
Data Management Projects at Google

Michael Cafarella Edward Chang Andrew Fikes Alon Halevy Wilson Hsieh
Alberto Lerner Jayant Madhavan S. Muthukrishnan

1. INTRODUCTION
This article describes some of the ongoing research projects

related to structured data management at Google today.
The organization of Google encourages research scientists
to work closely with engineering teams. As a result, the
research projects tend to be motivated by real needs faced
by Google’s products and services, and solutions are put
into production and tested rapidly. In addition, because of
the sheer scale at which Google operates, the engineering
challenges faced by Google’s services often require research
innovations.

In Google’s early days, structured data management was
mostly needed for storing and serving data related to ads.
However, as the company grows into hosted applications and
the analyses performed on its query streams and indexes get
more sophisticated, structured data management is becom-
ing a key infrastructure in all parts of the company.

What we describe below is a subset of ongoing projects,
not a comprehensive list. Likewise, there are others who are
involved in structured data management projects, or have
contributed to the ones described here, some of whom are
Roberto Bayardo, Omar Benjelloun, Vignesh Ganapathy,
Yossi Matias, Rob Pike and Ramakrishnan Srikant.

Sections 2 and 3 describe projects whose goal is to enable
search on collections of structured data that exist today on
the web. Section 2 describes our efforts to crawl content that
resides behind forms on the web, and Section 3 describes
our initial work on enabling search on collections of HTML
tables. Section 4 describes work on mining large collections
of data and social graphs. Sections 5 and 6 describe recent
progress on BigTable, our main infrastructure for storing
structured data.

2. CRAWLING THE DEEP WEB
Jayant Madhavan and Alon Halevy

The Deep Web refers to content hidden behind HTML
forms. In order to get to a web page from the Deep Web,
a user has to perform a form submission with valid input

values in the form’s fields. Since web crawlers primarily rely
on hyperlinks to discover web pages, they are unable to reach
pages on the Deep Web that are subsequently not indexed
by search engines. The Deep Web has been acknowledged
as a significant gap in the coverage of search engines and
various accounts have hypothesized the Deep Web to have
an much more data than the currently searchable World
Wide Web. Included in the Deep Web are a large number
of high quality sites, such as store locators and government
sites. Hence, we would like to extend the coverage of the
Google search engine to include web pages from the Deep
Web.

There are two complementary approaches to offering ac-
cess to Deep Web content. The first approach, essentially
a data integration solution, is to create vertical search en-
gines for specific domains (e.g., cars, books, real-estate). In
this approach we could create a mediator form for the do-
main at hand and semantic mappings between individual
data sources and the mediator form. At web-scale, this ap-
proach suffers from several drawbacks. First, the cost of
building and maintaining the mediator forms and the map-
pings is high. Second, identifying the domain, and the forms
within the domain, that are relevant to a keyword query is
extremely challenging. Finally, data on the web is about
everything and domain boundaries are not clearly definable,
not to mention the many different languages – creating a
mediated schema of everything will be an epic challenge.

The second approach, sometimes called the surfacing ap-
proach, pre-computes the most relevant form submissions
for all interesting HTML forms. The URLs resulting from
these submissions can then be indexed like any other HTML
page. Importantly, this approach enables leveraging the ex-
isting search engine infrastructure and hence the seamless
inclusion of Deep Web pages into web search results and
this leads us to prefer the surfacing approach. We note that
our goal is to drive new traffic to Deep Web sites that until
now were visited only if people know about the form or if
the form itself came up in a search result. Consequently, it
is not crucial that we obtain all the possible form submission
from these sites, but just enough to drive more traffic. Fur-
thermore, our pre-computed form submissions function like
a seed to unlocking the site – once an initial set of pages are
in the index, the crawling system will automatically leverage
the internal structure of the site to discover other pages of
interest.

We have developed a surfacing system at Google that has
already enhanced the coverage of our search index to include
web pages from over a million HTML forms. We are sub-

34 SIGMOD Record, March 2008 (Vol. 37, No. 1)

sequently able to drive over a thousand queries per second
from the Google.com search page to Deep Web content.

