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ABSTRACT

Recently, skyline queries have attracted much attention in
the database research community. Space partitioning tech-
niques, such as recursive division of the data space, have
been used for skyline query processing in centralized, paral-
lel and distributed settings. Unfortunately, such grid-based
partitioning is not suitable in the case of a parallel skyline
query, where all partitions are examined at the same time,
since many data partitions do not contribute to the overall
skyline set, resulting in a lot of redundant processing.

In this paper we propose a novel angle-based space parti-
tioning scheme using the hyperspherical coordinates of the
data points. We demonstrate both formally as well as through
an exhaustive set of experiments that this new scheme is
very suitable for skyline query processing in a parallel share-
nothing architecture. The intuition of our partitioning tech-
nique is that the skyline points are equally spread to all
partitions. We also show that partitioning the data accord-
ing to the hyperspherical coordinates manages to increase
the average pruning power of points within a partition. Our
novel partitioning scheme alleviates most of the problems
of traditional grid partitioning techniques, thus managing
to reduce the response time and share the computational
workload more fairly. As demonstrated by our experimen-
tal study, our technique outperforms grid partitioning in all
cases, thus becoming an efficient and scalable solution for
skyline query processing in parallel environments.

1. INTRODUCTION

Skyline queries [ﬂ} have attracted much attention recently,
since they help users to make intelligent decisions over com-
plex data, where many conflicting criteria are considered.
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Figure 1: Skyline Example

Consider for example a database containing information about
hotels. Each tuple of the database is represented as a point
in a data space consisting of numerous dimensions. In our
example, the y-dimension represents the price of a room,
whereas the z-dimension captures the distance of the hotel
to a point of interest such as the beach (Figure ) Accord-
ing to the dominance definition, a hotel dominates another
hotel because it is cheaper and closer to the beach. Thus,
the skyline points are the best possible tradeoffs between
price and distance from the beach.

Space partitioning techniques, such as recursive division
of the data space, have been used for skyline query pro-
cessing in centralized [E] parallel [@] and distributed [@]
settings. This grid-based partitioning technique seems to
become a widely accepted data partitioning method for sky-
line computation in distributed environments. The goals of
these partitioning techniques is to divide the data space or
the data points into partitions, in order to make it fit into
main memor [H] or to divide the workload among different
servers , R1]. Thereafter, the query is executed on each
partition and merged into a global result set. The main ad-
vantage of the grid partitioning technique is that some data
space partitions may not be examined, when the query is ex-
ecuted in a partially serialized manner. However, in the case
of parallel processing of the skyline query, where all parti-
tions are examined simultaneously, the performance of grid
partitioning degrades. This is mainly because many parti-
tions do not contribute to the global result set (or contribute
marginally), resulting in a lot of redundant processing.
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Figure 2: Partitioning example.

With the explosive increase of available data, parallelizing
costly query operators, such as the skyline operator, which
is CPU-intensive [P, E], is important in order to retrieve the
results in reasonable response time. Centralized skyline al-
gorithms have the disadvantage that response time increases
rapidly (up to quadratic) with the cardinality of the dataset.
Therefore, a centralized algorithm becomes inappropriate
when massive amounts of data have to be processed. Parallel
query processing attempts to alleviate some of the deficien-
cies of such problematic situations and has been explored by
the database research community for other operators such
as joins, nearest neighbor queries, etc. Although the skyline
operator has been thoroughly investigated in centralized set-
tings @, E, , 14, 1L7]._only recently parallel [E, H, E} and
distributed | E] skyline query processing has at-
tracted attention.

In this paper, we address the problem of how to efficiently
compute skyline queries over a set of N servers in parallel.
We focus on the important issue of how to partition the
dataset to the N servers, in order to increase the efficiency
of skyline query processing. In our setting, queries arrive at
a central node, which is also called the coordinator server,
that distributes the processing requests to all participating
servers and collects their results. The query is executed si-
multaneously on all servers. Our objectives are to minimize
the response time and share the processing load evenly.

In this spirit, we propose a novel angle-based partitioning
scheme that alleviates many of the shortcomings of grid-
based partitioning. We first transform the coordinates of
each point of the dataset to hyperspherical coordinates and
then we apply grid partitioning on the respective angular
coordinates. This approach results in space partitions that
are more homogeneous with respect to skyline processing,
than in the case of grid partitioning where some partitions
are more important and others are non-contributing. Con-
sider the example depicted in Figure [l. The dataset is parti-
tioned over four servers, in Figure D(a)| using the angle-based
partitioning technique, while in Figure using grid par-
titioning. The black points are the global skyline points
returned to the user. For the angle-partitioning, each parti-
tion retrieves only few local skyline points and the majority
of them are also skyline points of the entire dataset, while
for the grid partitioning some of the partitions (such as the
upper right) do not contribute to the skyline result set at
all. In this example, the angle-based partitioning scheme
gathers 6 local skyline points and 5 of them are the global
skyline points, while the grid approach results 11 local sky-
line points. Thus, the total number of local skyline points,
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that need to be processed by the coordinator node in order
to compute the 5 global skyline points, is much higher in the
case of the grid partitioning. Therefore, the post-processing
cost is significantly lower for the angle-based partitioning,.

Another important feature of our partitioning scheme is
that the average pruning power of a local data point is much
higher, compared to the case of grid partitioning. While we
defer a detailed analysis to Section E, in Figure P| we can
see that points a and k& dominate all other points in their
respective partition. This property results in per-partition
processing times that are much lower compared to the case of
grid partitioning. This intuition is also demonstrated in our
experimental evaluation. To summarize, the contributions
of this paper are the following;:

e We present a novel partitioning method that uses the
hyperspherical coordinates for parallelizing skyline query
processing over a set of servers, in a deliberate way,
such that response time decreases significantly and the
processing load is evenly distributed among servers.

e We show both formally as well as experimentally that
our method is particularly suitable for skyline compu-
tation, as it distributes the global skyline points evenly
to all partitions while preserving their pruning power.

e We present two algorithms that utilize the novel angle-
based partitioning scheme for distributing evenly the
dataset among the servers. The first is intented for
uniform datasets and partitions the space in equal vol-
umes, whereas the second works for arbitrary data dis-
tributions.

e We provide an extensive comparative experimental eval-
uation demonstrating the advantages of our partition-
ing scheme over the widely employed grid partitioning
technique for parallel skyline computation. We are up
to 10 times better than grid in terms of response time
and constantly outperform both grid and random par-
titioning.

