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Abstract
Many organizations specify information release policies to de-
scribe the terms under which sensitive information may be released
to other organizations. This paper presents a new approach for en-
suring that security-critical software correctly enforces its informa-
tion release policy. Our approach has two parts. First, an informa-
tion release policy is specified as a security automaton written in
a new language called AIR. Second, we enforce an AIR policy by
translating it into an API for programs written in λAIR, a core for-
malism for a functional programming language. λAIR uses a novel
combination of dependent, affine, and singleton types to ensure that
the API is used correctly. As a consequence we can certify that pro-
grams written in λAIR meet the requirements of the original AIR
policy specification.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms Security, Verification, Languages, Theory

Keywords declassification, certified evaluation, state modifying
policies, dependent types, affine types, singleton types

1. Introduction
Many organizations, including financial institutions, healthcare
providers, the military, and even the organizers of this conference,
wish to specify the terms under which sensitive information in their
possession can be released to their partners, clients, or the public.
Such a specification constitutes an information release policy.

These policies are often quite complex. For example, consider
the policy that regulates the disclosure of military information to
foreign governments as defined by the United States Department
of Defense (1992). This policy includes the following provisions: a
release must be authorized by an official with disclosure authority
who represents the “DoD Component that originated the informa-
tion”; the system must “edit or rewrite data packages to exclude
information that is beyond that which has been authorized for dis-
closure”; a disclosure shall not occur until the foreign government
has submitted “a security assurance [. . .] on the individuals who are
to receive the information”; and, that the release must take place in
the Foreign Disclosure and Technical Information System in which
both approvals and denials of a release request must be logged.
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We would like to ensure that software systems that handle sen-
sitive data—including military systems, but also programs like
medical-record databases, online auction software, and network
appliances—correctly enforce such a high-level policy. As a con-
crete example, consider a specific kind of application called a cross-
domain guard. These are programs, like network firewalls, that
mediate the transfer of information between organizations at dif-
ferent trust levels. Commercial guards, e.g., the Data Sync guard
produced by BAE (Focke et al., 2006), do not enforce high-level
policies but rather implement low-level “dirty keyword” filters.

The research community has only recently begun to con-
sider the verified enforcement of release policies. For instance,
FlowWall (Hicks et al., 2007) (arguably the research counterpart of
a system like DataSync guard) is a firewall which, by virtue of be-
ing built with the Jif programming language (Chong et al., 2006),
is sure to enforce a low-level filtering policy, but it does not appeal
to high-level information release criteria. Augmenting information
flow policies with high-level conditions that control information
release has been proposed by Chong and Myers (2004) and, more
recently, by Banerjee et al. (2008). However, in both these cases,
reasoning separately about high-level release decisions is difficult
since the release policy is embedded within the program.

To fill this gap, this paper presents a methodology for building
highly-assured software that acts in accordance with a high-level
information release policy. Our approach has two parts. First, we
define AIR, a formal language for defining information release poli-
cies separately from the program that is to be secured. AIR’s design
follows from the observation that an information release policy is
a kind of stateful authorization policy naturally expressed as an au-
tomaton (Schneider, 2000) (AIR stands for automata for informa-
tion release). Satisfaction of a release obligation advances the state
of the automation, and once all obligations have been fulfilled, the
automaton reaches the accepting state and the protected informa-
tion can be released. AIR allows one to express such automata in a
natural way.

Second, we define λAIR (pronounced “lair”), a core calculus in
which type-correct programs can be shown to correctly enforce an
AIR policy. We have mechanized the proof of soundness of λAIR
using the Coq proof assistant. λAIR has three elements.

• First, λAIR provides singleton types to allow a programmer
to associate sensitive data with an AIR automaton that protects
that data. For example, an object x implementing a security au-
tomaton is given type ¡InstanceN , where N is a type-level name
unique to x. Then, an integer i protected by x would be given
type Protected Int N, which is essentially a kind of dynamic la-
beling (Zheng and Myers, 2004). While the state of an automaton
can change, its association to a protected value will not change un-
til all policy obligations have been fulfilled and the data is released,
thus ensuring a kind of complete mediation. Prior work on veri-
fied enforcement of security automata via type checking (Walker,



2000) or inlined reference monitors (Erlingsson, 2004) is less flex-
ible and/or has a larger trusted computing base (Section 6).

• Second, a λAIR program can express a release obligation with a
dependent type, where an object having that type serves as a proof
that the obligation has been fulfilled. For example, data could be re-
leased to a principal p only if p acts for some principal q (where p
and q are program variables that store public keys). A proof of this
fact could be represented by an object with type ActsFor p q. Gen-
erally speaking, proof objects represent certificates which are used
to produce a certified evaluation of stateful policy logic—every au-
thorization decision is accompanied by a proof that all obligations
mandated by the high-level policy have been met. Certificates can
be produced locally or remotely. We combine affine types with de-
pendent and singleton types to ensure that that stale evidence about
old policy states are never used in authorization decisions.

• Finally, given these mechanisms, we provide a way to compile
an AIR policy to an API in λAIR, where each API function corre-
sponds to an automaton transition such that the type of that func-
tion precisely expresses the evidence necessary for a transition to
succeed. Thus type-correct λAIR programs must use the compiled
AIR API correctly and, as a consequence, meet the specifications of
the high-level policy. More precisely, we prove that the sequence of
events produced by a program’s execution is a word in the language
accepted by the AIR automaton.

Using our techniques, one could build a cross-domain guard
that adheres to high-level policy prescriptions; e.g., it would re-
lease information only after confirming that appropriate security
assurances have been received, that to-be-released data packages
have been rewritten appropriately, and that audit logs have been
updated.

Our use of AIR policies for information release departs from
prior work on declassification policies in that we do not focus on es-
tablishing a noninterference-like property for programs. However,
our work complements noninterference-oriented interpretations of
information release. For example, additional support for robust de-
classification (Zdancewic and Myers, 2001) could ensure that an
adversary never causes information to be released, and furthermore,
when it is released, it always follows the prescription of the high-
level AIR policy.

2. AIR: Automata for Information Release
This section presents AIR, our language for expressing information
release policies as automata.

2.1 Syntax of AIR, by Example

An AIR policy consists of one or more class declarations. A pro-
gram will contain instances of a class, where each instance protects
some sensitive data via a labeling. Protected data can be accessed in
two ways. First, each class C has an owning principal P such that P
and all who act for P may access data protected by an instance of C.
Second, each class defines a release policy by which its protected
data can be released to an instance of a different class.

The release policy is expressed using rules that define a se-
curity automaton, which is a potentially infinite state machine in
which states represent security-relevant configurations. In the case
of AIR, the security automaton defines conditions that must hold be-
fore data can be released. Each class instance consists of its current
state, and each condition that is satisfied transitions the automa-
ton to the next state. These transitions ultimately end in a release
rule that allows data to be released to a different class instance, po-
tentially in a modified form. Because sensitive data is associated
with instances rather than classes, multiple resources may be gov-
erned by the same policy template (i.e., the automaton defined by
the class) but release decisions are made independently for each

Metavariables
id class and rule ids P principals
C state constructors n, i, j integers x,y,z variables

Core language
Declarations D ::= class id = (principal:P; states:

−→
S ;
−→
R )

States S ::= C | C of −→t
Rules R ::= id : R | id : T
Release R ::= When G release e with next state A
Transition T ::= When G do e with next state A
Guards G ::= x requested for use at y and

−−−→
∃x:t.C

Conditions C ::= A1 IsClass A2 | A1 InState A2
| A1 ActsFor A2 | A1 ≤ A2

Atoms A ::= n | x | id | P | C (
−→
A ) | A1 +A2

| Self | Class(A) | Principal(A)

e is an expression and t is a type in λAIR. (cf. Figure 4)

Figure 1. Syntax of AIR

resource. Dually, related resources can be protected by the same
instance, thereby allowing release decisions made with respect to
one resource to affect the others.

