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Abstract  
Automated static code analysis is an efficient technique to in-
crease the quality of software during early development. This 
paper presents a case study in which mature software with known 
vulnerabilities is subjected to a static analysis tool. The value of 
the tool is estimated based on reported failures from customers. 
An average of 17% cost savings would have been possible if the 
static analysis tool was used. The tool also had a 30% success rate 
in detecting known vulnerabilities and at the same time found 59 
new vulnerabilities in the three examined products. 
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1. Introduction 
Flaws in software design and faults/bugs in software code are 

constantly being introduced into programs during their develop-
ment. If certain conditions are present, these faults and flaws can 
propagate during runtime into failures that might be exploited as 
vulnerabilities [1], see also Figure 1. Failures and especially vul-
nerabilities increase the cost for the developers and require more 
time to be spent on maintenance instead of new features. Many 
developers rely on automated testing tools to verify their software 
and at the same time reduce development time [2]. Unfortunately, 

most of the testing is done to verify functionality and not to find 
vulnerabilities. 

Figure 1. The relation between source code faults and 
design flaws resulting in visible failures that might prop-
agate into known or unknown vulnerabilities. 

 
Today, telecom developers are trying to decrease development 

time and shorten time to market. It is therefore of interest to 
detect and correct a fault before the software has been tested. The 
earlier an fault is detected the less it costs to correct the fault 
[14][16]. So, developers that want to lower development time and 
reduce the quantity of faults have to depend on early fault detec-
tion tools and methods; one of these is automatic static code anal-
ysis.  

Automatic static analysis has been an area of early fault detec-
tion research for many years and has more recently been added to 
security engineering processes as an early tool for detecting vul-
nerabilities [3]. Researchers aim to minimize the human time and 
complexity needed during source code inspections, i.e. to auto-
mate source code reviews. The quest to automate and aid the 
source code review processes started with simple program check-
ers [4] followed by several commercial tools that for a variety of 
coding languages tried to achieve an automated source code re-
view. These tools capture the most common faults in a particular 

 



coding language and help the developer to create more stable, 
reliable and secure code. The tools represent a varying degree of 
sophistication and some utilize complicated techniques such as 
abstract interpretation to achieve their goal of better automation. 
Different commercial vendors specialized their tools in areas such 
as security. 

Several published papers have concluded that static code anal-
ysis tools (SAT) can detect code vulnerabilities [5]. However, the 
data are often laboratorial or based on assumptions that the re-
ported warnings are indeed vulnerabilities. In this paper we have 
instead applied static analysis with reported vulnerabilities in 
large software systems and examined how effectively they are 
detected. In this case study we are trying to answer how effective 
static code analysis tools are in detecting vulnerabilities. These 
detected vulnerabilities present a cost saving opportunity for the 
developers. We also examine what is the correlation between 
SAT findings and reported vulnerabilities. 

Section 2 presents previous studies that have examined static 
code analysis for vulnerability detection. Section 3 explains how 
the static analysis tool works and the development process used 
by the examined software, clarifying the need for early fault de-
tection. Section 4 explains how the case study was performed and 
what data had been analyzed. In Section 5 all the results are pre-
sented. Section 6 discusses the effectiveness of the static analysis 
tool, the trouble report data mining and the possible cost and qual-
ity benefits of detecting the faults earlier. 

2. Related work 
There are several related articles examining the effectiveness of 
static code analyzers, both as a security tool and as a general fault 
finder. For most of these articles non commercial analysis tools 
are used or no industrial reference data are examined.  
In Evans and Larochelle [6] a case study with the free tool Splint, 
the open source software wu-ftpd was used, where the discovered 
faults and false positive numbers were presented. They concluded 
that a static analysis tool can detect security faults but did not 
specify the content of the faults. Schuh [7] concluded that while 
today’s code analysis tools are better it is still the expertise of the 
examiner that is the most important factor. He conducted the 
study on both C++ and Java code with the aid of three commer-
cial checkers. The study used lab code with known vulnerabilities 
deliberately inserted, giving some clues about detected vulnerabil-
ities. He also presented a high number of false positive from all of 
the investigated tools forming one of the most complete studies 
describing limitations with static code analysis. Carlsson and 
Baca [8] looked at mature telecom graded software, analyzed with 
the help of open source checkers, ITS4, Flawfinder and RATS. 
The study showed that a security static code analyzer could find 
security vulnerabilities but also created a large number of false 
positives. They did not compare their results with trouble reports 
or any maintenance cost with data from industry. The study also 
did a short survey into the return on investments associated with 
the work of using a static code analysis. Okun et al. [9] used the 

static code analysis tool Coverity Prevent and data from open 
source projects to determine if the projects using SAT have had 
any improvement in the number of vulnerabilities. Unfortunately, 
they did not produce any strong conclusions because there where 
too many interfering factors. This paper will try to answer the 
same question by investigating if already reported vulnerabilities 
could have been detected if SAT was used during development. 

