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Abstract

The Windows Vista operating system implements an intargsti
model of multi-level integrity. We observe that in this mgde
trusted code can be blamed for any information-flow attaoks

it is possible to eliminate such attacks by static analysisusted
code. We formalize this model by designing a type systemdiuat
efficiently enforce data-flow integrity on Windows Vista. pBr
checking guarantees that objects whose contents areafiiatic
trusted never contain untrusted values, regardless ofwtiaisted
code runs in the environment. Some of Windows Vista’s ruatim
access checks are necessary for soundness; others aréaedun
and can be optimized away.

Categories and Subject Descriptors  D.4.6 [Operating Systenits
Security and Protection—Access controls, Information ftam-
trols, Verification; D.2.4 $oftware EngineerirjgProgram Verif-
ication—Correctness proofs; F.3.ldgics and Meanings of Pro-
gramg: Specifying and Verifying and Reasoning about Programs—
Specification techniques, Invariants, Mechanical vetifica

General Terms Security, Verification, Languages, Theory
Keywords dynamic access control, data-flow integrity, hybrid
type system, explicit substitution

1. Introduction

Prasad Naldurg  Sriram Rajamani

Microsoft Research India
{prasadn,sriram}@microsoft.com

allows processes at different trust levels to communicae, al-

lows dynamic access control. At the same time, it admitsouari
information-flow attacks. Fortunately, it turns out thatlsattacks
require the participation of trusted processes, and catibmated

by code analysis.

In this paper, we provide a formalization of Windows Vistia's
tegrity model. In particular, we specify an informationvil@rop-
erty calleddata-flow integrity(DFI), and present a static type sys-
tem that can enforce DFI on Windows Vista. Roughly, DFI prese
any flow of data from the environment to objects whose costent
are trusted. Our type system relies on Windows Vista’s i@tac-
cess checks for soundness. The key idea in the type systam is t
maintain a static lower-bound lab8lfor each object. While the
dynamic label of an object can change at runtime, the typesys
ensures that it never goes bel8wand the object never contains a
value that flows from a label lower th&h The labelS is declared
by the programmer. Typechecking requires no other anooisti
and can be mechanized by an efficient algorithm.

By design, DFI does not prevent implicit flows ]18]. Thus DFI
is weaker than noninterferende [23]. Unfortunately, it ifficllt
to enforce noninterference on a commercial operating systeh
as Windows Vista. Implicit flows abound in such systems. Such
flows arise out of frequent, necessary interactions betirested
code and the environment. They also arise out of covert abntr
channels which, given the scope of such systems, are infp@ssi
to model sufficiently. Instead, DFI focuses on explicit floji8].

Commercial operating systems are seldom designed to freven This focus buys a reasonable compromise—DFI prevents dteefin

information-flow attacks. Not surprisingly, such attacke ¢he
source of many serious security problems in these systedjs [4
Microsoft's Windows Vista operating system implements an i
tegrity model that can potentially prevent such attackssdme
ways, this model resembles other, classical models of Aaviél
integrity [9]—every process and objlds tagged with an integrity
label, the labels are ordered by levels of trust, and acoassat
is enforced across trust boundaries. In other ways, it icaty
different. While Windows Vista's access control prevernsv
integrity processes from writing to high-integrity objectt does
not prevent high-integrity processes from reading lovegnity
objects. Further, Windows Vista’s integrity labels are akyric—
labels of processes and objects can change at runtime. Tuielm

L1n this context, an object may be a file, a channel, a memostitar, or
indeed any reference to data or executable code.
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class of attacks, and can be enforced efficiently on Windos&V
Several successful tools for malware detection follow aéipigroach
[12,[52 4749l 16, 37], and a similar approach guides thigdes
of some recent operating systems|[19, 57].

Our definition of DFI is dual to standard definitions of segrec
based on explicit flows—while secrecy prevents sensitivaesg
from flowing to the environment, DFI prevents the flow of value
from the environment to sensitive objects. Since thereidditer-
ature on type-based and logic-based analysis for such tifefimof
secrecyl[1113,48,13], it makes sense to adapt this anddbyddds-I.
Such an adaptation works, but requires some care. Unlikesgc
DFI cannot be enforced without runtime checks. In particida-
cess checks play a crucial role by restricting untrustedgsses
that may run in the environment. Further, while secrecy @méev
any flow of high-security information to the environment, IGi~
lows certain flows of low-security information from the eron-
ment. We need to introduce new technical devices for thipgae,
including a technique based erplicit substitutiorj4] to track pre-
cise sources of values. This device is required not only &zi§p
DFI precisely but also to prove that our type system enfoBifels

We design a simple higher-order process calculus that simu-
lates Windows Vista’s security environmeft [31)] [7] 43].this
language, processes can fork new processes, create neetspbje
change the labels of processes and objects, and read, amitex-
ecute objects in exactly the same ways as Windows Vista allow
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Our type system exploits Windows Vista’'s runtime accesskhe
to enforce DFI, and can recognize many correct programshét t
same time, our type system subsumes Windows Vista’s executi
controls, allowing them to be optimized away.

1.1 Summary of contributions
To sum up, we make the following main contributions in thipgra

e We propose DFI as a practical multi-level integrity progert
in the setting of Windows Vista, and formalize DFI using a
semantic technique based on explicit substitution.

appropriate. For example, when a system administratorsopaew
shell (typically with labeHigh), a new process is forked with label
Medium; the shell is then run by the new process. When an Internet
browser is opened, it is always run by a new process whosé labe
is lowered toLow; thus any code that gets run by the browser gets
the labelLow—by Rule (i)—and any file that is downloaded by the
browser gets the lab&low—by Rule (ii).

Rules (iv) and (v) are useful in various ways, but can be dan-
gerous if not used carefully. (We show some attacks to ithtst
this point below.) In particular, Rule (iv) allows unproted ob-
jects to be protected by trusted processes by raising thieald,

e We present a type system that can efficiently enforce DFI on and Rule (v) allows processes to read objects at lower teustd.
Windows Vista. Typechecking guarantees DFI regardless of Atthe same time, Rule (iv) facilitates dynamic access anénd

what untrusted code runs in the environment.

e We show that while most of Windows Vista’s runtime access

checks are required to enforce DFI, Windows Vista’s executi
controls are redundant and can be optimized away.

1.2 Outline

The rest of this paper is organized as follows. In Sedfibn &, w
introduce Windows Vista’s security environment, and shaw h
DFI may be violated in that environment. In Sectidn 3, we glesi
a calculus that simulates Windows Vista’s security envinent,
equip the calculus with a semantics based on explicit sulisti,

and formalize DFI in the calculus. In Secti@h 4, we present a

system of integrity types and effects for this calculus. éet®r5,
we prove soundness and other properties of typing. Finally,
Section[6, we discuss limitations and contributions witBpest
to related work and conclude. Supplementary materialuifiny
proof details and an efficient typechecking algorithm, appe the
appendix.

2. Windows Vista’s integrity model

In this section, we provide a brief overview of Windows Vista
integrity modef In particular, we introduce Windows Vista’s se-
curity environment, and show how DFI may be violated in that e
vironment. We observe that such attacks require the paaticin
of trusted processes.

2.1 Windows Vista’'s security environment

In Windows Vista, every process and object is tagged with-a dy

namic integrity label. We indicate such labels in brackefdelow.
Labels are related by a total order, meaning “at most as trusted
as”. Leta range over processes,over objects, and, O over la-
bels. Processes can fork new processes, create new obfeatge
the labels of processes and objects, and read, write, aruditexe
objects. In particular, a process with latfetan:

(i) fork a new process(P);

(i) create a new object(P);

(iii) lower its own label;

(iv) change the label of an objegtO) to O’ iff O O’ C P;
(v) read an objeat(0);

(vi) write an objectv(O) iff O C P;

(vii) execute an object(O) by lowering its own label t& 1 O.

Rules (i) and (ii) are straightforward. Rule (iii) is guidéy the
principle of least privilege [34], and is used in Windows tdiso
implement a feature calledser access contrdUAC) [43]. This
feature lets users execute commands with lower privilegesnw

2Wwindows Vista further implements a discretionary accesgrobmodel,
which we ignore in this paper.

Rule (v) facilitates communication across trust boundarie

Rule (vi) protects objects from being written by processes a
lower trust levels. Thus, for example, untrusted code forkg a
browser cannot affect local user files. User code cannot fynodi
registry keys protected by a system administrator. Rulg {si
part of UAC; it prevents users from accidentally launchiegsl
trusted executables with higher privileges. For examplegiras
downloaded from the Internet cannot run in a trusted uselt. she
Neither can system code dynamically link user libraries.

2.2 Some attacks

We now show some attacks that remain possible in this environ
ment. Basically, these attacks exploit Rules (iv) and (ypass
Rules (vi) and (vii).

(Write and copy) By Rule (vi), a(P) cannot modifyw(O) if P C
0. However,a(P) can modify some objeat’(P), and then
some proces$(O) can copyw’(P)'s content tow(O). Thus,
Rule (iv) can be exploited to bypass Rule (vi).

(Copy and executg By Rule (vii), a(P) cannot executey(O) at
P if O C P. However,a(P) can copyw(O)’s content to some
objectw’(P) and then execute’(P). Thus, Rule (iv) can be
exploited to bypass Rule (vii).

(Unprotect, write, and protect) By Rule (vi), a(P) cannot mod-
ify w(0) if P C O. However, some proce$$0) can unprotect
w(0) to w(P), thena(P) can modifyw(P), and therb(O) can
protectw(P) back tow(O). Thus, Rule (v) can be exploited to
bypass Rule (vi).

(Copy, protect, and executg By Rule (vii), a(P) cannot execute
w(0) atP if O C P. However, some proce$gO) can copy
w(0)’s content to an objeat’(0), and themu(P) can protect
w'(0) tow’(P) and executes’(P). Thus, Rules (iv) and (v) can
be exploited to bypass Rule (vii).

Next, we show that all of these attacks can violate DFI. Atsdieme
time, we observe that access control forces the participaif a
trusted process (one with the higher label) in any suchlattac

¢ In (Write and copy) or (Unprotect, write, and protect), sup-
pose that the contents of O) are trusted, an& is the label of
untrusted code, witP — O. Then data can flow from(P) to
w(0), violating DFI, as above. Fortunately, some prodgs)
can be blamed here.

