
Capacity Constrained Assignment in Spatial Databases∗

Leong Hou U1 Man Lung Yiu2 Kyriakos Mouratidis3 Nikos Mamoulis1

1Department of Computer Science
University of Hong Kong

Pokfulam Road, Hong Kong
{hleongu, nikos}@cs.hku.hk

2Department of Computer Science
Aalborg University

DK-9220 Aalborg, Denmark
mly@cs.aau.dk

3School of Information Systems
Singapore Management University

80 Stamford Road, Singapore 178902
kyriakos@smu.edu.sg

ABSTRACT
Given a point set P of customers (e.g., WiFi receivers) and a
point set Q of service providers (e.g., wireless access points),
where each q ∈ Q has a capacity q.k, the capacity constrained
assignment (CCA) is a matching M ⊆ Q × P such that (i)
each point q ∈ Q (p ∈ P) appears at most k times (at
most once) in M , (ii) the size of M is maximized (i.e., it
comprises min{|P |,

∑
q∈Q q.k} pairs), and (iii) the total as-

signment cost (i.e., the sum of Euclidean distances within
all pairs) is minimized. Thus, the CCA problem is to iden-
tify the assignment with the optimal overall quality; intu-
itively, the quality of q’s service to p in a given (q, p) pair
is anti-proportional to their distance. Although max-flow
algorithms are applicable to this problem, they require the
complete distance-based bipartite graph between Q and P .
For large spatial datasets, this graph is expensive to com-
pute and it may be too large to fit in main memory. Moti-
vated by this fact, we propose efficient algorithms for opti-
mal assignment that employ novel edge-pruning strategies,
based on the spatial properties of the problem. Addition-
ally, we develop approximate (i.e., suboptimal) CCA solu-
tions that provide a trade-off between result accuracy and
computation cost, abiding by theoretical quality guarantees.
A thorough experimental evaluation demonstrates the effi-
ciency and practicality of the proposed techniques.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and
GIS

∗Supported by grants HKU 7155/06E from Hong Kong
RGC, and SMU 07-C220-LEE-001 from the Lee Foundation,
Singapore.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

General Terms
Algorithms

Keywords
Optimal Assignment, Spatial Databases

1. INTRODUCTION
Consider a point set P of customers (e.g., WiFi receivers)

and a point set Q of service providers (e.g., wireless access
points). Suppose that each service provider q ∈ Q is able to
serve at most q.k customers and every customer has at most
one service provider. A subset M ⊆ Q × P is said to be a
valid matching if (i) each point q ∈ Q (p ∈ P) appears at
most q.k times (at most once) in M and (ii) the size of M is
maximized (i.e., it is min{|P |,

∑
q∈Q q.k}). To quantify the

quality of the matching M , we define its assignment cost as:

Ψ(M) =
∑

(q,p)∈M

dist(q, p) (1)

where dist(q, p) denotes the Euclidean distance between q
and p. Intuitively, a high-quality matching should have low
assignment cost.

Figure 1 illustrates a scenario where P={p1, ..., p12},
Q={q1, q2, q3}, q1.k = q3.k = 3, and q2.k = 5. Intuitively,
assigning to each qi the points pj that fall inside its Voronoi
cell (indicated by dashed lines in the figure) leads to the
minimum matching cost. However, this approach ignores
the service provider capacities. In our example, it assigns
5, 3, and 4 objects to q1, q2 and q3, respectively, violating
the capacity constraints of q1 and q3. The optimal CCA
matching, on the other hand, would assign {p2, p3, p4} to
q1, {p5, ..., p9} to q2, and {p10, p11, p12} to q3, as shown by
the three ellipses. In the general case

∑
q∈Q q.k 6= |P |, i.e.,

the customers may be fewer or more than the cumulative ca-
pacity of the service providers. CCA assigns every pj ∈ P to
a qi ∈ Q, unless all service providers have reached their ca-
pacity. In Figure 1, for instance, p1 is not assigned to any qi,
since they are all full. Conversely, it is possible that some
service providers are not fully utilized. In any case, CCA
computes the maximum size matching with the minimum
assignment cost, subject to the capacity constraints.

Besides the aforementioned wireless communication sce-
nario, CCA arises in many resource allocation applications

q3

q2

q1

p3

p1

p4

p2

p5

p6 p7

p8

p10

p11

p9

p12

(k=5)

(k=3)

(k=3)

Figure 1: Spatial assignment example

that require matching between users and facilities based on
capacity constraints and spatial proximity. For instance, the
municipality could assign children to schools (with certain
capacity each) such that the average (or, equivalently, the
summed) traveling distance of children to their schools is
minimized. Another application (in welfare states) is the
assignment of residents to designated, public clinics of given
individual capacities.

CCA can be reduced to the well-known minimum cost
flow (MCF) problem in a complete distance-based bipartite
graph between Q and P [1]. In the operations research liter-
ature [13], there is an abundance of MCF algorithms based
on this reduction. These solutions, however, are only appli-
cable to small-sized datasets and main memory processing.
In particular, the best of them have a cubic time complexity
(elaborated on in Section 2.2), and require that the bipartite
graph (which contains |Q|·|P | edges) resides in memory. For
moderate and large size datasets, this graph requires a pro-
hibitive amount of space (exceeding several times the typical
memory sizes), and leads to an excessive computation cost
as the CCA complexity increases with the number of edges
in the graph.

Motivated by the lack of CCA algorithms for large datasets,
we develop efficient and highly scalable CCA techniques that
produce an optimal assignment. Specifically, we assume that
P resides in secondary storage, indexed by a spatial access
method, while Q fits in main memory; in most real-world
applications |Q| << |P | and the capacities qi.k are in the
order of tens or hundreds. We use the MCF reduction as
a foundation, but we achieve space and computation scal-
ability by exploiting the spatial properties of the problem
and incrementally including into the graph only the neces-
sary edges. Targeted at a disk-resident P , our methods take
into account and reduce the I/O cost by incorporating elab-
orate index-based enhancements. Furthermore, we extend
our framework with approximate solutions that leverage sim-
ilar edge-pruning strategies and provide a tunable trade-off
between processing cost and assignment quality; we analyze
the inaccuracy incurred and devise theoretical bounds for
the deviation from the optimal matching.

The rest of the paper is organized as follows. Section 2
covers background and existing work related to our prob-
lem. Section 3 presents the central theorem our approach is
stemming from, and then describes our optimal CCA algo-
rithms that utilize it. Section 4 studies the trade-off between
computation cost and matching quality, and develops ap-
proximate CCA solutions with guaranteed matching quality.
Section 5 empirically evaluates our exact and approximate
CCA methods using synthetic and real datasets. Finally,

Section 6 summarizes the paper and provides directions for
future research.

2. BACKGROUND AND RELATED WORK
CCA can be reduced to a flow problem on a graph. In

Section 2.1 we describe the graph formulation of CCA, and
in Section 2.2 we describe a traditional main memory algo-
rithm for the corresponding flow problem. Even though this
solution is inapplicable to our setting, it is fundamental to
our techniques. In Section 2.3 we survey spatial queries and
algorithms related to our approach. Table 1 summarizes the
notation used in this and the following sections.

Symbol Description
Q set of service providers (points)
P set of customers (points)

dist(qi, pj) the Euclidean distance between qi and pj

e(qi, pj) the (directed) edge from qi to pj

s the source node
t the sink node

v.α minimum cost from s to node v
v.τ potential value of node v

v.prev prev. node of v in shortest path from s to v
vmin the last node in current sp that belongs to P

Table 1: Notation

2.1 Minimum Cost Flow on Bipartite Graph
CCA can be reduced to a maximum flow problem on a

(directed) bipartite graph [1]. Consider the example in Fig-
ure 2(a), where P = {p1, p2}, Q = {q1, q2}, and q1.k = 1,
q2.k = 2. This CCA problem is represented by the flow
graph shown in Figure 2(b). The flow graph is a com-
plete bipartite graph between Q and P , extended with two
special nodes s and t (called the source and the sink, re-
spectively) and |Q| + |P | extra edges from/to these nodes.
Specifically, letting V be the set of nodes in the graph, then
V = Q

⋃
P

⋃
{s, t}. Each node v ∈ V has a fixed balance

f(v). For every p ∈ P and q ∈ Q, the balance is set to
0. For s and t, f(s) = γ and f(t) = −γ, where γ is the
required flow and γ = min{|P |,

∑
q∈Q q.k}. In our example,

γ = min{2, 3} = 2 and the balances are shown next to each
node in the figure.

q2q1

p1

p2

(k=2)
(k=1)

10

7

4

3

(a) Spatial locations

q1 q2

p2

p1

s

q2

q1 p1

p2

t

(4,1)

(7,1)

(3,1) (10,1)

(0,1)

(0,1)(0,2)

(0,1)

f=2

f=0 f=0

f=0f=0

f=-2

(b) Flow graph

Figure 2: CCA reduction to the MCF problem

Let E represent the set of edges in the flow graph. Each
edge e(vi, vj) ∈ E has a cost w(vi, vj) and a capacity c(vi, vj).
The set of edges E comprises: (i) an edge e(s, qi) for every
service provider qi ∈ Q, with cost 0 and capacity qi.k (mod-
eling the capacity constraint of the service provider), (ii) an
edge e(qi, pj) for every pair of service provider qi ∈ Q and

customer pj ∈ P , with cost dist(qi, pj) (e.g., in Figure 2,
w(q1, p2) = dist(q1, p2) = 3) and capacity 1 (implying that
pair (qi, pj) can appear at most once in the final matching
M), and (iii) an edge e(pj , t) for every customer pj ∈ P ,
with cost 0 and capacity 1 (implying that pj is assigned to
at most one service provider). In Figure 2(b), the label of
each edge indicates (in parentheses) its cost and capacity.