3. Research methodology 
This section first explains how a fault was classified as a vulnera-
bility. This makes it easy to determine what the most common 
effect of reported vulnerabilities is. A taxonomy to determine the 
cause of the vulnerabilities is then presented, followed by a 
process and software description and an in-detail explanation of 
the case study. 

3.1 Taxonomy 

We used the “Seven Pernicious Kingdoms” taxonomy from Ka-
trina Tsipenyuk to group the vulnerabilities. This taxonomy fo-
cuses on implementation faults and is especially useful for static 
code analysis tools [10]. The taxonomy explains the cause of a 
vulnerability, but not necessarily the effect of it. It is divided into 
the following eight groups: 

• Input validation and representation - Metacharacters, alter-
nate encodings, and numeric representations cause input 
validation and representation problems. 

• API abuse - An API is a contract between a caller and a 
receiver. The most common forms of API abuse occur 
when the caller fails to honor its end of the contract. 

• Security features – Incorrect implementations or use of se-
curity features, e.g. incorrect encryption setup.    

• Time and state - Distributed computation is about time and 
state, e.g., for more than one component to communicate, 
states must be shared, which takes time and therefore 
opens the door for race conditions. 

• Errors - Errors are not only a great source of “too much in-
formation” from a program, they are also a source of in-
consistent thinking that can be exploited. 

• Code quality - Poor code quality leads to unpredictable 
behavior that often manifests itself as poor usability. For 
an attacker, bad quality provides an opportunity to stress 
the system in unexpected ways. 

• Encapsulation - Encapsulation is about drawing strong 
boundaries around things and setting up barriers between 
them. 

• Environment – Environment includes everything outside 
the code that is still critical to the security of the software. 



3.2 Vulnerabilities 

A failure is labeled as security vulnerable [11] if, under any con-
ditions or circumstances, it results in denial of service, unautho-
rized disclosure, unauthorized destruction of data, or unauthorized 
modification of data. These represent the propagation or effect of 
an exploit. 

• Denial of Service – Preventing the intended usage of the 
software. The most common Denial of Service attacks to-
day are network based that exhaust system resources. 
Source code that does not always properly release a sys-
tem resource can be exploited in the same manner, result-
ing in an exhaustion of resources. 

• Unauthorized disclosure – Extracting data from the soft-
ware that was meant to be secret, e.g. customer data or 
passwords. Most common attacks today are disclosing data 
from databases or web sites, often in the form of en-
crypted, or worse, plain text passwords. 

• Unauthorized destruction of data – Destroying the data and 
preventing others from using it. Besides destroyed user da-
ta, configurations may be used to force the system to enter 
a default/unsafe state that later on can be exploited. 

• Unauthorized modification of data – The data is not de-
stroyed but instead altered to fit the need of the attackers. 
This is often the most serious result and often requires that 
the attacker gains full access to the system. 

3.3 Development and SAT Process 

The SAT Coverity Prevent was used during the case study. Pre-
vent, derived from the Stanford Metal/xgcc research project, uses 
a combination of inter-procedural data flow analyses and statistic-
al analysis to detect faults [12]. 

 
After the tool has gathered the necessary data it utilizes check-

ers to detect faults. Each checker tries to match a specific catego-
ry of potential faults. Figure 2 shows Coverity Prevents workflow 
were the tool first collects source code data and then relies on 
checkers to detect faults. The tool can also incorrectly claim that a 
fault is present (false positive).  