In (Copy and executg or (Copy, protect, and executg sup-
pose that the contents of some objett(P) are trusted, an@®

is the label of untrusted code, with — P. Then data can flow
from some proces(O) to w” (P), violating DFI, as follows:
b(0) packs code to modify” (P) and writes the code t0(O),
anda(P) unpacks and executes that code, as above. Fortunately,
a(P) can be blamed here.

Our type system can eliminate such attacks by restrictingted
processes (Sectidn 4). (Obviously, the type system camstrict



untrusted code running in the environment.) Conceptualig
guarantee can be cast as Wadler and Findler&|“typed programs
can’t be blameti [51]. We rely on the fact that a trusted process
can be blamed for any violation of DFI; it follows that if atlisted
processes are well-typed, there cannot be any violatiorFof D

3. Acalculus for analyzing DFI on Windows Vista

To formalize our approach, we now design a simple higheetword
process calculus that simulates Windows Vista's securitjren-
ment. We first introduce the syntax and informal semantiosg, a
present some examples of programs and attacks in the lamguag
We then present a formal semantics, guided by a preciseathara
ization of explicit flows.

3.1 Syntax and informal semantics

Several simplifications appear in the syntax of the langusige
describe processes by their code. We use variables as objeets,
and let objects contain packed code or names of other obj&ets
enforce a mild syntactic restriction on nested packingcWwiiakes
typechecking significantly more efficient (Appendi B; alsee
below). Finally, we elide conditionals—for our purposé® tode

if condition then a else b

can be conservatively analyzed by composingndb in parallel.
(DFl is asafety propertyin the sense of [7], and the safety of the
latter code implies that of the former. We discuss this poimiore
detail in Sectiofi 313.)

Values include variablesinit, and packed expressions. Expres-
sions include those for forking new processes, creatingaigects,
changing the labels of processes and objects, and readiiigngyw
and executing objects. They also include standard exjpres$or
evaluation and returning results (see Gordon and Hankarisur-
rent object calculug24]).

f,g = expression
frg fork
t action
letz = fing evaluation
r result
to= action
new(z #S) create object
[Pl a change process label
(O) w change object label
lw read object
w:=1x write object
exec w execute object
7= result
TyY, 2y e, W variable
unit unit
a, b= process
arb fork
t action
letz=ainbd evaluation
U value
U,V = value
r result
pack(f) packed expression

Syntactically, we distinguish between processes and sgjures:
while every expression is a process, not every process ix-an e
pression. For example, the procgssk(f) is not an expression,
although the proces®] pack(f) is. Expressions can be packed,
but processes in general cannot. In particular, a proces®the

of the form pack(pack(...)). (Such a process can, however, be

written aslet @ = pack(...) in pack(z).) The benefits of this dis-
tinction become clear in Sectigh 5, where we discuss mechani
typechecking. However, for the bulk of the paper, the reaaay
ignore this distinction; indeed, neither the semanticsthertype
system are affected by this distinction.

Processes have the following informal meanings.

e a ' bforks a new process with the current process label and
continues a$ (see Rule (i)).

e new(x #S) creates a new object with the current process
label, initializesw with z, and returnsv (see Rule (ii)); the
annotationS is used by the type system (Sectidn 4) and has
no runtime significance.

e [P] a changes the current process labePt@and continues as
a; it blocks if the current process label is lower thBn(see
Rule (iii)).

e (O) w changesv’s label toO and returngunit; it blocks if w is
not bound to an object at runtime, or the current procesd labe
is lower thanw’s label orO (see Rule (iv)).

e lw returns the value stored ip; it blocks if w is not bound to
an object at runtime (see Rule (v)).

e w := z writes the valuer to w and returnsinit; it blocks if w is
not bound to an object at runtime, or if the current proceisslla
is lower thanw’s label (see Rule (vi)).

e exec w unpacks the value storeddnto a procesy, lowers the
current process label with's label, and executes; it blocks if
w is not bound to an object at runtime or if the value stored in
w is not a packed expression (see Rule (vii)).

e let x = a in b executesy, binds the value returned hyto z,
and continues alswith = bound.

e y returns itself.

3.2 Programming examples

We now consider some programming examples in the language.
We assume thdtow, Medium, High, and T are labels, ordered in
the obvious way. We assume that the top-level process alwags
with T, which is the most trusted label.

Example 3.1. Suppose that aMedium user opens an Internet
browserie.exe with Low privileges (recall UAC), and clicks on a
url that containsrirus.exe; the virus contains code to overwrite
the command shell executakigd.exe, which has labell .
p1 2 let cmd.exe = new(... #T)in
let url = [Low] new(... #Low) in
let binIE = pack(let z =lurl in exec ) in

let ie.exe = new(binIE# T)in

[Medium] (... T [Low] exec ie.exe) T
[Low] (let binVirus = pack(cmd.exe :=...) in
let virus.exe = new(binVirus #Low) in

url := virus.exe I

)
This code may eventually reduce to
@1 2 [Medium] (... P [Low] cmd.exe :=...) I
[Low] (...)

However, at this point the write tomd.exe blocks due to access
control. (Recall that a process with laHelw cannot write to an
object with labelT.)



Example 3.2. Next, consider the following attack, based on the
(Copy, protect, and executgattack in Sectioh 2]2. Medium user
downloads a virus from the Internet that contains code teectiae
user's home directoryhpme), and saves it by default isetup.exe.
A High administrator protects and executegup.exe.
p2 = leturl = [Low] new(... #Low) in
let setup.exe = [Low] new(... #Low) in
let binIE = pack(let z = lurlin

let z = !z in setup.exe := x)in
let ie.exe = new(binIE#T)in
let home = [Medium] new(. .. #Medium) in

let empty = unitin

[High] (--- 7
let - = (High) setup.exe in
exec setup.exe) I
[Medium] (...
[Low] (let binVirus = pack(home := empty) in

I [Low] exec ie.exe) T

let virus.exe = new(binVirus # Low) in

url := virus.exe I’

)
This code may eventually reduce to
g2 2 [High] (... T home := empty) T
[Medium] (...) T
[Low] (...)

The user’s home directory may be erased at this point. (Rebel
access control does not prevent a process with lalygh from
writing to an object with labeMedium.)

3.3 An overview of DFI

Informally, DFI requires that objects whose contents austéd at
some labeb never contain values that flow from labels lower than
S. In Example[ 311, we trust the contents @fd.exe at label T,

as declared by the static annotatidn DFI is not violated in this
example, since access control prevents the flow of data framto
cmd.exe. On the other hand, in Examgle B.2, we trust the contents
of home at labelMedium. DFIis violated in this example, since the
valueempty flows from Low to home.

By design, DFI is a safety propertz1[7]—roughly, it can be
defined as a set of behaviors such that for any behavior than no
that set, there is some finite prefix of that behavior that tSmthat
set. To that end, DFI considers orgyplicitflows of data. Denning
and Denning characterizes explicit flowys 18] roughly asofos:

a flow of z is explicit if and only if the flow depends abstractly on
x (that is, it depends on the existenceagfbut not on the value
z). Thus, for example, the violation of DFI in Exam@ple 3.2 does
not depend on the valuenpty—any other value causes the same
violation. Converselyempty is not dangerous in itself. Consider
the reduced process in Example€_3.R. Without any knowledge of
execution history, we cannot conclude that DFI is violatedsi.
Indeed, it is perfectly legitimate for High-process to execute the
code

home := empty
intentionally, say as part of administration. However, iraf-

It follows that in order to detect violations of DFI, we mus$d
tinguish between various instances of a value, and trackaheces
of those instances during execution. We maintain this di@tu
history in the operational semantics (Secfiod 3.4), by artiepie
based on explicit substitutionl[4].

Before we move on, let us ease the tension between DFI and
conditionals. In general, conditionals can cause imgiioits [1€];
a flow of z can depend on the valueif = appears in the condition
of some code that causes that flow. For example, the code

if x = zero then w := zero else w := one

causes an implicit flow of: to w that depends on the value
We can abstract away this dependency by interpreting the cod
if condition then a else b as the code I" b. Recall that DFl is a
safety property. Followind [33], the safety @f’ b can be expressed
by the logical formulaF" £ F, A F,, whereF, is the formula that
expresses the safety of and F;, is the formula that expresses the
safety ofb. Likewise, the safety off condition then a else b
can be expressed by the formuld £ (condition = Fj,) A
(—condition = F). Clearly, we havel’ = F”, so that the code
if condition then a else b is a refinement of the coder b. Itis
well-known that safety is preserved under refinenent [33].

But implicit flows are of serious concern in many applicasipn
one may wonder whether focusing on explicit flows is evenreesi
able. Consider the code above; the implicit flow franto w vio-
lates noninterference, if is an untrusted value and the contents of
w are trusted. In contrast, DFlimtviolated in the interpreted code

w:=zero I w:= one

if zero andone are trusted values. Clearly, DFIl ignores the implicit
flow from x to w. But this may be fine—DFI can be used to prove
an invariant such as “the contentswofire always boolean values”.
Note that the code

w =
does not maintain this invariant, sincenay be an arbitrary value.
Thankfully, DFlis violated in this code.

3.4 An operational semantics that tracks explicit flows

We now present a chemical-style operational semanticsher t
language, that tracks explicit flofiswe begin by extending the
syntax with some auxiliary forms.

a, b= process
e source process
wS store
(ve/uQP) a explicit substitution
o= substituted value
u value
new(x #S) object initialization

The processv % 2 asserts that the object containsz and is
protected with labeD. A key feature of the semantics is that objects
store values “by instance”—only variables may appear inesto
We use explicit substitution to track and distinguish betw¢he
sources of various instances of a substituted value. Sgaltyjfithe
process(vz/p@P) a creates a fresh variable records that: is
bound toyu by a process with labd?, and continues ag with «
bound. Herer is aninstanceof i and P is the sourceof x. If p

is a value, then this process is behaviorally equivalent with x
substituted byu. For example, in Example_3.2 the source of the
instance ofempty in binVirus is Low; this fact is described by

ple[3.2, we know that this code is executed by unpacking some 3Thjs presentation is particularly convenient for definimgl @roving DFI;

code designed by how-process. The violation of DFI idue to
this history

of course, a concrete implementation of the language mgyoreh lighter
semantics that does not track explicit flows.