The outline of this paper is the following: in Section E, the
related work is presented. Section E presents the preliminar-
ies, while in Section E, we state the problem tackled in this
work. In Section E, we introduce our angle-based partition-
ing scheme for parallel skyline query processing. Then, in
Section E, we present two algorithms that utilize the angle
partitioning approach, namely for uniform and for arbitrary
data distributions. In Section [] we present an extensive
experimental evaluation of the proposed techniques, and fi-
nally in Section f§ we conclude the paper and sketch future
research directions.

2. RELATED WORK

Skyline computation has recently attracted considerable
attention in the database research community. Borzsonyi
et al. [ﬂ] first investigate the skyline computation problem
in the context of databases. They proposed the BNL [E]
algorithm that compares each point of the database with
every other point, and reports it as a result only if it is not
dominated by any other point. D&C divides the data
space into several regions, calculates the skyline in each re-
gion, and produces the final skyline from the points in the
regional skylines. SF'S [E], which is based on the same prin-
ciple as BNL, improves performance by first sorting the data



according to a monotone function. Thereafter, index-based
techniques are proposed in several works. Tan et al. pro-
pose the first progressive techniques, namely Bitmap and In-
dex method. In [@]7 an algorithm based on nearest neighbor
search on the indexed dataset is presented. Then, Papadias
et al. [[l4] propose a branch and bound algorithm to progres-
sively output skyline points from a dataset indexed by an
R-Tree, with guaranteed minimum I/O cost.

There has been a growing interest in distributed @, ﬂ, @,

, and parallel [E, E, skyline computation lately.
In [JI, L2, skyline processing is studied over distributed web
sources. In both cases, the authors assume vertical parti-
tioning of the dataset across a set of participating web ac-
cessible sources. This is entirely different from out setup,
where the aim is to distribute the dataset horizontally to a
set of IV servers.

Skylines have been studied in other distributed contexts
as well. Huang et al. [E} assume a setting with mobile de-
vices communicating via an ad-hoc network (MANETS), and
study skyline queries that involve spatial constraints. The
authors present techniques that aim to reduce both the com-
munication cost and the execution time on each single de-
vice. In [[Lf], the authors study the problem of subspace
skyline processing in a super-peer network, where peers hold
their data in an autonomous manner and collectively pro-
cess skyline queries on subspaces. Both approaches do not
address the issue of space partitioning. In [ﬂ], the authors
focus on Peer Data Management Systems (PDMS), where
each peer provides its own data with its own schema. Their
techniques provide probabilistic guarantees for the result’s
correctness.

There are also several approaches for P2P skyline com-
putation that apply space partitioning techniques. Wang et
al. [E] use the z-curve method to map the multidimensional
data space to one dimensional values, that can then be as-
signed to peers connected in a tree overlay like BATON @]
In this approach, due to the space partitioning scheme, there
arises a load balancing problem. In particular, a small num-
ber of peers (those that were allocated space near the origin
of the axes) eventually have to process almost every query.
In order to improve the performance the authors propose ex-
tensions such as smaller space allocation to peers responsible
for these regions or data replication techniques. However,
this partitioning technique is not efficient for parallel skyline
computation, since many servers that do not_contribute to
the skyline result set are queried. Li et al. [[L1]] use a space
partitioning method that is based on an underlying seman-
tic overlay (Semantic Small World - SSW). Their approach
shares the same drawbacks as [@, as the main difference is
only the use of SSW instead of a tree structure.

In [@], Wu et al. first address the problem of paralleliz-
ing skyline queries over a share-nothing architecture. The
proposed algorithm named DSL, relies on space partition-
ing techniques. The author propose two mechanisms, recur-
sive region partitioning and dynamic region encoding. Their
techniques enforce the skyline partial order, so that the sys-
tem pipelines participating machines during query execution
and minimizes inter-machine communication. In contrast to
our approach where all servers process the query at the same
time, in [RY] each server starts the skyline computation on
its data after receiving the results of other servers based on
the partial order.

Parallel skyline computation is also studied in [E} The al-

[ Symbols | Description |
P Dataset
d Data dimensionality
n Dataset cardinality
N Number of partitions
S i-th server
D; i-th data space partition
P; Points of i-th partition
Di i-th coordinate of point p
SKYp, Skyline set of partition P;
bi i-th angular coordinate

Table 1: Overview of symbols.

gorithm first partitions the dataset in a random way to the
participating machines, in order to ensure that the structure
of each partition is similar to the original dataset. Then
each machine processes the skyline over its local data using
an R-Tree as indexing structure. We explore the random
partitioning technique in our experiments and we show that
our method partitions the dataset in a way that improves
the total response time. A different approach regarding par-
allel skyline computation is presented in [fj]. In contrast to
the previous approaches, the authors use a multi-disk archi-
tecture with one processor and they use the parallel R-Tree.
The main focus of this paper is to access more entries from
several disks simultaneously, in order to improve the pruning
of non-qualifying points. The authors focus on the efficient
distribution of the nodes of the parallel R-Tree, while our
approach focuses on the data space partitioning problem for
a parallel share-nothing architecture.

To summarize, most research papers that apply a space
partitioning scheme for distributed or parallel skyline pro-
cessing rely on a grid-based partitioning. For example, in
space is partitioned based on CAN [[L5], whereas in [[L9] a
tree-structured overlay, is used to partition the data space
to peers. While this type of partitioning has some attractive
features (small number of peers necessary to process a sky-
line query), it suffers from poor load balancing, causing few
peers to carry all the processing burden, while most peers are
practically idle. While in a peer-to-peer network the focus
is on minimizing the number of participating peers at query
time, in a parallel share-nothing architecture the query is
processed simultaneously by all participating servers and we
need to minimize the response time by sharing the workload
evenly to the servers.