The formal syntax of AIR policies is presented in Figure 1.
We explain the syntax of AIR while stepping through a running
example, shown in Figure 2. Throughout, we use the notation −→a
to stand for the ordered sequence a1, . . . ,an. Where the context is
clear, we will also treat −→a as the set {a1, . . . ,an}.

A class declaration consists of a class identifier, an identifier for
the owning principal, a list of automaton states, and a sequence of
rules that define the automaton transitions. Our example declares a
single class US Army Confidential, owned by the principal US Army,
that defines the policy for confidential data owned by the U.S.
Army. For simplicity, our examples use a flat namespace for class
identifiers, and abstract names for principals.

Automaton states are represented by terms constructed from
an algebraic datatype. The example has two kinds of states. The
nullary constructor Init represents the initial state of the automaton;
all classes must have this state. The other kind of state is an ap-
plication of the unary constructor Debt to an argument of type Int.
Constructors of the form C of −→t may carry data as indicated by
the types−→t . Types t (such as Int) are drawn from the programming
language λAIR in which programs using AIR policies are written;
λAIR is discussed in the next section.

Each rule in an AIR class is given a name, and is either a re-
lease rule or a transition rule. Each rule begins with a clause
“When x requested for use at d”, which serves to bind variables x
and d in the remainder of the rule. Here, x names the information
protected by an instance of this class, requested for release to some
other instance d (usually of another class). This clause is followed
by a conjunction of conditions that restrict the applicability of a
rule; we discuss these in more detail below. Following these condi-
tions, the rule specifies a λAIR expression e that can either release
information (perhaps after downgrading it by filtering or encryp-
tion) or do some other action (like logging), depending on whether
the rule is a release rule or a transition rule. A rule concludes with
the next state of the automaton.

The first rule in the US Army Confidential class is a release rule
called Conf secret. This rule is qualified by a condition expression
Class(d) IsClass US Army Secret stating that the rule applies when
releasing x to an instance d of a class named US Army Secret. If ap-
plicable, this rule allows x to be released without modification—the
release expression is simply x, and not, some function that down-
grades x. After the release, the automaton remains in its current
state; i.e. the state Self.



class US Army Confidential =
principal : US Army; states : Init, Debt of Int;

Conf secret :
When x requested for use at d and

Class(d) IsClass US Army Secret

release x with next state Self

Conf init :
When x requested for use at d and

Self InState Init

do with next state Debt(0)

Conf coalition :
When x requested for use at d and

Principal(Class(d)) ActsFor Coalition,
∃count:Int.Self InState Debt(count),
count ≤ 10

release
(log(...x...d);encrypt (pubkey (principal (class d))) x)

with next state Debt(count +1)

Figure 2. A stateful information release policy in AIR

We use a small ontology for conditions based on integers,
principals, classes and their instances—IsClass mentioned above,
is one such condition. Generally speaking, condition expres-
sions C are typed binary predicates over atoms A. For example,
A1 ActsFor A2 is defined for Principal-typed atoms A1 and A2,
and asserts that A1 acts for A2 according to some acts-for hierar-
chy among principals (not explicitly modeled here). Atoms include
integers n, variables x, identifiers id, principal constants P, state
literals constructed from an application of a state constructor C
to a list of atoms, addition of integers and the implicit variable
Self. We also include two operators: Class(z) is the class of the
argument z, a class instance; and, Principal(z), which is the prin-
cipal that owns the class z. Finally, we permit a condition C to be
prefixed by one or more existentially quantified variables—i.e., in
∃x1:t1.C1, . . . ,∃xn:tn.Cn, each xi is a variable of type ti and is in
scope as far to the right as possible, until the end of the rule. We
omit the quantifier prefix when no such variables exist.

2.2 A Simple Stateful Policy in AIR

Taken as a whole, the class US Army Confidential can be thought
of as implementing a simple kind of risk-adaptive access con-
trol (Cheng et al., 2007), in which information is released according
to a risk budget, with the intention of quantifying the risks vs. the
benefits of releasing sensitive information. This class maintains a
current risk debt, as reflected in the state Debt of Int. Each time the
class authorizes an information release we add an estimate of the
risk associated with that release to the debt. When the accumulated
risk debt exceeds a threshold then releases outside the U.S. Army
are no longer permitted. The other two rules in the policy, Conf init

and Conf coalition, implement this behavior.
The Conf init transition rule applies when processing a release

to an instance d and when the automaton is in the Init state. The
“do” expression initializes the risk debt to 0 by transitioning the
automaton to the Debt(0) state. The Conf coalition rule allows in-
formation to be released to a coalition partner. In particular, if
the release target class is owned by a principal that acts for the
Coalition (expressed by Principal(Class(d)) ActsFor Coalition),
then information can be released only if the current risk debt has
not exceeded the budget, as expressed in the latter two conditions.
The first of these requires the current state of the automaton to be
Debt(count), where count is variable with type Int which holds the
current risk debt. The last condition requires that count is not above

1 let x a1, a1 = get secret file and policy () in
2 let a2, channel = get request () in
3 (∗ generating evidence of policy compliance ∗)
4 let a2, a2 class = get class a2 in
5 let ev1 = acts for (principal a2 class) Coalition in
6 let a1, Debt(debt), ev2 = get current state a1 in
7 let ev3 = leq debt 10 in
8 (∗ supplying evidence to policy API and releasing data ∗)
9 let a1’, a2, x a2 = Conf coalition a1 x a1 a2 ev1 debt ev2 ev3 in

10 send channel x a2

Figure 3. Programming with an AIR policy

the preallocated risk budget of 10. With these conditions satisfied,
Conf coalition logs the fact that a release has been authorized and
permits release of the data after it has been downgraded using an
encryption function. In this case, the downgrading expression en-
crypts x with the public key of the principal that owns the class of
the instance d. Unlike releases to US Army Secret which do not alter
the risk debt, Conf coalition increments the risk debt by transitioning
to the Debt(count +1) state, indicating that releases to the Coalition
are more risky than upgrading to a higher classification level of the
same organization (via rule Conf secret).

AIR as presented here is particularly simple. We anticipate ex-
tending AIR with support for more expressive condition ontologies
and release rules. For instance, instead of a fixed set of ontologies,
we could embed a stateful authorization logic (say, in the style of
SMP (Becker and Nanz, 2007)) to allow custom ontologies and re-
lease rules to be programmed within an AIR class. We could also in-
troduce a set of downgrading and logging primitives to completely
separate AIR from λAIR.

3. A Programming Model for AIR
Given a particular AIR policy, we would like to do two things.
First, we must have a way of reflecting an AIR policy in a program
by protecting sensitive resources with instances of an AIR class.
Second, we must ensure that all uses of protected data adhere
to the prescriptions of the AIR policy. Taken together, we can
then claim that an AIR policy is correctly enforced by a program.
To achieve these goals, we have defined a formal model for a
language called λAIR in which one writes programs that use AIR
policies. λAIR’s type system ensures that these policies are used
correctly. The rest of this section defines the programming model
for this language and the next two sections flesh out its syntax and
semantics. Section 5.4 proves that type-correct programs act only
in accordance with their AIR policies.