Local reduction a 7% b rewriting the procesg. as

' ! v /empty@Low) [High] (- ¢ home := x) F ...
(Reduct evaluate (vz/empty ) [High] ( )

DFI prevents this particular instance)(of empty from being

. P;o

letz =wina — (vz/u@P)a written to home but it allows other instances whose sources are

at least as trusted ddedium. The rewriting follows a structural

(Reduct new) equivalence ruleStruct bind), explained later in the section.

Pio P While explicit substitution has been previously used irglzemge
new(z #S) = (vw/new(z #S)AP) (w = 2 T w) implementations, we seem to be the first to adapt this dewvice t
track data flow in a concurrent language. In particular, we us

(Reduct read) . explicit substitution both to specify DFI (in Definitiohs3and3.4)

wZw and to verify it statically (in proofs of Theorerhs b.4 dnd)5We

defer a more detailed discussion on this technique to Sd6tio
We call sets of the fordz /111 QP4 . .., xx /e @Py } substi-
tution environments

(o) '/P;o' o)
wezl lw — w=al o

(Reduct write)
Definition 3.3 (Explicit flows). A variable z flows from a label

P or lower in a substitution environment, written x v P, if
x/p@QP’ € o for somey and P’ such that eitheP’ C P, or p

(Reduct executg is a variable and (inductivelyy v P.

wZw pack(f) € o(x) PP=Pmno0O In other words,z flows from a labelP or lower if = is an
instance of a value substituted Btor lower. In Definition[3:4
below, we formalize DFI as a property of objects, as folloas:
object is protected from labdl if it never contains instances that
. , flow from L or lower. We definec(z) to be the set of values
w=w Ouo CP in o that  is an instance ofz € o(z), and if (inductively)
y € o(z) andy/u@ _ € o for somey andu, thenu € o(x).
The operational semantics ensures that substitution @mwients
accurately associate instances of values with their rinsiaurces.
We now present rules for local reduction, structural edaivee,

and global reduction. Reductions are of the fornt% b, mean-

P
WS TP execw =% w»g:rf’[P']f

(Reduct un/protect)

(o) P; o’ .
w P (0w =5 wes P ounit

Structural equivalence a = b

I(Struct bind) ing that “process: may reduce to procedswith label P in sub-
. , stitution environment”. Structural equivalences are of the form
Eriolafz/y}]e o = Epic[(va/yQP’) aler o0 a = b, meaning that “process may be rewritten as process
The notions of free and bound variablés @ndbv) are standard.
(Struct substitution) We writex < y if o(x) No(y) # @, that is, there is a value that

_ bothx andy are instances of.
v ¢ fv(gf;") U bv(&e.0) fv("“) Nbv(ée,) =2 We first look at the local reduction rules. IRéduct evaluatg,
Epio[(va/p@P7Y) alpr o = (va/n@QP7) Ep (o) uapryus[alpr o a substitution binds; to the intermediate value and associates
x with its runtime sourceP. (Reduct new) creates a new store
(Struct fork) denoted by a fresh variable, initializes the store, and returns
fv(a) Nbv(Ep,s) =2 w; a substitution bindsv to the initialization of the new object
Epiolal blpor =arl Epixlblp.or and associates with its runtime sourceé®. The valuexz and the
trust annotatiors in the initialization are used by the type system
(Struct store) (Sectiori#). The remaining local reduction rules descréaetions
P] (w O ) =w O Pla with a store, foII_owing the i_nformal semantics. _

- Next, we define evaluation contexts [20]. An evaluation eznt
is of the formé&p,,, and contains a hole of the forep. ,/; the
context yields a process that executes with ldb@h substitution
environmento, if the hole is plugged by a process that executes
. ! with label P” in substitution environment’.

(Struct equiv) . .
= is an equivalence

Global reduction a =% b Epio 1= evaluation context
. . ., hole
Reduct contex letx =Ep,yind sequential evaluation
( D ot Epio I b fork left
a=%b ar Ep.y fork right
Pror (va/p@P") Ep. 12/ papriue explicit substitution
Epiollallprior — Epio[blpr0r P& .. (PPCP) lowering of process label
(Reduct congruencg Evaluation can proceed sequentially inside processes, and in

_ ; Pio oy r_ parallel under forks[[24]; it can also proceed under exphcib-
a=a a — b b=b o - -

stitutions and lowering of process labels. In particulatenhow

a 2% p evaluation contexts build substitution environments frexplicit

L ' substitutions, and labels from changes of process labe&lsldfote




by Ep;-[alr,, the process obtained by plugging the hele,, in Core typing judgments T'Fp a : T
gP;o‘ with a.

Next, we look at the structural equivalence and global rédnc (Typ unit)
rules. In Struct bind), a{z/y} is the process obtained from T bp unit : Unit”
by the usual capture-avoiding substitution .ofby y. The rule
states that explicit substitution magvert usual substitution to

create instances as required. In particular, variablesaghear in (Typ variable) E
packed code can be associated with the label of the procaess th r:7 el
packs that code, even though those variables may be bowreHat Thpa:7rE P
by (Reduct evaluatg—when that code is eventually unpacked at
some other label. For example, the instancengfty in binVirus (Typ fork)
may be correctly associated witbow (the label at which it is Thpa:_ Thpb:T
packed) instead dfligh (the label at which it is unpacked). Thus, in Trrarb: T
combination, the rulesReduct evaluat§ and Struct bind) track '
precise sources of values by explicit substitution. (Typ limit)

By (Struct substitution), substitutions can float across contexts Fbpra:T
under standard scoping restrictions. Btr{uct fork ), forked pro- W

cesses can float across contekis [24], but must remain uheer t
same process label. Bg{tuct store), stores can be shared across (Typ evaluate)
further contexts.
Reduction is extended with contexts and structural egeined F'kpa:T’ Toz:T' Fpb:T
in the natural way. Trpletz=ainb: T
Finally, we formalize DFI in our language, as promised.

Definition 3.4 (DFI). The objectw is protected from label by (Typ substitute)

processu if there is no process, substitution environmerat, and Thp T Ca:T Fpa:T
instancez such thata " [L] b RO Er oflw = z]T,0 andz vL Trp (ux/,u@7P/) P
4. Atype system to enforce DFI (Typ store)

We now show a type system to enforce DFI in the language. (The . i
formal protection guarantee for well-typed code appearSen- {w:Obj(r®)a: 7} CT SCONE
tion[H.) We begin by introducing types and typing judgmelite. TrpwSg: P

then present typing rules and informally explain their Enties.

Finally, we consider some examples of typechecking. Aniefiic (Typ new)

algorithm for typechecking is outlined in AppendiX B. Chpax: 7t SCE

4.1 Types and effects I bp new(z #S) : Obj(7°)°

The core grammar of types is shown below. Here effects anelgim  (Typ pack)
labels; these labels belong to the same ordefirgs in the opera- e . 0
tional semantics. Pt f

I bp pack(f) : Vpr. Bin(T)"

T = type
Obj(T) object (Typ un/protect)
Ve. Bin(T) packed code
Unit unit Ikpw:O0Obj(>)F  SCO
T::= static approximation T (O)w : Unit®
rE type and effect F ’

The typeObj(7°) is given to an object that contains values of (Typ write)
typer. Such contents may not flow from labels lower ti$tn

other wordsS indicates the trust on the contents of this object. T'+p w : Obj (7-5)E 'kpa: F SCE
DFI follows from the soundness of object types. I'Fpwe—z:Unit

The typeVp. Bin(7F) is given to packed code that can be run
with labelP. Values returned by the code must be of typend
may not flow from labels lower thak. In fact, our type system
admits a subtyping rule that allows such code to be run in a . Obj( S)E er
typesafe manner with any label that is at m@st wIBPbIT ) S8

(Typ read)

ST *(PMS) = «E
e The effectE is given to a value that does not flow from labels poweT

lower thanE.

Typ execut
When creating an object, the programmer declares the truteo (Typ 9

contents of that object. Roughly, an object returnechéy(_#S) w:Obi((Ve,. Bin(+E ) S)E e T
gets a typeDbj(_°). For example, in Examplés 3.1 dndl3.2, we de- i((Ve T )7)
clare the trusil on the contents ofmd.exe and the trusMedium I'kpexecw: 7
on the contents dfome. L

E'mP PEP,HS




A typing environment” contains typing hypotheses of the form

and effectT". In Sectiorb we show that such a proof in fact allows

x : T. We assume that any variable has at most one typing hypothe-the packed code to be unpacked by any process with RaeP’,

sis inT", and definelom(T") as the set of variables that have typing
hypotheses il". A typing judgment is of the forni" Fp a : T,
whereP is the label of the process T is the type and effect of
values returned by, andfv(a) C dom(T").

4.2 Core typing rules

In the previous page, we present typing rules that enforee th
core static discipline required for our protection guagantSome
of these rules have side conditions that involve a prediead@

labels. These conditions, which are marke ,are
ignored in our first reading of these rules. (The predicaiz true

everywhere in the absence of a special labelintroduced later
in the section.) One of the rules has a condition that inwlae

predicatel] on expressions; we introduce that predicate in the
discussion below. The typing rules preserve several ianési

(1) Code that runs with a lab@l cannot return values that have
effects higher tha®.

(2) The contents of an object of ty@bj(_>) cannot have effects
lower thanS.

(3) The dynamic label that protects an object of tyP®j(_>)
cannot be lower tha8.

(4) An object of typeObj(_°) cannot be created at a label lower
thans.

(5) Packed code of typ&p. Bin(.) must remain well-typed
when unpacked at any label lower th@n

Invariant (1) follows from our interpretation of effect preserve
this invariant in Typ variable), for example, the effect of atP is
obtained by lowering:’s effect in the typing environment with.

In (Typ store), typechecking is independent of the process
label, that is, a store is well-typed if and only if it is so atya
process label; recall that bys{ruct store) stores can float across
contexts, and typing must be preserved by structural elguga.
Further, Typ store) introduces Invariants (2) and (3). Invariant
(2) follows from our interpretation of static trust anndadat. To
preserve this invariant we require Invariant (3), whichugas that
access control prevents code running with labels lessulubanS
from writing to objects whose contents are trustefl.at

By (Typ new), the effectE of the initial content of a new
object cannot be lower tha$. Recall that by Reduct new), the
new object is protected with the process laBelsinceP I E
by Invariant (1), we hav® J S, so that both Invariants (2) and
(3) are preserved. Conversely,AfC S then the process does not
typecheck; Invariant (4) follows.

