aimed at increasing the ca-
pacity of wireless networks is network coding (e.g., [9, 23]).
However, while work is ongoing trying to determine the ca-
pacity gains that can be attained with NC in multicast ap-
plications, Liu et al. [11] have shown that NC does not
provide any order capacity increase for unicast applications,
which is the focus of this paper.

The first contribution of this paper is to compute the
throughput capacity of random wireless ad hoc networks
under the physical model assumption when all nodes are en-
dowed with MPR. Section 3 presents the network model we
use to obtain the upper and lower bounds on the throughput
capacity of wireless networks with MPR, which are derived

in Section 4. We show that Θ
(

(R(n))(1−2/α)

n1/α

)
bits per sec-

ond constitutes a tight bound for the throughput capacity
per node in random wireless ad hoc networks, where R(n)
and α are the MPR receiver range and channel path loss

parameter, respectively. When R(n) = Θ

(√
log n

n

)
, the

throughput capacity is tight bounded by Θ

(
(log n)

1
2−

1
α√

n

)
.



This is a gain of Θ
(
(log n)

α−2
2α

)
compared to the bound

Θ (1/
√

n) in [8] and [3]. The assumptions we use to ob-
tain these results are similar to those made by Gupta and
Kumar [8], except that each node is equipped with MPR
capabilities.

Gupta and Kumar showed that, under the physical model,
the throughput capacity of a wireless network has lower and
upper bounds of Θ(

√
1/n log n) and Θ(

√
1/n), respectively

[8]. Subsequently, Franceschetti et al. [3] closed the gap
between these two bounds and obtained an upper bound of
Θ(

√
1/n) under the physical model using percolation theory.

The second contribution of this paper consists of further
closing the gap between the upper and lower bounds on the
throughput capacity of wireless networks with MPR under
the physical model.

Intuitively, there must be a price paid in all the approaches
proposed to date that increase the capacity of wireless net-
works, including MPR of course. This price is the energy
required to transport information across the network. Many
wireless ad hoc and sensor networks have limited power and
energy for each node. Hence, capacity alone is not neces-
sarily the only performance metric against which the effec-
tiveness of a given approach should be evaluated. Energy
and power consumption efficiency is also an important met-
ric that must be considered. The third contribution of this
paper is the introduction of a new metric to evaluate the
performance of wireless ad hoc networks in terms of energy
efficiency. Section 5 introduces a new parameter to quantify
how many bit-meters of information are transferred across
the network per each unit energy. We call this metric energy
efficiency, computed by normalizing the transport capacity
by the total transmitted power and measured in units of bit-
meters per joule. We compute the energy efficiency of many
existing techniques [3,8,14] and compare them to the energy
efficiency of MPR approach. We show that MPR provides a
tradeoff between throughput capacity, node decoding com-
plexity, and energy efficiency in random wireless ad hoc net-
works. We also show that in all existing techniques [3,8,14]
including MPR, achieving higher throughput capacity leads
to a lower energy efficiency. Note that the transport capac-
ity for random wireless ad hoc networks is defined in bits
per second while for arbitrary wireless ad hoc networks, the
transport capacity is measured in bit-meters per second [8].
The focus of this paper is only on random wireless ad hoc
networks.

Previous work [16, 19] has suggested the concept of bits
per joule capacity to evaluate how much information can be
transmitted with each unit energy. Our definition of energy
efficiency is an extension of this prior work for transport
capacity in wireless ad hoc networks. Section 6 discusses
several possible implications of this study.

2. RELATED WORK
Many contributions have been made on the capacity of

wireless networks subject to unicast traffic. Under the physi-
cal model assumption, Gupta and Kumar [8] showed that the
throughput capacity of random wireless ad hoc networks has
lower and upper bounds of Θ(

√
1/n log n) and Θ(

√
1/n),

respectively. Franceschetti et al. [3] closed the gap between

these two bounds and obtained a tight bound of Θ(
√

1/n)
using percolation theory. In this approach, all communi-
cation is simple point-to-point without any cooperation be-

tween senders and receivers. Communication between re-
lays is kept at short distances with multi-hop transmissions
in backbone paths, while nodes require to transmit longer
distances to reach the backbone paths.

Several techniques have been proposed to improve the ca-
pacity of wireless networks. Grossglauser and Tse [7] demon-
strated that a non-vanishing capacity can be attained at the
price of long delivery latencies by taking advantage of long-
term storage in mobile nodes. Negi and Rajeswaran [13]
showed that, by changing the physical layer assumptions,
we can increase the capacity of wireless networks. Allowing
bandwidth expansion using ultra wide-band (UWB) tech-

nology, throughput capacity O
(
(n log n)(α−1)/2

)
and

Ω
(

n(α−1)/2

(log n)(α+1)/2

)
can be attained as the upper and lower

bounds, respectively at the expense of allowing the band-
width to increase as a function of the number of nodes in
the network. Zhang and Hou [22] closed the gap in [13]
by applying percolation theory [3]. We can also increase
the throughput capacity by using multiple channels [10] or
sender-receiver cooperation [1]. Recently, Ozgur et al. [14]
demonstrated that the capacity of random wireless ad hoc
network scales linearly with n by allowing nodes to cooper-
ate intelligently using distributed MIMO communications.