The programming model for using AIR policies has two ele-
ments. First, programmers tie an AIR policy to data in the program
by constructing instances of AIR classes and labeling one or more
pieces of data with these instances. This association defines (1) the
set of principals that may view the data (in particular, the principal
P that owns the class, and any principals that may act for P), and
(2) the rules that allow the data to be released. As in other security-
typed languages, the labeling specification (expressed using type
annotations) is part of the trusted computing base.

Second, programmers manipulate data protected by an AIR class
instance through a class-specific API that is generated by compil-
ing each AIR class definition to a series of program-level defini-
tions. For example, each AIR class’s release and transition rules are
compiled to functions that can be used to release protected data.
The types given to these functions ensure that a caller of the func-
tion must always provide evidence that the necessary conditions to
release protected data have been met.



Figure 3 illustrates a program using the AIR policy of Figure 2,
written using a ML-like notation. (Significantly, our examples omit
type annotations where they do not help clarify the exposition. λAIR
does not support type inference at all.) At a high level, this program
processes requests to release information from a secret file. The
files are stored on the file system together with a policy label that
represents a particular AIR class instance. Before disclosing the
information, the program must make sure that the automaton that
protects the data is in a state that permits the release. The first
two lines set up the scenario. At line 1, we read the contents of
a secret file into the variable x a1 and the automaton that protects
this file into the variable a1. Initially, only the principals that act
for the owner of the class of a1 can view these secrets. At line
2, the program blocks until a request is received. The request
consists of an output channel and another automaton instance a2
that represents the policy under which the requested information
will be protected after the release. In effect, the information, once
released, will be under the protection of the principal that owns the
class of a2.

Prior to responding to the request, on lines 4-7 we must establish
that a1 is in a state that permits the release. At line 4, we extract the
class of the instance a2. At line 5, we check that the owner of a2’s
class acts for the Coalition principal and, if this check succeeds,
we obtain a certificate ev1 as evidence of this fact. At line 6, we
extract the current state of the automaton a1, use pattern matching
to check that it is of the form Debt(debt) (for some value of debt)
and receive an evidence object ev2 that attests to the fact that a1
is currently in this state. At line 7, we check that the total debt
associated with the current state of the automaton is not greater
than 10 and obtain ev3 as evidence if the check succeeds.

At line 9 we call Conf coalition, a function produced by com-
piling the AIR policy. We pass in the automaton a1 and the se-
cret data x a1; the automaton a2 to which x a1 is to be released;
and the certificates that serve as evidence for the release condi-
tions. Conf coalition returns a1’ which represents the next state of
the automaton (presumably in the Debt(debt+1) state); a2 the un-
changed destination automaton; and finally, x a2, which contains
the suitably downgraded secret value. On the last line, we send the
released information on the channel received with the request.

For programs like our example, we would like to verify that
all releases of information are mediated by calls to the appropriate
transition and release rules as defined by the AIR policy (functions
like Conf coalition). Additionally, we would like to verify that a
program satisfies the mandates of an AIR policy rule by present-
ing evidence that justifies the appropriate release conditions. This
evidence-passing style supports our goal of certifying the evalu-
ation of all authorization decisions, while being flexible about the
mechanism by which an obligation is fulfilled. To return to the DoD
example from the introduction, this design gives us the flexibility
to allow release authorizations to be obtained in one part of the
system and security assurances from the recipient to be handled
in another; the cross-domain guard must simply collect evidence
from the other components rather than performing these operations
itself. λAIR’s type system is designed so that type correctness en-
sures these goals are satisfied, i.e., a type-correct program uses its
AIR policy correctly. The type system has three key elements:

Singleton types. First, in order to ensure complete mediation, we
must be able to correctly associate data with the class instance that
protects it. For example, Conf coalition expects its first argument
to be an automaton and the second to be data protected by that au-
tomaton. In an ML-like type system, this function’s type might be-
gin with ∀α.Instance→ α→ . . . But such a type is not sufficiently
precise since it does not prescribe any relationship between the first
and second argument, allowing the programmer to erroneously pass
in a2 as the first argument, rather than a1, for example. To remedy

this problem, we can give Conf coalition a type like the following
(as a first approximation):

∀N,α.InstanceN → Protected α N→ . . .

Here, N is a unique type-level name for the class instance provided
in the first argument. The second argument’s type Protected α N
indicates it is an α value protected by the instance N, making clear
the association between policy and data. We can ensure that values
of type Protected α N may only be accessed by principals P that
act for the owner of the class instantiated by the instance named
N. This approach is more flexible than implicitly pairing each
protected object with its own (hidden) automaton. For example,
with our approach one can encode policies like secret sharing, in
which a set of related documents are all protected by the same
automaton instance. Each document’s type would refer to the same
automaton, e.g., Protected Doc N. Information released about one
document updates the state of the automaton named N and can limit
releases of the other documents.

Dependent types. Arguments 4-7 of Conf coalition represent evi-
dence (proof certificates) that the owner of class instance a2 acts for
Coalition, and that a1 is in a state authorized to release the given
data. We give types to these arguments that reflect the propositions
that they are supposed to witness. For example, we give the sev-
enth argument (ev3) to Conf coalition the type LEQ debt 10 where
LEQ is a dependent type constructor applied to two expressions,
debt and 10, where each has type Int. Data with type LEQ n m rep-
resents a certificate that proves n ≤ m. If we allow such certificate
values to only be constructed by trusted functions that are known
to correctly implement the semantics of integer inequality, then we
can be sure that functions like Conf coalition are only called with
valid certificates—i.e., type correctness guarantees that all certifi-
cates are valid proofs of the propositions represented by their types
and there is no need to inspect these certificates at run time. If we
interface with other programs, we can check the validity of proof
certificates at run time before allowing a call to proceed. Either
way, the type system supports an architecture that enables certified
evaluation of an AIR policy.

Affine types. The final piece of our type system is designed to
cope with the stateful nature of an AIR policy. The main problem
caused by a state change is illustrated by the value returned by
the Conf coalition function. In our example, a1’ represents the
state of the policy automaton that protects x a1 after a release
has been authorized. Thus, we need a way to break the association
between x a1 and the old, stale automaton state a1. We achieve
this in two steps. First, even though our type system supports
dependent types, as shown earlier, we use singleton types to give
x a1 the type Protected α N, where N is a unique type name for a1
(rather than giving x a1 a more-direct dependent type of the form
Protected α a1). The second step is to use affine types (values with
an affine type can never be used more than once) to consume stale
automaton values, so that at any program point, there is only one
usable automaton value that has the type-name N. Thus, we give
both a1 and a1’ the type ¡InstanceN , where ¡t denotes an affinely
qualified type t. Once a1 is passed as an argument to Conf coalition
(which constitutes a use) it can no longer be used in the rest of the
program; a1’ is the only automaton that can be used in subsequent
authorization checks for x a1. Thus, a combination of singleton and
affine types transparently takes care of relabeling data with new
automaton instances. (One might also wonder how we deal with
proof certificates that can become stale because of the changing
automaton state; we discuss this issue in detail in Section 5.1.)



Metavariables
B Base terms T Type constructors α,β ,γ Type vars

Core language
Terms e ::= x | λx:t.e | e e | Λα::k.e | e [t] | B | e {e}

| case e of
−→x:t.e : e else e | ⊥ | new e

Types t ::= (x:t)→ t | α | ∀α::k ε→ t | T
| t⇒ t | q t | t t | t e | tη

Type names η ::= α | ◦
Affinity q ::= ¡ | ·
Simple kinds k ::= U | A | N
Kinds K ::= k | k→ K | t→ K
Name constraints ε ::= · | α | ε ] ε | ε ∪ ε

Signatures and typing environments
Phase index ϕ ::= term | type
Signatures S ::= (B:t) | (T::K) | S,S
Type env. Γ ::= x:t | α::k | Γ,Γ
Affine env. A ::= x | A,A

Figure 4. Syntax of λAIR

To illustrate how these singleton, dependent, and affine types
interact we show the type of Conf coalition, slightly simplified,
below (the full type is discussed in Section 5.2).