Let us now look carefully at the other rules relevant to Iivar
ants (2) and (3); these rules—combined with access conag—
the crux of enforcing DFI.Typ write) preserves Invariant (2), re-
stricting trusted code from writing values dothat may flow from
labels lower tharb. (Such code may not be restricted by access
control.) Conversely, access control prevents code witblsdower
thanS from writing tow, since by Invariant (3)y’s label is at least
as trusted aS. (Typ un/protect) preserves Invariant (3), allowing
w's label to be either raised or lowered without falling bel&w
In (Typ read), the effect of a value read from at P is approxi-
mated byS—the least trusted label from whieh's contents may
flow—and further lowered witl? to preserve Invariant (1).

In (Typ pack), packing code requires work akin to proof-
carrying code[[3P]. Type safety for the code is proved andried”
in its type Vp,. Bin(T'), independently of the current process la-
bel. Specifically, it is proved that when the packed code moked
by a process with labé¥’, the value of executing that code has type

and the type and effect of the value of executing that code can
be related tdl’ (Invariant (5)). This invariant is key to decidable
and efficient typechecking (Appendixl B). Of course, code may
be packed to run only at specific process labels, by requttiag
appropriate label changes.

Preserving Invariant (5) entails, in particular, presegvinvari-
ant (4) at all label® C P’. Since anew expression that is not
guarded by a change of the process label may be run with aaly lab
P, that expression must place the least possible trust orotiterts
of the object it creates. This condition is enforced by prat#l:

Onew(z#S) = VP.SCP

O(frg) 2 OfAOg

O(letz = fing) = OfAQg
0(...) 2 true

(Typ executg relies on Invariant (5); further, it checks that the
label at which the code is unpackeH)(is at most as trusted as
the label at which the code may have been packed (approxdmate
by S). This check prevents privilege escalation—code that doul
perhaps block if run with a lower label cannot be packed to run
with a higher label. For example, recall that in Exaniplg #2,
codebinVirus is packed atow and then copied inteetup.exe.
While a High-process can legitimately execuiéme := empty

(so that the code is typed and is not blocked by access cpritrol
should not run that code by unpackingnVirus from setup.exe.

The type system prevents this violation. lsettup.exe be of type
Obj((V.. Bin(_))®). Then (Typ store) requires thaS C Low,

and (Typ executd requires thaHigh C S (contradiction).

Because we do not maintain an upper bound on the dynamic
label of an executable, we cannot rely on the lowering of the
process label inReduct executg to prevent privilege escalation.
(While it is possible to extend our type system to maintaichsu
upper bounds, such an extension does not let us typecheckary
correct programs than we already do.) In Sedfibn 5, we shaw th
the lowering of the process label can in fact be safely elatad.

In (Typ evaluate), typing proceeds sequentially, propagating
the type and effect of the intermediate process to the caation.
(Typ substitution) is similar, except that the substituted value is
typed under the process label recorded in the substitutaher
than under the current process label. Tgg limit ), the continua-
tion is typed under the changed process label.Typ(fork ), the
forked process is typed under the current process label.

4.3 Typing rules for stuck code

While the rules above rely on access control for soundnksg,do
not exploitruntime protection provided by access control to type-
check more programs. For example, the reduced pragessEx-
ample[3.1 cannot yet be typed, although we have checked fat D
is not violated ing:. Below we introducestuck typingto identify
processes that provably block by access control at runt8hek
typing allows us to soundly type more programs by compasitio
(The general principle that is followed here is that narraythe
set of possible execution paths improves the precisionefttal-
ysis.) This powerful technique of combining static typirmdaly-
namic access control for runtime protection is quite cladeybrid
typechecking[[21]. We defer a more detailed discussionistéth-
nique to Sectiofl6.

We introduce the static approximati@tuck for processes that
do not return values, but may have side effects.

T ::= static approximation
e code



Stuck typing judgments T" Fp a : Stuck

Typing rules for untrusted code

(Typ escalate stuck
PCP

I'Fp [P] a: Stuck

(Typ write stuck)
w:0bj(*)fel PCS
I'Fp w:=xz: Stuck

(Typ un/protect stuck)

w:0bj(*Fer PECSUO
T'Fp (O) w: Stuck

(Typ subsumption stuck-I)
_:Stuck e T
I'Fp a: Stuck

(Typ subsumption stuck-Il)

I'Fp a: Stuck
I'tpa:T

Stuck stuck process

We now present rules for stuck-typing. As before, in our fiestd-

ing of these rules we ignore the side condition
(which involve the predicate). (Typ write stuck) identifies code
that tries to write to an object whose static trust annotaas
higher than the current process lalBelBy Invariant (3), the la-
bel O that protects the object must be at least as high;abus

P C O and the code must block at runtime due to access control.
For example, letmd.exe be of typeObj(_") in Example31L. By
(Typ write stuck), the codey; is well-typed sincdow — T. (Typ
un/protect stuck) is similar to (Typ write stuck); it further identi-
fies code that tries to raise the label of an object beyonduheiat
process label Typ escalate stuckidentifies code that tries to raise
the current process label. All such processes block atmentiue
to access control.

By (Typ subsumption stuck-I), processes that are typed under
stuck hypotheses are considered stuck as well. For exatmide,
rule combines withTyp evaluate) to trivially type a continuation
b if the intermediate process is identified as stuck. Finally, by
(Typ subsumption stuck-II), stuck processes can have any type
and effect, since they cannot return values.

4.4 Typing rules for untrusted code

Typing must guarantee protection in arbitrary environree8ince

the protection guarantee is derived via a type preservéteorem,
arbitrary untrusted code needs to be accommodated by tlee typ
system. We assume that untrusted code runs with a specél lab
L, introduced into the total order by assuming— L for all L. We

now present rules that allow arbitrary interpretation qfety atl .

By (Typ subsumption L-l), placing the static trustL on the

(Typ subsumption L-I)
[w:0bj()frpa:T
Dw:O0bj(r ) pa:T

(Typ subsumption L-11)
Iz t Fpa:T
Iz ™t hpa:T

when typing trusted code. For example, consider the code
we o S wn P [High] let z =lwi inz :=u

A High-process reads the name of an objeef) from aLow-object
(w1), and then writes: to that object ¢-). DFI is violated if wo
has typeObj(_"'") andw flows fromLow. Unfortunately, it turns
out that this code can be typed under process labahd typing
hypotheses

wa : Obj(rH") 7w, : Obj(Obj(r4E"

Specifically, the intermediate judgment

)J_)T7 T 7_2High7 1Low

« ¢ _Highy L Low
2:0bj(15 &)y w7 Fhigh zi=w

can be derived by adjusting the typezof the typing environment
to Obj(m°") with (Typ subsumption L-I).

This source of unsoundness is eliminated if some of the tsffec
in our typing rules are required to be trusted, that is, to igadr
than L. Accordingly we introduce the predicate such that for
any labell, xL simply meansL. &1 L. We now revisit the typ-
ing rules earlier in the section and focus on the side canditin

shaded boxes (which involv#g. In some of those conditions, we
care about trusted effects only if the process label isfitagsted.
With these conditions,Typ write) prevents typechecking the of-

fending write above, since the effectoin the typing environment
is untrusted.

4.5 Compromise

The label L introduced above is an artificial construct to tolerate
a degree of “anarchy” in the type system. We may want to specif
that a certain label (such &sw) acts like L, i.e., iscompromised
The typing judgment” Fp a : T despite C allows us to type
arbitrary code: running at a compromised lab&by assuming that
Cis the same a4, i.e, by extending the total order with C |

(so that all labels that are at most as trusted amllapse tol).
We do not consider labels compromised at runtime (as in Gordo
and Jeffrey’s type system for conditional secrecyi [26]\beer
we do not anticipate any technical difficulty in includingntime
compromise in our type system.

4.6 Typechecking examples

We now show some examples of typechecking.
We begin with the programs in Exampld 3.2. Recall that DFI

contents of an object amounts to assuming any type for those is Violated inp2. Suppose that we try to derive the typing judgment

contents as required. ByTyp subsumption L-II'), a value that

has effectl. may be assumed to have any type as required. These

rules provide the necessary flexibility for typing any usted code
using the other typing rules. On the other hand, arbitrabyyging
with objects can in general be unsound—we now need to beutaref

-+« 1 p2 : _ despite Low

This amounts to deriving- - -+ p2 : _ by assumind.ow C L.
As a first step, we applyTyp new), (Typ read), (Typ write),
(Typ pack), and {Typ evaluate), directed by syntax, until we have



the following typing environment.
r = ...,

url : Obj(_*") ",
setup.exe : Obj(-
binIE : (View. Bin(Unit)) ",
ie.exe : Obj((View. Bin(Unit)) )",
home : Obj(_Me4m) T
empty : Unit '

LOW)T7

The only complication that may arise is in this step is in\dag
an intermediate judgment

Low
ey 20l Frolz:

Here, we can applyTyp subsumption _L-II) to adjust the typing
hypothesis of to Obj(_)*, so that Typ read) may apply.
After this step, we need to derive a judgment of the form:

' [High] (...) © [Medium] (...) 7 [Low] (...)

Now, we apply Typ fork ). We first check that the codeow] (.. .)
is well-typed. (In fact, untrusted code is always well-tgpas we
show in Sectiof5.) The judgment

I' Fiow home := empty : Unit

typechecks byTyp write stuck). Thus, by Typ pack) and (Typ
evaluatg, we add the following hypothesis to the typing environ-
ment.

binVirus : (View. Bin(Unit))""
Let Toinvires = (View. Bin(Unit))"". Next, by (Typ new) and
(Typ evaluate), we add the following hypothesis to the typing
environment.

virus.exe : Obj (TbinVirus)Low
Finally, the judgment
T,...,virus.exe: Obj(TbinVims)LOW Flow url := virus.exe

can be derived byTlyp write ), after massaging the typing hypothe-
sis forvirus.exe to the required"*" by (Typ subsumption L-I1).