In deploying our solution, we had to overcome several chal-
lenges. First, a large number of forms have text box inputs
and require valid inputs values to be submitted. Therefore,
the system needs to choose a good set of values to submit in
order to surface the most useful result pages. We use a com-
bination of two approaches to address this challenge. For
search boxes, which accept most keywords, we predict good
candidate keywords by analyzing the content of already in-
dexed pages of the website. For typed text boxes, that only
accept a well-defined set of values, we attempt to match the
type of the text box against a library of types that are ex-
tremely common across domains, e.g., zip codes in the US.

Second, HTML forms typically have more than one input
and hence a naive strategy of enumerating the entire Carte-
sian product of all possible inputs can result in a very large
number of URLs being generated. Crawling too many URLs
will drain the resources of a search engine web crawler while
also posing an unreasonable load on web servers hosting the
HTML forms. Interestingly, when the Cartesian product is
very large, it is likely that a large number of the form sub-
missions result in empty result sets that are useless from
an indexing standpoint. For example, the search form on
cars.com has 5 inputs and a Cartesian product will yield over
200 million URLs, even though cars.com has only 650,000
cars on sale. We have developed our algorithm that intel-
ligently traverses the search space of possible form submis-
sions to identify only the subset of input combinations that
are likely to be useful to the search engine index. On aver-
age, we only generate a few hundred form submissions per
form. Furthermore, we believe the number of form submis-
sions we generate is proportional to the size of the database
underlying the form site, rather than the number of inputs
and input combinations in the form.

Third, our solutions must scale and be domain indepen-
dent. There are millions of potentially useful forms on the
web. Given a particular form, it might be possible for a hu-
man expert to determine through laborious analysis the best
possible submissions for that form, but such a solution would
not scale. Our goal was to find a completely automated so-
lution that can be applied to any web form in any language
or domain. To date, our system has crawled over a million
forms in over 50 languages and in hundreds of domains.

We note that we only index informational form sites. We
take precautions to avoid any form that requires any per-
sonal information or is likely to have side effects. For exam-
ple, we do not analyze forms that use the post method, have
password or textarea inputs, or include keywords such as
username, login, etc.

While our surfacing approach has generated considerable
traffic, there remains a large number of forms that continue
to present a significant challenge to automatic analysis. For
example, many forms invoke Javascript events in onselect
and onsubmit tags that enable the execution of arbitrary
Javascript code, a stumbling block to automatic analysis.
Further, many forms involve inter-related inputs and access-
ing the sites involve correctly (and automatically) identify-
ing their underlying dependencies. Addressing these and
other such challenges efficiently on the scale of millions is
part of our continuing effort to make the contents of the
Deep Web more accessible to search engine users. Finally,
we also note that site maps are another mechanism that al-

lows the content providers to give lists of URLs in XML files
to search engines, and therefore expose content behind from
the deep web. All major search engines today support the
site maps protocol described in www.sitemaps.org. The con-
tent provided by site maps tends to be complimentary to the
content that is automatically crawled using the techniques
described above.

3. SEARCHING HTML TABLES
Michael Cafarrela and Alon Halevy

The World-Wide Web consists of a huge number of un-
structured hypertext documents, but it also contains struc-
tured data in the form of HTML tables. Some of these ta-
bles contain relational-style data, with tuple-oriented rows
and a schema that is implicit but often obvious to a human
observer. Indeed, these HTML tables make up the largest
corpus of relational databases that we are aware of (number-
ing more than 100M databases, with more than 2M unique
schemas). The WebTables project is an effort to extract
high-quality relations from the raw HTML tables, to make
these databases queryable, and to use this unique dataset to
build novel database applications.

The first WebTables task is to recover high-quality rela-
tions from a general web crawl. Relation recovery includes
two steps: first, WebTables filters out raw HTML tables that
do not carry relational data (such as those used for page lay-
out). Second, for those tables that pass the relational filter,
WebTables recovers schema metadata such as column types
and labels. There is no way for an HTML author to reli-
ably indicate whether a table is relational, or to formally
declare relational metadata. Instead, WebTables must rely
on a host of implicit hints. For example, tables that are used
for page layout will often contain very long and text-heavy
cells, whereas tables for relational data will usually contain
shorter cells of roughly consistent length. Similarly, one way
to test whether a table author has inserted a “header row”
is to see if the first row is all strings, with different types in
the remaining rows.