Throughput capacity is only one figure of merit in evaluat-
ing different techniques. There are also other factors such as
delay, energy consumption, storage, and other factors that
should be evaluated. Therefore, there is always a tradeoff
between throughput capacity and other factors in the net-
work. El Gamal et al. [2] characterized the fundamental
throughput-delay tradeoff for both static and mobile net-
works.

3. NETWORK MODEL
We consider a dense wireless ad hoc network with n nodes

distributed uniformly in a square of unit area. Hence, in
our model, as n goes to infinity, the density of the network
also goes to infinity. Our capacity analysis is based on the
extension of physical model for dense networks introduced
by Gupta and Kumar [8].

Definition 3.1. Physical Model with Plain Routing
In the physical model of dense random wireless ad hoc net-
works [8], a successful communication occurs if signal to in-
terference and noise ratio (SINR) of the pair of transmitter
i and receiver j satisfies

SINRi→j =
Pgij

BN0 +
∑n

k 6=i,k=1 Pgkj
≥ β, (1)

where P is the transmit power of a node, gij is the chan-
nel attenuation factor between nodes i and j, and BN0 is
the total noise power. The channel attenuation factors gij

and gkj are only functions of the distance under the sim-
ple path loss propagation model we assume [8]. Therefore,
gij = |Xi−Xj |−α in which α > 2 is the path-loss parameter
and Xi represents the Cartesian location of node i.

However, in the physical model of MPR, each receiving
node has a receiver range such that all the nodes trans-
mitting within this range will be decoded by the receiver.
Consequently, the definition of physical model should incor-
porate this fact in order to better represent this new many-
to-one communication scheme. The following proposition



states the decoding procedure for MPR using SIC. Note
that, with MPR, we can either decode the received signal
for multiple transmitters jointly using maximum likelihood
decoding or decode transmitters sequentially as long as the
SINR condition is satisfied. Definition 3.3 below describes
the condition that satisfies the minimum required SINR.

Proposition 3.2. The transmitter-receiver pair with max-
imum SINR is the nearest set of transmitters, after decoding
and subtracting this group from the received signal, the set
with the next highest SINR is the second nearest group of
transmitters, and this continues; i.e., receivers decode the
information from the nearest transmitters to farthest ones
whose positions are the maximum distance inside of com-
munication range.

Because the channel propagation model is based on the
path-loss parameter, it is clear from (1) that the node (or
group of nodes) with the closest distance to the receiver has
the highest SINR. After decoding this (their) packet(s) and
subtracting it (them) from the received data, it is obvious
that the next packet(s) with highest SINR is (are) from the
second closest node(s) to the receiver node and this proce-
dure can continue. At a given time t, the decoding procedure
for any receiver j in the MPR scheme is sequential, i.e., a
receiver decodes the information from the highest SINR to
the lowest SINR for MPR with SIC.

Essentially, this proposition states that each group of trans-
missions from some transmitters can be decoded if and only
if the previous group of transmissions from transmitters that
are closer to the receiver node was decoded first by the re-
ceiver node. The last decoded node occurs at the edge of
the circle whose radius is R(n).

Definition 3.3. Physical Model with Multi-packet Recep-
tion
In the physical model of dense random wireless ad hoc net-
works [8], the transmissions from all of the transmitters cen-
tered around a receiver j with a distance smaller or equal
to R(n) occur successfully if the SINR of the transmitter
Z(R(n)) at the edge of this receiver circle satisfies

SINRZ(R(n))→j =
PgZ(R(n))j

BN0 +
∑

k/∈AZ(R(n))
Pgkj

≥ β, (2)

where gZ(R(n))j is the channel attenuation factor between
nodes Z(R(n)) and j and BN0 is the total noise power.
A = πR2(n) is the receiver communication range (circle)
centered around the receiver j. The channel attenuation fac-
tors gZ(R(n))j and gkj are only functions of the distance, i.e.,

gZ(R(n))j = |XZ(R(n)) −Xj |−α and gkj = |Xk −Xj |−α.

Any transmission outside the receiver range is considered
interference while all the transmissions inside receiver range
will be decoded jointly or separately. For this reason, we
denote the interference inside area A as constructive in-
terference, because it consists of transmissions that will be
eventually decoded, while all the transmissions from nodes
outside of area A are called destructive interference and are
not decoded. Note that for the MPR model, the receiver
range R(n) defines the area where the receiver is capable of
decoding, which contrasts with point-to-point communica-
tion [8], for which the transmission range r(n) defines the
possible area where the receiver can decode, given that only
one transmission is successful at a receiver. Given that any

transmitter that is closer to the receiver has a smaller chan-
nel attenuation compared to the edges of the circle, it is easy
to show that the SINR of these transmitter nodes are always
greater than the value in Equation (2) if these nodes are de-
coded jointly or separately depending on the distribution of
these nodes around the receiver node j.