Given the above graph, the minimum cost flow (MCF)
problem is to associate an integer flow value x(vi, vj) ∈
[0, c(vi, vj)] with each edge e(vi, vj) ∈ E such that for every
node v ∈ V it holds that:∑

e(v,vm)∈E

x(v, vm)−
∑

e(vm,v)∈E

x(vm, v) = f(v) (2)

and the following objective function Z(x) is minimized:

Z(x) =
∑

e(vi,vj)∈E

w(vi, vj) · x(vi, vj) (3)

An optimal CCA assignment is derived by solving the MCF
problem and including in M these and only these pairs
(qi, pj) for which x(pj , qi) = 1 [1]. Intuitively, every edge
e(pj , qi) with x(pj , qi) = 1 incurs cost w(pj , qi) = dist(pj , qi)
and Ψ(M) = Z(x). Also, the required flow γ ensures (ac-
cording to Equation 2) that M has the full size, i.e., that M
covers the maximum possible number of customers.

Several algorithms have been proposed in the literature
for solving MCF in main memory [1]. The Hungarian al-
gorithm [8, 11] constructs a cost matrix with |Q| · |P | en-
tries, performs subtraction/addition for entries in specific
rows/columns, until each row/column has at least one zero
value. This solution is limited to small problem instances;
it becomes infeasible even for moderate-sized problems, as
the aforementioned matrix may not fit in main memory.

The cost scaling algorithm [1, 5] solves the assignment
problem using a reduction to MCF. It processes the latter
through successive approximations in a number of steps that
is logarithmic to the maximum edge cost in the flow graph.
This approach is inapplicable to CCA, since it works only
for one-to-one matching (i.e., q.k = 1 for all q ∈ Q) and
strictly integer edge costs (versus real-valued ones in CCA).

2.2 Successive Shortest Path Algorithm
The Successive Shortest Path Algorithm (SSPA) is a pop-

ular technique for the MCF problem defined above. SSPA
receives as input the flow graph defined in Section 2.1 and
performs γ = min{|P |,

∑
q∈Q q.k} iterations. In each itera-

tion, it computes the shortest path from the source s to the
sink t, and reverses the path’s edges. After the last itera-
tion, every (directed) edge from a point in P to a point in
Q corresponds to a pair in the optimal matching M .1

Algorithm 1 is the detailed pseudo-code of SSPA. In each
loop, SSPA invokes Dijkstra’s algorithm to compute the
shortest path sp between the source and the sink; the algo-
rithm adheres to the edge directions and cannot pass through
edges e(s, qi) (or, e(pj , t)) that were already included in
c(s, qi) (c(pj , t), respectively) shortest paths at previous loops.
For a visited node v (i.e., a node de-heaped during Dijkstra’s
algorithm), we use v.α to refer to its minimum distance from

1Note that this is equivalent to forming M by edges e(pj , qi)
with flow 1, as described in Section 2.1. For simplicity, in
our SSPA description we omit flow computation per se, and
focus on retrieving the optimal CCA matching directly.

the source, and v.prev to indicate the node it was reached
from. We denote by vmin the last node in the current short-
est path that belongs to P (note that sp may be passing
via multiple points of P). Upon sp computation in Line
2, SSPA traces it back and reverses the direction of all the
edges it contains (Lines 5, 6); we say that this step augments
the path into the graph. Then, SSPA updates the potential
(to be discussed shortly) of the nodes visited by Dijkstra’s
algorithm (Lines 8, 9), and the costs of the edges incident
to these nodes (Lines 10, 11).

Algorithm 1 Successive Shortest Path Algorithm (SSPA)

algorithm SSPA(Set Q, Set P , Edge set E)
1: for loop:=1 to γ do
2: vmin:=Dijkstra(Q, P , E)
3: v:=vmin //v is a local variable of node type
4: while v.prev 6= ∅ do
5: add e(v, v.prev) to E, with c(v, v.prev)=−c(v.prev, v)
6: delete e(v.prev, v) from E
7: v:=v.prev . proceed with the previous object

8: for all visited nodes vi do
9: vi.τ :=vi.τ − vi.α + vmin.α
10: for all edges e(vi, vj) incident to vi do
11: w(vi, vj):=dist(vi, vj) − vi.τ + vj .τ

An important step in SSPA is the edge cost updating per-
formed in Line 11. To ensure that no edge cost becomes
negative (which is a requirement for the correctness of Dijk-
stra’s algorithm), SSPA uses the concept of node potentials.
The potential v.τ of a node v ∈ V is a non-negative real value
that is initialized to 0 for all v ∈ V before the first SSPA
loop, and is subsequently updated in Lines 8, 9 whenever v
is visited (i.e., de-heaped) by Dijkstra’s algorithm. The cost
of an edge w(vi, vj) varies during the execution of SSPA,
and is defined as dist(vi, vj) − vi.τ + vj .τ at all times (we
establish the convention that dist(vi, vj) = 0 if any of vi, vj

is s or t). The node potentials and the definition of edge
costs play an important role in SSPA and in our methods
described in Section 3.

Example: Consider the CCA example and flow graph in Fig-
ure 2. SSPA performs in total γ = 2 iterations. Figure 3(a)
shows the flow graph of Figure 2(b) appended with the initial
potentials next to each node (all set to 0). In the first iter-
ation, SSPA finds the shortest path sp1 = {s, q1, p2, t} from
the source to the sink. Then, it augments sp and updates
the flow graph to be used in the next iteration; Figure 3(b)
illustrates the reversed sp edges, the updated node poten-
tials and the new edge costs. Figure 3(c) shows in bold the
shortest path sp2 = {s, q2, p2, q1, p1, t} found in the second
iteration. Note that sp2 cannot pass through edges e(s, q1)
and e(p2, t), since they have already been used c(s, q1) = 1
and c(p2, t) = 1 times in previous shortest paths (i.e., in
sp1). Figure 3(d) augments sp2 and updates the flow graph.
Even though this is the last iteration of SSPA, it exemplifies
an interesting case. Edge e(s, q2) is part of sp2, but it is not
“completely” reversed; its capacity is 2, and only one of its
“instances” is reversed, which leads to (i) decreasing its ca-
pacity by 1 (instead of deleting it), and (ii) creating reverse
edge e(q2, s) with capacity 1 and cost 0. To complete the
example, optimal assignment M corresponds to edges from
P to Q in the resulting flow graph after the γ = 2 iterations,
i.e., it contains (q1, p1) and (q2, p2).

SSPA requires that the entire flow graph resides in main
memory. The graph contains an excessive number of O(|Q| ·

s

q2

q1 p1

p2

t

(4,1)

(7,1)

(3,1) (10,1)

(0,1)

(0,1)(0,2)

(0,1)

τ = 0

τ = 0 τ = 0

τ = 0τ = 0

τ = 0 s

q2

q1 p1

p2

t

(1,1)

(4,1)

(0,1) (7,1)

(0,1)

(0,1)(0,2)

(0,1)

τ = 3

τ = 3 τ = 0

τ = 0τ = 3

τ = 0

s

q2

q1 p1

p2

t

(1,1)

(4,1)

(0,1) (7,1)

(0,1)

(0,1)(0,2)

(0,1)

τ = 3

τ = 3 τ = 0

τ = 0τ = 3

τ = 0 s

q2

q1 p1

p2

t

(0,1)

(0,1)

(0,1) (2,1)

(0,1)

(0,1)
(0,1)

(4,1)

τ = 8

τ = 8 τ = 1

τ = 4

τ = 0
(0,1)

τ = 0

s

q2

q1 p1

p2

t

(4,1)

(7,1)

(3,1) (10,1)

(0,1)

(0,1)(0,2)

(0,1)

τ = 0

τ = 0 τ = 0

τ = 0τ = 0

τ = 0 s

q2

q1 p1

p2

t

(1,1)

(4,1)

(0,1) (7,1)

(0,1)

(0,1)(0,2)

(0,1)

τ = 3

τ = 3 τ = 0

τ = 0τ = 3

τ = 0

s

q2

q1 p1

p2

t

(1,1)

(4,1)

(0,1) (7,1)

(0,1)

(0,1)(0,2)

(0,1)

τ = 3

τ = 3 τ = 0

τ = 0τ = 3

τ = 0 s

q2

q1 p1

p2

t

(0,1)

(0,1)

(0,1) (2,1)

(0,1)

(0,1)
(0,1)

(4,1)

τ = 8

τ = 8 τ = 1

τ = 4

τ = 0
(0,1)

τ = 0

(a) Found sp1 (b) Augmenting sp1

s

q2

q1 p1

p2

t

(4,1)

(7,1)

(3,1) (10,1)

(0,1)

(0,1)(0,2)

(0,1)

τ = 0

τ = 0 τ = 0

τ = 0τ = 0

τ = 0 s

q2

q1 p1

p2

t

(1,1)

(4,1)

(0,1) (7,1)

(0,1)

(0,1)(0,2)

(0,1)

τ = 3

τ = 3 τ = 0

τ = 0τ = 3

τ = 0

s

q2

q1 p1

p2

t

(1,1)

(4,1)

(0,1) (7,1)

(0,1)

(0,1)(0,2)

(0,1)

τ = 3

τ = 3 τ = 0

τ = 0τ = 3

τ = 0 s

q2

q1 p1

p2

t

(0,1)

(0,1)

(0,1) (2,1)

(0,1)

(0,1)
(0,1)

(4,1)

τ = 8

τ = 8 τ = 1

τ = 4

τ = 0
(0,1)

τ = 0

s

q2

q1 p1

p2

t

(4,1)

(7,1)

(3,1) (10,1)

(0,1)

(0,1)(0,2)

(0,1)

τ = 0

τ = 0 τ = 0

τ = 0τ = 0

τ = 0 s

q2

q1 p1

p2

t

(1,1)

(4,1)

(0,1) (7,1)

(0,1)

(0,1)(0,2)

(0,1)

τ = 3

τ = 3 τ = 0

τ = 0τ = 3

τ = 0

s

q2

q1 p1

p2

t

(1,1)

(4,1)

(0,1) (7,1)

(0,1)

(0,1)(0,2)

(0,1)

τ = 3

τ = 3 τ = 0

τ = 0τ = 3

τ = 0 s

q2

q1 p1

p2

t

(0,1)

(0,1)

(0,1) (2,1)

(0,1)

(0,1)
(0,1)

(4,1)

τ = 8

τ = 8 τ = 1

τ = 4

τ = 0
(0,1)

τ = 0

(c) Found sp2 (d) Augmenting sp2

Figure 3: Example of SSPA

|P |) edges, which do not fit in memory for large problem
instances. Moreover, the time complexity of SSPA is O(γ ·
(|E| + |V | · log|V |)), where O(|E| + |V | · log|V |) is the cost
to compute a shortest path. Since in our targeted applica-
tions |E| is quite large (O(|P | · |Q|)), SSPA is particularly
slow. Another fundamental problem of SSPA is that it is
designed for main memory processing and ignores the I/O
cost, which generally is the most critical performance factor
in the processing of disk-resident data.