On the other hand, the procgstigh] (... ) does not typecheck;
as seen above, an intermediate judgment

I" Fhigh exec setup.exe : _

cannot be derived, sinc&yp executd does not apply.

To understand this situation further, let us consider soangav
tions where Typ executg does apply. Suppose that the cedec z
is forked in a new process whose label is loweretlda. Thenp-
typechecks. In particular, the following judgment can beveel by
applying (Typ execute.

I Fhigh [Low] exec setup.exe : _

Fortunately, the erasure abme now blocks by access control at
runtime, so DFI is not violated.

Next, suppose that the static annotationgetup.exe is High
instead ofLow, and setup.exe is initialized by a process with
label High instead ofLow. Thenp, typechecks. In particular, the
type ofsetup.exe in I becomegDbj(_'e"). We need to derive an
intermediate judgment

I',...,z: - Flow setup.exe := z : Unit

This judgment can be derived by applyinfyp write stuck) in-
stead of Typ write ). Fortunately, the overwrite gfetup.exe now
blocks by access control at runtime, so DFI is not violated.

Finally, we sketch how typechecking fails for the violatsoof
DFI described in Sectidn 2.2.

(Write and copy) Let the type ofu be Obj(_%), whereO I S T
P. Then the write tav(O) does not typecheck, since the value
to be written is read from’ (P) and thus has some effdesuch
thatE C P, so thatE C S.

(Copy and execut@ Let the type ofw’ be Obj(S'). If S C O
then the execution ab’(P) by ¢(P) does not typecheck, since
S’ C P.If S’ O O then the write tau’(P) does not typecheck,
since the value to be written is read franfO) and thus has
some effecE such thaE C O, so thatE — S'.

(Unprotect, write, and protect) Let the type ofw be Obj(_°),
whereO 2 S T P. Then the unprotection af(O) does not
typecheck, sinc® C S.

(Copy, protect, and executg Let the type ofw’ be Obj(_sl),
whereS’ T O. Then the execution af’(P) does not type-
check, sinc&’ C P.

5. Properties of typing

In this section we show several properties of typing, and/g@ro
that DFI is preserved by well-typed code under arbitraryustied
environments. All proof details appear in Appendix A.

We begin with the proposition that untrusted code can always
be accommodated by the type system.

Definition 5.1 (Adversary) A C-adversary is any process of the
form [C] _ that does not contain stores, explicit substitutions, and
static trust annotations that are higher th&n

Proposition 5.2 (Adversary completeness).etI" be any typing
environment and be anyC-adversary such thatv(c) C dom(T").
Thenl' 1 ¢ : _despite C.

Propositio 5P provides a simple way to quantify over arbi-
trary environments. ByTyp fork ) the composition of a well-typed
process with any such environment remains well-typed, Aod t
enjoys all the properties of typing.

Next, we present a monotonicity property of typing that ig ke
to decidable and efficient typechecking (Apperdix B).

Proposition 5.3 (Monotonicity) The following inference rule is
admissible.

I'be f:r5  Of
Fl_prTEr‘P

This rule formalizes Invariant (5), and allows inferencérabst
general” types for packed code (Appenflik B). Further, itliegp
an intuitive proof principle—code that is proved safe to with
higher privileges remains safe to run with lower privileggsd con-
versely, code that is proved safe against a more powerf@radsy
remains safe against a less powerful adversary.

The key property of typing is that it is preserved by struatur
equivalence and reduction. Preservation depends ddiaaiehe
design of the typing rules, relying on the systematic maiatee of
typing invariants. We writd" - o, meaning that “the substitution
environment is consistent with the typing environmefit, if for
allz/u@P € o there existd’ suchthat : 7€ 'andl" Fp w : T

Theorem 5.4(Preservation) Suppose thal' - o andI" Fp a : _.
Then

eifa=bthen'Fp b:
eifa U% bthenT Fp b: _.

PCP

We now present our formal protection guarantee for welet/p
code. We begin by strengthening the definition of DFI in Se{8.
In particular, we assume that part of the adversary is knowirpart
of it is unknown. This assumption allows the analysis to eitainy



sound typing information that may be obtained from the knpari

of the adversary. (As a special case, the adversary may lelgnt
unknown, of course. In this case, we recover Definifiod 3eg s
below.) LetQ2 be the set of objects that require protection from
labelsL or lower. We let the unknown part of the adversary execute
with some process lab€l (C L). We say thaf) is protected if no
such adversary can write any instance that flows ftoor lower,

to any object ir.

Definition 5.5 (Strong DFI) A set of objectS} is protected by
codea from label L despiteC (C L) if there is now € Q, C-
adversarye, substitution environment, and instancer such that

T, )
al ¢ —3 &1 gfwrs 2]v.,andz ¥ L.

6. Limitations, related work, and discussion

In this paper we formalize DFI—a multi-level integrity preny
based on explicit flows—and present a type system that can effi
ciently enforce DFI in a language that simulates Windowgass
security environment.

Not surprisingly, our type system is only a conservativéhiec
nique to enforce DFl—while every program that typechecks is
guaranteed to satisfy DFI (as stated in Thedrer 5.7), wpkdness
is not necessary for DFI.

By design, our analysis is control-insensitive—it doestratk
implicit flows. In many applications, implicit flows are of rggus
concern. It remains possible to extend our analysis to axtdou
such flows, following the ideas of [50, 54,138.] 36]. Howeveg w

For example, we may want to prove that some code protects abelieve that it is more practical to enforce a weaker prgplke

set ofHigh-objects fromMedium despite (the compromised label)
Low; then we need to show that no instance may flow fidadium
or lower to any of thos&ligh-objects under anizow-adversary.

We pick objects that require protection based on their types
effects in the typing environment.

Definition 5.6 (Trusted objects) The set of objects whose contents
are trusted beyond the labél in the typing environment' is
{w|w:O0bj(>*)FeTandSME JL}.

Suppose that in some typing environmefitjs the set of ob-
jects whose contents are trusted beyond lahedndC (C L) is
compromised; we guarantee tifatis protected by any well-typed
code fromL despiteC.

Theorem 5.7 (Enforcement of strong DFI)Let Q2 be the set of
objects whose contents are trusted beyanoh I". Suppose that
T' b+ a : _ despite C, whereC C L. Thena protectsS2 from L
despiteC.

In the special case where the adversary is entirely unknawen,
simply considet. andC to be the same label.

The type system further enforces DFI for new objects, as ean b
verified by applying Theorefn 5.4Typ substitute), and Theorem
[B.7. Finally, the type system suggests a sound runtime ogzttian:
whenever a well-typed process executes packed code intadrus
context, the current process label is already appropyidvelered
for execution.

Theorem 5.8 (Redundancy of execution controlSuppose that
T 1 a: _ despite Canda —53* Etiofw S P exec w'pio
such thatv = w’ andP 2 C. ThenP C O.

It follows that the rule Reduct executg can be safely opti-

mized as follows.
(o4 !
w=w

pack(f) € o(x)

o P; o
wal execw —> wral f

This optimization should not be surprising. Lowering theqass
label for execution aims to prevent trusted code from exegut
untrusted code in trusted contexts; our core static dis&pbn
trusted code effectively subsumes this runtime controlth@rother
hand, write-access control cannot be eliminated by anyidiise
on trusted code, since that control is required to restrittusted
code.

Lastly, typechecking can be efficiently mechanized thaiks t
Propositiof 5.8 and our syntactic restriction on nestedipgc A
typechecking algorithm is outlined in Appendik B.

Theorem 5.9(Typechecking) Given a typing environmerit and
codea with LL distinct labels, the problem of whether there exists
such thatl’ -+ a : T, is decidable in time&)(L|a|), where|a| is
the size ofi.

DFI at the level of an operating system, and enforce stronger
control-sensitive properties like noninterference atléwvel of the
application, with specific assumptions.

Our core security calculus is simplified, although we takes ca
to include all aspects that require conceptual modelinggiason-
ing about DFI. In particular, we model threads, mutablerefees,
binaries, and data and code pointers; other features ofix@@iés,
such as recursion, control flow, and parameterized proesduan
be encoded in the core calculus. We also model all detailsiof W
dows Vista that are relevant for mandatory integrity camivith
dynamic labels. On the other hand, we do not model details asic
discretionary access control, file virtualization, andusecautho-
rization of privilege escalation [31], which can improve threci-
sion of our analysis. Building a typechecker that works atlével
of x86 binaries and handles all details of Windows Vista nezgu
more work. At the same time, we believe that our analysis @n b
applied to more concrete programming models by translation

Our work is closely related to that of Tse and ZdanceWwid [48]
and Zheng and Myer$ [59] on noninterference in lambda dalcul
with dynamic security levels. While Tse and Zdancewic do not
consider mutable references in their language, it is plessib
encode the sequential fragment of our calculus in the laggyad
Zheng and Myers; however, well-typed programs in that fraigim
that rely on access control for DFI do not remain well-typéa v
such an encoding. Specifically, any restrictive access kclfigc
integrity in the presence of dynamically changing labeknse to
let the adversary influence trusted computations in thestesy,
violating noninterferencé [58].

Noninterference is known to be problematic for concurrant |
guages. In this context, Zdancewic and Myers study the naifo
observational determinism [66]; Abadi, Hennessy and Riahgl
others study information flow using testing equivalend¢&8l; and
Boudol and Castellani, Honda and Yoshida, and others usegstr
notions based on observational equivalence[[10, 29]. Stpated
techniques that involve linearity, race analysis, behayipes, and
liveness analysis also appear in the literaturéel[[28, 5632B While
most of these techniques are developed in the setting ofi tted-p
culus, other works consider distributed and higher-ord#irgs to
study mobile code [27.58.45] (as in this work).

DFI being a safety property 7] gets around some of the dif-
ficulties posed by noninterference. A related approachegutte
design of the operating systems Asbesto$ [19] and HiStir§bd
dates back to the Clark-Wilson approach to security in corniae
computer system$ [15,46]. In comparison with generic nodél
trace-based integrity that appear in protocol analysish &s cor-
respondence assertions [25] 22], our integrity model isfare
specialized; as a consequence, our type system requiles$aan-
notations than type systems for proving corresponden@etasss.