We assume that nodes cannot transmit and receive at the
same time, which means half-duplex communication. The
capacity between transmit node i and receive node j is de-
fined as Cij = B log (1 + SINR) bits/sec. In the work by
Gupta and Kumar [8], Cij can be a constant value W if and
only if SINR is guaranteed to be larger than a constant β.
We follow a similar assumption in this paper. We present
the following definition from Gupta and Kumar’s work [8]
for completeness of the presentation.

Definition 3.4. Feasible throughput capacity of unicast:
“ A throughput of λ(n) bits per second for each node is fea-
sible if there is a spatial and temporal scheme for scheduling
transmissions, such that by operating the network in a multi-
hop fashion and buffering at intermediate nodes when await-
ing transmission, every node can send λ(n) bits per second
on average to its chosen destination nodes. That is, there is
a T < ∞ such that in every time interval [(i−1)T, iT ] every
node can send Tλ(n) bits to its corresponding destination
node.”

Definition 3.5. Order of throughput capacity: λ(n) is
said to be of order Θ(f(n)) bits per second if there exist
deterministic positive constants c and c′ such that





lim
n→∞

Prob (λ(n) = cf(n) is feasible) = 1

lim
n→∞

Prob (λ(n) = c′f(n) is feasible) < 1.
(3)

The distribution of nodes in random networks is uniform.
Therefore, if there are n nodes in a unit square, then the
density of nodes equals n. Hence, if |S| denotes the area of
space region S, the expected number of the nodes, E(NS),
in this area is given by E(NS) = n|S|. Let Nj be a random
variable defining the number of nodes in Sj . Then, for
the family of variables Nj , we have the following standard
results known as the Chernoff bound [12]:

Lemma 3.6. Chernoff bound

• For any δ > 0, P [Nj > (1+δ)n|Sj |] <
(

eδ

(1+δ)1+δ

)n|Sj |

• For any 0 < δ < 1, P [Nj < (1− δ)n|Sj |] < e−
1
2 n|Sj |δ2

Combining these two inequalities we have, for any 0 < δ < 1:

P [|Nj − n|Sj || > δn|Sj |] < e−θn|Sj |, (4)

where θ = (1 + δ) ln(1 + δ)− δ in the case of the first bound,
and θ = 1

2
δ2 in the case of the second bound.

Therefore, for any θ > 0, there exist constants such that
deviations from the mean by more than these constants oc-
cur with probability approaching zero as n →∞. An event
occurs with high probability (w.h.p.) if its probability tends
to one as n → ∞. It follows that, w.h.p., we can get a
very sharp concentration on the number of nodes in an area,
so we can find the achievable lower bound w.h.p., provided
that the upper bound (mean) is given. In the next section,
we first derive the upper bound, and then use the Chernoff
bound to prove the achievable lower bound w.h.p..



4. THROUGHPUT CAPACITY WITH MPR
To compute the upper and lower bounds, we first describe

some definitions and preliminary results from our earlier
work [4].

The per-node throughput capacity of the network is de-
fined as the number of bits per second that every node can
transmit w.h.p. to its destination. Note that throughput
capacity is equivalent to transport capacity in this paper.
Transport capacity is defined in units of bits per second in
random networks and bit-meters per second in arbitrary net-
works as originally described in [8]. In random networks,
source-destination distance is on average the same order for
all pairs and therefore, the distance is simply a normalization
factor. Since this paper only discusses random networks, we
use bits per second unit for transport capacity consistent
with the definition in [8].

A cut Γ is a partition of the vertices (i.e. nodes in the wire-
less networks) of a graph into two sets. The cut capacity is
defined to be the sum of bandwidth of all the edges crossing
the cut that can transmit simultaneously. Min-cut is a cut
whose capacity is the minimum value among the capacity
of all cuts. For the wireless networks, we use the concept
of sparsity cut, as defined by Liu et al. [11], instead of min-
cut, to take into account the differences between wired and
wireless links.

In the 2-D case, the cut length lΓ is defined as the length
of the cut line segment. For the square region illustrated
in Fig. 1, the middle line induces a sparsity cut Γ. Because
nodes are uniformly deployed in a random network, such a
sparsity cut captures the traffic bottleneck of these random
networks on average.

The sparsity-cut capacity is upper bounded by deriving
the maximum number of simultaneous transmissions across
the cut.

Let R(n) be the radius of the receiver range A, i.e., A =
πR2(n). Given that we assume omni-antenna broadcasting,
this is the radius that distinguishes the decode-able trans-
mitter nodes from the interference.