2.3 Spatial Queries
Point sets are usually indexed by spatial access methods

in order to accelerate query processing. The R-tree [6] and
its variants (e.g., [9, 2]) are the most common such indexes.
The R-tree is a disk-based, balanced tree that groups to-
gether nearby points into leaf nodes, and recursively groups
these leaf nodes into higher level nodes (again based on their
proximity) up to a single root. Each non-leaf entry is as-
sociated with a minimum bounding rectangle (MBR) that
encloses all the points in the subtree pointed by it.

Typical spatial search operations on a point set P are
range and nearest neighbor (NN) queries. Given a range
value r and a query point q, the r-range query retrieves all
points of P within (Euclidean) distance r from q. If P is
indexed by an R-tree, this query is evaluated by following
recursively R-tree entries that intersect the circular disk with
center at q and radius r. The K-nearest neighbor (KNN)
query receives as input an integer K and a query point q, and
returns the K points of P that are closest to q. The state-
of-the-art KNN processing technique is the best-first NN
algorithm [7], which employs a heap for organizing encoun-
tered R-tree entries and visiting them in ascending order of
their distance from q, until K points are discovered.

Assignment problems in large spatial databases have re-
cently received considerable attention. Specifically, [12, 14]
study the spatial matching (SM) join. Given two point sets
P and Q, the SM join iteratively outputs the closest pair
[4] (p, q) in P × Q, reports (p, q) as an assigned pair, and
removes both p and q from their corresponding datasets be-
fore the next iteration. This procedure continues until either
P or Q becomes empty. [14] enhances the performance of
a näıve (i.e., repetitive closest pair) algorithm with several
geometric observations. SM is related, yet different by def-
inition from CCA; SM greedily performs local assignments
instead of minimizing the global assignment cost.

3. EXACT METHODS
In this section we present our methods for computing op-

timal CCA assignments. In accordance with most real-world
scenarios, we consider that Q (the set of of service providers)
is much smaller than P (the set of customers). We assume
that Q fits into main memory, while P is stored on the disk.
In the following we consider two-dimensional points and that
P is indexed by an R-tree. However, our algorithms can eas-
ily extend to problems of higher dimensionality and other
spatial access methods.

As explained in Section 2.2, SSPA is not applicable to
large CCA problem instances, as its (complete bipartite)
flow graph leads to excessive memory consumption and ex-
pensive shortest path computations. To alleviate the space
and running time problems incurred by the huge flow graph,
we develop incremental SSPA-based algorithms that start
from an empty flow graph and insert edges into it gradually.
Intuitively, edges with low edge weights are highly probable
to indicate pairs in the optimal assignment. A fundamen-
tal theorem (presented below) formalizes this intuition and
excludes from consideration edges whose cost is too high to
affect the result of SSPA. Additionally, our techniques ex-
ploit the spatial index of P to further improve performance.

Our general idea is to perform the search in a subgraph
with edge set Esub ⊆ E, where E is the complete set of flow
graph edges. We refer to the Euclidean distance between
the nodes of an edge as its length. Let function φ(·) take as
input a set of edges and return the minimum edge length
in it. To facilitate the derivation of distance bounds, we
require Esub to be distance-bounded, as defined below.

Definition 1. An edge set Esub ⊆ E is said to be distance-
bounded if

∀ e(qi, pj) ∈ Esub, dist(qi, pj) ≤ φ(E − Esub)

In other words a distance-bounded Esub contains those
and only those edges in E that have length less than or
equal to a threshold (i.e., φ(E − Esub)). Conversely, all the
remaining edges (i.e., edges in E−Esub) have length greater
than or equal to that threshold. We stress that function φ(·)
and Definition 1 refer to edge lengths, and not to their costs
(note that costs vary during the execution of our algorithms
because the node potentials are updated).

Suppose that we are given a distance-bounded edge set
Esub. Consider an execution of Dijkstra’s algorithm on Esub

that computes the shortest path sp between the source and
the sink, and the potential values vi.τ for every node vi,
derived as described in Section 2.2. The following theorem
determines the condition that should hold so that sp is the
shortest path on the complete edge set E.

Theorem 1. Consider a distance-bounded edge set Esub ⊆
E. Let sp be the shortest path (between source and sink) in
Esub and τmax = max {vi.τ |vi ∈ V } be the maximum poten-
tial value. If the total cost of sp is at most φ(E − Esub) −
τmax, then sp is also the shortest path (between source and
sink) on the complete flow graph.

Proof. Consider the edges in E−Esub. First, their min-
imum length is φ(E−Esub). Second, as explained in Section
2.2, their costs are defined as w(vi, vj) = dist(vi, vj)−vi.τ +
vj .τ . Since dist(vi, vj) ≥ φ(E − Esub), vi.τ ≤ τmax, and
vj .τ ≥ 0, it holds that

w(vi, vj) ≥ φ(E − Esub)− τmax,∀e(ci, vj) ∈ E − Esub

According to the above (and since edge costs are always non-
negative), any path passing through an edge in E − Esub

has at least a cost of φ(E − Esub)− τmax. Therefore, if the
shortest path sp (on Esub) has total cost no greater than
φ(E−Esub)−τmax, then it must be the shortest path in the
entire E too.

In the following we investigate approaches for gradually
expanding the subgraph Esub and use it to derive CCA pairs.
Our first solution incrementally enlarges range searches around
points in Q. The other two aim at further reducing the size
of Esub by replacing range queries with incremental nearest
neighbor searches [7].

3.1 Range Incremental Algorithm
Our first method is the Range Incremental Algorithm (RIA).

Algorithm 2 presents the pseudo-code of RIA. The procedure
starts with an initial range T equal to a system parameter
θ. For every point qi ∈ Q, RIA performs a T -range search in
P ; for each retrieved point pj ∈ P , edge e(qi, pj) is inserted
into Esub. RIA invokes SSPA in the resulting Esub.

Observe that T serves as a lower bound for φ(E − Esub)
(i.e., φ(E−Esub) ≥ T). Assume that a Dijkstra execution in
Line 6 finds a shortest path sp. If the total cost of sp is less
than T−τmax (Line 7)2, then it is also less than φ(E−Esub)−
τmax. In this case, sp is valid according to Theorem 1; i.e., it
is a shortest path in the entire E too. Thus, we augment sp,
updating potential values and sp edges in the graph (Lines
8-10) as in the basic SSPA technique. Otherwise (i.e., sp
cost is higher than T − τmax), the sp is not valid and is
not augmented; RIA performs new range searches with an
extended T in order to insert more edges into Esub (Lines 12-
15). Specifically, we extend T by θ and execute an annular
range search for each point qi ∈ Q, so that points of P
within the distance range (T − θ, T] from qi are identified
(and the corresponding edges are inserted into Esub). Then,
RIA resumes from the iteration it stopped. RIA continues
this way and terminates when γ = min{|P |,

∑
q∈Q q.k} valid

shortest paths are found in total. It can be easily shown
that the RIA matching is identical to that of SSPA, which
considers the entire E.

Algorithm 2 Range Incremental Algorithm (RIA)

algorithm RIA(Set Q, Set P , Value θ)
1: T :=θ; τmax:=0; Esub:=∅
2: for all qi ∈ Q do
3: P ′:=Range-Search(qi,T)
4: insert edge e(qi, pj) into Esub, for each pj ∈ P ′

5: for loop:=1 to γ do
6: vmin:=Dijkstra(Q, P , Esub)
7: if vmin.α ≤ T − τmax then
8: v:=ReverseEdges()
9: UpdatePotentials()
10: τmax:=max {qi.τ |qi ∈ Q} . the highest potential
11: else
12: loop--; T :=T + θ
13: for all qi ∈ Q do
14: P ′:=Annular-Range-Search(qi,T − θ,T)
15: insert edge e(qi, pj) into Esub, for each pj ∈ P ′

2To clarify the condition in Line 7, the total cost of sp is by
definition equal to vmin.α, since c(vmin, t) is always 0.

3.2 Nearest Neighbor Incremental Algorithm
RIA constrains the search on a small edge set Esub by us-

ing system parameter θ. However, it is hard to fine-tune θ or
derive it analytically. When θ is too large, set Esub grows,
leading to long computation time. In case θ is too small,
RIA performs numerous range searches, incurring high I/O
cost. To tackle this problem, we develop a Nearest Neighbor
Incremental Algorithm (NIA), which performs incremental
nearest neighbor search [7] to expand edge set Esub. Al-
gorithm 3 is the pseudo-code of NIA. We use a min-heap
H, that organizes encountered edges in ascending cost or-
der. Specifically, we first compute for each point qi ∈ Q its
nearest neighbor pj in P and insert the corresponding edge
e(qi, pj) into H. In each loop, NIA de-heaps the shortest
edge e(qi, pj) from H and inserts it into Esub (Lines 7, 8).
Then, it computes the next nearest neighbor of qi and in-
serts the corresponding edge into H (Lines 9, 10). Next, it
computes the shortest path sp in the new Esub.