∀N,M,α. ¡InstanceN → Protected α N→ ¡InstanceM →
. . .→ (debt : Int)→ . . .→ (LEQ debt 10)→
(¡InstanceN × ¡InstanceM×Protected α M)

The first three arguments are the affine source automaton (a1),
the data it protects (x a1), and the affine destination automaton
(a2). On the next line, we show the dependent type given to the
evidence that the current debt of the automaton is not greater than
10. Finally, consider the return type of Conf coalition. The first
component of this three-tuple is a class instance with the same
name N as the first argument. This returned value is the new state
of the automaton named N—it protects all existing data of type
Protected α N (such as x a1). The second component of the three-
tuple is the unchanged target automaton. The third component con-
tains the data ready to be released—its type, Protected α M, indi-
cates that it is now protected by the target automaton instance M.
In effect, λAIR models state modifications by requiring automata
states to be manipulated in a store-passing style, reminescent of a
monadic treatment of side effects in a purely functional language.
However, by imposing the additional discipline of affine types, we
are able to ensure that the program always has a consistent view
of an automaton’s state, while still retaining the benefits of a well-
understood and relatively simple functional semantics.

Adhering to the constraints of λAIR’s type system is surely
more burdensome than when using a more typical programming
language. Thus λAIR may be most appropriate for the security-
critical kernel of an application, or even as the (certifiable) target
language of a program transformation for inline reference monitor-
ing. We leave to future work an exploration of support—e.g., type
inference—for improving λAIR’s usability.

4. Syntax and Semantics of λAIR

λAIR extends a core System Fω (Mitchell, 1996) with support for
singleton, dependent, and affine types. λAIR is parameterized by a
signature S that defines base terms B and type constructors T —each
AIR class declaration D is compiled to a signature SD that acts as the
API for programs that use D. All AIR classes share some elements
in common, like integers, which appear in a prelude signature S0.
We explain the core of λAIR using examples from the prelude. The
next section describes the remainder of the prelude and shows how
our example AIR policy is compiled.

4.1 Syntax

Figure 4 shows the syntax of λAIR. The core language expressions
e are mostly standard, including variables x, lambda abstractions
λx:t.e, application e e′, type abstraction Λα::k.e and type applica-
tion e [t]. Functions have dependent type (x:t)→ t ′ where x names
the argument and may be bound in t ′. Type variables are α . A
type t universally quantified over all types α of kind k is denoted
∀α::k ε→ t. Here, ε is a name constraint that records the type names
α given to automaton instances in the body of the abstraction; we
discuss these in detail later. When the constraint is empty we write
a universally quantified type as ∀α::k.t. The signature S defines the
legal base terms B and type constructors T , mapping them to their
types t and kinds K, respectively. The prelude S0 defines several
standard terms and types which we use to illustrate some of λAIR’s
main features.

The type constructor Int represents the type of integers, and is
given U kind in the prelude (written Int::U). Kind U is one of three
simple kinds k. A type t with simple kind A is affine in that the
typing rules permit terms of type t to be used at most once. Affine
types are written ¡t, to contrast with the “of course” modality in
linear logic, which is typically denoted using “!”. ¡t is an instance
of the form q t where q = ¡. Terms whose types have kind U are
unrestricted in their use. We explain kind N, the kind of type names,
shortly.

The prelude also defines two base terms for constructing inte-
gers: Zero : Int represents the integer 0, while Succ : Int⇒ Int is
a unary data constructor that produces an Int given an Int. Data
constructor application is written e {e}; thus the integer 1 is repre-
sented Succ {Zero} (but we write 0,1,2 etc. for brevity). Programs
can pattern match data constructors applications using the expres-
sion form case e of

−→x:t.e : e else e. This is mostly standard; details
are in our technical report (Swamy and Hicks, 2008).

In addition to simple kinds k, kinds K more generally can
classify functional type constructors, using the forms k→ K and
t → K. A type constructor t1 having the first form can be applied
to another type using t1 t2 to produce a (standard) type, while one
of the second form can be applied to a term using t e to produce a
dependent type. As an example of the first case, the prelude defines
a type constructor ×::U→ U→ U to model pairs; × Int Int is the
type of a pair of integers (for clarity, from here on we will use
infix notation and write a pair type as t × t ′). The prelude also
defines a base term constructor Pair which has a polymorphic type
∀α,β ::U.α ⇒ β ⇒ α×β for constructing pair values.

Evidence for condition expressions in an AIR policy are given
dependent types. For example, the prelude provides means to test
inequalities A1≤A2 that appear in a policy and generate certificates
that witness an inequality:

(LEQ::Int→ Int→ U),
(leq:(x:Int)→ (y:Int)→ LEQ x y)

LEQ is a dependent-type constructor that takes two expressions of
type Int as arguments and produces a type having kind U. This type
is used to classify certificates that witness the inequality between
the term arguments. These certificates are generated by the leq
function, which has a dependent type: the labels x and y on the first
two arguments appear in the returned type. Thus the call leq 3 4
would return a certificate of type LEQ 3 4 because 3 is indeed less
than 4. An attempt to construct a certificate LEQ 4 3 by calling
leq 4 3 would fail at run time, returning⊥ (an unrecoverable failure)
in our semantics—we could use option types or add support for
exceptions to handle failures more gracefully. The signature does
not include a data constructor for the LEQ type, so its values cannot
be constructed directly by programs—the only way is by calling the
leq function.



Γ;A `S,ϕ e : t;ε A ϕ-level expression e in environment Γ with affine assumptions A has type t and uses names ε

Γ `S Γ(x) :: U
Γ; · `S,ϕ x : Γ(x); ·

(T-X)
Γ;x `S,ϕ x : Γ(x); ·

(T-XA)
Γ; · `S,type x : Γ(x); ·

(T-X-type)
Γ;A `S,type e : t;ε1] ε

Γ;A `S,type e : t;ε
(T-NC-type)

Γ;A `S,ϕ e : t;ε Γ `S t :: U Γ(α) = N

Γ;A `S,ϕ new e : ¡tα ;α ] ε
(T-NEW)

Γ;A `S,ϕ e : tα ;ε

Γ;A `S,ϕ e : t◦;ε
(T-DROP)

Γ;A `S,ϕ e : t;ε ε ′ ⊆ dom(Γ)

Γ;A,A′ `S,ϕ e : t;ε ] ε ′
(T-WKN)

Γ,α::k;A `S,ϕ e : t;ε ] ε ′

α 6∈ ε ε ′ ∈ {·,α} q = p(A,ε)

Γ;A `S,ϕ Λα::k.e : q(∀α::k ε ′→ t);ε

(T-TAB)

Γ `S tx :: k q = p(A,ε)
Γ,x : tx;A,a(x,k) `S,ϕ e : te;ε

Γ;A `S,ϕ λx:tx.e : q((x:tx)→ te);ε
(T-ABS)

where
a(x,A) = x a(x,U) = ·
p(A,ε) = ¡ p(·, ·) = ·

Γ;A `S e : q(∀α::k ε ′→ t ′);ε Γ `S t :: k
Γ;A `S e [t] : [α 7→ t]t ′;ε ] ([α 7→ t]ε ′)