3. PRELIMINARIES

Given a data space D defined by a set of d dimensions
{di,...,dq} and a dataset P on D with cardinality n, a point
p € P can be represented as p = {p1,...,pa} where p; is a
value on dimension d;. Without loss of generality, let us
assume that the value p; in any dimension d; is greater or
equal to zero (p; > 0) and that for all dimensions the mini-
mum values are more preferable.

Skyline Definition: A point p € P is said to dominate
another point ¢ € P, denoted as p < ¢, if (1) on every di-
mension d; € D, p; < ¢;; and (2) on at least one dimension
d; € D, p; < qj. The skyline is a set of points SKYp C P
which are not dominated by any other point in P. The
points in SKYp are called skyline points.



Let us further assume a set of N servers S; participating
in the parallel computation. The dataset P is horizontally
distributed to the N partitions based on a space partitioning
technique, such that P; is the set of points stored by server S;
where P; C P, |, «;«ny Ps = P and P,NP; = @ for all i # j.

Observation: A point p € P is a skyline point p € SKYp
if and only if there exists a partition P; (1 < i < N) with
pe P, CPandpe SKYp,.

In other words, the skyline points over a horizontally par-
titioned dataset are a subset of the union of the skyline
points of all partitions. Each server S; computes locally the
skyline set SKYp, (mentioned also as local skyline points)
based on the locally stored points P;. In a second phase,
the local skylines are merged to the global skyline set, by
computing the skyline of the local skyline sets. The above
observation guarantees that the parallel skyline algorithm
returns the exact skyline set, after merging the local skyline
results sets independently from the partitioning algorithm.
For a complete reference to the symbols used in this paper
see Table [l

4. PROBLEM STATEMENT

Consider a parallel share-nothing architecture. In the
typical case, there exists one central server, called coordi-
nator, which is responsible for a set of IV _servers. As the
skyline computation is CPU-intensive [B, ], especially for
datasets of high cardinality and dimensionality, the coordi-
nator distributes the processing task to the N servers. This
is achieved by first partitioning the input data to the N
servers. Then each server computes the skyline over its local
data and returns its local skyline result set to the coordina-
tor, which merges the result sets and computes the global
skyline result.

It is obvious that, given a set of N servers, the overall
skyline query performance depends on the efficiency of the
local skyline computation and the performance of the merg-
ing phase. Thus, the efficiency of the parallel skyline com-
putation for a share-nothing architecture, depends mainly
on the space partitioning method used for distributing the
dataset among the N servers. Therefore, in this paper we
focus on the partitioning scheme in order to efficiently par-
allelize skyline computation.

In the following we present the goals of parallel skyline
computation. Then we provide a short overview of exist-
ing partitioning schemes and point out their shortcomings,
which are alleviated by our angle-based space partitioning.

4.1 Problem Definition

Problem Definition: Given a dataset P in a d-dimensional
data space D and an integer number N that corresponds to
the available servers, determine a suitable space partitioning
scheme, in order to support efficient skyline query processing
and minimize the response time.

Motivated by the aforementioned problem definition, we
describe our sub-goals for the parallel skyline algorithm.

1. Parallelism: In order to maximize parallelism, we are
interested in a parallel skyline computation algorithm
for a share-nothing architecture that is non-blocking in
the sense that each server processes the skyline query

immediately after receiving it and returns its results
to the coordinator server as soon as its local result set
is computed.

2. Fairness: Our objective is that the partitioning scheme
utilizes all available servers and that the workload is
evenly distributed among the participating servers. To
achieve this objective there are two fundamental is-
sues. First, each server should be allocated approxi-
mately the same number of points. Second, the skyline
algorithm should have similar performance on the data
points in every partition.

3. Size of intermediate results: In order not to waste
resources and to avoid overburdening the coordinator
at the final step, we want the union of the local skylines
returned to the coordinator for the merging phase be
as small as possible. Obviously this set can not be
smaller than the global result set and ideally it should
contain only the global skylines.

4. Equi-sized local skyline sets: To ensure that each
server contributes the same to the global skyline re-
sult set, the global skyline points should be distributed
equally to all servers.

5. Scalability: The proposed partitioning should scale
up to a large number of partitions and should also
easily support the case where new servers are added.

6. Flexibility: Each participant server may use its own
skyline algorithm (BBS, BNL, SFS, etc.) for process-
ing its locally stored data points.

In this spirit, we propose a novel partitioning scheme,
termed angle-based partitioning, which overcomes the limita-
tions of traditional data space partitioning approaches, with
respect to parallel skyline query processing. We first present
existing space partitioning techniques that have been used
for skyline computations and point out their shortcomings.

4.2 Random Partitioning

A straightforward approach to partition a dataset among
a number of servers is to choose randomly one of the servers
for each point. Random partitioning has been employed
in [E] for parallel skyline computation. By partitioning the
data points randomly among the servers, it is likely that
each partition follows the data distribution of the initial
dataset. Therefore, random partitioning fulfils the require-
ment of fairness. Since each partition holds a random sample
of the data, they are expected to produce the same num-
ber of skyline points and the same percentage of them are
expected to belong to the final result set. Moreover, the
random partitioning scheme is easy to implement and does
not add any computational overhead in order to decide in
which partition each point falls. During query processing,
each partition processes the query independently and ran-
dom partitioning is non-blocking.

Even though random partitioning seems suitable with re-
spect to most of the requirements, the main drawback of
this approach is that the size of the local result sets is not
minimized and many points that belong to the local skyline
sets do not belong in the global skyline result set. Gen-
erally, there is no way to alleviate this shortcoming in or-
der to reduce the transfer cost of the local skylines from



Figure 3: 3-dimensional angle-based partitioning

the servers to the coordinator and the post-processing cost
there. More importantly, the performance of random par-
titioning degrades significantly in the case of specific data
distributions. If the dataset is anticorrelated, random par-
titioning relays the high processing cost to all partitions.