Due to the min-heap ascending ordering and the incre-
mental nearest neighbor search, it is guaranteed that the top
edge in H has the minimum weight of edges in E − Esub.
Letting TopKey(H) be the key (i.e., length) of the top entry
in H, it holds that (i) Esub is a distance-bounded edge set
and (ii) φ(E − Esub) = TopKey(H). From Theorem 1 it
follows that if the cost of sp (i.e., vmin.α) is no greater than
TopKey(H) − τmax, then sp is a valid shortest path and is
thus augmented into the graph.

Otherwise (i.e., if the sp cost is larger than TopKey(H)−
τmax), sp is invalid and ignored. In this case, NIA de-heaps
the top edge e(qi, pj) from H and inserts it into Esub. For
the qi node of the de-heaped edge, NIA finds its next nearest
neighbor in P . Letting pm be this neighbor, edge e(qi, pm)
is inserted into H (with key equal to its length). A new
shortest path is computed in the expanded Esub and the
procedure is repeated; the current iteration is considered
complete when a valid shortest path is computed and aug-
mented into the graph. Overall, NIA terminates after γ
completed iterations (equivalently, after augmenting γ valid
shortest paths).

Algorithm 3 Nearest Neighbor Incremental Algo. (NIA)

algorithm NIA(Set Q, Set P)
1: H:=new min-heap
2: τmax:=0; Esub:=∅
3: for all qi ∈ Q do
4: pj :=NN of qi in P
5: insert 〈e(qi, pj), dist(qi, pj)〉 into H

6: for loop:=1 to γ do
7: de-heap the top entry 〈e(qi, pj), dist(qi, pj)〉 from H
8: insert edge e(qi, pj) into Esub

9: pm:=next NN of qi in P
10: insert 〈e(qi, pm), dist(qi, pm)〉 into H
11: vmin:=Dijkstra(Q, P , Esub)
12: if vmin.α ≤ TopKey(H) − τmax then
13: v:=ReverseEdges()
14: UpdatePotentials()
15: τmax:=max {qi.τ |qi ∈ Q} . the highest potential
16: else
17: loop-- . Invalid path; go to Line 7

3.3 Incremental On-demand Algorithm
In this section, we present the Incremental On-demand

Algorithm (IDA), which improves on NIA by pruning more

edges and accelerating sp computations. IDA is based on
the concept of full service providers and full customers.

Definition 2. A service provider qi ∈ Q is said to be
full when edge e(s, qi) has already been used qi.k times in
previous (valid) shortest paths.

For a full qi, since e(s, qi) (with a fixed cost 0) has reached
its capacity, Dijkstra’s algorithm can no longer pass through
this edge. In other words, the shortest path from s to qi can
no longer be this edge and, thus, qi.α (i.e., the minimum cost
from s to qi) may be greater than 0. This fact is exploited
by IDA, which leads to a more effective pruning of edges
incident to qi.

IDA uses an edge heap H just like NIA. Unlike NIA, where
the key of the edges in H is their length dist(qi, pm), in IDA
the key of an edge e(qi, pm) is qi.α+dist(qi, pm). The ratio-
nale is that if qi is full, any sp going through qi should have
cost at least qi.α + dist(qi, pm). This leads to earlier termi-
nation and smaller Esub, since edges reachable through full
service providers are not de-heaped (and, thus, not inserted
into Esub) unnecessarily early.

As qi.α varies, whenever some Dijkstra execution visits a
full qi ∈ Q and updates qi.α to a new value, IDA accordingly
updates the key of its corresponding edge e(qi, pj) in H to
the new qi.α+dist(qi, pj). Note that (in both NIA and IDA)
for every qi ∈ Q there is exactly one edge in H from qi to
some pj ∈ P at all times. It is easy to show the correctness of
IDA, after replacing φ(E−Esub) by Φ(E−Esub) in Theorem
1. Φ(E − Esub) models the minimum possible cost an sp
could have if it passed through some edge in E − Esub.

Similar to full service providers, IDA also exploits the
properties of full customers to improve the running time
and, specifically, to accelerate shortest path computations.
Below we formally define full customers and provide a the-
orem that allows sp retrieval without invoking Dijkstra’s
algorithm.

Definition 3. A customer pj ∈ P is said to be full when
edge e(pj , t) has already been used in a previous (valid) short-
est path.

Theorem 2. If no q ∈ Q is full, then the shortest path
(between source s and sink t) passes through a single edge
e(qi, pj); i.e., sp = {e(s, qi), e(qi, pj), e(pj , t)}, where qi ∈ Q,
pj ∈ P . Furthermore, e(qi, pj) is the shortest edge in Esub

with a non-full pj.

Proof. Since no q ∈ Q is full, all q ∈ Q are inserted into
the Dijkstra heap and visited (with cost q.α = 0) before
any p ∈ P . Therefore, after de-heaping the first pj ∈ P ,
and if pj is full, Dijkstra cannot return to any q ∈ Q. As a
result, the current sp must be passing through exactly one
edge e(qi, pj) (with a non-full pj) followed by e(pj , t), i.e.,
sp = {e(s, qi), e(qi, pj), e(pj , t)}. Since qi and pj are non-full,
w(s, qi) = w(pj , t) = 0 and the sp cost is w(qi, pj).

It remains to show that the cost order among edges e(q, p) ∈
Esub with non-full p coincides with their length order. As
described in Section 2.2, w(q, p) = dist(q, p)−q.τ +p.τ . Note
that a node p ∈ P becomes full when Dijkstra’s algorithm
visits it for the first time. Equivalently, all non-full ones
have never been visited by Dijkstra’s algorithm and their
potentials remain 0 since the initialization of the problem.
As a result, p.τ = 0, and w(q, p) = dist(q, p)−q.τ . Also, the
fact that all q ∈ Q are non-full leads to their potentials being

updated in every IDA iteration to the same exact value (in
Line 9 in Algorithm 1). Thus, the cost order among edges
with non-full p coincides with their distance order.

According to the above theorem, as long as no service
provider q ∈ Q is full, IDA computes the current sp, with-
out invoking Dijkstra’s algorithm, by iteratively de-heaping
edges e(qi, pj) from H3. If pj is full, we directly insert it
into Esub and de-heap the next entry; otherwise we report
sp = {e(s, qi), e(qi, pj), e(pj , t)}. Note that after de-heaping
any edge e(qi, pj) from H, we en-heap the edge from qi to
its next nearest customer (as in Lines 7-10 of Algorithm 3).

Algorithm 4 is the pseudo-code of IDA. Lines 1-5 initialize
Esub identically to NIA. At Line 9 we compute the current
sp. Note that if no service provider is full, we derive sp
using Theorem 2 and the method described above (we omit
this enhancement from the pseudo-code for readability). At
Lines 10-12, if the last sp computation visited some full q ∈
Q and altered its q.α value, then we accordingly update
the key of its corresponding edge e(q, p) in H to the new
q.α + dist(q, p) (Line 12). Lines 13-14 retrieve the next NN
of qi (qi refers to e(qi, pj) de-heaped at Line 7) and insert the
corresponding edge into H. Note that we perform this after
updating the q.α values at Lines 10-12 so that the en-heaped
edge has an up-to-date key.

Algorithm 4 Incremental On-demand Algorithm (IDA)

algorithm IDA(Set Q, Set P)
1: H:=new min-heap
2: τmax:=0; Esub:=∅
3: for all qi ∈ Q do
4: pj :=first NN of qi in P
5: insert 〈e(qi, pj), dist(qi, pj)〉 into H

6: for loop:=1 to γ do
7: de-heap 〈e(qi, pj), key〉 from H
8: insert e(qi, pj) into Esub

9: vmin:=Dijkstra(Q, P, Esub)
10: for all visited q ∈ Q do
11: if q is full and q.α changed in Line 9 then
12: update q.α in H

13: pm:=next NN of qi in P
14: insert 〈e(qi, pm), qi.α + dist(qi, pm)〉 into H
15: if vmin.α ≤ TopKey(H) − τmax then
16: v:=ReverseEdges()
17: UpdatePotentials()
18: τmax:=max {qi.τ |qi ∈ Q} . the highest potential
19: else
20: loop-- . Invalid path; go to Line 7

Example: Consider the example in Figure 4(a), where the
table at the top illustrates the lengths of all encountered
edges (i.e., edges in Esub and in the heap). The flow graph
shown skips the source and sink for clarity and includes only
edges between service providers and customers. Service pro-
vider q1 (shown shaded) is full with q1.α = 3. Dashed edges
e(q1, p3), e(q2, p5) and the bold one e(q3, p4) have been en-
heaped but not yet inserted into Esub. At the bottom, H1

and H2 illustrate the heap contents in NIA and IDA, re-
spectively, assuming that so far they proceeded identically.
Their difference is the key of e(q1, p3), which is 7 in NIA
and 10 in IDA (since dist(q1, p3) = 7 and q1.α = 3). This
leads to a different insertion order into Esub and a faster IDA

3While no q is full, all keys in H are equal to the correspond-
ing edge lengths.

termination. For the current sp to be valid, in Line 12 of
Algorithm 3 (in Line 15 of Algorithm 4), NIA (IDA) requires
that its cost is no greater than 7-τmax (8-τmax), where 7 (8)
is the TopKey(H1) value (TopKey(H2), respectively). This
implies that the current IDA iteration has higher chances to
terminate without needing to insert new edges and re-invoke
Dijkstra’s algorithm.