The second WebTables challenge is to design a query tool
that gives easy access to more than a hundred million unique
databases with more than 2 million unique schemas. We
have built a “structured data search engine” in which the
user types a search-style text query, and the engine returns
a relevance-ranked list of databases instead of a list of URLs.
After the user has chosen a relevant database, she can apply
more traditional structured query tools (such as selection,
projection, etc). Additionally, the engine can automatically
apply certain structured operations without waiting for the
user. For example, WebTables can examine the contents of
a table and try to generate a visualization that is domain-
appropriate and “interesting,” displaying it next to the table
in query search results.

Finally, WebTables uses the corpus of recovered databases
to build a series of new applications. We have designed two
so far. The first is schema autocomplete, in which a user en-
ters one or more desirable data attributes (e.g., “name”) and
the autocompletor suggests the rest (e.g., “address”, “city”,
“zip”, “phone”, etc.). The second is synonym finding, a tool
that automatically computes which table attributes appear
to be synonymous (e.g., “song” and “title”, “telephone” and
“tel-#”). This data can then be used to improve schema
matching. Both tools are made possible by attribute-label

SIGMOD Record, March 2008 (Vol. 37, No. 1) 35

co-occurrence statistics derived from the corpus of recovered
databases.

WebTables works today (available only internally), but we
believe there are many future research questions. We can im-
prove the performance of existing steps (such as relation re-
covery accuracy and database ranking quality), expand the
input data beyond simple HTML tables (perhaps including
HTML lists or Excel spreadsheets), and build new appli-
cations on the recovered data (such as data-suggestion, a
“vertical” analog to schema autocompletion). There are also
a host of questions prompted by a “data-centric” view of the
web: we are currently researching whether it is possible to
automatically find joins between structured data recovered
from different web pages. For example, to find where world
leaders reside, we might join a table of countries and capital
cities to a table of countries and their premiers.

The WebTables Project and the Deep-Web Crawl Project
are parts of our larger research effort into dataspaces [6], and
on data integration with uncertainty as basis for building
dataspace systems. Some of our earlier work in this area is
described in [4, 5, 8].

4. LARGE-SCALE DATA MINING AND COM-
MUNITY PRODUCTS

Edward Chang

We now describe our work on developing scalable algo-
rithms for mining large-scale Web data and social graphs.
This work is lead by Edward Chang, who heads Google Re-
search in China. Building upon this scalable data mining in-
frastructure, the engineering team developed and launched
two social-network products, and drastically reduced page-
rank spam rate in China (from 5% in 2006 to now under
1%).

The research work focused on parallelizing six mission-
critical machine learning algorithms including Support Vec-
tor Machines (SVMs), Singular Vector Decomposition (SVD),
Spectral Clustering, Association Mining, Probabilistic La-
tent Semantic Analysis (PLSA), and Latent Dirichlet Allo-
cation (LDA) to take advantage of Google’s massive, dis-
tributed storage and computing services. In particular, his
team parallelized SVMs [1], and made the code publicly
available through Apache open source.

SVMs are widely used for classification tasks due to their
strong theoretical foundation and empirical successes. Un-
fortunately, SVMs suffer from scalability problems in mem-
ory use and computational time. We developed parallel
SVM algorithm (PSVM) to remedy these problems. PSVM
reduces memory use by performing a row-based approximate
matrix factorization, and by loading only essential data to
each of the parallel machines. PSVM reduces computation
time by intelligently reordering computation sequences and
by performing them on parallel machines. Furthermore,
PSVM supports fault-tolerant computing to recover from
computer-node failures.