4.3 Grid Partitioning

The grid partitioning scheme is based on recursively di-
viding some dimension of the data space into two parts.
The most prevalent method for space partitioning regarding
skyline query processing (both for parallel and distributed
settings) is grid-based partitioning. Variants of this type
of partitioning are employed both in parallel [@] and dis-
tributed [@] settings, where each server is responsible for a
partition, and servers are connected in a way that reflects
the order in which the servers should be contacted. The
main advantage of this approach is that through partially
serialized communication between servers, they ensure that
the correct results are returned while avoiding to contact all
servers, especially as several do not contribute to the result
set. In our case, this property restricts the parallelism of
query execution and leads to unbalanced server workload.

Grid partitioning has several drawbacks in the case where
the query is executed by all servers in parallel. First, the
server corresponding to the lower corner of the data space
contributes the most to the result set, while several other
participating servers do not contribute to the result set at
all. Therefore the server which includes the origin of the axes
is more important among the rest of the servers. Further-
more, each server returns, roughly, an equal amount of local
skylines but most of them do not contribute to the global
skyline result set. As a result, the communication cost and
post-processing of the local skylines are not minimized.

5. ANGLE-BASED SPACE PARTITIONING

In this section we present angle-based space partitioning.
Our technique first maps the cartesian coordinate space into
a hyperspherical space, and then partitions the data space
based on the angular coordinates into N partitions. A vi-
sualization of the angle-based partitioning technique for a
3-dimensional space is depicted in Figure ﬁ

5.1 Hyperspherical Coordinates

The cartesian coordinates of a data point = [z1, z2, ..., Z4]
are mapped to hyperspherical coordinates, that consist of a

radial coordinate r and d—1 angular coordinates ¢1, ¢2, ..., pa—1,

using the following well-known set of equations:

r= \/x%—l—x%_l + ...+ 2?2
\/m%+zi71+”.+zg

tan(¢1) = ET)
(1)
tan(¢q—2) = 7\/2:371

tan(pa-1) = ;22

Tn—1

Notice that generally 0 < ¢; < «w for i < d — 1, and
0 < ¢a—1 < 2m, but in our case 0 < ¢; < J for i < d — 1.
This is because we assume without loss of generality that
for any data point x the coordinates x; are greater or equal
to zero (z; > 0 Vi) for all dimensions.

5.2 Hyperspherical Partitioning

Our technique first maps the cartesian coordinate space
into a hyperspherical space. Then, in order to divide the
space into IV partitions, the angular coordinates ¢; are used.
Essentially, we apply a grid partitioning technique over the
d — 1 space defined by the angular coordinates. This leads
to a partitioning where all points that have similar angular
coordinates fall in the same partition independently from the
radial coordinate, i.e. how far the point is from the origin.
For example consider the 3-dimensional space depicted in
Figure E The data space is divided in N = 9 partitions
using the angular coordinates ¢ and ¢s.

It is well-known that correlated datasets, such as data
that are distributed around a line starting from the origin
of the space, have skyline sets of small cardinality and that
most skyline algorithms perform well on them. In our parti-
tioning scheme, all points in the same partition have similar
angular coordinates although their radial coordinates differ.
Now consider what happens when we increase the number
of partitions. In the theoretical scenario that we had infinite
number of servers available, then each partition is reduced
to a line and, thus, each server would be assigned with a
correlated dataset that is distributed around a line start-
ing from the origin. Therefore, by increasing the number of
partitions, we achieve a performance and skyline cardinal-
ity similar to that of a correlated dataset in every partition,
even if the overall distribution of the dataset is not corre-
lated.

Given the number of partitions N and a d-dimensional
data space D, the angle-based partitioning assigns to each
partition a part of the data space D; (1 <4 < N). The data
space of the i*" partition is defined as: D; = [¢'™1, $%] ... x
(65", ¢l 1], where ¢ = 0 and ¢Y = Z (1 < j < d), while
(;5;-_1 and qbé- are the boundaries on the angular coordinate
¢; for the partition <.

The remaining challenge is how to define the boundaries
on the angular coordinates for each partition in order to
minimize response time. We will discuss this issue in Sec-
tion ﬂ This is an important issue, since the fairness of the
angle partitioning technique depends on the boundaries of
each partition, which in turn influence the overall perfor-
mance of the parallel skyline computation. The main goal
is to have even workload on each machine and small indi-
vidual cost per machine. In the case of skyline computation
this mainly depends on the cardinality of each partition and
on the data distribution of the partition’s data, which influ-
ences the CPU-cost in terms of number of domination tests.
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Figure 4: Pruning area of point p

After assigning to each partition a part of the data space
D; we can easily distribute the data points to these parti-
tions. First, the cartesian coordinates of each point p are
mapped to hyperspherical coordinates. Then, the d — 1 an-
gular coordinates are compared with the boundaries of each
partition and the corresponding partition is found.

The intuition of this partitioning scheme is that all par-
titions share the area close to the origin of the axes. This
is important because it increases the probability that the
global skyline points which exist near the origin of the axes
are distributed evenly to the partitions. This conveys to
our requirement for equi-distribution of the global skyline
points to partitions. In contrast, grid partitioning assigns
most such skyline points to the same partition.

As mentioned before, and is also shown in Section @, the
angle-based partitioning is expected to return only few local
skylines. Therefore, we succeed to have a small local result
set, that leads to smaller network communication costs for
transferring the local skylines that should be merged and
smaller processing cost for the merging phase.

5.3 Pruning Power

In this section, given a point p we aim to estimate the
number of points dominated by p in p’s partition. This is
mentioned as the pruning power of p. Furthermore, we want
to examine the influence of the partitioning scheme to the
pruning power. We make the assumption that our dataset is
defined in the hypercube [0, L]? and the data points are uni-
formly distributed in the data space. In the case of uniform
distribution the percentage of points falling in a specific re-
gion, can be approximated by the region’s volume (or area
in 2-d), compared to the total volume. Therefore, we focus
on calculating the volume of the dominance region of a given
point p that falls in the partition in which p belongs.