<q1 p3, 7> <q3 p4, 8> <q2 p3, 9>H1

H2 <q3 p4, 8> <q2 p3, 9> <q1 p3, 10>

q1

p1

q2

p2

q3

p3

p4

α = 3

α = 0

α = 0

α = ∞

α = 1

α = 1

α = ∞

H2
<q2 p3, 9> <q1 p3, 12> <q3 p1, 12>

q1

p1

q2

p2

q3

p3

p4

-84610q3

-

-

p4

9---q2

-715q1

p5p3p2p1dist(qi,pj)

…

…

…

αααα = 5

α = 0

αααα = 2

p5 α = ∞

…

p5

α = ∞

αααα = 3

α = 1

αααα = 2

α = ∞

<q1 p3, 7> <q3 p4, 8> <q2 p5, 9>H1

H2 <q3 p4, 8> <q2 p5, 9> <q1 p3, 10>

q1

p1

q2

p2

q3

p3

p4

α = 3

α = 0

α = 0

α = 1

α = 1

H2 <q2 p5, 9> <q1 p3, 12> <q3 p1, 12>

q1

p1

q2

p2

q3

p3

p4

-84610q3

-
-

p4

9---q2

-715q1

p5p3p2p1dist(qi,pj)

…

…

…

α = 5

α = 0

α = 2

p5

…

p5

α = 3

α = 1

α = 2

<q1 p3, 7> <q3 p4, 8> <q2 p5, 9>H1

H2 <q3 p4, 8> <q2 p5, 9> <q1 p3, 10>

q1

p1

q2

p2

q3

p3

p4

α = 3

α = 0

α = 0

α = 1

α = 1

H2 <q2 p5, 9> <q1 p3, 12> <q3 p1, 12>

q1

p1

q2

p2

q3

p3

p4

-84610q3

-
-

p4

9---q2

-715q1

p5p3p2p1dist(qi,pj)

…

…

…

α = 5

α = 0

α = 2

p5

…

p5

α = 3

α = 1

α = 2

(a) IDA versus NIA (b) Key update

Figure 4: Utilizing full service providers in IDA

Let us now focus on IDA. Since the top edge in H2 is
e(q3, p4) (shown bold), we insert it into Esub. Figure 4(b)
shows the new flow graph, assuming that the subsequent
Dijkstra execution returned an sp passing through e(q3, p4).
Assuming that q3.k = 2, augmenting this sp makes q3 full
with q3.α = 2, and alters q1.α to 5. Since q1.α has changed,
IDA updates the key of e(q1, p3) in H2 to dist(q1, p3)+qi.α =
12. Then, we find the next NN of q3 (i.e., p1) and insert
the corresponding edge e(q3, p1) into H2 with key q3.α +
dist(q3, p1) = 12. The bold edge (i.e., e(q2, p5)) is the one
to be inserted next into Esub.

3.4 Optimizations
In this section we describe two enhancements that apply

to NIA and IDA. Section 3.4.1 proposes a technique that
accelerates Dijkstra’s algorithm by reusing its previous com-
putations. Section 3.4.2 presents an incremental all nearest
neighbor (ANN) search that reduces the I/O cost.

3.4.1 Reducing Dijkstra Executions
Unlike the bulk discovery and insertion of edges (through

range search) in RIA, NIA/IDA apply incremental NN search
to discover the edges one-by-one, keeping Esub small. How-
ever, since Esub expands slowly, NIA/IDA may perform nu-
merous Dijkstra executions. To accelerate processing, we re-
duce the cost of Dijkstra executions in NIA/IDA by reusing
(i) the vi.α values computed in the previous sp computation
and (ii) utilizing the entries that remained inside the Di-
jkstra heap upon termination. Assume that in the current
NIA/IDA iteration some (invalid) sp has been computed,
and that we need to find a new sp after inserting a new edge
e(q, p) into Esub (in Line 8 of Algorithm 3 or Algorithm 4,
respectively). Let Hd be the Dijkstra search heap after last
sp computation.

Our objective is (i) to identify the visited nodes v whose
v.α value is affected by e(q, p) (i.e., e(q, p) leads to a short-
est path from the sink to v) and, eventually, (ii) to update
the keys of nodes inside Hd. This is performed by the Path
Update Algorithm (PUA) to be described shortly. Upon ter-
mination of PUA, a new Dijkstra execution is performed,
which however directly uses the updated Hd and avoids vis-
iting nodes de-heaped in previous sp computation(s) in the
current NIA/IDA iteration.

PUA initializes an empty min-heap Hf to play the role of
a Dijkstra-like search heap among previously visited nodes.
Hf organizes its entries (nodes) in ascending order of their
α values. First, we insert into Hf the q node of the new
edge e(q, p). Next, we iteratively de-heap the top node vi

from Hf and examine whether nodes vj connected to vi can
be reached through a shortest path via vi. In particular, if
vj .α > vi.α+w(vi, vj) then vj .α is updated to vi.α+w(vi, vj)
and vj .prev is set to vi (to indicate that vj is now reachable
via vi). If vj is in Hd or Hf , its key is updated to vj .α in its
containing heap. Otherwise (i.e., if vj is neither in Hd nor
Hf), it is inserted into Hf with key vj .α. PUA terminates
when Hf becomes empty. Algorithm 5 presents PUA.

Algorithm 5 Path Update Algorithm (PUA)

algorithm PUA(Set Q, Set P , Heap Hd, Edge set Esub, Edge
e(q, p))

1: Hf :=new min-heap
2: insert 〈q, q.α〉 into Hf

3: while Hf is not empty do
4: de-heap top node vi (with the lowest vi.α value) from Hf

5: for all edges e(vi, vj) ∈ Esub outgoing from vi do
6: if vj .α > vi.α + w(vi, vj) then
7: vj .α:=vi.α + w(u, v); vj .prev:=vi

8: if vj ∈ Hd then
9: update vj .α in Hd

10: else if vj ∈ Hf then
11: update vj .α in Hf

12: else
13: insert 〈vj , vj .α〉 into Hf

Example: We illustrate the PUA technique with an exam-
ple. Figure 5(a) shows the current Esub edges between (some
nodes of) sets Q and P , the α values of these nodes, and the
edge costs (numbers above each edge) after the last Dijkstra
execution. The visited nodes are illustrated shaded, while
the nodes remaining in Hd are q4 and p3 (having bold bor-
ders and lighter gray color). Consider that edge e(q1, p2)
with cost w(q1, p2) = 2 is inserted into Esub. Figure 5(b)
shows the new edge (in bold) and the PUA steps. First,
q1 is inserted into Hf with key q1.α = 0. Its de-heaping
leads to adjacent node p2 which is reachable with a lower
cost (than the current p2.α) via q1. Thus, p2 is inserted into
Hf with key equal to the new p2.α = q1.α + w(q1, p2) = 2.
Similarly, the de-heaping of p2 leads to updating the key of
q4 in Hd to the new q4.α = 3. After these changes, the new
sp can be computed by directly using Hd = {〈q4, 3〉, 〈p3, 5〉}
in the new Dijkstra execution. Note that the shortest paths
to (and, accordingly, the α values of) q2, q3, p1, p3 have not
been affected by the insertion of e(q1, p2) and the new sp
computation avoids unnecessary costs for them.

PUA can utilize results only among Dijkstra executions
taking place as part of the same NIA/IDA iteration. The
reason why reusing cannot span multiple iterations is that
sp augmentation (which signals the end of an iteration) al-

q1 p1

q2 p2

q3 p3

p4

α = 1

α = 3

α = 5

… …

q4

α = 0

α = 1

α = 0

α = 4

q1

p2

p4

α = 2

… …

q4

α = 0

α = 3

2

1

2

1
0

2

1
5

2

(a) Previous state

q1 p1

q2 p2

q3 p3

p4

α = 1

α = 3

α = 5

… …

q4

α = 0

α = 1

α = 0

α = 4

q1

p2

p4

α = 2

… …

q4

α = 0

α = 3

2

1

2

1
0

2

1
5

2

(b) Insertion of e(q1, p2)

Figure 5: Example of PUA

ters many edges, by reversing their directions and modifying
their costs. Another important remark is that IDA uses the
above PUA-based optimization only after some of the ser-
vice providers become full, because until then shortest paths
are computed using Theorem 2 directly.

3.4.2 Incremental ANN Processing
Our CCA algorithms invoke numerous NN search oper-

ations around the service providers to the R-tree RP that
indexes the customers P . To reduce the I/O cost, we em-
ploy an incremental all-nearest-neighbors technique. First,
we form service provider groups Gm based on their Hilbert
space-filling curve ordering. For each group Gm we maintain
a min-heap Hm that organizes encountered R-tree entries e
in ascending mindist(MBR(Gm), MBR(e)) order. For ev-
ery qi ∈ Gm we maintain a candidate min-heap resi that
orders all encountered customers (i.e., candidate NNs) in
ascending distance from qi.

When we need to compute the (next) NN of some qi ∈
Gm, we iteratively de-heap and visit the top R-tree en-
try in Hm. If the de-heaped entry is a point p ∈ P , we
insert it into the candidate min-heap of every service pro-
vider in Gm. The procedure terminates when the top can-
didate pj in resi has key smaller than or equal to the top
entry in Hm; i.e., dist(qi, pj) is smaller than or equal to
mindist(MBR(Gm), MBR(e)) for every unvisited R-tree en-
try e. At that point, we de-heap pj from resi and report it
as the (next) NN of qi. Algorithm 6 is a pseudo-code for the
above procedure.

Algorithm 6 Incremental ANN Search

algorithm ANN(Group Gm, R-tree RP , Service provider qi)
1: while top entry in resi has key > key of top entry in Gm do
2: de-heap top entry e from Hm

3: if e is an directory entry of R-tree RP then
4: visit node pointed by e and insert its entries into Hm

5: else . E is a leaf level entry, i.e., a point p ∈ P
6: for all qk in Gm do
7: insert 〈p, dist(p, qk)〉 into resk

8: de-heap top entry 〈pj , dist(pj , qi)〉 from resi

9: return pj as the next NN of qi

4. APPROXIMATE METHODS
Time-critical applications may favor fast answers over ex-

act ones. This motivates us to develop approximate CCA
solutions. In this section, we propose a methodology that
provides a tunable trade-off between result accuracy and re-
sponse time, and comes with theoretical guarantees for the
assignment cost.