We assume that each disk with radius R(n) centered at
any receiver is disjoint from the other disks centered at the
other receivers. It will be shown later that this assumption
is necessary in order to guarantee that the physical model
condition, SINR ≥ β, is satisfied.

4.1 Upper Bound
Lemma 4.1. The asymptotic throughput capacity of a spar-

sity cut Γ for a unit square region has an upper bound of
πlΓnW

2
R2(n)
D(n)

, where, R(n) and D(n) are receiver range and

division range of MPR respectively. Fig. 2 illustrates R(n)
and D(n).

Proof. The cut capacity is upper bounded by the max-
imum number of simultaneous transmissions across the cut.
We observe from Fig. 1 that all the nodes located in the
shaded area Sxy can send their packets to the receiver node
located at (x, y). These nodes lie in the left side of the cut
Γ within an area called Sxy and the assumption is that all
these nodes are sending packets to the right side of the cut
Γ.

For a node at location (x, y), any node in the disk of ra-
dius R(n) can transmit information to this receiver simulta-
neously and the node can successfully decode those packets.
In order to obtain an upper bound, we only need to consider

G

q

( )R n

( , )x y

xyS

Information flow direction

Figure 1: For a receiver at location (x, y), all the
nodes in the shaded region Sxy can send a message
successfully and simultaneously.

edges that cross the cut. Let us first consider all possible
nodes in the Sxy region that can transmit to the receiver
node. By drawing a circle of radius R(n) centered at (x, y),
this region is illustrated in Fig. 1 as Sxy. Because nodes are
uniformly distributed, the average number of transmitters
located in Sxy is n × Sxy. The number of nodes that are
able to transmit at the same time from left to right is upper
bounded as a function of Sxy.

The area of Sxy is

Sxy =
1

2
R2(n)(θ − sin θ). (5)

This area is maximized when θ = π,

max
0≤θ≤π

[Sxy] =
1

2
πR2(n). (6)

We can compute the total information capacity Cj for one
receiver j at the right side of the cut as

Cj =
1

2
πnWR2(n). (7)

The constraint to guarantee that Eq. (7) is true for all of
the nodes inside the circle of radius R(n), is to satisfy
SINRi∈Sxy ≥ β. For this reason, the circles whose nodes are
transmitting concurrently must be away from each other far
enough (D(n) ≥ 2R(n)) as shown in Fig. 2. Therefore, the
total throughput capacity C(n) across the sparsity cut is

C(n) ≤
(⌊

lΓ
D(n)

⌋
+ 1

)
Cj <

πnWR2(n)(lΓ + D(n))

2D(n)
. (8)

Note that D(n) and R(n) are decreasing functions of n,
and lim (lΓ + D(n)) = lΓ asymptotically because lim D(n) =
0 as n →∞. This proves the lemma.

Lemma 4.2. The per source-destination throughput of
MPR scheme in a 2-D random network is upper bounded by

O
(

R2(n)
D(n)

)
.

Proof. From lemma 4.1, there are lΓ/D(n) different cir-
cles of radius R(n) each of them having Θ(nR2(n)) nodes
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Figure 2: Upper bound design of the network

on average. Therefore, the average per node throughput
capacity can be derived as

λ(n) =
C(n)

n
= O

(
R2(n)

D(n)

)
. (9)

To derive an upper bound for the throughput capacity,
we need to obtain a minimum D(n), such that it guaran-
tees SINRZ(R(n)) ≥ β. From Proposition 3.2, the decoding
sequence of transmissions is from nearest nodes to farthest
nodes, i.e., the information of the next transmitter in the
communication range can be decoded if and only if the pre-
vious one is decoded successfully and then it is subtracted
from the received data. So if the SINR of the outmost node
can be decoded, then all of the nodes inside that circle can
be decoded separately or at least jointly. Based on this as-
sumption, we only need to compute the SINR of the farthest
nodes Z(R(n)) (i.e., at the conjunction edge of the commu-
nication circle) to make sure SINRZ(R(n)) ≥ β. Therefore,
the upper bound capacity exists if maximizing this capacity
is equivalent of maximizing the following function.

max
SINRZ(R(n))≥β

λ(n) = max
SINRZ(R(n))≥β

R2(n)

D(n)
(10)

Note that the throughput capacity is maximized by min-
imizing D(n), while if this value is too small, then Eq. (2)
will not be satisfied. Our aim is to find the optimum value
for D(n) such that both conditions are satisfied. The follow-
ing theorem establishes the optimum value that will satisfy
Eq. (2).

Theorem 4.3. The per source-destination throughput of
MPR scheme in a 2-D random network is upper bounded by

O
(

(R(n))(1−2/α)

n1/α

)
.