(T-TAP)
Γ;A `S,ϕ e : q((x:t ′)→ t);ε1 Γ;A′ `S,ϕ e′ : t ′;ε2

Γ;A,A′ `S,ϕ e e′ : [x 7→ e′]t;ε1] ε2
(T-APP)

Γ `S t :: K A type t has kind K in environment Γ

Γ(α) = k
Γ `S α :: k

(K-A)
Γ `S t :: A Γ(η) = N ∨ η = ◦

Γ `S tη :: A
(K-N)

Γ `S t :: U
Γ `S ¡t :: A

(K-AFN)
Γ `S t :: k Γ,x : t `S t ′ :: k′

Γ `S (x:t)→ t ′ :: U
(K-FUN)

Γ′ = Γ,α::k Γ′ `S t :: k α ′ ∈ ε ⇒ Γ′(α ′) = N

Γ `S ∀α::k ε→ t :: U
(K-UNIV)

Γ `S t :: t ′→ K Γ; · `S,type e : t ′; ·
Γ `S t e :: K

(K-DEP)

Figure 5. Static semantics of λAIR (Selected rules)

We discuss the remaining constructs—including name con-
straints ε , named types tη , and the new e construct—in conjunction
with the type rules next.

4.2 Static Semantics

Figure 5 shows the main rules from the static semantics of λAIR,
which consists of two judgments. The full semantics can be found
in our technical report. Both judgments are parameterized by a
signature S. The typing judgment is additionally parameterized by
a phase index ϕ , which indicates whether the judgment applies to a
term- or type-level expression. The judgment giving an expression
e a type t is written Γ;A `S,ϕ e : t;ε where Γ is the standard typing
environment, A is a list of affine assumptions, and ε is a name
constraint that records the set of fresh type names assigned to
automata instances in e. The second judgment, Γ `S t :: K states
that a type t has kind K in the environment Γ.

Recall that the type system must address three main concerns.
First, we must correctly assign unique type names to automata in-
stances and then associate these names with protected data. Next,
for certified evaluation, we must be able to accurately type evi-
dence using dependent types. Finally, to cope with automaton state
changes, we must (via affine types) prevent stale automaton in-
stances from being reused. We consider each of these aspects of
the system in turn, first in the typing judgment and then in the kind-
ing judgment.

Assigning unique names to automata. We construct new au-
tomata using new e. (T-NEW) assigns the name α to the type in
the conclusion, ensuring (via α ]ε) that α is distinct from all other
names ε that have been assigned to other automata. We require α to
be in the initial environment Γ, or to be introduced into the context
by a type abstraction. Recall from Section 3 that protected values
will refer to this name α in their types (e.g., Protected Int α). The
resulting type ¡tα is also affinely qualified; we discuss this shortly.

(T-DROP) allows the unique name associated with a type to
be replaced with the distinguished constant name ◦. This is sound
because although the name α of a type ¡tα can be hidden, α cannot

be reused as the type-level name of any other automaton (i.e., ε is
unaffected). This form of subtyping is convenient for giving types
to proof objects that witness properties of the state of an automaton,
while keeping our language of kinds for type constructors relatively
simple. Section 5.1 illustrates an example use of (T-DROP).

(T-TAB) is used to check type abstractions. The first premise
checks the body of the abstraction e in a context that includes the
abstracted type variable α . Since we treat type names and types
uniformly, functions polymorphic in a type name can be written by
quantifying over α::N—the interesting elements of this rule have
to do with managing these names. If the body of the abstraction
e constructs a new automaton assigned the name α in (T-NEW),
then α will be recorded in ε ] ε ′, the name constraints of e. In
this case ε ′ = α and ε contains all the other names used in the
typing derivation of e; otherwise ε ′ is empty. In the conclusion, we
decorate the universally quantified type with ε ′ to signify that the
abstracted name α is used in e. Type abstractions are destructed
according to (T-TAP). In the premises we require the kind of the
argument to match the kind of the formal type parameter. In the
conclusion, we must instantiate all the abstracted names ε ′ used in
the body e′ and ensure that these are disjoint from all other names
ε used in the body.

Two additional points about our formulation of type-level names
are worth noting. First, universally quantified types can be deco-
rated with arbitrary name constraints ε (rather than just singleton
names α). We expect this to be useful when enforcing compos-
ite policies. The name instantiation constraint ε can ensure that a
function always constructs automata that belong to a specific set of
classes in a large policy. Second, we could support recursion by fol-
lowing an approach taken by Pratikakis et al. (2006). This requires
using existential quantification to abstract names in recursive data
structures and including a means to forget names assigned to au-
tomata that go out of scope (e.g., in each iteration of a loop).

Dependently typed functions and evidence. (T-ABS) gives func-
tions a dependent type, (x:t)→ t ′. Here, x names the formal param-
eter and is bound in t ′. When a function is applied, (T-APP) substi-



tutes the actual argument e′ for x in the return type. Thus, given a
function f that has type (debt : Int)→ (LEQ debt 10)→ t, the ap-
plication ( f 11) is given the type (LEQ 11 10)→ t. That is, the type
of the second argument of f depends on the term passed as the first
argument. Note that although λAIR permits arbitrary expressions to
appear in types, type checking the enforcement of an AIR policy is
decidable because we never have to reduce expressions that appear
in types.

Affine types for consistent state updates. Finally, we consider
how the type system enforces the “use at most once” property
of affine types. First, (T-NEW) introduces affine types by giving
new automaton instances the type ¡tα . Values of affine type can
be destructed in the same way as values of unrestricted type. For
example, (T-APP) and (T-TAP) allow e to be applied irrespective
of the affinity qualifier on e’s type. However, we must make sure
that variables that can be bound to affinely typed values are not
used more than once. This is prevented by the type rules through
the use of affine assumptions A, which lists the subset of variables
with affine type in Γ which have not already been used. The use
of an affine variable is expressed in the rule (T-XA), which types
a variable x in the context of the single affine assumption x. To
prevent variables from being used more than once, other rules, such
as (T-APP), are forced to split the affine assumptions between their
subexpressions. Affine assumptions are added to A by (T-ABS)
using the function a(x,k), where x is the argument to the function
and k is the kind of its type. If the argument x’s type has kind A
then it is added to the assumptions, otherwise it is not. We include
a weakening rule (T-WKN) that allows affine assumptions to be
forgotten (and for additional names ε ′ to be consumed). Finally,
the function p(A,ε) is used to determine the affinity qualifier of an
abstraction. If no affine assumptions from the environment are used
in the body of the abstraction (A = ·) and if no new automata are
constructed in the body (ε = ·), then it is unrestricted. Otherwise,
it has captured an assumption from the environment or encloses an
affinely tracked automaton and should be called at most once.

Kinding judgment. In Γ `S t :: K, the rule (K-A) is standard.
(K-N) allows a name to be associated with any affine type t. (K-
AFN) checks an affinely-qualified type: types such as ¡¡t are not
well-formed. (K-FUN) is standard for a dependent type system—it
illustrates that x is bound in the return type t ′. (K-UNIV) is mostly
standard, except that we must also check that the constraint ε only
contain names that are in scope. (K-DEP) checks the application
of a dependent type constructor. Here, we have to ensure that the
type of the argument e matches the type of the formal. However,
since e is a type-level expression, we check it in a context with
the phase index ϕ = type. Since types are erased at run time,
type-level expressions are permitted, via (T-X-type), to treat affine
assumptions intuitionistically. Erasure of types also allows us to
lift the name constraints for type-level expressions e—(T-NC-type)
allows any subset ε1 of the names used in e to be forgotten.