  

 Figure 3 shows a simplified iteration of the products devel-
opment process and the intended use of SAT. Because SATs are 
used early in development and are partially automated they can 
provide early fault detection. Two of the requirements for an early 
fault detection tool are fast execution time and the ability to run 
on non executable code. Because of these two requirements, dy-
namic checkers were excluded from the companies initial investi-
gation where Coverity Prevent was deemed the best tool for the 
job. After the software has been completed it is released to cus-
tomers. Any bugs that are found by the users are then reported 
back as trouble reports or bug reports (TR). A maintenance survey 
on the same development process suggests a 17 times increase in 
man hours to correct a TR compared to correct the fault during 
implementation [14]. Other studies have suggested up to a hun-
dred fold increase in total cost [15].The higher cost supports the 
use of early fault detection tools to prevent a high number of 
TR’s. 

3.4 Coverity Prevent checkers 

The SAT is continuously improving and developing new check-
ers. At the time of the investigation these checkers stood out and 
were especially useful. Other studies have explained the tool and 
checkers more [17]. 

• NULL_RETURNS: A function that can return NULL must 
be checked before it is used. An attacker might be able to 
force the function to return an unexpected NULL and 
cause a segmentation fault. 

• FORWARD_NULL: A program will normally crash when 
a NULL pointer is de-referenced. One situation this can 
happen is when the pointer has been checked against 
NULL and is de-referenced later. This check identifies 
such situation by checking all possible paths where such 
NULL dereferences can occur. The checker prevents deni-
al of service attacks. 

• REVERSE_NULL: Another situation this can happen is 
when the pointer is de-referenced before it has been 
checked against NULL. If the dereference is NULL, the 
check programmer should be warned to place the check 
against NULL before dereference. 

Figure 2. This figure explains the Prevent work flow [13]. 

• REVERSE_NEGATIVE: Sometimes a negative value is 
not advisable to use. One way to avoid such use is to check 
for negative value after a possible dangerous use. Attack-
ers can effect loop iterations and copy operations if they 
can insert a negative values. 

• SIZECHECK: Incorrect amount of memory allocation can 
lead to undetermined behavior and program crashes. By 
checking for inadequate memory allocations for a specific 
object it prevents memory out of bound errors. 

• RESOURCE_LEAK: A memory leak can lead to program 
crashes. A leak of file descriptors, and socket can cause 
crashes and also have other harmful effects on the pro-
gram. Apart from usual memory leak checks, it checks for 
interesting situations like aliasing as well. 

Figure 3. The intended usage of SAT in an example develop-
ment cycle.  



• USE_AFTER_FREE: Heap values should not be used af-
ter they have been de-allocated, as it might lead to non-
deterministic results when it is used. This also includes 
checks for double freeing of a pointer. 

• UNINIT: The use of un-initialized variables can often re-
sult in nondeterministic behavior. Under some situations, it 
can also cause security vulnerabilities.  

• OVERRUN_STATIC: This checker identifies invalid ac-
cesses to a static array, as it can cause buffer overruns that 
can ultimately lead to security vulnerabilities and program 
crashes. 

• OVERRUN_DYNAMIC: Instead of examining static ar-
rays this checker examines dynamic arrays. But the de-
tected faults are of the same characteristic. 

• NEGATIVE_RETURNS: If a value that is returned from a 
function can be negative and is used inappropriately, it can 
cause multiple errors such as memory corruption, crashes, 
infinite loops and so on. 

4. Case study 
The results are based on a case study that was performed on both 
mature telecom graded software and active open source projects. 
The software systems (A, B and C) are C++ based and are used as 
servers. The projects have different development processes. The 
case study was conducted on older versions of the product that 
had not used SAT’s before. The source code also contained sever-
al already known vulnerabilities that were known through trouble 
reports. These vulnerabilities have been reported from outside the 
development team. The static analysis tool Coverity Prevent was 
chosen by a telecommunication and data communication systems 
manufacturer after an extensive internal investigation where sev-
eral commercial and open source tools were compared. As a result 
of the internal investigation the tool Coverity Prevent is now dep-
loyed throughout the research and development units of the com-
pany. The newest version of the SAT was not used but instead the 
stable version from when the products were developed. This was 
necessary to ensure that our study will be as authentic as possible.   

The products below have all passed several revisions and can 
be considered mature. Because of its size and age several devel-
opers have worked with the code in product A and B while in C a 
more dedicated small group of developers has been involved. 

Product A had about 600.000 lines of analyzed code. The code 
base includes some third party code. The source code also in-
cludes a frame work which is included in the case study because 
TR’s on the frame work are reported to the product. Product A 
receives, retrieves and stores data. It also handles and processes 
the user data.  This is also the oldest product and has source code 
that was written several years ago. 