Our general approach consists of three phases. The first
one is the partitioning phase, in which we form groups Gm

of either the points in Q or points in P , so that the diagonal
of their MBR does not exceed a threshold δ. Parameter δ is
used to control the quality of the assignment; the smaller δ
is the better the computed matching approximates the opti-
mal. The second phase, called concise matching, solves op-
timally a small CCA problem extracting one representative
point per group Gm and using the set of representatives as
the set of service providers (customers). Finally, the refine-
ment phase uses the assignment produced in the previous
step to derive a matching on the entire sets P and Q.

Sections 4.1 and 4.2 describe two methods, called Ser-
vice Provider Approximation (SA) and Customer Approx-
imation (CA). SA and CA follow different approaches for
partitioning and subsequent concise matching. Specifically,
SA groups the service providers and solves concise match-
ing in the entire P , while CA groups the customers and
performs concise matching in the entire Q.4 Section 4.3 de-
scribes refinement techniques that could be used with either
SA or CA. Finally, Section 4.4 provides error bounds for
both approaches.

4.1 Service Provider Approximation
Partitioning in SA is performed on set Q. The points q ∈

Q are sorted according to their Hilbert values and processed
in this order. We start with zero service provider groups.
Each point q, in turn, is inserted into an existing group Gm

so that the diagonal of Gm’s MBR does not exceed δ. If no
such group is found, then a new group is formed to include
q. The process is repeated until all service providers q ∈ Q
are grouped.

We proceed to concise matching by extracting one repre-
sentative point per group. The representative point gm of
a group Gm has capacity gm.k =

∑
q∈Gm

q.k and is located
at its geometric centroid ; each coordinate of gm is equal to
the weighted average of points inside Gm. Weighting is per-
formed according to the capacities q.k of points q ∈ Gm, e.g.,
the x-coordinate gm.x of gm is 1∑

q∈Gm
q.k

∑
q∈Gm

(q.x · q.k).

Figure 6 shows a scenario where Q = {q1, ..., q10}. As-
sume that SPP produces the illustrated groups G1, G2, G3

according to parameter δ. The dashed lines correspond to
group MBR diagonals and their lengths cannot be longer
than δ. The representatives of these groups are shown as
gray points g1, g2 and g3. Assuming that all q ∈ Q have
capacity q.k = 2, then the representative capacities are
g1.k = 6, g2.k = 6, g3.k = 8.

q8q4
q1 q10

q6
q3

q7
q5q2

q9g1–
g2–

g3–G1
G3

G2

Figure 6: Service provider partitioning

4We note here that we attempted to combine SA and CA
(i.e., to group both Q and P), but this led to a very poor
matching. Thus, we omit this hybrid method.

The resulting representatives form set Q′ which is used as
an approximation of Q. The concise matching of SA solves
an exact CCA problem over Q′ and P . This step is per-
formed by the IDA algorithm described in Section 3.3, be-
cause (as will be demonstrated by our experiments) it is the
most efficient among the exact methods. The matching M ′

produced by this step will be refined into the final matching
M using one of the techniques presented in Section 4.3.

4.2 Customer Approximation
CA is similar to SA, but groups customers instead of ser-

vice providers. Recall that P is indexed by an R-tree. We
first initialize a set S of customer groups to ∅. Given pa-
rameter δ, we traverse the R-tree. Starting from the root
entries, we compare the MBR diagonal of each of them with
δ. If the diagonal of entry e is smaller than or equal to δ,
we insert it into S (the corresponding group of customers
are those in the subtree rooted at e). Otherwise (i.e., e’s
diagonal is larger than δ), we visit the corresponding node
and recursively repeat this procedure for its entries.

R-tree leaves are an exception to this procedure. In par-
ticular, if δ is small, it is possible that we reach an entry
e corresponding to an R-tree leaf whose diagonal is larger
than δ. An option would be to insert into S all points in e,
but this would result in a large S. Thus, we handle e as fol-
lows. We conceptually split its MBR into two equal halves
on its longest dimension. We repeat this process until the
diagonal of each partition becomes smaller than or equal to
δ. Then, we insert the resulting conceptual entries into S.

Upon termination of the above procedure, all entries in
S have diagonal smaller than δ and the union of points in
their subtrees is the entire P . The size of S, however, can be
reduced (without violating the δ constraint) by an extra step
that merges its contents. Specifically, we use a procedure
similar to SA and group entries in S into conceptual hyper-
entries whose diagonal does not exceed δ.

Let S be the final set of entries (conceptual or not). We
produce a set P ′ of customer representatives as follows. For
each e ∈ S we derive a representative point g located at the
geometric centroid of e. The representative has weight g.w
equal to the number of points in the subtree of e.

To exemplify CA partitioning, assume that the R-tree of
P and parameter δ are as shown in Figure 7 (the R-tree is
illustrated both in the spatial domain and as stored on the
disk). We first access the root, and consider its entries e1

and e2. Entry e2 has smaller diagonal than δ and is inserted
into S. This is not the case for e1, whose pointed entries are
loaded from the disk. Among e1’s entries, e4 and e5 satisfy
the diagonal condition and are included in S. On the other
hand, e3 is a leaf and still has diagonal larger than δ. Thus,
we conceptually divide it into two new entries on its long
dimension (i.e., x dimension). The resulting e3,1 and e3,2

have small enough diagonal and are placed into S. Entries
inserted into S are shown shaded. In the last step, we merge
entries into larger ones (while still satisfying the δ condition);
e4 and e5 form a hyper-entry whose boundaries are shown
dashed. Every entry in the final S implicitly defines a group
of customers Gm. Set P ′ contains the representatives of the
final entries in S, i.e., P ′ = {g1, g2, g3, g4}.

In the concise matching phase, CA computes the optimal
matching M ′ between P ′ and Q. This is performed in main
memory (where P ′ and Q reside) using IDA. Note that in
this setting points in P ′ also have capacities (the represen-

g2–

e1

e2

e3

e5
e4

e3,1 e3,2

e6

e7

g4–

g1–

R-tree root

e1

e1 e2

e2

e6 e7e3 e4 e5

δ

g3–

Figure 7: Customer partitioning

tative weights). This is not a problem, since IDA (as well
as RIA and NIA) can handle capacities in the customer side
of the flow graph too. The difference is that M ′ may assign
“instances” of a representative to multiple service providers.

4.3 Refinement Phase
In both SA and CA, we are given a matching M ′ between

one approximate set (i.e., Q′ or P ′) and one original set (P
or Q, respectively). In either case, M ′ specifies for each
group Gm of service providers (customers) which customers
(instances of service providers) are assigned to it. In other
words, in both SA and CA the refinement phase has to solve
several smaller problems of assigning a set of customers P ′′

to a set of service providers Q′′ (where the number of points
p ∈ P ′′ to be assigned to each q ∈ Q′′ is given by the con-
cise matching phase). We could run an exact algorithm for
each of these smaller problems. This, however, is expensive.
Instead, we propose the following two heuristics5, receiving
smalls sets P ′′ and Q′′ as input.

NN-based refinement : This approach computes the (next)
NN of each q ∈ Q′′ in a round-robin fashion in set P ′′.
When discovering the NN p of service provider q, we include
pair (q, p) in the final assignment M and remove p from P ′′.
If q has reached its number of instances to be assigned to
P ′′, we also delete q from Q′′.

Exclusive NN refinement : According to this strategy, we
identify the p ∈ P ′′ with the minimum distance from any
q ∈ Q′′ that has not reached its number of instances to
be assigned to P ′′ (according to M ′). We insert into the
final assignment M the corresponding pair (q, p) and proceed
with the next customer in P ′′.

4.4 Assignment Cost Guarantee
Let M be the matching computed by SA and MCCA be

the optimal matching. The assignment cost error of M is:

Err(M) = Ψ(M)−Ψ(MCCA), (4)

where Ψ(M) and Ψ(MCCA) are defined as in Equation 1.
We show that Err(M) is at most 2 · γ · δ. Thus, we are able
to control the assignment cost error through parameter δ.

Theorem 3. The assignment error of SA is upper bounded
by 2 · γ · δ.

Proof. Note that approximate matching M has the full
size γ, since concise matching leaves customers unassigned
only if all service providers are fully utilized (i.e., they have
reached their capacity). From the optimal matching MCCA,

5We experimented with several other alternatives but these
two methods were both efficient and quite accurate.

we derive another matching M ′
CCA by replacing each pair

(q, p) ∈ MCCA with pair (g, p), where g is the representative
of q’s group. After the replacement, the cost of each pair
increases/decreases by at most δ (since δ is the maximum
possible distance between q and the weighted centroid g).
Thus, Ψ(M ′

CCA) ≤ Ψ(MCCA) + γ · δ.
Note that M ′

CCA is not necessarily the optimal matching
between Q′ (i.e., the set of service provider representatives)
and P . Let M ′ be the optimal matching between Q′ and
P . We know that Ψ(M ′) ≤ Ψ(M ′

CCA). Combining the two
inequalities, we derive Ψ(M ′) ≤ Ψ(MCCA) + γ · δ.

SA replaces the pairs of M ′ heuristically to form the final
matching M , incuring a maximum error of δ per pair. Hence,
Ψ(M) ≤ Ψ(M ′) + γ · δ. From the last two inequalities, we
infer that Ψ(M) ≤ Ψ(MCCA) + 2 · γ · δ.

The assignment error of CA is bounded as follows.

Theorem 4. The assignment error of CA is upper bounded
by γ · δ.

Proof. The proof follows the same lines as that of SA,
the difference being that the maximum possible distance be-
tween a customer p and its group representative g is δ

2
(since

g is always the geometric centroid of p’s group MBR).

5. EXPERIMENTS
This section empirically evaluates the performance of our

algorithms. All methods were implemented in C++ and ex-
periments were performed on a Pentium D 3.0GHz machine,
running on Ubuntu 7.10. Section 5.1 describes the datasets,
the parameters under investigation, and other settings used
in our evaluation. In Section 5.2 we study the performance
of our algorithms on optimal CCA computation. Section
5.3 explores the efficiency and assignment cost error of our
techniques on approximate CCA computation.