In terms of computational complexity, let n denote the
number of training instances, p the reduced matrix dimen-
sion after factorization (p is significantly smaller than n),
and m the number of machines. PSVM reduces the memory
required by the Interior Point Method (IPM) from O(n2)
to O(np/m), and improves computation time to O(np2/m).
For instance, a task taking 7-days to run on one single ma-
chine takes PVSM to complete in two hours on 200 machines.

PSVM is currently used internally at Google for identify-
ing spammy and objectionable Web sites. Since PSVM was
made publicly available, the code has been widely down-
loaded.

Besides PSVM, the parallel version of SVD, PLSA, and
LDA has also been made available at Google internally.
These algorithms are useful for tasks of classification and
collaborative filtering. For classification, PLSA is employed
to provide tags for user questions, short messages, and user
posts. For collaborative filtering, PLSA and LDA are used to
assist various recommendation features, e.g., friend/expert
suggestion, forum recommendation, and ads matching. To-
gether, these algorithms power two products which we de-
scribe next.

The first product is Knowledge Search, which was first
launched in Russia and then China [12], and is now being
launched in several other countries. Knowledge Search al-
lows users to post questions and then matches experts to
timely answer questions. The distinguishing feature of this
product compared to competing products is that it offers
online question classification, related-question recommenda-
tion, and topic-sensitive expert matching. All of these fea-
tures are empowered by the aforementioned machine-learning
infrastructure.

The second product, Laiba, is a social-network product
initially developed based on Orkut. We first localized the
product, and then quickly expanded its features such as
photo sharing and user-interaction services. We launched
Laiba in China in 2007 [10]. Similar to Knowledge Search,
this product is supported by large-scale data mining algo-
rithms to support friend/community/content recommenda-
tion. The team is now further expanding Laiba to support
the Google Open-Social platform [11] that will enable third-
party applications to plug Laiba and other social-networks.

5. BIGTABLE
Andrew Fikes and Wilson Hsieh

We have built a system called Bigtable [2] to store struc-
tured or semi-structured data at Google. (The Google File
System [7] is used when a file-system interface is acceptable.)
Bigtable can be viewed at a systems level as a distributed,
non-relational database; at the algorithmic level as a highly
distributed multi-level map; or at the implementation level
as a variant of a distributed B-tree. We use Bigtable to
store data for many different projects, such as web index-
ing, Google Earth, and Orkut.

Bigtable has been under active development since late
2003, and its first deployment in production was in mid-
2005. Over the last few years, the deployment of Bigtable
has grown steadily. As of January 2008, there are more than
600 Bigtable clusters at Google; the largest cluster has over
2000 machines. The largest cells store over 700TB of data,
and the busiest cells sustain 100K operations/second.

Besides our day-to-day “maintenance” work (improving
the performance of the system, fixing bugs, training users,
writing documentation, improving manageability, etc.), we
are still adding new features to Bigtable. In addition, we
continue to redesign parts of the system as our users run
larger Bigtable clusters. Following is a brief description of
some of the higher-level issues that we are working on:

• Coping with failure. Bigtable software runs on lots
of machines: enough to almost guarantee that we will

36 SIGMOD Record, March 2008 (Vol. 37, No. 1)

eventually run into buggy hardware (faulty memory is
one of the more problematic issues). We are investigat-
ing better ways to deal with such problems, without
hurting performance dramatically.

• Sharing machines across users. Although Bigtable’s
interface supports multiple users, the implementation
did not until recently do a good job of providing suf-
ficient isolation between them. We are still improving
Bigtable’s ability to do resource management and iso-
lation.

• Cross-data-center replication. Bigtable currently
allows clients can set up lazy replication between their
tables (which can be in different data centers). This
replication system guarantees eventual consistency, which
suffices for many of our clients. However, some clients
(in particular, those that are building user-facing prod-
ucts) need stronger guarantees on the consistency and
availability of their data. We are building in support
for these stronger consistency guarantees, both on top
of Bigtable and inside Bigtable.

• Attaching computation to data. To support long-
running computations that need to access data in Bigtable,
we have been adding APIs that allow clients to run
code on the same machines as their data. Although the
Map-Reduce framework [3] does provide some support
for running computation near data, it does not provide
any strong guarantees.