Proof. In order to compute the upper bound, we derive
the SINR for the node that is in a circle close to the edge of
the network. For this receiver node, the Euclidean distances
of interfering nodes are at (iD(n) + R(n)) if we assume all

interfering nodes are at the farthest distance from the re-
ceiver node. Then the SINR of the transmitter node that is
located at the circumference of the communication circle is
given by

SINRZ(R(n)) ≤ P/Rα(n)
π
2
nR2(n)

∑lΓ/D(n)
i=1

P
(iD(n)+R(n))α

(11)

≤
(

D(n)

R(n)

)α
1

π
2
nR2(n)

∑lΓ/D(n)
i=1

1

(i+ 1
2 )α

.

The second inequality above stems from the fact that R(n)
D(n)

≤
1
2
. Note that lΓ/D(n) approaches infinity when n → ∞;

therefore, the summation
∑lΓ/D(n)

i=1
1

(i+ 1
2 )α converges to a

bounded value. This means that there are constant values
c3 and c4 such that

c3 ≤
lΓ/D(n)∑

i=1

1

(i + 1
2
)α
≤

lΓ/D(n)∑
i=1

1

(i)α
≤ c4. (12)

Combining (11) and (1), the SINR constraint can be revised
as

β ≤ SINRZ(R(n)) ≤
(

D(n)

R(n)

)α
2

πc3nR2(n)
. (13)

Then the relationship between R(n) and D(n) can be ex-
pressed as

D(n) ≥
(

c3βπ

2

) 1
α

n
1
α (R(n))(1+2/α). (14)

From Eqs. (9) and (14), the upper bound of the throughput
capacity is computed as

λ(n) = O

(
R2(n)

D(n)

)
= O

(
(R(n))(1−2/α)

n1/α

)
. (15)

The above upper bound is derived based on the assump-
tion that the SINR for the nodes that are located on the
circumference of communication circle A of radius R(n) sat-
isfy the physical model, i.e., SINRZ(R(n)) ≥ β. Note that
successive decoding of nodes in A starts with nodes with
the highest SINR or equivalently with the closest distance
to the receiver j. Let’s define Ui ∈ A as a subset of the
set A that contains a group of nodes in the communication
circle with the closest distance to the receiver j that will be
decoded jointly in the next step. Then it is easy to show
that SINRUi ≥ SINRZ(R(n)) ≥ β. We will prove this in the
next section and show that this upper bound capacity is also
an achievable lower bound.

4.2 Lower Bound
Before proving the lower bound, we first compute the

number of nodes that transmit simultaneously from each
communication circle.

We have derived the upper bound in the previous section
and then the Chernoff Bound is used to prove the achievable
lower bound w.h.p..

Next we prove that, when n nodes are distributed uni-
formly over a square area, we have simultaneously at least

lΓ
D(n)

circular regions (see fig. 1), each one containing

Θ(nR2(n)) nodes w.h.p.. The objective is to find the achiev-
able lower bound using the Chernoff bound, such that the



distribution of the number of edges across the cut is sharply
concentrated around its mean, and hence in a randomly cho-
sen network, the actual number of edges crossing the sparsity

cut is indeed Θ
(

(R(n))(1−2/α)

n(1/α)

)
w.h.p..

Theorem 4.4. Each area Aj with circular shape of radius
R(n) contains Θ(nR2(n)) nodes w.h.p. and uniformly for all

values of j, 1 ≤ j ≤ lΓ
D(n)

under the condition that R(n) ≥
Θ

(√
log n

n

)
. Equivalently, this can be expressed as

lim
n→∞

P




lΓ/D(n)⋂
j=1

|Nj − E(Nj)| < δE(Nj)


 = 1, (16)

where δ is a positive arbitrarily small value close to zero.

Proof. From Equation (4), for any given 0 < δ < 1,
there exists a θ > 0 such that

P [Nj − |E(Nj)| > δE(Nj)] < e−θE(Nj) = e−θn|Aj |. (17)

Thus, we can conclude that the probability that the value
of the random variable Nj deviates by an arbitrarily small
constant value from the mean tends to zero as n →∞. This
is a key step in showing that when all the events

⋂lΓ/D(n)
j=1 |Nj−

E(Nj)| < δE(Nj) occur simultaneously, then all Njs con-
verge uniformly to their expected values. Utilizing the union
bound, we arrive at

P




lΓ/D(n)⋂
j=1

|Nj − E(Nj)| < δE(Nj)




= 1− P




lΓ/D(n)⋃
j=1

|Nj − E(Nj)| > δE(Nj)




≥ 1−
lΓ/D(n)∑

j=1

P [|Nj − E(Nj)| > δE(Nj)]

> 1− lΓ
D(n)

e−θE(Nj). (18)

Because E(Nj) = π
2
nR2(n) (see (6)), the final result is

lim
n→∞

P




lΓ/D(n)⋂
j=1

|Nj − E(Nj)| < δE(Nj)




≥ 1− lΓ
D(n)

e−
θπnR2(n)

2 ≥ 1− lΓ
2R(n)

e−
θπnR2(n)

2 .(19)

If R(n) ≥
√

c5 log n
n

= Θ

(√
log n

n

)
and as n → ∞, then

e
− θπnR2(n)

2
R(n)

→ 0, when θ > 1/πc5. Here, the key constraint

of R(n) is given as

R(n) ≥ Θ

(√
log n

n

)
. (20)

Eq. (20) is equivalent to the connectivity condition in the
protocol model [4, 8]. It is interesting to note that we did
not really use connectivity criterion in the physical model,

however, it turns out that the minimum distance for the re-
ceiver range in MPR model is equivalent to the connectivity
constraint in random networks.