Product B had about 300.000 lines of analyzed code and han-
dles large amount of user data without doing any heavy 
processing. Its primary function is to shuffle data between differ-
ent endpoints. 

Product C had about 50.000 lines of analyzed code that serves 
and processes data. Compared to product A and B, it can not han-
dle the same amount of possible input combinations. Product C 
mostly serves data to end users. 

None of the examined versions of the products have had a 
formal security review as part of their ongoing development. All 
the product versions have been released and accumulated TR’s for 
a minimum of one year. 

Figure 4. A fictive data collection with vulnerabilities from both 
the static analysis tool (SAT) and trouble reports (TR). 

 
The static analysis tool (SAT) ran on an older already released 

version with reported faults. Therefore we had to analyze three 
variables of data, see Figure 4:  

a = The correctly reported warnings from SAT not reported by 
TR’s.  

b = The intersection between SAT and the security warnings 
within TR, i.e. those TR warnings found by SAT.  

c = The reported security TR not detected by SAT. 

The dormant vulnerabilities (a) were either corrected in newer 
product versions or reported as TR after the case study. Any vul-
nerability that were dubious or hard to understand were also con-
firmed by testing them on the running product. These new faults 
present quality improvements done by the tool.  

The intersecting faults (b) are possible cost improvements 
were the fault can be found earlier in the development process and 
therefore save time and money. These were found by examining 
what lines of code a TR had changed and then comparing if the 
SAT had issued a warning on these lines.  

The known vulnerabilities (c) have all been reported, verified 
and corrected but were not detected by the SAT. If the TR results 
into changed code its origin can either been from a SAT detecta-
ble code fault or a more obscure design flaw. 

4.1 Examining the tools output 

The results from the SAT are divided into three groups. 

False positives – These are any warnings that are incorrectly 
reported by the tool. 

Security faults – This group represents warnings that are secu-
rity related. It is also later on split up into two sub groups. 

Functional faults – All the remaining correct warnings that did 
not fit into the either of the above groups were instead put 
here. 



Security faults were split up into two sub groups. Vulnerabili-
ties are warnings that could propagate into at least one of the four 
vulnerabilities classifications. The most contributing factor for the 
code quality group was rules and checks outside the source code 
that prevented exploitations. The source code was exploitable but 
the end product was not. These are therefore split into an own 
group, separate from the vulnerabilities and is not part of SAT (a) 
group in our model, Figure 4. 

In the exploit tables in section 5, the total amount can be high-
er then the total amount of report warnings. This is possible be-
cause vulnerabilities sometimes can be exploited in more the one 
way. 

4.1.1 Early TR detection effectiveness 

The SATs effectiveness is depends on the tools capability to 
detect known vulnerabilities. Its effectiveness is easily calculated 
with the gathered data . i.e. an increased value indicates increased 
efficiency of the tool. 
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An E value of 1 shows that all TR are detected by SAT while 
0 means none are found. E is easiest understood as percentage 
values, e.g. E = 0.2 means that the SAT detects 20% of the TR’s. 

4.1.2 Project cost improvement 

To calculate the actual cost improvement we have to compare the 
cost of buying and using the tool divided by the cost the company 
paid to solve the TR's that the SAT also found, b in Figure 4. 

The projects new TR cost with the SAT as a percentage com-
pared to the old cost would then be 

 
 
 

(2) 

 
 

reducedTR shows the percentage difference between the projects 
new maintenance cost and old maintenance cost.   

TRcost is the average total cost of a reported TR for that prod-
uct. This value is the same for all three products and represents 
how much the companies development department on average has 
to spend per reported TR. 

Hourcost represents the hourly developer cost and is constant 
for all three projects. 

Toolcost the SAT has a, per lines of code, license. The products 
have different amount of code and therefore have different tool 
costs. But the license cost per line of code is the same. 

Timefactor is the number of warnings a developer can, on aver-
age, verify per hour. This value was determined from time reports 
and a follow up study. For all products 34 warnings can be ex-
amined per hour. 

Warnings are the total of SAT warnings for the product, in-
cluding false positives.  

While Warnings and Timefactor are published values, the other 
three have to be kept hidden due to company secrecy. 