• More expressive queries. Bigtable does not sup-
port SQL; it currently supports the use of a Google-
designed language called Sawzall [9] to describe server-
side filtering of data. For various reasons, this support
is awkward to use, and requires a fair amount of work
to describe simple filters. We are in the process of
implementing a small language that will support the
most common kinds of filters that our clients need.

• Direct support for indexing. Many of our clients
want to store indexed data in Bigtable. Currently,
they have to manage the indices themselves. We are
in the process of building support for indices directly
into Bigtable.

Most of these features are being added directly to Bigtable,
but some features are being built as client layers on top of
Bigtable. The Megastore project, for example, is building
more general support for transactions, consistent replica-
tion, and DAO. Although Bigtable is not a database, most
of the features that we are adding are very familiar to the
database community. That fact is unsurprising, given the
usefulness of these features. What will be interesting is what
the design and implementation of Bigtable is in 1-2 years,
and what it tells us about building high-performance, widely
distributed data-storage systems.

6. MINITABLES: SAMPLING BIGTABLE
Alberto Lerner and S. Muthukrishnan

As described above, Bigtable is a high-performance, dis-
tributed, row-storage system that is highly scalable, but it is
not meant to provide relational query processing or sophisti-
cated indexing. Therefore, some accesses to a Bigtable may

involve large parallel scans. Although Google’s infrastruc-
ture supports these scans relatively well, there are instances
where it is desirable to work with a sample of the data in a
Bigtable. This section discusses the challenges and oppor-
tunities to build such a sampling feature.

A row in a Bigtable is keyed by a unique string called a
rowname and each row has its data spread across a number
of column families. A column family may comprise a vari-
able number of actual columns. Since Bigtables are sparse
structures, a row may or may not exist for a given query,
depending on which columns that query requested. Data
is maintained in lexicographical order but different columns
may or may not be stored apart. Because of such semantics
and storing scheme, skipping N rows is not feasible without
actually reading them. Even finding the count of rows in a
Bigtable at any point in time can be done only probabilis-
tically. On the bright side, since Bigtable does not provide
a relational query engine, we do not need to consider what
are suitable sampling methods for various relational oper-
ators (like joins) or take into account how sampling errors
compound with increasing levels of query composition.

Uniform Random Sampling. Our sampling scheme ex-
tracts and presents a sample of a Bigtable’s rows as if it
were a Bigtable itself, which we call a Minitable. The ratio-
nale here is that code written to run against a Bigtable can
run unchanged against a sample thereof.

Our sampling is based on a hash scheme. We pick a conve-
nient hash function that maps the rowname space into a very
large keyspace (e.g., a ax + b mod p function, where p is as
large as 2128). The rows falling into the first fp keys where f
is the relative sample size (it is a fraction), would belong in
the sample. Formally, we pick a hash function h : R− > 0..p
and if h(r) ∈ [0, fp−1], then add r to the sample. It is easy
to see that the expected size of the sample is f ∗ 100% of
the Bigtable rowcount independent of the rowcount, and the
probability that a particular row r is in the sample is f , as
desired. This hash-based sampling method supports main-
tenance of the sample with each Bigtable mutation (insert,
update, or deletion).

Only the system may forward relevant mutations from
the Bigtable to the Minitable. Otherwise, the latter would
behave as just any other Bigtable: it could be backed up
and even be replicated. We are currently deploying Minita-
bles in the repository of documents that the crawling system
generates. Several Minitables, each with a different sample
factor, allow that system to compute aggregates much faster
and moer often.

Biased Sampling. Uniform random sampling is quite use-
ful but some scenarios require biased sampling methods. We
are currently working on one such extension that we call
Mask Sampling. In this scheme, the decision to select a row
to the sample is still based on its rowname but now a user
may specify a mask m over it. The mask, which can be a
regular expression that matches portions of a rowname, is
used to group rows together. Two rows belong to a same
group if their masks result in the same string. Mask sam-
pling guarantees that if a group is selected to the sample,
that group will be adequately represented there, regardless
of that group’s relative size.