For ease of exposition, let us consider the 2-dimensional
case. We assume that we use N partitions and one angular
dimension ¢ is used for the partitioning. Given a point p =
{zp, yp} that falls in the i-th partition we define the pruning
power PP of p as:

PAT@CL(CCP7 Yp, ¢17 ¢2)
Area(pr, ¢2)
where Area is the total area covered by the partition and

PArea the area of the dominance region of p within the
partition. More detailed, it holds that y, = x, * tan¢,

PP(p) = 100 * )

where 0 < ¢ < ¢, < @' < 5. For sake of simplicity, we
follow the notation ¢1 = ¢*~! and ¢o = ¢°.

We first examine the case where 0 < ¢1 < ¢2 < %. Con-
sider for example Figure The points falling in the
partition of point p have coordinates defined as: 0 <z < L
and x x tan¢1 < y < x * tan ¢2. Therefore, the area cov-
ered by a partition defined by the angles ¢1 and ¢2, where
0< 1 <2< T is:

Area(pr, p2) = fg fy dydx = fOL f;sﬁ’ﬁ dydx =
= LT (tan ¢2 — tan ¢1)

Let us now consider the portion of the dominance area of
point p within the partition defined by the angles ¢; and
¢2. Points that fall in this region are discarded after com-
paring with point p during the local skyline computation.
A large pruning area leads to lower processing cost during
local skyline computation and to smaller local skyline result
sets.

Recall that y, = z, *tan ¢, where 0 < ¢1 < ¢ < ¢2 < 7.
The pruning area of the point p is the region defined by
zp <z < Land zxtangp; <y < x*tan ¢ minus the area
defined by the z, < x < min(L, m‘;’)—’;l) and xtan¢ <y <
yp. Therefore the pruning area of point p where 0 < ¢ <
¢2 < 7 is:

3)

PArea(zp,yp, P1,P2) = fmj; ;;::;12 dydz— @

_ f:;mu,tai—%l) v dyda

In Figure E the dominance region of point p is the shad-
owed region. For the area that is subtracted we can distin-
guish two cases. In Figure the first case is depicted,
where the aforementioned area is the triangle PAB where
A= {t;r’lﬁ,yp} and B = {z,,Tp x tan¢1}. Figure
shows the second case where the respective area is the trape-
zoid PACB. Finally, the pruning area of point p where
0 < ¢ < ¢2 < X is defined as:

2 2
PAvea(zy, yp, 61, ¢2) = “— 2 (tan ¢ — tan ¢1)—
—0.5 % (55 — @p) * (Yp — Tp * tan é1)
ma =, )
PATea(xp7yp7¢)17¢2) = 2 = tan¢2_
=05 (L —xp) * (2% yp — (L + xp) x tan ¢1)
if 22— > [

tan ¢

The case of 7 < ¢1 < ¢2 < 7 is symmetrical and analo-

gously the total area and the pruning area are:

2
Area(¢r, ¢2) = %(ﬁ — )

PArea(mPaypa ¢17 ¢2) = PArea(ym:cm % - ¢27 % - ¢1)
(6)
Finally, we can calculate the total area and the pruning
area for the case 0 < ¢1 < 7 < ¢2 < 7 by combining the
previously mentioned two cases, resulting in:

Area(¢r, ¢2) = L (2 — tan 61 — 257)

7
PATea(‘Tp7yp7¢17¢2) = PATE(I(ZI,‘Zhyp,(f)l, §)+ ( )

PArea’(ypvxPa % - ¢27 %)
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Figure 5: Percentage of pruning power

We now evaluate the pruning power of our angle-based
partitioning technique compared to the grid partitioning.
Figure p(a) depicts the values of the pruning power (based
on the equations) for 100 points uniformly distributed at
random over the data space. We assume that the data
space is partitioned into 16 partitions. For each randomly
generated point the pruning power for the angle and grid
partitioning technique is calculated. We sort the values of
the pruning power of the angle and grid partitioning and
plot in Figure the sorted lists. The overall pruning
power of each partitioning technique relates to the area un-
der the corresponding curve. Figure clearly depicts
that angle-based partitioning outperforms grid partitioning
significantly in terms of pruning power. Notice that in the
case of grid partitioning, the pruning area of a point p that
falls in the partition defined by [z1,z2] X [y1,y2] equals to
(z2—zp)*(y2—yp), while the total area is (z2—xz1)*(y2—y1).

In Figure we depict the pruning power for different
points p by varying the z, values. We assume N = 16 par-
titions defined by ¢* for 1 < i < 16. For each z, value we
compute different y, = z, * tan ¢, coordinates in order to
examine how the pruning power changes based on the angu-
lar coordinate ¢,. We vary the y, values so that the point
p falls in different partitions of the angle-based partition-
ing and we choose ¢, = ¢* for the i-th partition. This is
the point of the i-th partition that has the smallest pruning
area for the particular x, value, leading to a worst case sce-
nario for angle-based partitioning. Figure depicts the
pruning power of the nearest partition to the z-axis (first
partition) and the pruning power of the diagonal partition.
As diagonal we refer to the partition with ¢* = 7. We also
depict the pruning power achieved by the grid partition-
ing and the average pruning power for all partitions with
ot < 7+ Notice that the upper partitions are symmetrical
to these partitions. For the angle-based partitioning, the
first partition has the smallest pruning power for a given
zp value. Figure shows that we achieve higher pruning
power than grid partitioning in any partition. In the case of
the diagonal partition and small z,, values almost the whole
area of the partition is pruned by x,. The high average
pruning power value for the angle-based partitioning indi-
cates that the average pruning power for any partition is
almost similar to the one of the diagonal partition.

6. PARTITIONING BOUNDARIES

As explained in the previous section, our technique es-
sentially creates a grid over the angular coordinates. Grid
partitioning is well explored in the literature A ,
There are several techniques in order to efficiently define
the partitions’ boundaries depending on the data distribu-

tion. In this section we sketch two alternative algorithms in
order to derive the angular boundaries, namely equi-volume
partitioning for uniform data and dynamic partitioning for
arbitrary data distributions.