 
4.1.3 SAT Quality improvement 
In this case quality is measured as the ability to prevent future 
TR’s by detecting faults before testing, e.g. early fault detection. 
But to calculate quality we have to know the total amount of vul-
nerabilities. 

To know the total amount of vulnerabilities (V ) all un-
known vulnerabilities have to be counted also. Counting unknown 
vulnerabilities is impossible but we will try to estimate V  by 
comparing known vulnerabilities with new vulnerabilities that the 
SAT discovers. But SAT can only detect implementation vulnera-
bilities. Therefore all the design flaws have to be removed from 
the c group before calculating V . Because we are using two 
different methods of detecting vulnerabilities it might be possible 
to use similar methods as capture, recapture [16] to determine 
what the total amount of vulnerabilities is. 

tot

tot

tot

By multiplying (a + b), the total number of vulnerabilities 
found by the tool, with b /(b + c) we may calculate V : tot

(3) 

5. Results 
We divided the results between the three products and present 
them one by one. The first figure shows the SATs output while 
the first table presents the cause of the vulnerabilities and com-
pare the SAT results with TR’s. The second table shows the effect 
of the vulnerabilities where vulnerabilities sometime can be ex-
ploited in more than one way. Therefore the second table can 
have a higher total amount of vulnerabilities than the first table. 

5.1 Product A 

From the total amount of warnings 371 (22.1%) were false posi-
tive warnings and did not require any correction in the source 
code. 85 (5.1%) were classified by the author as security related 
and 48 (2.9%) were classified as vulnerabilities that could be 
exploited while the remaining were not exploitable but were bad 
code quality. The SAT found a new vulnerability every 12.500 
lines of code. The product had 8 known vulnerabilities, 5 of them 
were implementation based. 

Figure 5. The total SAT results on product A, right circle ex-
plains security findings in more detail. 



The SAT found all reported input validations. But surprisingly 
did not find all possible implementation vulnerabilities. Two TR’s 
that were deemed as implementation faults were not detected by 
the SAT. The Time and state was most likely not detected do to 
missing checkers. The API abuse was very unclear. The tool had 
examined the file and the vulnerability was confirmed in a prac-
tical experiment. Also faults of a similar nature had been reported 
by the SAT before. The most likely conclusion is that the SAT 
misinterpreted the code and labeled the vulnerability as a false 
positive. 

 
Table 1. Divided into the cause of the vulnerability, the finding of 
SAT or reports from TR’s. Third column shows how many were 
detected by both methods. 

Product B

Code quality
9

Vulnerabilities
7

False Positive
7

Security
16

Functional Faults 
109

Taxonomy SAT 
(a+b) 

TR  
(b+c) 

SAT∩TR 
 (b) 

Input validation 
and representa-
tion. 

35 3 3 

API abuse  1 1 0 

Security features  0 1 0 

Time and state  12 1 0 
Errors  0 0 0 
Code quality  37 - - 
Encapsulation  0 1 0 
Environment  0 1 0 

 
Due to the nature of the Coverity tool and its available checkers, 
the majority of the vulnerabilities are stack or heap specific, most-
ly buffer overflows. Only three vulnerabilities could not be used 
to repeatedly crash or lock up resources but they did instead 
present the possibility to leak information. 

 
Table 2. The effects or exploits made possible by the vulnerabili-
ties. Vulnerabilities might be exploitable in more then one way. 

Failure SAT 
(a+b) 

TR 
(b+c) 

SAT∩TR 
(b) 

Denial of Service 45 5 2 
Unauthorized 
destruction 

21 2 1 

Unauthorized 
modification 

23 3 1 

Unauthorized 
disclosure 

17 4 1 

 
In product A the majority of vulnerabilities were not detected 

by TR’s but instead newly found by the SAT. These were mostly 
local exploits and therefore unlikely to be reported as TR’s. 
Three reported vulnerabilities were detected by the SAT. Using 
eq. 1 the SAT had an E=37.5% TR detection effectiveness. The 
cost for the three vulnerabilities in the b group could have been 
reduced to a =85% of the original total maintenance cost. reducedTR

If the product would have used SAT and assuming the devel-
opers had spend the time to correct all the warnings, product A 
would have had 15% less in maintenance cost for security TR’s 
and 45 unreported vulnerabilities would not have been present in 
the released product. 