4.3 Dynamic Semantics

The dynamic semantics of λAIR defines a standard call-by-value,
small-step reduction relation for a purely functional language, us-
ing a left-to-right evaluation order. The full definition can be found
in our technical report. The form of the relation is :

M ` e l−→e′

This judgment claims that a term e reduces in a single step to e′
in the presence of a model M that interprets the base terms in a
signature. The security-relevant reduction steps are annotated with
a trace element l, which is useful for stating our security theorem.
In this section, we briefly discuss the form of the model M and the
trace elements l and state our type soundness result.

Following a standard approach for interpreting constants in a
signature (Mitchell, 1996), we define a model M by axiomatizing
the reductions of base term applications. In practice, we would im-
plement the model in a real programming language. For example,
we could do this in FABLE (Swamy et al., 2008), a language we
specifically designed for programming policy functions that may
coerce one protected type to another (like Conf coalition) or may
produce unforgeable certificates (like acts for).

A model M contains equations B : D ; e, where D is a se-
quence of types and values. We require the types of the expressions
in these equations to be consistent with the type given to B in the
signature. An example of an equation is leq : 4, 3 ; ⊥ indicat-
ing that the expression (leq 4 3) reduces to ⊥. We also need a
mechanism to construct a value that represents a proof certificate
for a valid inequality; i.e., values that inhabit LEQ 3 4. In practice,
one could either chose a concrete representation for these objects
if proofs need to be checked at run time (for instance, when inter-
facing with type-unsafe code); or, if we are in a purely type-safe
setting, we could chose an arbitrary value (like unit) to represent
a proof certificate. In our technical report, we introduce a special
value to stand for proof objects that facilitates our soundness proof.

The security-relevant actions in a program execution are the
reduction steps that correspond to automaton state changes. As
indicated earlier, each transition and release rule in a policy will be
translated to a function-typed base term like Conf coalition. Thus,
every time we reduce an expression e using a base-term equation
B : D ; e′, we record l = B : D in the trace: i.e., M ` e B:D−→e′.

The statement of our type soundness theorem is shown below.

Theorem (Type soundness). Given a set of type names Γ =
α1::N, ...,αn::N such that Γ; · `S,term e : t;ε , and an interpretation

M such that M and S are type-consistent, then ∃e′.M ` e l−→e′ or e
is a value. Moreover, if M ` e l−→e′ then Γ; · `S,term e′ : t;ε .

A detailed proof sketch of this theorem is in our technical report.
We have also mechanized the soundness proof using the Coq proof
assistant (Bertot and Castéran, 2004). Our formalization adapts a
proof technique recently proposed by Aydemir et al. (2008). In
particular, we use a locally nameless approach for representing both
term- and type-level bindings and rely on cofinite quantification
to introduce fresh names. We rely on a set of libraries distributed
by Aydemir et al. that provide basic support for working with
environments and finite sets. As of this writing, our Coq proof is
complete, modulo a collection of identities about finite sets and
context splitting. The proofs of these identities are beyond the
capabilities of the decision procedures in the finite set libraries that
we use and, without automation, we have found proofs of these
identities in Coq to be tedious and time consuming. To alleviate
this difficulty, we are currently in the process of devising our own
set of specialized decision procedures to discharge the proofs of
these identities.

5. Translating AIR to λAIR

In this section, we show how we translate an AIR class to a λAIR
API, describe how that API is to be used, and state our main
security theorem.

5.1 Representing AIR Primitives
In order to enforce an AIR policy we must first provide a way to tie
the policy to the program by protecting data with AIR automata. We
must also provide a concrete representation for automata instances
and a means to generate certificates that attest to the various release
conditions that appear in the policy. These constructs are common
to all λAIR programs and appear in the standard prelude, along with
the integers and pairs discussed in Section 4.1.



Protecting data. As indicated in Section 3, we include the fol-
lowing type constructor to associate an automaton with some data:
(Protected::U→ N→ U). A term with type Protected t α is gov-
erned by the policy defined by an automaton instance with type-
level name α . We would like to ensure that all operations on pro-
tected data are mediated by functions that correspond to AIR policy
rules. For this reason, we do not provide an explicit data constructor
for values of this type (ensuring that they cannot be destructed di-
rectly, say, via pattern matching). Values of this type are introduced
only by assigning the appropriate types to functions that retrieve
sensitive data—for instance, library functions that read secret files
from the disk can be annotated so that they return values with a
protected type.

In addition to functions corresponding to AIR class rules, we
can provide functions that allow a program to perform secure com-
putations over protected values. We have explored such functions
in our work on FABLE and showed that computations that respect
a variety of policies (ranging from access control to information
flow) can be encoded (Swamy et al., 2008); we do not consider
these further here.

Next, we discuss our representation of an AIR automaton—these
include representations of the class that the automaton instantiates
and the principal that owns the class.

Principals. The nullary constructor Prin is used to type principal
constants P; i.e., (Prin::U),(P:Prin). As with integers, we need a
way to test and generate evidence for acts-for relationships between
principals. We include the dependent-type constructor and run-time
check shown below.

(ActsFor::Prin→ Prin→ U)
(acts for:(x:Prin)→ (y:Prin)→ ActsFor x y)

AIR classes. A class consists of a class identifier id and a princi-
pal P that owns the class. The type constructors (Id::U),(Class::U)
are used to type identifiers and classes. Classes are constructed us-
ing the data constructor (Class:Id ⇒ Prin ⇒ Class). The trans-
lation of an AIR class introduces nullary data constructors like
US Army Confidential:Id and US Army:Prin, from which we can con-
struct the class USAC = Class {US Army Confidential} {US Army}.
Finally, we use a dependent-type constructor and run-time check to
generate evidence that two classes are equal.

(IsClass::Class→ Class→ U),
(is class:(x:Class)→ (y:Class)→ IsClass x y)

Class instances. Instances are typed using the Instance::U type con-
structor. Each instance must identify the class it instantiates and the
current state of its automaton. For each state in a class declaration,
we generate a data constructor in the signature that constructs an
Instance from a Class and any state-specific arguments. For exam-
ple, we have:

Init:Class⇒ Instance,Debt:Class⇒ Int⇒ Instance

Thus the expression new Init {USAC} constructs a new instance
of a class. According to (T-NEW), this expression has the affine
type ¡Instanceα , where the unique type-level name α allows us to
protect some data with this automaton. Since we wish to allow
data to be protected by automata that instantiate arbitrary AIR
classes, we give all instances, regardless of their class, a type
like ¡Instanceα , for some α . This has the benefit of flexibility—
we can easily give types to library functions that can return data
(like file system objects) protected by automata of different classes.
However, we must rely on a run-time check to examine the class of
an instance since it is not evident from the type.

The prelude includes the the following two elements to con-
struct and type evidence about the class of an automaton instance:

ClassOf ::N→ Class→ U
class of inst:∀α::N.(x:¡Instanceα )→

(¡Instanceα ∗ c:Class∗ClassOf α c)

The function class of inst extracts a Class value c from an instance
named α and produces evidence (of type ClassOf α c) that α is
an instance of c. The return type of this function is interesting for
two reasons. First, because the returned value relates the class ob-
ject in the second component of the tuple to the evidence object
in the third component, we give the returned value the type of a
dependently typed tuple, (designated by the symbol ∗). Although
we do not directly support these tuples, they can be easily encoded
using dependently typed functions (Swamy et al., 2008). Second,
notice that even though class of inst does not cause a state tran-
sition, the first component of the tuple it returns contains an au-
tomaton instance with the same type as the argument x. This is a
common idiom when programming with affine types; since the au-
tomaton instance is affine and can only be used once, functions like
class of inst simply return the affine argument x back to the caller
for further use.