6.1 Equi-volume Partitioning

Analogous to a uniform grid, our goal is to derive the grid
boundaries (on the angular coordinates) in a way that the
points are equally distributed to the partitions, assuming
a uniform data distribution. Later, we discuss how angle-
based partitioning can handle non-uniform data by dynam-
ically adjusting the boundaries of each partition.

In the case of uniform data distribution, an angle parti-
tioning scheme that generates partitions of equal volumes is
enough to ensure that the partitions also contain approxi-
mately the same number of points. Therefore, if Vy is the
volume of the d-dimensional space and N the number of
available machines, the volume of each partition should be
equal to Vg/N. In the case of grid partitioning, where the
data and the partitioning space are the same namely the
cartesian coordinates, we can achieve equi-volume partitions
by dividing each dimension in equal parts. This differs for
the angle-based partitioning scheme where the partitioning
space (angular coordinates) is derived through a perspective
projection of the data space. Consider for example Figure
where the partitioning space is the surface of the sphere,
while the data space is the sphere itself. It is not sufficient
to split the angular coordinates into equal parts in order to
have equi-volume parts of the data space projected into each
partition. The volume V! of the data space that is projected
in the ¢-th partition is defined as:

st
/ v ()
-

where dV is the volume element that describes the volume
of the data space that is projected into the i-th partition.
Therefore, each of the angular coordinates ¢1, @2, ..., pa—1
is split in such a way that all N partitions are of volume
Vi =Vy/N (1 <i< N) approximately.

For sake of simplicity, we assume that the maximum dis-
tance from the origin for all data points is L and that all
points are uniformly distributed in this region. In this case
the hyperspherical volume element is given by equation:

i+1
41

i),

7
1

dV =¥ sin?2(¢1)... sin(Ga_2)drdes...dpa—1  (9)

Intuitively, this is similar to applying the aforementioned
grid partitioning scheme on the surface of the part of the
hypersphere that contains all points in the dataset. For ex-
ample, in the case of d = 3 and N =9 (see Figure E), there
are two angular coordinates (¢1 and ¢2) and each of them is
divided into 3 parts, thus resulting in 9 partitions. The data
space is a part (namely the %—th) of the sphere that encom-
passes the data points with volume equal to V3 = wL3/6.

For every partition ¢ the volume is Vi = [ f;f,l fff,l r?
1 2

sin(¢1)drdgrdgs = L¥(cos(9i™") — cos(6})) (6 — 05 1)/3.
In order to have an equi-volume partitioning, each partition
should have a volume of % and if we solve the deriving
set of equations, the equi-volume angles are ¢} = 48.24,
2 = 70.55, ¢3 = 30 and ¢3 = 60.

One way to compute the values of the angles that split
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Figure 6: 2-dimensional dynamic grid partitioning

the hypersphere into equi-volume partitions is to solve a set
of equations that demand that the volume of one partition
equals the volume of the other. However, as an approximate
equi-volume partitioning is also acceptable, we propose a
simpler way to derive these angles. Let us assume that each
angular coordinate ¢; is divided in k = “/N parts, so
that the space is divided into N partitions in total. Instead
of dividing the data space into N equi-volume partitions at
once, we separately divide for each angular coordinate ¢; the
data space into k equi-volume partitions. For example in the
case of Figure E with d = 3 and N = 9, the data space could
be divided into 3 equi-volume slices based on the angular
coordinate ¢1, which results in the boundary values ¢1 =
48.24 and ¢? = 70.55. Thereafter, the data space is divided
into equi-volume slices based on the angular coordinate ¢2
obtaining the boundaries ¢3 = 30 and ¢35 = 60. Notice that
this approach is equivalent to splitting the data space into
N partitions at once.

In order to divide the data space into k equi-volume parts
based on one angular dimension ¢;, a binary search on the
interval [0..7/2] is performed, in order to find the k — 1
boundary angles. More specifically, during binary search, in
each step, we evaluate the volume of the partition defined by
the interval [0, (;521] until the volume is approximately equal to
%. We repeat the same procedure on the interval [(;3}, /2]
until k£ — 1 angles are computed for each dimension ¢;.

6.2 Dynamic Space Partitioning

In the more common case of non-uniform data distribu-
tions, static partitioning schemes cannot achieve balanced
distribution of data. This is due to the fact that data
points are typically concentrated at specific parts of the data
space. Dynamic partitioning schemes alleviate this problem
by splitting the space according to the data distribution.
The goal of dynamic partitioning is to spread the data points
equally among the partitions, independently from the data
distribution. Consider for example the dataset depicted in
Figure E Dynamic partitioning is applied such that any
partition contains roughly the same number of points.

Grid partitioning can be extended to handle arbitrary
data distributions by dynamically splitting the data space.
To achieve this, we set a limit n.nq2 on the number of data
points that a partition can handle. Given the cardinality
n of the dataset and the number of partitions N, we set
Nmaz = 2 * n/N. Initially, only one partition exists and
points are assigned to this partition. When the number of

[ Symbols [ Range of values

d 3-7

n 1-10M

N 20-50

Dataset UNIF,ANTICOR,COR,REAL
Algorithms | {SFS,BBS}

Table 2: Experimental parameters.

points in the partition becomes equal to Nma., the parti-
tion is split (based on some dimension) into two partitions,
and the bound is determined in such a way that the num-
ber of points is divided equally into the two partitions. The
dimension to split is determined in a round-robin fashion.
This algorithm continues until all points have been assigned
to a partition. Since the algorithm may result into less than
N partitions, an additional step is required during which the
partition with the highest number of objects is split, until
there exist exactly N partitions.

Angle-based partitioning is extended in a directly analo-
gous way, in order to handle non-uniform data distributions.
This is because in the angle-partitioning technique a grid is
applied over the d — 1 space defined by the angular coordi-
nates ¢1, @2, ..., pa—1. We note that our intention here is to
sketch a method for deriving the angular coordinates in a
data-driven manner. Further optimizations borrowed from
techniques developed for the creation of high-dimensional
indexes are out of the scope of this paper.

7. EXPERIMENTAL EVALUATION

In this section, we study the performance of our frame-
work, which is implemented in Java. The experiments were
performed on a 3.8GHz Dual Core AMD processor with 2GB
RAM running Windows OS and all data was stored locally.