5.1 Data Generation and Problem Settings
The CCA problem takes two spatial datasets as input:

the service provider set Q and the customer set P . Both
datasets were generated on the road map of San Francisco
(SF) [3], using the generator of [15]. In particular, the points
fall on edges of the road network, so that 80% of them are
spread among 10 dense clusters, while the remaining 20% are
uniformly distributed in the network. This dataset selection
simulates a real situation where some parts of the city are
denser than others. To establish the generality of our meth-
ods, we also present results for different distributions. All
datasets are normalized to lie in a [0, 1000]2 space.

By default, the capacity k of all q ∈ Q is 80 and the dataset
cardinalities are |Q|=1K and |P |=100K. Parameter θ of RIA
is fine-tuned (and set to 0.8), for fairness in the comparison
with NIA and IDA. Table 2 shows the parameters under
investigation. We assume that the service provider dataset
Q is small enough to fit in main memory. Each P dataset is
indexed by an R-tree with 1Kbyte page size. We use an LRU
buffer with size 1% of the tree size. We record the memory
usage (i.e., |Esub|, number of edges in the subgraph) and the
CPU time. Also, we measure I/O time by charging 10ms per
page fault [10].

5.2 Experiments on Optimal Assignment
SSPA requires that the complete flow graph is stored in

main memory (as described in Section 2.2). For our default

Parameter Default Range
|Q| (in thousands) 1 0.25, 0.5, 1, 2.5, 5
|P | (in thousands) 100 25, 50, 100, 150, 200

Capacity k 80 20, 40, 80, 160, 320
Diagonal δ SA: 40, CA: 10 10, 20, 40, 80, 160

Table 2: System parameters

setting this leads to space requirements that exceed several
times the available system memory. To provide, however,
an intuition about (i) the inherent complexity of the prob-
lem and (ii) the relative performance of SSPA versus our
algorithms, we experiment on a smaller problem; we gen-
erate P and S as described in Section 5.1, with |Q| = 250
and |P | = 25K, so that the flow graph fits in main memory.
For RIA, NIA, and IDA, P is indexed by a memory-based
R-tree. SSPA does not utilize an index, as it involves no spa-
tial searches. Figure 8 shows the CPU time (in logarithmic
scale) versus capacity k in this small problem. Our meth-
ods are one to three orders of magnitude faster than SSPA.
We postpone the explanation of the observed trends for Fig-
ure 9 (with disk-resident P), but stress the excessive time
requirements of SSPA and the efficiency of our methods.

NIA
RIA
SSPA

IDA

 1,000

40 80 160 320

C
PU

 ti
m

e
(s

)
k

 1

 10

 100

20

Figure 8: CPU time vs. k, |Q| = 250, |P | = 25K

In the remaining experiments, we focus on disk-based P
and large problem instances, excluding the inapplicable SSPA.
Figure 9(a) shows the subgraph size Esub as a function of
k (setting |Q| and |P | to their default values). We include
the complete bipartite graph size |EFULL| = |Q| · |P | as a
reference (indicated by FULL). Due to the application of
Theorem 1, our algorithms (RIA, NIA, IDA) use/store only
a fragment of the complete bipartite graph. IDA explores
fewer edges than RIA and NIA for small values of k. The rea-
son behind this is that for k · |Q| < |P |, providers are likely
to become full early and the tighter bounds of IDA over
NIA/RIA can be effectively utilized. On the other hand, if
k · |Q| > |P |, few or no providers become full, so IDA does
not achieve additional pruning compared to NIA/RIA.

1.0e0

1.0e1

1.0e2

1.0e3

1.0e4

1.0e5

1.0e6

1.0e7

1.0e8

1.0e9

 0 50 100 150 200 250 300

si
ze

 o
f s

ub
gr

ap
h

k

RIA
NIA
IDA

FULL

I/O time
CPU time

R
IA

N
IA

ID
A

R
IA

N
IA

ID
A

R
IA

N
IA

ID
A

tim
e

(s
)

k=20 k=40 k=80 k=160 k=320

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

R
IA

N
IA

ID
A

R
IA

N
IA

ID
A

(a) |Esub| (b) total time

Figure 9: Performance vs. k, |Q| = 1K, |P | = 100K

Figure 9(b) shows the total execution time in the previous
experiment, and breaks it into I/O and CPU cost. The I/O

time depends primarily on (and thus follows the increasing
trend of) |Esub|. The CPU time also rises with k, since
the flow graph size and the number of iterations γ increase
with k. For large k values, however, the increase for RIA
is not as steep, while for INA and NIA the CPU cost drops
slightly. This happens because the capacity constraint is
looser and, essentially, the problem becomes easier. NIA
has lower CPU time than RIA because NIA adds new edges
one-by-one and keeps the subgraph small. Note that even
for large k (where the final |Esub| is similar for RIA and
NIA), the early iterations of NIA run on a smaller Esub

which increases only towards its final iterations. On the
other hand, IDA is faster than NIA because (i) Theorem 2
computes the first assignments fast and (ii) the utilization of
full service providers (i.e., with non-zero qi.α values) avoids
unnecessary edge insertions into Esub and leads to earlier
termination.

The next experiment investigates the effect of service pro-
vider cardinality |Q| (in Figure 10). In general, the relative
performance of the algorithms is consistent with our obser-
vations in Figure 9; IDA prunes more edges than NIA/RIA
when k · |Q| < |P |. The cost of the problem increases with
|Q|, but saturates when k · |Q| > |P |, since the optimal as-
signment is found before long edges (from service providers
to their furthest neighbors) are examined.

1.0e0

1.0e1

1.0e2

1.0e3

1.0e4

1.0e5

1.0e6

1.0e7

1.0e8

1.0e9

 0 1 2 3 4 5

si
ze

 o
f s

ub
gr

ap
h

|Q| (kilo)

RIA
NIA
IDA

FULL

I/O time
CPU time

N
IA

ID
A

R
IA

N
IA

ID
A

R
IA

N
IA

ID
A

R
IA

N
IA

ID
A

tim
e

(s
)

|Q|=0.25 |Q|=0.5 |Q|=1 |Q|=2.5 |Q|=5

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

R
IA

N
IA

ID
A

R
IA

(a) |Esub| (b) total time

Figure 10: Performance vs. |Q|, k = 80, |P | = 100K

Figure 11 investigates the effect of |P |. When |P | in-
creases, the complete flow graph grows but the subgraph
explored by our algorithms shrinks. Intuitively, if there are
too many customers, the NNs of each service provider are
closer, and stand a higher chance to be assigned to it; i.e.,
the problem becomes easier and fewer Esub edges (and, thus,
computations) are needed. However, for |P | = 200K the cus-
tomer R-tree has one more level than smaller cardinalities,
incurring more I/Os and a higher overall cost. Note that
the difference of IDA from RIA/NIA grows as |P | becomes
larger compared to k·|Q| (for the reasons mentioned earlier).

1.0e0

1.0e1

1.0e2

1.0e3

1.0e4

1.0e5

1.0e6

1.0e7

1.0e8

1.0e9

 0 50 100 150 200

si
ze

 o
f s

ub
gr

ap
h

|P| (kilo)

RIA
NIA
IDA

FULL

I/O time
CPU time

R
IA

N
IA

ID
A

R
IA

N
IA

ID
A

R
IA

N
IA

ID
A

R
IA

N
IA

ID
A

tim
e

(s
)

|P|=25 |P|=50 |P|=100 |P|=150 |P|=200

 0
 200
 400
 600
 800

 1,000
 1,200
 1,400
 1,600
 1,800

R
IA

N
IA

ID
A

(a) |Esub| (b) total time

Figure 11: Performance vs. |P |, k = 80, |Q| = 1K

So far we assumed that all service providers have equal
capacities q.k. Figure 12 compares the algorithms for prob-
lems where the providers have different k, taken randomly
from the ranges shown as labels on the horizontal axis. The
results are similar to those in Figure 9; i.e., mixed k values
do not affect the effectiveness of our pruning techniques.

1.0e0

1.0e1

1.0e2

1.0e3

1.0e4

1.0e5

1.0e6

1.0e7

1.0e8

1.0e9

 0 50 100 150 200 250 300

si
ze

 o
f s

ub
gr

ap
h

k

RIA
NIA
IDA

FULL

I/O time
CPU time

ID
A

R
IA

N
IA

ID
A

R
IA

N
IA

ID
A

R
IA

N
IA

ID
A

tim
e

(s
)

10~30 20~60 40~120 80~240 160~480

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

R
IA

N
IA

ID
A

R
IA

N
IA

(a) |Esub| (b) total time

Figure 12: Perf. for mixed k, |Q| = 1K, |P | = 100K

Figure 13 compares the algorithms when Q and P follow
varying distributions; uniform (U) places points uniformly
in the SF network, while clustered (C) generates datasets
in the way described in Section 5.1. For example, label
“UvsC”on the horizontal axis corresponds to uniform service
providers and clustered customers. We observe that the cost
for computing the optimal assignment increases considerably
when the two sets are distributed differently. If Q is uniform
and P is clustered (e.g., customers gather in central squares
during New Year’s Eve), some providers are far from their
nearest customer clusters and compete for points far from
them, thus increasing the size of the examined subgraph.
If Q is clustered and P is uniform (e.g., service providers
concentrate around certain regions), the providers cannot
fill their capacities with customers near them, and need to
expand their search ranges very far. In both cases, NIA
is slower than RIA, because the incremental edge retrieval
(that is slower than a batch range-based insertion in RIA)
is invoked numerous times.