5.1.1 Product B 

In product B only 5.3% of the total warnings were false positives. 
12% of the warnings were security related witch is higher then 
Product A. But the number of vulnerabilities per lines of code is 
much smaller. The SAT tool found a new vulnerability every 
42.850 lines of code. There were 7 known vulnerabilities, of these 
only 2 were implementation based. 

 

ll the vulnerabilities were memory related and involved the 
wr

Table 3. Divided into the cause of the vulnerability, the finding of 

T TR  
(

SAT∩TR 

A
iting or reading of Null values. An attacker could exploit these 

vulnerabilities with special crafted input messages. Some of the 
vulnerabilities required a special order of requests before the pro-
gram entered an unsafe state. The majorities of TR’s was design 
based and not do to poor implementation. Four design flaws were 
missing input validation and one flaw in the products API to out-
side programs.  

 

SAT or reports from TR’s. Third column shows how many were 
detected by both methods. 

Taxonomy SA
(a+b) b+c)  (b) 

Input validation 
and representa-
tion. 

3 5 1 

API abuse  4 2 1 

Security features  0 0 0 

Time and state  0 0 0 
Errors  0 0 0 
Code quality  9 - - 
Encapsulation  0 0 0 
Environment  0 0 0 

Figure 6. The total SAT results on product B, right circle ex-
plains security findings in more detail. 
 



Product B h

Product C

Vulnerabilities
3

Code quality
6

False Positive
2

Security
9

Functional Faults 
22

ad only known DoS attacks and the SAT only 
fou

Table 4. The effects or exploits made possible by the vulnerabili-

(b+c) 

nd DoS vulnerabilities.  This is probably because the product 
mostly does not process the data. There were seven reported TR’s 
and the SAT found seven vulnerabilities. Two vulnerabilities 
were identified by both detection methods. 

 

ties. Vulnerabilities might be exploitable in more then one way. 
Failure SAT TR SAT∩TR 

(a+b) (b) 
Denial of Service 7 7 2 
Unauthorized 
destruction 

0 0 0 

Unauthorized 0 0 0 
modification 
Unauthorized 
disclosure 

0 0 0 

Product B did not process the data in any large amount and 
wa

 faults were found by the SAT but none of 
the

of the products and had therefore a 

s therefore not receptive to a large variety of attacks. Only DoS 
attacks had been reported and all new vulnerabilities were also 
DoS attacks. But even the dormant unknown vulnerabilities were 
remotely exploitable. 

All implementation
 five design vulnerabilities. The SAT had an effectiveness of 

E=28.6% to detect vulnerabilities TR’s. With eq. 2 the product 
would have had a new maintenance cost of reducedTR =83%, a 17% 
reduction. At the same time five undetected DoS vulnerabilities 
would also had been avoided. 

5.1.2 Product C 

Product C was the smallest 
small development team.  2 (6%) of the warnings were false posi-
tive and 9 (27%) where security related. But a majority were just 
code quality issues and not exploitable. The SAT tool found a 
new vulnerability every 16.700 lines of code.  The vulnerability 
detection rate was more similar to product A than B. The product 
had 8 known vulnerabilities, 2 of these were implementation 
based. 

The SAT did not detect any other vulnerabilities than DoS at-
tacks in this product. Because the product was relative small the 
number of detected vulnerabilities were also few. 

In this product the SAT managed to detect incorrect encapsu-
lation of data. The two worse TR’s where design based with one 
lacking necessary input validation and the other allowing access 
by pass do to weak API. 

 
Table 5. Divided into the cause of the vulnerability, the finding of 
SAT or reports from TR’s. Third column shows how many were 
detected by both methods. 

Taxonomy SAT 
(a+b) 

TR  
(b+c) 

SAT∩TR 
 (b) 

Input validation 
and representa-
tion. 

1 5 1 

API abuse  1 3 1 

Security features  0 0 0 

Time and state  0 0 0 
Errors  0 0 0 
Code quality  6 - - 
Encapsulation  1 0 0 
Environment  0 0 0 

Eight TR’s had been reported and all of them could be used to 
launch DoS attacks. Two TR’s where especially bad and could be 
exploit in all four ways. But the SAT did not find any new vulne-
rability except for one new DoS attack. 

 
Table 6. The effects or exploits made possible by the vulnerabili-
ties. Vulnerabilities might be exploitable in more then one way. 