In each experiment, a dataset of cardinality n is split to
N partitions, so that each point is assigned to one partition.
Then, for each partition the local skyline query on the as-
signed points (local data) is executed. We simulate the par-
allel share-nothing environment by processing the partitions
sequentially (one after the other) on the same machine. In
our framework, each server may use any skyline algorithm,
thus the choice of skyline algorithm is not restrictive in gen-
eral. In a single experiment, we use the same algorithm
for all partitions and all partitioning methods, in order to
present comparable results. The algorithms employed are
SFS and BBS. SF'S does not rely on a special purpose index
structure that needs to be built, while BBS uses a multidi-
mensional index structure (an R-tree). The creation of the
multidimensional indexes is considered as a pre-processing
step. After the local skyline query processing, a merging
phase takes place, where the individual results of all parti-
tions are merged into the final result. For the merging phase
of the local result sets, we always use the SFS algorithm,
since it does not require the construction of an index.

The total response time is influenced by the slowest par-
tition. Therefore, we calculate the response time by adding
the time needed for the slowest local skyline computation
and the time required by the merging phase. We also ac-
count for the network delay of transferring the local skylines
to the coordinator. In all experiments we assume a network
speed of 100Mbits/sec.

Regarding the employed datasets, we use both synthetic
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Figure 7: Different Data Distributions for d =3, n = 10M, N = 20, BBS

and real data. The distribution of the synthetic data is uni-
form, anticorrelated and correlated, as described in [ﬁ] We
vary the dimensionality from 3 to 7, while the cardinality of
the dataset ranges from 1M-10M points. We also evaluate
the effectiveness of the proposed partitioning approach us-
ing real-life data. We conducted experiments on a dataset
containing information about real estate all over the United
States, such as estimated price, number of rooms and living
area (available from pww.zillow.con). We obtained a 5-
dimensional dataset containing more than 2M entries. The
dataset contains 5 attributes namely number of bathrooms,
number of bedrooms, living area, price and lot area.

Each experimental setup is repeated 10 times and we re-
port the average values. The block size is set to 8K and the
buffer size is 100 blocks. We used the same dynamic parti-
tioning algorithm for grid and angle-based partitioning. All
times are measured in msec. In all charts where it is applica-
ble, we depict also error bars showing the deviation among
the 10 different runs of the experiments, but in most cases
the error bars are not visible since the deviation values are
not significant.

7.1 Data Distribution Study

In the first experiment, we compare the three partitioning
techniques (random, grid and angle-based) using the BBS
algorithm for skyline computation. We study a 3d dataset of
n = 10° data points that follow different data distributions.
The number of partitions is set to N = 20.

Figure 1 shows the results in logarithmic scale. Based on
Figure [f(a) we conclude that for all data distributions con-
sidered, the response time of the skyline query processing
is significantly reduced when the angle-based partitioning is
used. In particular using angle-based partitioning, we com-
pute the skyline query from 2 up to 20 times faster than
the execution based on grid partitioning. It is worth noting
that for the correlated dataset, the random partitioning is
comparable to the angle-based partitioning. This is because
the random partitioning scheme maintains the initial data
distribution in all partitions. In the case of correlated data,
this leads to a sufficient performance of random partition-
ing. However, correlated data is not very challenging for
skyline computation since the skyline cardinality is relative

small and this also leads to small response times in general.
In addition, correlated data are not very interesting for sky-
line computation, since the skyline operator aims to balance
contradicting criteria, as in the case of anticorrelated data.
For uniform and more importantly anticorrelated datasets,
which are deemed as hard problems for skyline computa-
tion, angle based partitioning outperforms random by one
order of magnitude and grid partitioning by more than half
an order of magnitude.

In Figure [7(b)] we study the average number of compar-
isons needed for the local skyline computation in terms of
candidates examined for domination, which is a typical cost
metric for BBS. It is expected that the correlated dataset
requires the fewest domination tests but this advantage is
not shown for the grid partitioning. Clearly, the angle-based
partitioning requires less objects to be examined for dom-
ination. This indicates the higher pruning power of local
skylines of the angle-based partitioning. This is also con-
firmed in Figure , which depicts the total number of
local skyline points. The angle-based partitioning technique
produces less local skylines for any data distribution and
this improves the overall performance of the parallel skyline
computation.

Thereafter, we study in more detail the local skyline points
and more specific the local skyline points that belong also
to the global result set. We define the number of global-
local skylines of a partition i as the cardinality of the set
SKYp, N SKYp. Figure depicts the maximum and the
minimum value of global-local skyline points retrieved by
any partition for the anticorrelated dataset that produces
the most skyline points. We also depict the deviation be-
tween the global-local skyline points retrieved by any parti-
tion. Note that for the random partitioning, all partitions
have a similar number of global-local skylines, so that the
minimum and maximum values have a relative small differ-
ence and the deviation is low. As expected, the grid par-
titioning has very high maximum value (for the partition
including the origin of the space), but also a very low min-
imum value indicating that some partitions contribute only
marginally to the result. Our angle-based partitioning has
a quite balanced number of global local skylines and both
maximum and minimum values are quite high.
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For the next figure, we define the metric compactness as

ISKYpi N SKYp|
W) The com-

pactness expresses how many points of the local result set
of a partition, belong also to the global result set. In the
best case scenario, all data points that do not belong to the
global skyline set, would be discarded during local skyline
computation. Therefore, high values of compactness indi-
cate that the local result sets are more compact and contain
less redundant data points. In Figure the compactness
for the three synthetic datasets is depicted. Notice that the
compactness of the angle-based partitioning is quite high,
which indicates how suitable the angle-based partitioning for
skyline computation is. Note that for the uniform dataset,
random and grid partitioning have similar values of com-
pactness, since both maintain the initial data distribution.
On the other hand, angle-based partitioning has a higher
value of compactness, since it alters the data distribution on
each partition. For the anticorrelated dataset all partition-
ing approaches achieve higher values of compactness, while
for the correlated data distribution all partitioning methods
achieve very low compactness values. The cardinality of the
global skyline set differs depending the data distribution.
For example, skyline points of a correlated dataset are only
few and this leads to smaller values of compactness.