Our definition of DFI relies on an operational semantics dase
on explicit substitution. Explicit substitution, as inthaced by
Abadiet al.[4], has been primarily applied to study the correctness



of abstract machines for programming languages (whosergasa
rely on substitution as a rather inefficient meta-operatiand in
proof environments. It also appears in the applied pi cak({H] to
facilitate an elegant formulation of indistinguishabilfor security
analysis. However, we seem to be the first to use explicittgubs
tions to track explicit flows in a concurrent language. Rvasly,
dependency analysis [35, 6] has been applied to informditon
analysis [[2]"41["55]. These analyses track stronger depeiede
than those induced by explicit flows; in particular, the dejmn-
cies are sensitive to control flows. In contrast, the use pfiak
substitutions to track explicit flows seems rather obviond ap-
propriate in hindsight. We believe that this technique $thde
useful in other contexts as well.

Our analysis manifests a genuine interplay between stgiic t
ing and dynamic access control for runtime protection. \éersto
be the first to study this interaction in a concurrent systéth dy-
namic labels for multi-level integrity. This approach ofhaloining
static and dynamic protection mechanisms is reflected wique
work, e.g, on typing for noninterference in a Java-like language
with stack inspection and other extensions[[8, 40], for ntari
ference in lambda calculi with runtime principals and dyiata-
bels [48,[59], and for secrecy in concurrent storage calwith
discretionary access control mechanisimg [14, 13]. A vetifio
technique based on this approach is developed by Flanadhn [2
for a lambda calculus with arbitrary base refinement typethése
studies and ours, dynamic checks complement static analysre
possible or as required, so that safety violations that areaught
statically are always caught at runtime. Moreover, statjuing
sometimes subsumes certain dynamic checks (as in our @)alys
suggesting sound runtime optimizations. This approacéfisated
in previous work on static access contfol|[28},[42, 30].

In most real-world systems, striking the right balance teetw
security and practice is a delicate task that is never fan fcon-
troversy. It is reassuring to discover that perhaps, sucalanbe
can be enforced formally in a contemporary operating sysaem
possibly improved in future ones.
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Appendix

In this appendix, we provide some additional material thaly m
benefit the reader. First, we detail proofs of our resultsyping
(AppendiXA). Next, we outline an efficient typecheckingaithm
(AppendixB).

A. Proofs
In this section we outline proofs of the results in Seciibn 5.

Restatement of Propositio 5. Adversary completenesget I
be any typing environment and be anyC-adversary such that
fv(e) € dom(T"). Thenl' k- e : _ despite C.

Proof. We prove typability by induction on the structure of pro-
cesses.

e ¢ = x whereu is a variable.

Thenz € dom(T").
By (Typ value) I" Fc x :_.

° ¢ =new(z#9).

By l.H.T' ¢z : 7F
ThenSCCC L CE.
By (Typ new) I' ¢ new(z #S) : _.

e c=(0)w.

BylH.I'Fcw: ..
So by (lypvalue) w : 75 € I'.
Case«E andr is not of the formObj(.).

By (Typ bogus stuck-) I' ¢ (O) w : _.
Case+E, 7 = Obj(_%),andC = SU O.

By (Typ un/protect stuck) I' ¢ (O) w : _.
Case+E, 7 = Obj(®),and L CSLUOC C= 1.

ThenS C O.

By (Typ value) and (Typ un/protect)

I }—c <O> w .
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CaseE = 1.
By (Typ subsumption L-11)
7 = Obj(_°) such thas C O.
By (Typ value) and (Typ un/protect)

P (O)w: .
e c= lw.
BylH T'Fcw: .

So by (Typ value) w : 75 € T.
Case xE andr is not of the formObj(.).
By (Typ bogus stuck- T' ¢ lw : _.
CasexE andr = Obj(.).
By (Typread) ' ¢ lw: .
CaseE = L.
By (Typ subsumption L-1I') 7 = Obj(.).
By (Typread) ' ¢ lw: .

e ec=w:=2.

By .LH.T'Fcw:_andl k¢ z : 7.
So by (Typ value) w : 75 € I,
Case*E andr is not of the formObj(.).

By (Typ bogus stuck-NT' ¢ w :=x : _.
Case+E, 7 = Obj(_°%), andC C S.

By (Typ write stuck) I' Fc w := x : _.
CasexE, 7 = Obj(77),and L CSC C= L.

ThenS C E'.

By (Typ value) and Typ write ) T' Fc w:=z : _.
CaseE = 1.

By (Typ subsumption L-11)

7 = Obj(77) such that C E'.
By (Typ value) and Typ write ) T' Fc w:=z : _.

e ¢ = pack(f).

By LH.T Fc f: T.
By (Typ pack) I ¢ pack(f) : -.

® ¢ = execw.

By ILH.T'Fc w: _, so by {yp value) w : 75 € T.
Case*E andr is not of the formObj(.).
By (Typ bogus stuck-) T" ¢ exec w : _.
Caser = Obj(r7), +E,
andr; is not of the formV_. Bin(_).
By (Typ bogus stuck-1l) T' ¢ exec w : _.
Caser = Obj(r7), +E, andr; = Vp. Bin(_).
ThenC= 1L CPMS.
By (Typ execut I' ¢ exec w : _.
CaseE = L.
By (Typ subsumption L-11)
7 = Obj(r7) andri = Vp. Bin()
suchthalC =1L C PmS.
By (Typ execut I' k¢ exec w : _.
Case+E, 7 = Obj(77), andS = L.
By (Typ subsumption L-I)
71 = Vp. Bin(_) suchthaC = 1L C PMS.
By (Typ execut I' k¢ exec w : _.

e ¢ =[Pla.

If P2 Cthenby {ypescalatg I' ¢ [P] a : _.

Otherwise by LHI' Fp a : _.
By (Typ limit) T ¢ [P a: -

ec=letz=ainb.

BylH.'tca: T
andl,z : T tcb:T'.
By (Typevaluate T'Fc letx = ainb: _.

ec=uarl b

ByllH.T'Fca: -
andl' Fc b: T.
By (Typfork)T'Fcal b: .. |

Restatement of Propositiof 5.§Monotonicity) The following typ-
ing rule is admissible.

I'be f:75  Of PCP
Fl_prTEr‘P

Proof. We proceed by induction on the structure of derivations.

Suppose tha®’ C P.

Case (Typ variable)
z:7 €Tl
By (Typ value) T bp z : 7577,
HereEMP' = ENPMP.

Case (Typ new)
Thpa:7t SCE
I kp new(z #S) : Obj(r°)"

By LH.T Fps z: 7577

ThenS C EMP.

By (Typ new) I Fp/ new(z #S) : Obj(+°)"".
HereP’ =P M P

Case (Typ fork)
I'Fpa:_ I'kpb: T
Fl—pa’éb:T

LetT = 7. ,
By l.LH.I'Fpra: _andl bps b : 7577,
By (Typfork) T'kpr ar b: 7577,

Case (Typ store)

{w:0bj(r°),z: 75} CT SCONE
P

Fprng:_

’

By (Typ store) T Fps w & z: 7.
HereP’ = PP

Case (Typ un/protect)

Fkpw:Obj(r)f  SCO
*P = xE
I'Fp (O)w : Unit”




By LH.T Fp/ w : Obj(7)E™™ LetT = 7F.

and if xP’ then«P, then<E, and then(E 1 P’). By lLH.T,z: T bpra: 7577, ,
By (Typ un/protect) I' Fp, (O) w : Unit”'. By (Typ substitute) I'Fp/ (vz/p@P’) a : 75T, <
Case (Typ write) Lemma A.1 (Bind). Suppose that = a'{z/y}. Thenl Fp a : _

if and only ifT" Fp (vz/y@P) a'.

Fpr:Obj(TS)E FFPI:TE, SCFE
* *
Proof. By induction on the structure of . |

I'Fpw = 2 : Unit"

By LH.T bp w: Obj(r%)5™ andl Fps 2 : 7577

. / /
2235”#5}26?2' Ft)r)en*E, and then«(E 1 P') Restatement of Theoren{ 5M(Type preservationSuppose that
fSC P thEnSEE’HP’. / I'kFpoandIl' Fp a: _. Then

By (Typ write) T’ Fps w := z : Unit" . 1. lfa=bthenl' Fp b: _.

OtherwiseP’ S, so that«S.
Becauses C E' C P, we havexP and thus«E.

By (Typ value) w : Obj(r°)" € T'andE C E”.

2.1fa &% bthenT Fp b - .

Proof of (1). We prove preservation under by induction on the

ThenxE". P
By (Typ write stuck) T p w := z : Stuck. structure of derivations.
; — 2 Unit®™
By (Typ subsumption stuck-1l)  I' Fp w :=z : Unit"™ . Sl e evaluation context
oL hole
Case (Typ execute) letx =&, inb evaluate sequential
ELoT b fork child

w: Obj((Ver. Bin(rF ))feT PCP'NS
3V ) TS — al & fork parent

I'pexecw: T (ve/u@L") & (2 poL/ 00 restrict substitution
PCPCP'MS L&, (L'CL) lower process label
and ifxL.. then«P, and then«E.

By (Typ executd I' p: execw : 7
HereE' P’ =E M PMP.

E'mP’
) Case (Struct substitution)

x ¢ fv(ELe) Ubv(ELs) fv(p) Nbv(€Le) = @
Case (Typ read) (Vm/M@L//) gL,{w/u@L”}Uo[[a]]L’;a’ = gL;g[[(l/x//,L@L”) a]]L/;U/
w: Obj(r?)" e Leto” = {z/p@L"} Uo.