The above theorem demonstrates that w.h.p., there are in-
deed Θ(nR2(n)) nodes in each communication region with
the constraint in (20). The achievable capacity is only fea-
sible when the receiver range of each node in MPR scheme
is at least equal to the connectivity criterion of transmission
range in point-to-point communication [8]. Combining the
result of Eq. (15) in Theorem 4.3 and (20) in Theorem 4.4,
we can state the following theorem for the lower bound of
throughput capacity, which implies the lower bound order
capacity achieves the upper bound.

Theorem 4.5. The per source-destination throughput ca-
pacity of MPR scheme in a 2-D static wireless ad hoc net-

work is lower bounded by Ω
(

(R(n))(1−2/α)

n1/α

)
provided that

R(n) ≥ Θ

(√
log n

n

)
, which means the tight bound is at least

Θ

(
(log n)

1
2−

1
α√

n

)
for α > 2.

Proof. We first prove that Eq. (15) is an achievable
bound and then by applying the minimum receiver range
constraint in Eq. (20), we derive the lower bound for this
theorem.

In order to derive the achievable lower bound, we design
a scheme for separating decode-able transmitter nodes in-
side the communication circle and interference, such that
SINRZ(R(n)) ≥ β1. Similar to the derivations in Eq. (11)
and using Fig. 2, it is clear that the SINR is minimized
when the largest value for interference is considered. This
value is achieved when we compute the interference for a re-
ceiver node in the middle of the network and use the closest
possible distance to the receiver node1. This lower bound
can be written as

SINRZ(R(n)) ≥
P

Rα(n)

BN0 + π
2
nR2(n)

∑lΓ/2D(n)
i=1

2P
(iD(n)−R(n))α

.

(21)
Assume that D(n) satisfies the condition in Eq. (14). If we
use the constraint for R(n) in (20), we arrive at

D(n)

R(n)
≥

(
c3βπ

2

) 1
α

n
1
α (R(n))2/α ≥ Θ

(
(log n)

1
α

)
, (22)

which illustrates that R(n) can be ignored compared with
D(n) for large values of n, i.e., n → ∞. We now evaluate
the asymptotic behavior of (21) when n → ∞. Combining
Eqs. (22) and (21), SINRZ(R(n)) can be lower bounded by

lim
n→∞

SINRZ(R(n)) ≥
(

D(n)

R(n)

)α
1

πnR2(n)
∑lΓ/D(n)

i=1
1

iα

≥
(

D(n)

R(n)

)α
1

πc4nR2(n)
≥ c3

2c4
β = β1.

This inequality is derived using Eqs. (14) and (12), together
with the fact that the second term in the denominator of
SINR goes to infinity when n → ∞ and, therefore, we can
drop the first term related to the noise. Using the same argu-
ments introduced for the computation of the upper bound,

1Note that the difference between maximum and minimum
value of interference is a constant value



we can show that a non-zero value for SINRZ(R(n)) can be
achieved which implies that the throughput capacity can be
achieved asymptotically.

The above theorem demonstrates that a gain of at least

Θ
(
(log n)

α−2
2α

)
can be achieved compared with the results

by Gupta and Kumar [8] and Franceschetti et al. [3]. Com-
bining Theorems 4.3 and 4.5, we arrive at our first major
contribution of this paper.

Theorem 4.6. The per source-destination throughput ca-
pacity of MPR scheme in a 2-D static wireless ad hoc net-

work is tight bounded as Θ
(

(R(n))(1−2/α)

n1/α

)
. The minimum

receiver range is lower bounded as R(n) ≥ Θ

(√
log n

n

)
,

which implies a lower tight bound of Θ

(
(log n)

1
2−

1
α√

n

)
.

Note that this result shows that we can close the gap in the
physical model similar to the results derived by Franceschetti
et al. [3] but achieving higher throughput capacity with
MPR.

5. ENERGY EFFICIENCY
This section focuses on the energy efficiency of schemes

aimed at increasing the throughput (transport) capacity of
wireless ad hoc networks. Many wireless sensor and ad hoc
networks are energy and power limited systems and it is
natural to ask what the price of achieving higher capacities
in wireless ad hoc networks is.

The transport capacity was originally defined in [8] based
on bits per second for random networks and bit-meters per
second for arbitrary networks. Recently, a new definition
of bits-per Joule was defined [16] that takes into consider-
ation the energy consumption that is required to transmit
information bits.