Failure SAT 
(a+b) 

TR 
(b+c) 

SAT∩TR 
(b) 

Denial of Service 3 8 2 
Unauthorized 
destruction 

0 3 0 

Unauthorized 
modification 

0 2 0 

Unauthorized 
disclosure 

0 2 0 

The SAT and had an effectiveness of E=25% in detecting 
TR’s. The SAT also found one new vulnerability and provided a 
new =77%. Showing this studies best cost reduction with 
23%. 

reducedTR

This product had the least benefit of the SAT in finding new or 
already known TR’s, but at the same time saved the most money. 
The SAT also failed in detecting any of the non-DoS vulnerabili-
ty. But it did detect all known implementation faults and at the 
same time one previously unknown. This product had the best 
saving potential because of its smaller size and therefore tool 
license cost, combined with a relative large amount of detected 
TR’s compared to its size. 

Figure 7. The total SAT results on product C, right circle ex-
plains security findings in more detail. 
 



5.1.3 All products 

Because the three products are different and have different devel-
opment processes their results are not 100% compatible. But we 
combine them anyway to better show the similarities and differ-
ences between SAT and TR’s. 

The SAT managed to find some TR but did not locate all im-
plementation faults even if it technically should be possible. The 
SAT was most effective at detecting Input validations. These are 
often memory related vulnerabilities. The SAT also found several 
new vulnerabilities that TR’s had not. Only Input validations and 
API abuses were detected by both methods. 

 
Table 7. Divided into the cause of the vulnerability, the finding of 
SAT or reports from TR’s. Third column shows how many were 
detected by both methods. Summary of all vulnerabilities from 
the three products. 

Taxonomy SAT 
(a+b) 

TR  
(b+c) 

SAT∩TR 
 (b) 

Input validation 
and representa-
tion. 

39 13 5 

API abuse  6 6 2 

Security features  0 1 0 

Time and state  12 1 0 
Errors  0 0 0 
Code quality  52 - - 
Encapsulation  2 1 0 
Environment  0 1 0 

In this case study the SAT had an average of 30.4% effective-
ness in catching security TR’s early. For the total project with all 
three products the SAT could have lowered the maintenance costs 
with 18% and at the same time detected 59 new vulnerabilities 
and prevented customers from having to report 7 security TR’s. 

 
Table 8. The effects or exploits made possible by the vulnerabili-
ties. Vulnerabilities might be exploitable in more then one way. 
This table shows the combines results from all products. 

Failure SAT 
(a+b) 

TR 
(b+c) 

SAT∩TR 
(b) 

Denial of Service 55 18 6 
Unauthorized 
destruction 

21 5 1 

Unauthorized 
modification 

23 5 1 

Unauthorized 
disclosure 

17 6 1 

 

5.1.4 Code quality improvement 

To calculate the possible quality improvement we have to es-
timate the total amount of exploitable code faults. We assume that 

the ratio between dormant vulnerabilities and implementation 
vulnerabilities that have both been reported and found by the SAT 
is constant. This assumption is based on the idea that for the SAT 
tool to detect the remaining implementation vulnerabilities its 
checkers needs to be improved or new added and would therefore 
find even more dormant vulnerabilities.  
 
 
 
 
 

 
 

 
 
 
 
 
 
In this 

case study 
there were 
still some known implementation based TR’s that were not de-
tected. One was relatively easy to understand and it was the lack 
of a concurrency checker that was responsible, newer version of 
the SAT has introduced concurrency checkers. But because the 
newer version was not released during the products development 
the vulnerability would not have been detected. On the second 
undetected implementation vulnerability it was more unclear. 
Similar faults had been reported before but this partial vulnerabili-
ty was not. The most likely reason is that the tool decided that the 
fault was not significant enough and therefore did not report it. 
The SAT tried to minimize the false positive rate. Only Product A 
had undetected implementation TR’s. If we assume that new or 
better checkers would find these and more vulnerabilities then 
according to Eq. 3 a new total amount of implementation vulnera-
bilities would have been 80 instead of the currently known 50. 
Product A had therefore only 60% of its possible code quality 
improvement, e.g. an improved SAT would have found even more 
vulnerabilities.  

Figure 8. Total amount of implementations vulnerabilities in 
Product A. Using eq. 3. 