7p *(STP) = *E
Thkp lw:T
° (l/x//,t@l.”) let Yy = gl_;all [[a']]l_/;a/ in b/
If (S P’) thenx(S M P), and thenE. =lety = Eo[(va/u@QlL") a'|ir .o in b
By (Typread) I' Fp/ 1w : 777 andI” by (va/p@L") lety = Egnla i in b : T.
HereSMP =SmPMP.
By (Typ substitute) and (Typ evaluate)
Case (Typ limit) by T
I'kpra:T andl“:, x T:: L gL;l%N[[a,}]lL/;o/ 2T
o7 andl,z : T" )y : T"" F. b : T.
c PrePa:T By (Typ substitute) and S.R.
LetT =71 . T L (Z/LI}/,U,@LN) EL;GII Ha/ﬂL/;c/ L
ThenE C P". andl”,y : T b - T.
If P” C P" then By LH.TV b & [(va/p@L") a'J oo« T".
E'_'g pirit )T For [P'] -~ By (Typ evaluate)
Yy (1yp imi p/ a:T . T/ let =&l alL” l/v/.bl:T.
OtherwiseP’ = P”. Llety = Euo[(va/uOLY) aluor in
By (Typ escalate stuck " -ps [P”] a : Stuck. o (vz/p@Ll”) Egnla g P

By (Typ subsumption stuck-1) T Fp, [P"] a : 7577, = ELo[(va/p@l”) o] 7 b
andF/ "L (l/.'.l?/,ul@l_”) gL;o—” [[a’}]L/;(,/ r b/ :T.

Case (Typ evaluate)

Prpa:T T,z:T' tpb:T By (Typ substitute) and (Typ fork )
Thpletz=ainb: T U b T
pletz=ainb: andF’, x T” "L gL;o—” [[a’}]L/;J/ : TN/
LetT = 7F. andl’,z : 7" -, b 2 T.
By LH.T' Fpr a: T" andT,z : T” Fpr b : 7577 By (Typ substitute) and S.R.
By (Typ evaluate) T Fp: let z = ainb: 757 . I (va/p@LY) Eonla’uo = T
andl F b : T.
i By LH.T" L ELo[[(va/u@L") a'|Lr o : T,
Case (Typ substitute) , / By (Typ fork)
Dhprp:T Te:T Fpa:T I Eol(va/p@L") a' o P 0 T

I'kp (vz/u@P'Ya: T



° (IJ]:/,LL@L”) b'r gL;J// [[a,}]L/;J/
=01 Euol(ve/p@L") a0
andl by (va/p@QL") V' P Epnla o 2 T

By (Typ substitute) and (Typ fork )
F/ FL// e TH
andF', x T” "L gL;o—” [[a’}]L/;J/ T
andl, z:T" . b :T".
By (Typ substitute) and S.R.
I L (I/ZC//J/@L”) gL;U/l[[a,,j”L/;o,/ T
andlV . b : T".
By I.H. F/ |7|_ SL;O—II(VZC/[,L@L”) a'}]L/w/ :T.
By (Typ fork)
'L P Elo(ve/u@l") a'|Lr o T

(l/x//,t@l.”) (l/y/[,tl@l_/”) gL;a” Ha/ﬂL’;a’
= (vy/' QL") ELo[(va/p@QL") a1/,

andI” . (vz/p@L") (vy/p' QL") ELora |0

By (Typ substitute) and (Typ substitute)
F, |—|_// 2 T”
andIl,z : T" Fym v T
andF', xT T”, Yy T”/ }_L gL;o’” Hal]]L’;o-’ T
By (Typ substitute) and S.R.
U, y:T" bvw: T
andf' FL”’ /,Ll : T”l
andF', Yy T”’,.’I} . T” }_L gL;o’” Hal]]L’;o-’ T
By (Typ substitute)
F,,y 2T }_L (IJ]:/,LL@L”) gL;J// Ha/]]L/;gl T
By LH.IV,y : T" b Euio [(va/p@L") @/ rpr : T
By (Typ substitute)
I b (vy/p' QL") Eo[(ve/p@L”) @' : T

L[] (VIL’/,M@L”) [L”l] SL///;J// Ha/ﬂL/;a/
= L] Emnal(va/uL”) a'lu o0
andf' |7|_ (VZC/[,L@LN) [L/N] gL/N;OJ/ [[a’}]L/;U/ T

By (Typ substltute) and (Typ limit)
F FL” 2 T
andF’ x:T" e gL/”;o” IICL ]]L/;o" :T.
By (Typ substitute)
F |—|_/// (IJ]:/,LL@L") SL”/ Jﬂa ]]L’ co! :T.
Byl H. F |_|_/// SL/// o.[[(l/:l}/‘u,@l_”) HL/,J/ T,
By (Typ limit)
F, h_ [LW] gL///;U[[(I/SC//J,@L”) a'}]u;o/ :T.

Case (Struct fork)
fv(a) Nbv(ELy) =0
ar gL;UIIb]]L = SL;U[[G, r bﬂL

e a7 letx =E od]Linl
=letz =& oa’ T ad]Lint
andl” Fa” P letz = Ep[a’]Lind : T.

By (Typ fork) and (Typ evaluate)
T'FLa”: T
andI”’ L SLTJ[[G, ﬂ'— T
andl,z: T"" . b : T
By (Typ fork)
F, h_ a” r gl_:’o' ﬂa']L . TW
andl,z: T" F b - T.
By ILH. TV L SL;O-[[G/” r a']]L T
By (Typ evaluate)
b letz =Epa” T aLind : T.

ea’Tr SL;U[[a']]L ro
= SL;O-[[QH r a']]L r bl
andI” L a’r SL;U[[a’}]L ry T

By (Typ fork ) and (Typ fork)
T'Foa”:T"
andI” L gL?a [[a ﬂ'— T
andlV . b : T
By (Typ fork)
F/ }_L a” r EL;U[[G,/}]L : TW
andl” F b - T.
By ILH. IV L EL;U[[G,N r a’]L T
By (Typ fork)
F/ }_L EL;UII(I” ’_) a’]L ’_) b/ T

a" Py EL[d]L
=01 Eofa’ T a0
andl’ FLa” P o' P Eod]L: T

By (Typ fork) and (Typ fork)

IrHoa”:

andl™ b’ 2T

andI” L gl_;o'[[a,j”L :T
By (Typ fork)

F/ FL b/ . T///

andI” L a’r SL;U[[a’}]L :T
By ILH. TV L gl_;o'[[a// r a’]L
By (Typ fork)

F/ H_ b/ V" gl_;o'[[a// V" a’]L : T.

e d" 7 (va/pQL’) & la’]L
= (vz/u@QLl’) Ep[a” T a]L
andl b a” 1 (va/u@L") Epfla]: T

By (Typ fork ) and (Typ substitute)

F/ FL a// . TH

andl by p: T

andl,z : T"" L Epflae: T
ByS.RIV,z:T" F.a": T".
By (Typ fork)

F/,:E : TW }_L a” r EL;U[[G,/}]L 2T
By lH.T",z : T"" b ELolla’ P a']L: T
By (Typ substitute)

b (v /u@Ql') Eoa’ T ale: T

Case (Struct store)
wur [Ua= L] (wSur a)

wlL—,;uF’[L']a
=[] (wsurd)
andl’ FLw s urP [U]d T

By (Typ fork)
F/ I—L w 0—) u:
andl” k [L ] :T.
By (Typ I|m|t )
F FL’ w H ’LL
andl ./ o L T.
By (Typfork) TV b w s uP o' : T
By (Typ limit ) I' - [L'] w Eurad T



Case (Struct bind)
By LemmdA.l.

Proof of (2). We prove preservation under— by induction on the

structure of derivations.

Case (Reduct evaluate)
let z = wina =% (va/u@l) a

Tk letz=wuina :T.

By (Typ evaluate)
I }_L u T"
andl,z: 7" FLa : T.
By (Typ substitute) T - (vx/u@L)a’ : T.

Case (Reduct new)
new(z #S) Bioy (vw/new(z #S)QP) (w Do w)
T'Fp new(z #S) : T.

By (Typ new)
Dhpax: 7t
SCE,
andT = Obj(7°)".
By (Typ store) T',w : T Fp w O
By(Typfork)F,w:T}—pw»ixl*w:T.
By (Typ substitute)
I'Fp (vw/new(z #S)QP) (w B w):T.

Case (Reduct read)

o ’
w=w

L /L/;O' L
w—=zl lw ——= w=al T

0
T w—=azr w7k

By (Typ fork)

' w .3> €T,
By (Typstore) ' = : _.

By(Typfork)F}—Lw»ga:r‘x:_.

Case (Reduct write)

wZ W LcL

L Lo L .

we ol w =2 =% w2 P ounit
O, A A sl
I'Miw—= 27w :=2":Unit".

By (Typ fork)

' w »2> €T

andl’ . w’ := 2’ : Unitt
andO C L.

By (Typ store), (Typ write ), andI' - o
w:O0bj(r°) €T,
SCO,
I'H o' : Obj(r*)F,
Tk 75,
andS C E'.

By (Typ store) I' - w & '« _.

By (Typ unit) I' - w > unit : Unit".
By (Typ fork ) T' - w 2 2 P unit : Unit".

Case (Reduct execute)

[ ’
w=w

pack(f) € o(x) L"=L'mL

L;
Wk TP execw =3 wsar L] f

0
TH w2zl execw : .

By (Typ fork)

F}—Lw»g:c:_
andll k| execw’ : _.

By (Typ store), (Typ executg, andl" - o
T bp pack(f) : Vp. Bin(T)" for someP’,
z:Vp. Bin(T)F €T,
w: Obj(Ve. Bin(T)®)- €T,

SCOME,

andL C PMS.

By (Typpack) T'Fp f: _.
By (Typ subsumption process labéIT" . f : _.

By(Typfork)Fl—Lw&xl*f:_.

Case (Reduct un/protect)

o 1
w=w

LuL L’

L / /L//;U L .
wezl (L)w — wal unit

THwSar (LY ' : Unit".

By (Typ fork)

' w .2> €T
andl’ . (L') o’ : Unit"

OoOuL CL.

By (Typ store), (Typ un/protect), andl" + o,
w: Obj(t%)- €T,

SCO,

I'F W' : Obj(7%),

andS C L.

By (Typ store) T" - w £> T
By (Typ unit) T F_ unit : Unit".

By (Typ fork) T i w &5 & I unit : Unit'.