The following constructs in the prelude allow a program to
inspect the current state of an automaton instance.

InState::¡Instance◦→ Instance→ U
state of inst:∀α::N.(x:¡Instanceα )→

(z:¡Instanceα ∗ y:Instance∗ InState z y)

These constructs are similar to the forms shown for examining the
class of an instance, but with one important difference. Since the
state of an automaton is transient (it can change as transition rules
are applied), we must be careful when producing evidence about
the current state. This is in contrast to the class of an automaton
which never changes despite changes to the current state. Thus, we
must ensure that stale evidence about an old state of the automaton
can never be presented as valid evidence about the current state.

The distinction between evidence about the class of an automa-
ton and evidence about its current state is highlighted by the first
argument to the type constructor InState. Unlike the first argu-
ment of the ClassOf constructor (which can be some type-level
name α::N), the first argument of InState is an expression with an
affine type ¡Instance◦ (introduced via subsumption in (T-DROP))
that stands for an automaton instance that has been assigned some
name. Using this form of subtyping allows us to use InState to type
evidence about the current state of any automaton. An alternative
would be to enhance the kind language by allowing type construc-
tors to be have polymorphic kinds—we chose this form of subtyp-
ing to keep the presentation simpler.

As described further in the next subsection, functions that cor-
respond to AIR rules take an automaton instance a1 (say, in state
Init) as an argument, and produce a new instance a′1 as a result
(say, in state Debt(0)). Importantly, both a1 and a′1 are given the
type ¡Instanceα —i.e., the association between the type-level name
α and the automaton instance is fixed and is invariant with respect
to state transitions. Since the class of an automaton never changes
(both a1 and a′1 are instances of USAC) it is safe to give evidence
about the class of an instance the type ClassOf α USAC—i.e., evi-
dence about the class of an automaton can never become stale. On
the other hand, evidence about the current state of the automaton
can become stale. If we were to type this evidence using types of
the form InStateBad α Init, then this evidence may be true of a1
but it is not true of a′1. Therefore, we make InState a dependent-
type constructor to be applied to an automaton instance rather than
a type-level name.



5.2 Translating Rules in an AIR Class

Our technical report defines a translation procedure from an AIR
class to a λAIR signature. Space constraints preclude a presentation
of the translation judgment here. Instead, we discuss the signature
corresponding to the policy of Figure 2.

Release rules. Each release rule r in a class declaration is translated
to a function-typed constant fr in the signature. At a high-level, the
rules have the following form. In response to a request to release
data x, protected by instance a1, to an instance a2, the programmer
must provide evidence for each of the conditions in the rule r. If
such evidence can be produced, then fr returns a new automaton
state a′1, downgrades x as specified in the policy and returns x under
the protection of a2. As an example, consider the full type of the
Conf coalition rule shown below.

Conf coalition :
1 ∀src::N,dst::N,α::U.
2 (a1:¡Instancesrc)→ ¡(x:Protected α src)→ ¡(a2:¡Instancedst)→
3 ¡(e1:ClassOf src USAC)→ ¡(cd:Class)→ ¡(e2:ClassOf dst cd)→
4 ¡(e3:ActsFor (principal cd) Coalition)→ ¡(debt:Int)→
5 ¡(e4:InState a1 (Debt {USAC} {debt}))→ ¡(e5:LEQ debt 10)→
6 (¡Instancesrc× ¡Instancedst ×Protected α dst)

The first two lines of this type were shown previously— x is the
data to be released from the protection of automaton a1 (with type-
level name src) to the automaton a2 (with type-level name dst).
Since the argument a1 is affine, we require every function type
to the right of a1 to also be affine, since they represent closures
that capture the affine value a1. At line 3, the argument e1 is
evidence that shows that the source automaton is an instance of
the USAC class; cd is another class object and e2 is evidence that
the class of the destination automaton is indeed cd. At line 4, e3
stands for evidence of the first condition expression, which requires
that the owning principal of the destination automaton acts for the
Coalition principal. Line 5 contains evidence e4 that a1 is in some
state Debt(debt), where, from e5, debt ≤ 10. The return type, as
discussed before, contains the new state of the source automaton,
the destination automaton a2 threaded through from the argument,
and the data value x, downgraded according to the policy and with
a type showing that it is protected by the dst automaton.

Transition rules. Each transition rule r in a class declaration is also
translated to a function-typed constant fr in the signature. How-
ever, instead of downgrading and coercing the type of some datum
x, a transition function only returns the new state of the source au-
tomaton and an unchanged destination automaton. That is, instead
of returning a three-tuple like Conf coalition, a transition rule like
Conf init returns a pair (¡Instancesrc×¡Instancedst), where the first
component is the new state of the source automaton and the sec-
ond component is the unchanged destination automaton threaded
through from the argument. The full type of Conf init is shown
below.

Conf init :
1 ∀src::N,dst::N,α::U.
2 (a1:¡Instancesrc)→ ¡(x:Protected α src)→ ¡(a2:¡Instancedst)→
3 ¡(e1:ClassOf src USAC)→ ¡(cd:Class)→ ¡(e2:ClassOf dst cd)→
4 ¡(e4:InState a1 Init)→ (¡Instancesrc× ¡Instancedst)

5.3 Programming with the AIR API
The following example program, a revision of the program in
Figure 3, illustrates how a client program interacts with the API
generated for an AIR policy.

1 let x a1, a1:¡Instancesrc = get usac file and policy () in
2 let a2:¡Instancedst , channel = get request () in
3 let a1,USAC,ca1 ev = class of inst [src] a1 in
4 let a2,ca2,ca2 ev = class of inst [dst] a2 in
5 let actsfor ev = acts for (principal ca2) Coalition in
6 let a1, Debt{USAC}{debt}, a1 state ev = state of inst [src] a1 in
7 let debt ev = leq debt 10 in
8 let a1’,a2,x a2 = Conf coalition [src][dst][Int] a1 x a1 a2
9 ca1 ev ca2 ca2 ev actsfor ev

10 debt a1 state ev debt ev in
11 send [Int] [dst] channel x a2

As previously, the first two lines represent boilerplate code, where
we read a file and its automaton policy and then block waiting for a
release request. At line 3, we generate evidence a1 class ev that a1
is an instance of the USAC class and at line 4 we retrieve a2’s class
ca2 and evidence ca2 ev that witnesses the relationship between
ca2 and a2. At line 5, we check that the destination automaton
is owned by a principal acting for the Coalition. At lines 6 and
7 we check that a1 is in the state Debt{USAC}{debt}, for some
value of debt ≤ 10. If all the run-time checks succeed (i.e., calls
to functions like leq), then we call Conf coalition, instantiating the
type variables, passing in the automata, the data to be downgraded
and evidence for all the release conditions. We get back the new
state of the src automaton a1’, a2 is unchanged, and x a2 which
has type Protected Int dst. We can give the channel a type such as
Channel Int dst, indicating that it can be used to send integers to
the principal that owns the automaton dst. The send function can
be given the type shown below:

send:∀α::U,β ::N.Channel α β → Protected α β → Unit

This ensures that x a1 cannot be sent on the channel. But, if the
call to Conf coalition succeeds, then the downgraded x a2 has type
Protected Int dst, which allows it to be sent.