In order to incorporate the effect of energy consumption
for communication in wireless networks, we define bit-meters
per Joule, or simply energy efficiency. This new metric is a
measure for evaluating the energy efficiency of the transport
capacity in wireless sensor and ad hoc networks. This defi-
nition is general and in the special case of random networks,
it becomes equal to the bits per Joule definition of [16]. The
formal definition is as follows.

Definition 5.1. [Energy Efficiency: bit-meters per joule]
In random wireless ad hoc networks with limited energy, the
energy efficiency is

η(n) =
λ(n)

P (n)
, (23)

where λ(n) is the transport capacity of the network and P (n)
is the total minimum average power required to achieve λ(n)
for each source-destination pair in the network.

With this definition of efficiency, we compute the relation-
ship between transport capacity and the energy efficiency
for the various approaches defined to increase the transport
capacity of wireless ad hoc networks, including our own.

2
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Transmission CirclesTransmitters Simultaneous Transmission Cell

Figure 3: A tessellation of the unit square into
small square cells. The shaded cells are concurrently
transmitting cells with M = 4

5.1 Energy Efficiency in Approach by Gupta
and Kumar [8]

The lower bound for the transport capacity in [8] is de-
rived by dividing the network area into M2 disjoint groups
as shown in Fig. 3 (crossed squares in this figure are one
group) and at each time slot, only one group is allowed to
communicate. Using a multi-hop routing protocol and as-
suming that at most one transmission is successful at a re-
ceiver, the transport capacity under the physical model is
lower bounded as

λ(n) = Θ

(
1√

n log n

)
bits/sec. (24)

The SINR at each receiver when only nodes in one group
are allowed to transmit is computed as follows. Suppose
each small square in this figure has a side length of sn =

Θ

(√
log n

n

)
. The lower bound for SINR is achieved when

we have the maximum distance between transmitter and the

receiver node, i.e., d = 2
√

2Θ

(√
log n

n

)
= 2

√
2sn, and the

interfering nodes for each hop have the least distance, i.e.,
(kM − 1)sn where k is the hop distance from the receiver
node. Thus, for any transmitter-receiver pair, the SINR is
lower bounded as

SINR ≥ P (2
√

2sn)−α

BN0 + P
∑∞

k=1 8k((kM − 1)sn)−α
(25)

It is easy to show that the minimum transmit power for
each hop P to guarantee that the SINR ≥ β is

min(P ) = Θ(sα
n) = Θ

((
log n

n

) α
2
)

.

The average number of hops from source to destination is
1

sn
= Θ

(√
n

log n

)
. Therefore, the total average power to

transmit information from any source to its destination is



given by

P (n) = min(P )× total number of hops

= Θ

((
log n

n

) α
2 − 1

2
)

. (26)

The energy efficiency for this scheme can be computed by
dividing the transport capacity by the total average power
required to achieve this capacity. This renders

η(n) = Θ

(
n

α
2 −1

(log n)
α
2

)
. (27)

5.2 Energy Efficiency in Approach by
Franceschetti et al. [3]

The communication in the approach by Franceschetti et
al. [3] is based on dividing the transfer of packets into four
phases. In the first phase, the source transmits a packet to
a relay inside a path that is called ”highway path.” The dis-
tance between the source and highway path is considered a
long range communication and is proportional to Θ( log n√

n
).

Inside the highway path in phases two and three, multiple
hop communication occurs horizontally and vertically re-
spectively. The communication range is of short range and
proportional to Θ( 1√

n
). Communication in phase four is

similar to phase one and it is between relay and destination.
Assume that Ph(n) is the transmit power at the highway

path in phases two and three. Following the definition in [3],
the interference from the other cells can be expressed as

I(d, n) ≤ Ph(n) (sn(d + 1))−α
∞∑

k=1

8k(2k − 1)−α. (28)

Because the summation in (28) converges to a constant
value c6, then the total interference is upper bounded as

I(d, n) ≤ Ph(n) (sn(d + 1))−α c6. (29)

The signal power at the receiver is lower bounded as

S(d, n) ≥ Ph(n)
(
sn

√
2(d + 1)

)−α

. (30)

Using the above results, the SINR is derived as

SINR =
S(d, n)

BN0 + I(d, n)

≥ Ph(n)
(√

2
)−α

BN0(sn(d + 1))α + Ph(n)c6
. (31)

In the limit, the minimum required power to guarantee
that the SINR satisfies the physical model when n →∞ is

min(Ph(n)) = Θ((sn(d + 1))α) = Θ
(
(n)−α/2

)
.

For the long-range communications in the first and fourth
phase, there is no interference. Therefore, the SINR can be
expressed as

SINR =
Pu

(
log n√

n

)−α

BN0
. (32)

The minimum required power for this case to guarantee
the physical model condition is given by

min(Pu) = Θ

((
(log n)2

n

) α
2
)

.