6. Discussion 
When observing the results from the case study it is clear that in 
the particular case a static code analysis tool can detect faults that 
propagate into full vulnerabilities. The false positive rate of 
free/open source tools have been criticized in previous papers (see 
section 2 related works) and often discussed as a cause why de-
velopers do not use static code analysis. In this case study the 
false positive rate varied from 5-22%. Even the highest false posi-
tive rate is acceptable compared to previous studies. 



The tool managed to find several vulnerabilities in mature, 
well tested and stable products. From these vulnerabilities the 
majority were stack or heap related. This shows that the tools 
security detection capabilities mostly rely on software’s handling 
of memory, e.g. in the form of string based buffer overflows or 
memory problems due to tainting. 59 of the now known vulnera-
bilities were new vulnerabilities that the SAT found.  

For this study the most important warnings were the intersect-
ing (b) faults. They were both detected by SAT and reported as 
TR’s. These faults have already cost the project money and time 
to verify and correct. Table 7 shows that 7 TR’s were detected by 
the SAT (b). The TR’s were either classified as Input validation 
or as API abuse. Both detection methods had found more catego-
ries but only these two had intersecting vulnerabilities. As for 
most of the vulnerabilities the effect was mostly DoS attacks. But 
there were two that could be exploited in more sinister ways. 

Detecting design based failures is highly improbable, due to 
the data the tool uses, 16 (91%) of the undetected TR’s were de-
sign based. But there were still 2 (9%) that should have been de-
tected (in Table 1 there are two implementation vulnerabilities 
found by TR that SAT had not found), i.e. unlike design errors 
there were no technical restriction. Missing or faulty checkers is 
the most probable cause why the remaining implementation vul-
nerabilities were not found. The checker developer has to balance 
his checker in such a way that it does not provide too many false 
positives, as such some checkers would not be possible or hard to 
implement. So, the drawback of user friendly SATs is that some 
checkers do not catch all vulnerabilities of their type, e.g. the 
open source tool RATS may probably detect more vulnerabilities 
but with a much higher rate of false positives. 

When comparing SAT and TR it is clear that their detection 
capability varies. SAT focuses mostly on memory handling and 
therefore detects mostly Input validations. TR’s on the other hand 
detect vulnerabilities caused by both implementation and design. 
TR’s from server software seem also to focus on remote exploits. 
But with a detection rate of about 30%, SAT still presents a par-
tially automated method in detecting real vulnerabilities early. In 
the examined project with these three products, the maintenance 
cost for security TR’s could have been lowered by 17% if a SAT 
would have been used. The SAT effectiveness and cost reduction 
are not in this study related to each other. Product A that had the 
best effectiveness result at the same time had the worse cost sav-
ing. Showing that the products size and complexity, assuming it 
increase the number of warnings, affect the cost of using the tool 
more then the added effectiveness saved money. 

During this case study we have used TR’s as a measurement 
for SAT effectiveness.  As shown in the results TR’s themselves 
are not a method that detects all vulnerabilities. But they do show 
vulnerabilities that have had a measurable cost and are therefore a 
good reference for cost saving actions. 

 

7. Conclusion 
We have looked at real-life trouble reports from three large soft-
ware systems, consisting of approximately 1,000,000 lines of C++ 
code. There is a significant cost associated with handling the se-
curity related trouble reports in these systems. Our research study 
showed that, by using a static analysis tool a 17% cost reduction 
for reported security bugs would have been possible. One product 
even showed a 23% cost reduction. The cost reduction includes 
all costs associated with the SAT. Most of the vulnerabilities 
found were stack or heap related, i.e. the security detection capa-
bilities mostly rely in the software’s handling of memory. No 
design based vulnerabilities were detected and more implementa-
tion failures should have been possible to detect, i.e. when the 
static analysis tool is lowering the rate of false positives some 
vulnerabilities are dismissed. Almost 70% of the TR’s were not 
found by Coverity, i.e. for these there were no reduction of costs. 
Product A had the best effectiveness with 37.5% of the TR de-
tected while Product C had the worse with 25%, but because  

The SAT also found dormant vulnerabilities that were not re-
ported as TR’s. A total of 2.6 times more vulnerabilities were 
detected by the SAT compared to the TR’s. This means that static 
code analysis does not only reduce the cost. There is also a signif-
icant quality improvement due to the detection of dormant vulne-
rabilities. 
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