IDA
NIA
RIA

 1.0e2

 1.0e4

 1.0e5

 1.0e6

 1.0e7

 1.0e8

UvsU UvsC CvsU CvsC

si
ze

 o
f

su
bg

ra
ph

data distributions

 1.0e0

 1.0e1

 1.0e3

I/O time
CPU time

 5,000

 15,000

 20,000

 25,000

R
IA

N
IA

ID
A

R
IA

N
IA

ID
A

R
IA

N
IA

CvsC

ID
A

R
IA

N
IA

ID
A

tim
es

 (
s)

CvsUUvsU UvsC

 0

 10,000

(a) |Esub| (b) total time

Figure 13: Different distributions (default k, |Q|, |P |)

5.3 Experiments on Approximate Assignment
In this section, we evaluate the accuracy of our approxi-

mate CCA methods (i.e., SA and CA) presented in Section
4, and compare their execution time with IDA (the best ex-
act algorithm). We measure the accuracy of an approximate
matching M by Ψ(M)/Ψ(MCCA), where MCCA is the opti-
mal assignment. For each of SA and CA, we implemented
both the NN-based and exclusive NN refinement techniques
(indicated by “N” and “E” after SA or CA in chart labels).

Figure 14 shows the approximation quality and the run-
ning time as a function of the diagonal parameter δ (used in
the partitioning phase). Observe that the CA variants are
significantly better than those of SA in terms of quality and
efficiency for all values of δ. An exception is δ = 10 where
SA achieves a better approximation, at a cost, however, that
is comparable to IDA (since almost every provider forms a
group by itself). As expected, accuracy and execution cost
drop with δ. CA with as small δ as 10 achieves great perfor-
mance improvement over IDA, while producing a matching
only marginally worse than the optimal.

 1

 1.5

 2

 2.5

 3

 3.5

 0 20 40 60 80 100 120 140 160

Q
ua

lit
y

Diagonal

SAN
SAE
CAN
CAE

CPU time
I/O time

SA
E

C
A

N
C

A
E

ID
A

SA
N

SA
E

C
A

N
C

A
E

ID
A

SA
N

SA
E

C
A

N

C
A

N

ID
A

SA
N

SA
E

C
A

E

C
A

E

tim
e

(s
)

d=10 d=20 d=40 d=80 d=160

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

ID
A

SA
N

SA
E

C
A

N
C

A
E

ID
A

SA
N

(a) quality (b) total time

Figure 14: Quality vs. δ (default k, |Q|, |P |)

In the remaining experiments, we set δ to 40 for SA,
and to 10 for CA, as those values achieve the best effi-
ciency/accuracy trade-off. We evaluate the approximate so-
lutions using the defaults and ranges in Table 2 for k, |Q|,
and |P |. In Figure 15, we vary k and observe that the ap-
proximation quality improves with it. As k increases, the
providers are assigned more distant customers; i.e., both
Ψ(M) and Ψ(MCCA) grow. On the other hand, the pro-
vider/customer group MBRs remain constant (as δ is fixed)
and, hence, the relative error of a suboptimally assigned
customer drops. The CA variants are more robust (i.e., less
affected by k) than SA, with a 12% error in the default, and
23% in the worst case. The execution time of SA/CA follows
the trend of IDA, due to their IDA-based concise matching
(but both SA and CA are several times faster).

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300

Q
ua

lit
y

k

SAN
SAE
CAN
CAE

CPU time
I/O time

C
A

E

ID
A

SA
N

SA
E

C
A

N
C

A
E

ID
A

SA
N

SA
E

C
A

N

C
A

N

ID
A

SA
N

SA
E

C
A

E

C
A

E

tim
e

(s
)

k=20 k=40 k=80 k=160 k=320

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

ID
A

SA
N

SA
E

C
A

N
C

A
E

ID
A

SA
N

SA
E

C
A

N

(a) quality (b) total time

Figure 15: Performance vs. k, |Q| = 1K, |P | = 100K

Figure 16 evaluates the approximation methods for var-
ious service provider cardinalities. Again, CA is more ac-
curate than SA, while there are only marginal differences
between its CAN and CAE variants. The quality of CA
worsens with |Q|, because the more service providers around
a customer group, the higher the chances for a suboptimal
pair in M . On the other hand, in SA the provider groups
have a fixed maximum diagonal δ, but their density varies.
Very low or very large densities lead to poor approximations.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 1 2 3 4 5

Q
ua

lit
y

|Q| (kilo)

SAN
SAE
CAN
CAE

CPU time
I/O time

C
A

N
C

A
E

ID
A

SA
N

SA
E

C
A

N
C

A
E

ID
A

SA
N

SA
E

C
A

N

C
A

N

ID
A

SA
N

SA
E

C
A

E

C
A

E

tim
e

(s
)

|Q|=0.25 |Q|=0.5 |Q|=1 |Q|=2.5 |Q|=5

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

 4,000

ID
A

SA
N

SA
E

C
A

N
C

A
E

ID
A

SA
N

SA
E

(a) quality (b) total time

Figure 16: Performance vs. |Q|, k = 80, |P | = 100K

In Figure 17, we investigate the effect of |P |. The increase
of |P | reduces the accuracy of SA; as the space around every
provider group becomes denser with customers, the poten-
tial for suboptimal matchings becomes higher. The accuracy
of CA is affected to a lesser degree by |P |. The slight er-
ror increase is because CA groups more customers together,
implying a coarser partitioning and worse approximation.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 50 100 150 200

Q
ua

lit
y

|P| (kilo)

SAN
SAE
CAN
CAE

I/O time
CPU time

 0

 600

 800

 1,000

 1,200

ID
A

SA
N

SA
E

C
A

N
C

A
E

ID
A

SA
N

SA
E

C
A

N
C

A
E

ID
A

SA
N

SA
E

C
A

N
C

A
E

ID
A

SA
N

SA
E

C
A

N
C

A
E

ID
A

SA
N

SA
E

C
A

N
C

A
E

tim
e

(s
)

|P|=25 |P|=50 |P|=100 |P|=150 |P|=200

 200

 400

(a) quality (b) total time

Figure 17: Performance vs. |P |, k = 80, |Q| = 1K

Figure 18 compares the approximate methods for differ-
ent Q and P distributions. CA performs best in terms of
running time for all distributions. CA is also more accu-
rate than SA for similarly distributed Q and P (which is
the case in most applications). For differently distributed Q
and S, the quality of SA and CA is comparable, and close
to optimal. To summarize the approximation experiments,
CA typically computes a near-optimal matching, while be-
ing orders of magnitude faster than IDA.

CAE
CAN
SAE
SAN

 1

 1.5

 1.6

UvsU UvsC CvsU CvsC

Q
ua

lit
y

data distributions

 1.3

 1.2

 1.1

 1.4

CPU time
I/O time

C
A

N
C

A
E

ID
A

SA
N

SA
E

C
A

N
C

A
E

ID
A

SA
N

SA
E

C
A

N
C

A
E

tim
e

(s
)

UvsU UvsC CvsU CvsC

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

ID
A

SA
N

SA
E

C
A

N
C

A
E

ID
A

SA
N

SA
E

(a) quality (b) total time

Figure 18: Different distributions (default k, |Q|, |P |)

6. CONCLUSION
In this paper, we identify the capacity constrained assign-

ment (CCA) problem, which retrieves the matching (be-
tween two spatial point sets) with the lowest assignment
cost, subject to capacity constraints. CCA is important to

applications involving assignment of users to facilities based
on spatial proximity and capacity limitations. We present
efficient CCA techniques that expand the search space in-
crementally and effectively prune it. We also develop ap-
proximate CCA solutions that provide a trade-off between
computation cost and matching quality. According to our
experimental results, IDA is the best algorithm for the ex-
act CCA problem, while CA is the method of choice for
approximate CCA matching.

In our assumed setting, the set of service providers fits in
main memory, while the customers are indexed by a disk-
based R-tree. In the future, we plan to extend our frame-
work to the scenario where both sets are disk-resident, in-
corporating hash-based techniques.

7. REPEATABILITY ASSESSMENT RESULT
All the results in this paper were verified by the SIGMOD

repeatability committee. Code and/or data used in the pa-
per are available at:
http://www.sigmod.org/codearchive/sigmod2008/

8. REFERENCES
[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.

Network Flows: Theory, Algorithms, and Applications.
Prentice Hall, first edition, 1993.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R*-tree: An Efficient and Robust
Access Method for Points and Rectangles. In
SIGMOD, 1990.

[3] T. Brinkhoff. A Framework for Generating
Network-Based Moving Objects. GeoInformatica,
6(2):153–180, 2002.

[4] A. Corral, Y. Manolopoulos, Y. Theodoridis, and
M. Vassilakopoulos. Closest Pair Queries in Spatial
Databases. In SIGMOD, 2000.

[5] A. V. Goldberg and R. Kennedy. An Efficient Cost
Scaling Algorithm for the Assignment Problem.
Mathematical Programming, 71:153–177, 1995.

[6] A. Guttman. R-Trees: A Dynamic Index Structure for
Spatial Searching. In SIGMOD, 1984.

[7] G. R. Hjaltason and H. Samet. Distance Browsing in
Spatial Databases. ACM Trans. Database Syst.,
24(2):265–318, 1999.

[8] J. Munkres. Algorithms for the Assignment and
Transportation Problems. Journal of the Society of
Industrial and Applied Mathematics, 5(1):32–38, 1957.

[9] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The
R+-Tree: A Dynamic Index for Multi-Dimensional
Objects. In VLDB, 1987.

[10] A. Silberschatz, H. F. Korth, and S. Sudarshan.
Database System Concepts. McGraw-Hill, fifth edition,
2005.

[11] I. H. Toroslu and G. Üçoluk. Incremental Assignment
Problem. Information Sciences, 177:1523–1529, 2007.

[12] L. H. U, N. Mamoulis, and M. L. Yiu. Continuous
Monitoring of Exclusive Closest Pairs. In SSTD, 2007.

[13] J. Vygen. Approximation Algorithms for Facility
Location Problems (Lecture Notes). University of
Bonn, 2004.

[14] R. C.-W. Wong, Y. Tao, A. Fu, and X. Xiao. On
Efficient Spatial Matching. In VLDB, 2007.

[15] M. L. Yiu and N. Mamoulis. Clustering objects on a
spatial network. In SIGMOD, 2004.