A typical application would be over a Bigtable that stores
web pages keyed by their URL’s. If one used uniform ran-

SIGMOD Record, March 2008 (Vol. 37, No. 1) 37

dom sampling over it, one may lose information about do-
mains with relatively few pages. With mask sampling, one
can define how to extract a domain from a URL and deter-
mine that each domain has the same probability to appear
in the sample.

Specifically, our procedure should return a possibly non-
uniform sample of 〈k.m〉, that is, rowname k projected only
on the mask. There are at least two details that make the
problem interesting. (a) The set of distinct 〈k.m〉’s may be
large and need to be sampled. Using our previous example,
there may be simply too many domains to fit in the desired
sample size. (b) Even though the rownames are unique, the
set of 〈k.m〉’s is often not: for each 〈k.m〉 value, we have a
set of rows from the Bigtable and we need to determine what
to retain in the Minitable. Again, using the example URL
table, we may need to sample within a chosen domain. Let
us consider the set S(n) of rows that have 〈k.m〉 = n. Then,
ideally, we would like keep all rows r from S(n) if |S(n)| is
small, to sub-sample with moderate probability if |S(n)| is
larger and more aggressively when |S(n)| is huge.

The hash-sampling procedure generalizes to the biased
case as well. We have h1 : 〈k.m〉 → [0 . . . p] and retain
those that hash into the first f fraction of the range, as be-
fore. Then, within each 〈k.m〉 = n that is retained by h1,
we apply h2 (dependent on n), this time on the entire row-
name as opposed to just the mask. Here, we assume that
we have a side table T : 〈k.m〉 = n → gn, which is often
programmed by an offline logic or is easy to maintain in a
lazy manner in practice. (It can be indirectly obtained if
a uniform Minitable is present.) We call this table gtable
because it contains a row for each groupby specified by the
mask.

In practice, this sampling scheme may give us a biased
Minitable from the URL Bigtable with a representative sam-
ple of domains. Each of them would carry enough rows to
allow for the computation of approximate aggregations, for
instance, even if the domains chosen had a large variance in
term of number of rows in the base Bigtable.

7. REFERENCES
[1] E. Y. Chang, K.Zhu et al., Parallelizing Support

Vector Machines on Distributed Computers.
Proceedings of NIPS 2007. downloadable open source
at http://code.google.com/p/psvm/.

[2] Chang, F., et al. Bigtable: A Distributed Storage
System for Structured Data. In Proc. of the 7th OSDI
(Dec. 2006), pp. 205–218.

[3] Dean, J., and Ghemawat, S. MapReduce: Simplified
data processing on large clusters. In Proc. of the 6th
OSDI (Dec. 2004), pp. 137–150.

[4] Dong X. and Halevy A. Indexing Dataspaces.
Proceedings of the International Conference on
Management of Data (SIGMOD), pp. 43-54, 2007.

[5] Dong X., Halevy A., and Yu C. Data Integration with
Uncertainty. International Conference on Very Large
Databases (VLDB), pp. 687-698, 2007.

[6] Franklin M., Halevy A., and Maier D. From databases
to dataspaces: a new abstraction for information
management. SIGMOD Record, 34(4): 27-33, 2005.

[7] Ghemawat, S., Gobioff, H., and Leung, S.-T. The
Google file system. In Proc. of the 19th ACM SOSP
(Dec. 2003), pp. 29–43.

[8] Madhavan J., Cohen S., Dong X., Halevy A., Jeffery
S., Ko D., and Yu C. Web-Scale Data Integration:
You can only afford to Pay as You Go. Proceedings of
CIDR, pp. 342-350, 2007.

[9] Pike, R., Dorward, S., Griesemer, R., and Quinlan, S.
Interpreting the data: Parallel analysis with Sawzall.
Scientific Programming Journal 13, 4 (2005), 227–298.

[10] http://liaba.tianya.cn.
[11] Google Open Social.

http://code.google.com/apis/opensocial.
[12] http://otvety.google.ru/otvety/.

http://wenda.tianya.cn.

38 SIGMOD Record, March 2008 (Vol. 37, No. 1)