Using the definition of energy efficiency, we can compute
its value for this case as

η(n) = λ(n)/P (n) =
λ(n)

2min(Pu) +
√

n min(Ph)

= Θ
(
n

α
2 −1

)
. (33)

5.3 Energy Efficiency in Approach by Ozgur
et al. [14]

Ozgur et al. [14] proposed a hierarchical cooperation method
to achieve linear scalability with virtual MIMO techniques.
In this method, the communication range is of order Θ(1)
and, therefore, Pmin = Θ(1), λ(n) = Θ(1), and η(n) = Θ(1).
Note again that we do not consider the signaling overhead
required for cooperation in this approach. We only consider
the throughput capacity in the physical layer.

5.4 Energy Efficiency with MPR
In this paper, we demonstrated that MPR closes the gap

between the upper and lower bounds of the capacity of wire-
less ad hoc networks by achieving higher transport capacity.
However, it is important to find out the energy efficiency of
this approach. From the derivation of transport capacity for
MPR in (21), the SINR is given by

SINR ≥ P (R(n))−α

BN0 + π
2
nR2(n)

∑lΓ/2D(n)
i=1 2P (iD(n)−R(n))−α

(34)
The physical model constraint is guaranteed for SINR asymp-
totically when the minimum transmit power PMPR(n) is

min(PMPR(n)) = Θ (Rα(n)) =

(
log n

n

) α
2

. (35)

Eq. (35) is derived using Eqs. (20) and (22) when n →∞.
The relationship between λ(n) and PMPR(n) can be com-

puted from Theorem 4.6 as

λ(n) = n−1/α (PMPR(n))
α−2
α2 . (36)

Because the communication range in MPR is equal to
R(n), the total minimum transmit power from source to

destination is equal to PMPR(n)
R(n)

.

The energy efficiency of MPR scheme is given by

η(n) =
λ(n)R(n)

PMPR(n)
= λ(n)(R(n))1−α

= n−
α−1
α−2 λ(n)

−(α−1)2−1
α−2 . (37)

6. DISCUSSION
The reason for the significant increase in capacity with

MPR is that, unlike point-to-point communication in which
nodes compete to access the channel, MPR embraces (strong)
interference by utilizing higher decoding complexity for all
nodes. It is interesting to note that recent work on network
coding [9, 23] implicitly assume the ability of the nodes to
receive multiple concurrent transmissions, i.e., some for of
MPR. These results clearly demonstrate that embracing in-
terference is crucial to improve the performance of wireless
ad hoc networks, and that MPR constitutes an important
component of that.

Another interesting observation is the fact that increasing
the receiver range R(n) increases the throughput capacity.
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Figure 4: Power and Capacity tradeoff

This is in sharp contrast with point-to-point communica-
tion in which increasing the communication range actually
decreases the throughput capacity and it is again due to the
fact that MPR embraces the interference.

Figure 4 shows the tradeoff between the total minimum
transmit power and the transport capacity. From this figure,
it is clear that the total transmit power for the network must
be increased in order to increase the per source-destination
transport capacity in random wireless ad hoc networks.

Figure 5 shows that, by increasing the transport capacity
in wireless ad hoc networks, the energy efficiency of all the
schemes we analyzed decreases. Many wireless ad hoc net-
works are limited in total available energy or power for each
node. Therefore, increasing the transport capacity may not
be feasible if the required power to do so is not available.
This result also shows that the transport capacity should
not be the only metric used in evaluating and comparing the
merits of different schemes. The energy efficiency of these
schemes is also very important. Based on different values
for R(n), different transport capacities can be attained. In
general, MPR allows to have tradeoff between receiver com-
plexity and transport capacity.
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Figure 5: Capacity and energy efficiency tradeoff

There are certain issues that we did not discuss in this
paper. Our analysis does not include the energy required for

increased decoding complexity, which is necessary for MPR.
Our analysis also does not include the additional required
overhead related to cooperation among nodes. Such topics
are the subject of future studies.

7. CONCLUSION
This paper shows that the use of MPR can close the gap

for the transport (throughput) capacity in random wireless
ad hoc networks under the physical model, while achiev-
ing much higher capacity gain than that of [3]. The tight

bound is Θ
(

(R(n))1−2/α

(n(1/α))

)
where R(n) is the receiver range

in MPR model. For the minimum value of R(n), a gain of

Θ
(
(log n)

α−2
2α

)
is achievable in MPR scheme.

We introduced a new definition related to energy efficiency
based on bit-meters per Joule metric. Our results show that
increasing the transport capacity by means of MPR or any
of the other techniques proposed to date [3,8,14] results in a
reduction of energy efficiency in the network. Accordingly,
there is a tradeoff to be made between increasing transport
capacity and decreasing energy efficiency. Determining what
is the optimum tradeoff between capacity and energy effi-
ciency is an open problem.
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