Case (Reduct context)

SLAJ =

;
o .5

r. 1
Lo

a— b

gL?UHaHL’;U’ i> SL;J[[b]]L’;a’

letx =ELoind

ELol b
ar gL;g

evaluation context
hole
evaluate sequential
fork child
fork parent

(va/p@L") & (2/paL/ 00 restrict substitution

[L/] Euio

(L'CL)

lower process label

. Lo .
eletr =& [a o inb = letx =Efa" Lo in b,

, U0’

1

a — a



andl’  let z = Eqla’ o in b T. Case (Reduct congruence)

By (Reduct contex) and (Typ evaluate) a=d  d 55 V=b
SL;O'[[G//IIL,;U/ L"HO- gLHQ”]]L/;U/, a ﬂ> b
r }_L EL;UIIGI]]L’;J’ :T”v
andl,z : T FLb - T. Ihoa:T,

By LH. T ELoaJuror = T, a=a,

By (Typ evaluate) a — b,

Phyletz =& ofa"],e inb : T. andv’ = b.
o Eold o PV 55 ELgla” 0 TV, By Theoreni BA(1) - a”: .
,Uso! : . ' By lH.T'F_.0": .
a — a, So by Theorei Bl4(1) . b: _. <
andf |7|_ SL;G[[a'}]L/;U/ r b, :T.

By (Reduct contexj and (Typ fork ) Restatement of Theorenf 5J{Enforcement of strong DFI)et
ELolad o L, ELola" o be the set of objects whose contents are trusted bejoindI".
THéuola e = T, Suppose thalf' -+ «a : _ despite C, whereC T L. Thena protects
andl . b : T. Q from L despiteC.

By ILH.T |7|_ gLi,O'IIa’”}]L’;U’ . T”.

By (Typ fork ) Proof. Let e be anyC-adversanyC] ¢’.

Theéuola o P Y 2 T By Propositiod 5.0 -+ e : _.

By (Typfork) T Frarl e: _.
op'r SL;G[[QI]]L/;U/ i o'r SL;J[[G/”]]L’;UH
a =% a”,
andl’ "L b/ r SL;U[[a’}]L/;a/ 2T,

Suppose thaw € . We need to prove that there are aicand
zsuchthat P [C] e/ —* Er.p[w ¥ 2] 7:r andz ¥ L. Assume

otherwise.
By (Red{uct COTEXD and (I}/p fork) By Theoreni 5l there exist¥ extendingl™ such that
ELiola HL’;U’I — Euela o, I''roandl" Frw o
r ;L SIEUIEG oo =T, By (Typ store) w : Obj(7°)- € I such tha C E.
andl . b :T". . . o
By LH.T Fy ELofa" v : T We proceed by induction on the derivationsofy L.
By (Typ fOfk) , CaseP C L.
DY T Eela e o T For somer andE, I Fp 1 : 5.
L ThenE C P and by [Typ value) I’ -+ « : 7E.
o (va/uQl”) &l |uor — (va/u@L”) Epla” L0, ThenEC L.
a '—l;%, a' ThenS C L.
andT k. (vz/u@L") Eio[a’Juror : T But by assumptionS J L gcontradlcuon).
Caseu = y for somey andy v L.
By (Reduct contex) and (Typ substitute) By ILH.T" -+ y : 75 for someE such thaE C L.
g ! v £> g o " roly Thens E L
a;[EjQFHIL—L// w: T//,L’ o™ But by assumptionS 1 L (contradiction). <
andF, x:T" L gL;o—[[a/l]]L/;U/ :T. .
By LH. T, : 7 1 Evoa”Jorr : T Restatement of TheorenEHRedundanczgf executlonocontrol)
By (Typ substitute) Suppose thal' -+ a : _despite Canda —* Et,pw — = T
b (ve/uQLl”) ELglla” e = T exec w']p,» such thato < w’, andP =1 C. ThenP C O.

o L") Enplla o Lioy L] Erpla 00, Proof. The proof is by inspection of Case (Reduct execute) in the
o proof of Theoreni 5}4. Recalling that case (whkris the process
andf |*|_ [L”] €L//;U[[a'}]L/;U/ . T Iabel)L E S E O <

By (Reduct contex) and (Typ limit ) B. An efficient typechecking algorithm
Evrnola o e Enola o Finally, we outline an efficient algorithm to mechanize tyipeck-
andl b Evrolla e T ing. Broadly, the algorithm builds constraints and thenckke

By LH. T Fp» SL//;U[[G,”]]L/;U/ :T. whether those constraints are satisfiable. The only coatjic

By (Typ limit ) is due topack processes, which require a “most general” type. We
THoL) Erpla”rer = T. extend the grammar of types with type variabjgesand introduce

a distinguished label denoting an “unknown” label. We extend
the grammar of typing environments with constraints of twenf
71 <: 72 and label constraint$.€., boolean formulae over atoms of
the formL; C L). Next, we introduce the following typechecking
judgments:



Typechecking judgments for processed Fp a : T'> T

Typechecking judgments for expressionsl - f : T'> T

(Typc value)

z:75 el
I'bpa: B o
(Typc new)
I'kpu: o
I kp new(u#S) : Obj(r°) > @
(Typc pack)

r'-f:Te1" TP Of
I bp pack(f) : x° > Thspr, Vpr. Bin(T) <: x

(Typc fork)
I'tpa:_>14 Tkpb:Tr>19
Fl—paVbITl>F1,F2

(Typc evaluate
Pkpa:T Ty OTy,z:T Fpb:Tr>Ty
I'kpletz=ainb:T>T1,I

(Typc read)
w:0bj(r*)f el
Thp lw: " P>0o

(Typc write)
Fpr:Obj(Tls)E FFpu:TQE/
T'Fpw:i=u: Obj(TS)E > 1o <:T1

(Typc execut§
w: Obj(Tls)E7Vp/. BiIl(TE,) <m el

Ihpexecw: 75 T > 7 <: Vp. Bin(7

P’HP)

o' p a: T>1I', wherel” contains constraints of the form
71 <: 72 only (i.e, the label constraint ift’ is true).

e ' f:Tr>T', wherel” may contain a label constraint as well
as constraints of the form <: 7.

We now present some sample typechecking rules, followedlbg r
that interpret:. Let us firstlook at the rules for deriving judgments
of the formT +p a : T 1> . These rules build constraints of
the form7; <: 72 in I'". We elide by dots.(. . ) label constraints
that appear in the original typing rules. L&t ,, denote the typing
environment obtained fror” by replacing all occurrences Gf
with L. We writeT” |= P iff P is the highest. for which the label
constraint inl;,_,, is true. Note that to derive a judgment of this
form for a procesgpack(f), we need to derive a judgment of the
other form for f. In fact, the two kinds of judgments are mutually
recursive (see below).

Next, we look at the rules for deriving judgments of the form
'+ f: T T These rules apply to expressions that are not
explicitly under a change of the process lak®l, expressions
obtained by unpackingack processes. They build label constraints
from those that appear in the original typing rules; the igipl
(unknown) process label is replaced hyPredicaté] ensures that

(Typc ? value .
z:7 €T

F'te:r"">go
(Typc ? limit)

Lospr }_p/CL:TDF,

I'F[Pla:T>T'

(Typc ? read)
w:0bj(r*)f el
Ik lw: >

(Typc ? write)
'+ w:Obj(r;)E FFu:TQE/
FFw:i=u:0bj(r) >m<m,...

(Typc ? execut@
w: Obj(17)E, Vpr. Bin(TE,) <m el

7 !’
Thexecw: 0 > 7 <: V. Bin(TP n?)7~~~

(Typc ? fork)
I'Fa:_>Iy I'Eb:T>T
THfrg:TT1,Ts

(Typc ? evaluatg
FkFa:T' T4 DTy,z: T Fb:T>Ts
I'Fletx=fing:T>T11,T2

Satisfiability of constraints T' - ¢

(Typc <: obj)
I'kFo

T,0bj(T) <: Obj(T) F o

(Typc <: bin)
PCP ' <mbo
I, Vp. Bin(rf) <: Vpr. Bin(r§' 7 ) F o

(Typc <: left)
T, x <: Vp. Bin(rF), Vp. Bin(rf) <: Vpr. Bin(5 ) - o
T,x <: Vp. Bin(rf), x <: Vpr. Bin(rf ) F o

(Typc <: right)
I, Vp. Bin(r5) <: Vpr. Bin(7f ), Vpr. Bin(rf ) <: y F o
T, Vp. Bin(rf) <: x, Ver. Bin(rf ) <: x o

(Typc <: middle)
T, Vp. Bin(TlE) <:x, X <: Vpr. Bin(TQE/)7
Vp. Bin(71) <: Ve, Bin(rs ) o
T, Vp. Bin(f) <: x, x <: Vpr. Bin(rf ) F o




we do not need to consideiack processes here; further we can
assume that all annotations carry the least trusted labade @ve
have an expression of the forj] a, we can derive a judgment of
the other form for.

Finally, we look at the rules that interpret constraintshef form
71 <: T2. Here<: denotes a subtyping relation that is invariant in
Obj(_°) and covariant iVp. Bin(_F), and preserves monotonic-
ity. We introduce the judgmert | < to check satisfiability of such
constraints.

We prove that typechecking is sound and complete.

Proposition B.1. The typing judgment p a : _ can be derived
if and only if the typechecking judgment-p a : T > I can be
derived for som&" andI” such thatl” - .

Further, typechecking terminates in tir@&L|a|)) if I' anda have
L distinct labels. Indeed, lep(|a|) be the running time of the
judgmentl’ Fp @ : _ > _, ande(|f|) be the total running time
of the judgment§™ - f: > T” andI” = _for somel".

Building constraints for the typechecking judgméht-+ a :
T > I takes time

e(la]) = O(lal + ier.n1(Ifil))

if a contains as subterms the procespesk(fi), ..., pack(fn)
without nesting. Checking the satisfiability of those coaisits
reduces to detecting cycles in a graph, and takes dtje|)), so
the total running time for typechecking is

®(lal) = (lal) +O(lal)
= O(la] + Zier.n¥(|fil])

Next, building the label constraint for the typecheckindgment
I b fi « T > 1 takes timeO(|fi| + Zjc1..m,p(Jai;])) if
fi contains as subterms the procesgds| a1, ..., [Pim,] @im,
without nesting. Findind. such thaf™ = L takes timeO(L|fi])),

since at mos®(LL) labels need to be checked. So
O(Ifil) = Ofil + Zjer.m; p(lai;])) + OL|f])
O(LIfi| + Zjer..m; ¢(lai;l))
Plugging the expansion af into the expansion ob, and solving
by induction:
®(la]) = O(a|] + Zier.nL|fi] + Zict..m,jer..m; (ais]))
= O(Llal)
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