5.4 Correctness of Policy Enforcement
In this section, we present a condensed version of our main security
theorem and discuss its implications. The full statement and proof
can be found in our technical report.

Theorem (Security). Given all of the following: (1) an AIR dec-
laration D of a class with identifier C owned by principal P, and
its translation to a signature SD; (2) a model MD consistent with
SD; (3) Γ = src::N,dst::N,s : ¡Instancesrc; (4) Γ;s `SD,term e : t;ε

where src 6∈ ε; and (5) M ` ((s 7→ v)e) l1−→e1 . . .
ln−→en where v =

new Init {Class {C} {P}}. Then the string l1, . . . , ln is accepted by
the automaton defined by D.

The first condition relies on our translation judgment that pro-
duces a signature SD from a class declaration D. The second con-
dition is necessary for type soundness. Conditions (3) and (4) state
that e is a well-typed expression in a context with a single free au-
tomaton s : ¡Instancesrc and two type name constants src and dst.
By requiring that src 6∈ ε we ensure that e does not give the name
src to any other automaton instance. This theorem asserts that when
e is reduced in a context where s is bound to an instance of the C
class in the Init state, then the trace l1, . . . , ln of the reduction se-
quence is a word in the language accepted by the automaton of D.

The trace acceptance judgment has the form A;D |= l1, . . . , ln;A′,
which informally states that an automaton defined by the class D,
in initial state A, accepts the trace l1, . . . , ln and transitions to the



state A′. Recall that the trace elements li record base terms B that
stand for security-relevant actions and sets of values that certify
that the action is permissible. The trace acceptance judgment al-
lows a transition from A to A′ only if each transition is justified by
all the evidence required by the rules in the class. This condition is
similar to the one used by Walker (2000).

The security theorem as presented here is a general purpose re-
sult that applies to the enforcement of all AIR policies in λAIR. One
of our near-term goals is to integrate our paper proof of this secu-
rity theorem with our Coq proof of type-soundness. For the longer
term, we aim to investigate policy-specific security properties and
to rely on our infrastructure of λAIR metatheory in Coq to partially
automate the proofs of these properties as well.

6. Related Work
The specification and enforcement of policies that control infor-
mation release has received much recent attention. Sabelfeld and
Sands (2005) survey many of these efforts and provide a useful
way of organizing the various approaches. AIR policies address, to
varying degrees, the what, who, where and when of declassifica-
tion, the four dimensions identified by Sabelfeld and Sands. Most
of this work approaches information release from the perspective
of information flow policies (Denning, 1976), and most of the pro-
posed security properties can be thought of as bisimulations. By
contrast, our security theorem states that the program’s actions are
in accord with a high-level policy, not that these actions enforce
an extensional security property (like noninterference). We believe
that the two approaches are complementary. In combination, we
could show a noninterference-like security theorem (e.g., noninter-
ference until conditions (Chong and Myers, 2004), or robust de-
classification (Zdancewic and Myers, 2001)) while being able to
reason that a high-level protocol for releasing information is cor-
rectly followed.

AIR policies are defined separately from programs that use
them, allowing them to be reasoned about in isolation. Most re-
lated work embeds declassification policies within programs that
use them, obscuring high-level intent. One exception is work on
trusted declassifiers (Hicks et al., 2006). Here, all possible infor-
mation flows are specified as part of a graph in which nodes consist
of either downgrading functions or principals, and edges consists
of trust relationships. Paths through the graph indicate how data
may be released. AIR classes generalize this approach in restrict-
ing which paths may occur in the graph, and in specifying release
conditions in addition to downgrading functions.

Chong and Myers (2004) propose declassification policies as
labels consisting of sequences of atomic labels separated by con-
ditions c. Initially, labeled data may be viewed with the privileges
granted by the first atomic label, but when a condition c is satis-
fied, the data may be relabeled to the next label in the sequence,
and viewed at its privileges. Declassification labels are thus similar
to AIR classes, with the main difference that our approach is more
geared toward run-time checking: we support dynamically-checked
conditions (theirs must be provable statically) and run-time labels
(theirs are static annotations).

Security automata were first proposed by Schneider (2000) as a
means of specifying and enforcing safety properties. AIR policies
are actually a more general form of security automata called edit
automata (Ligatti et al., 2003) because they may modify data before
releasing it. To our knowledge, no prior work has used automata
to specify the protection level and release conditions of sensitive
data. Walker (2000) defines a type-based approach for enforcing
security automata policies in which the definition of a single au-
tomaton is embedded in the type-checking judgment. Our approach
allows multiple automata policies to be easily defined separately.
Automata policies have also been enforced using inlined reference

monitors, as in SASI and PSLang/PoET (Erlingsson, 2004). Our
approach is in contrast with SASI in that we support local policy
state—Erlingsson identifies SASI’s global policy restriction as a
main obstacle towards making it practical. PSLang/PoET does sup-
port local policy state, but unlike λAIR, PSLang/PoET augments the
run-time representation of protected data to include the policy. Dy-
namic labels in λAIR are more expressive (as discussed in Section 3,
we can easily enforce secret sharing policies on related data) and
provide a way to verify that automata and protected data are always
correctly manipulated. As such, one could imagine putting λAIR to
use to certify that IRMs correctly enforce their policies.

There has also been much work on tracking the state of objects
in types, dating back to Strom and Yemini (1986). The calculus of
capabilities (Crary et al., 1999) provides a way of tracking type-
state, using singleton and linear types (a variant of affine types)
to account for aliasing. The Vault (DeLine and Fähndrich, 2001)
and Cyclone (Jim et al., 2002) programming languages implement
typestate checkers in a practical setting to enforce proper API us-
age and correct manual memory management, respectively. λAIR’s
use of singleton and affine types is quite close to these systems.
However, in these systems the state of a resource is a static type
annotation, while in λAIR a policy automaton is first-class, allow-
ing its state to be unknown until run time. Additionally, λAIR’s use
of dependent types permits more precise specifications, which is
useful for certifying authorization decisions.

Certified evaluation of authorization decisions has been ex-
plored in a number of contexts. For instance, certified evaluation
is a feature of the SD3 trust-management system proposed by Jim
(2001). More recently, the Aura system of Vaughan et al. (2008)
proposes maintaining audit logs to record evidence that justifies
authorization decisions made during the system’s execution. The
architecture we propose for certified evaluation in λAIR is closely
related to both these approaches. While more investigation is re-
quired, λAIR’s ability to accurately track evidence in the presence
of state modifications opens the possibility of certified evaluation
of a wider class of stateful authorization policies, like those ex-
pressible in SMP, a stateful authorization logic recently proposed
by Becker and Nanz (2007).

7. Conclusions
This paper has presented AIR, a simple policy language for express-
ing stateful information release policies. We have defined a core
formalism for a programming language called λAIR, in which state-
ful authorization policies like AIR can be certifiably enforced. In
future work, we plan to add support for λAIR-style policy enforce-
ment to our secure web-programming language, SELINKS (Swamy
et al., 2008).
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Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy

Pollack, and Stephanie Weirich. Engineering formal metatheory.
In POPL ’08: Proceedings of the 35th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages.
ACM, 2008.

Anindya Banerjee, David A. Naumann, and Stan Rosenberg. Ex-
pressive declassification policies and modular static enforce-
ment. IEEE Symposium on Security and Privacy, 2008.



Moritz Y. Becker and Sebastian Nanz. A logic for state-modifying
authorization policies. In Joachim Biskup and Javier Lopez,
editors, ESORICS, volume 4734 of Lecture Notes in Computer
Science. Springer, 2007.
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