compactness = 100 * avgr<i<n(

7.2 Scalability with Cardinality

Next we evaluate the performance of the angle-based par-
titioning for datasets of different cardinality. In this exper-
iment the dimensionality of the dataset is 3 while we vary
cardinality between 1M and 10M. In this experiment we use
an anticorrelated dataset. All charts in Figure E depict error
bars showing the deviation among the 10 different runs of the
experiments. Notice that the deviation values are not signif-
icant. Figure illustrates the response time for various

10

dataset cardinalities. Angle-based partitioning outperforms
both alternatives in all setups. As the cardinality increases
the angle-based partitioning technique shows a more stable
performance and the benefit increases. For n = 10M the
angle-based partitioning performs 3 times better than the
grid in terms of response time. We also depict the maximum
time (Figure )7 the average 1/0O (Figure ) and the
average comparisons (Figure of all partitions, which
influence partially the response time. Notice that the cardi-
nality of the dataset influences in similar way all measures
depicted in the charts. For example in the case of the average
comparisons that indicate the pruning ability of each par-
tition, angle-based partitioning requires 10 times less com-
parisons than random partitioning and up to 7 times less
compared to grid partitioning.

Figure [8(e) depicts the total local skylines and clearly
shows that angle-based partitioning always results in smaller
intermediate result sets, indicating its efficiency and guar-
anteing smaller transfer and merging costs. It is obvious
that angle-based partitioning outperforms grid partitioning
by means of local skyline points up to 10 times. Random
partitioning performs even worse. Figure shows the
maximum number of local skyline points retrieved by all
partitions. This influences mainly the transfer delay, and
once again the gain of angle-based partitioning is obvious.

7.3 Scalability with Dimensionality

In the next series of experiments we examine the proposed
partitioning method’s scaling features with regards to the di-
mensionality of the dataset. We generate different datasets
and increase the dimensionality from 3 to 7. For this exper-
iment the settings are uniform dataset, n = 10M, N = 20
and SFS algorithm. In Figure E the performance of angle-
based partitioning is compared against grid partitioning.

Figure shows the improvement percentage in terms
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of time (defined as 100 x SRID=ANGLE ) The response time
refers to the time passed from the time the query was posed
till the results are computed at the coordinator. The max-
imum partition time refers to the CPU time needed for the
local skyline computation by the slowest server. The im-
provement percentage of the response and the maximum
partition time increases with the dimensionality. We notice
that only for small values of dimensionality the improvement
of the response time is larger than that of the maximum par-
tition time. This is mainly, because the cardinality of the
skyline set increases with the dimensionality and we have to
transfer at least the global skyline points.

In Figure we depict the improvement percentage as
far as number of comparisons and number of local skylines
are concerned. The benefit of using the angle-based parti-
tioning in terms of (average) comparisons per partition in-
creases as the dimensionality increases. The smaller number
of comparisons indicates the higher pruning power of angle-
based partitioning. On the other hand, we notice that the
improvement percentage for the total number of the local
skylines decreases as the dimensionality increases. This is
mainly due to the fact that the average cardinality of each
partition does not change, but the dimensionality increases.
Therefore, the percentage of points that are skyline points
increases which in turn reduces the upper limit for the im-
provement percentage. Figure P(b) also shows the improve-
ment over grid in terms of merging comparisons. We notice
that even though the number of elements that have to be
merged, i.e. total local skylines, are much smaller for the
angle-based partitioning, the gain in terms of merge com-
parisons is negligible. This is because most points returned
by the angle-based partitioning are global skyline points.

7.4 Number of Partitions

11

of partitions affect the performance of the angle-based par-
titioning. In this experiment we use the anticorrelated data
distribution and the SF'S algorithm. The plot in Figure
illustrates the total response time taking into account the
network delay. In all cases angle-based partitioning con-
stantly outperforms the other two alternatives, namely grid
and random partitioning. Figure depicts the number
of required comparisons for the parallel skyline computa-
tion, since the comparisons influence the processing time.
We compare the number of comparisons required by the
angle and grid partitioning, since the random partitioning
performance is even worse than grid. As depicted in
the number of local skylines is improved more than 60%
for all tested number of partitions. The small number of
local skylines, influences the overall performance since it
affects the merging phase, the data transfer cost and the
number of comparisons for the local skyline computation.
As far as the average number of comparisons is concerned,
the angle-based partitioning executes up to 90% less com-
parisons, which clearly states that the angle-based parti-
tioning technique is more suitable for skyline computation.
The small number of required comparisons show the high
pruning power of angle-based partitioning. The number of
comparisons needed for merging does not improve signifi-
cantly, because even though the input of the merging phase
is much smaller, most of them are global skyline points,
while the grid partitioning returns a lot of points that can
be pruned immediately with only one comparison. We also
notice that the improvement in terms of local skyline points
increases with the number of partitions because there are
more partitions with smaller cardinality which leads to even
more local skylines produced by the grid partitioning.

In Figure the compactness for the different values
of partitions is depicted. The compactness for all partition-
ing approaches falls while the number of partitions increase.
This is mainly because the number of local skylines per par-
tition does not significantly decrease while the partitions
increase. Therefore, the global skylines are distributed over
more partitions and the number of local skylines per par-
tition does not decrease significantly, leading to lower val-
ues of compactness. Still angle-based partitioning manages
to obtain high compactness values even for 50 partitions,
which shows that it is scalable in terms of number of servers
available.

Finally, in Figure E, we study the effect of increasing
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the number of partitions for the real dataset. The results
show that angle-based partitioning achieves lower response
times than the other approaches (Figure ), since it im-
proves the average number of comparisons by 70-80% over
grid (Figure ) This improvement is observed also in
the number of total local skylines and at the merge compar-
isons respectively.

8. CONCLUSIONS

In this paper we present a novel approach to partition a
dataset over a given number of servers in order to support
efficient skyline query processing in a parallel manner. Cap-
italizing on hyperspherical coordinates, our novel partition-
ing scheme alleviates most of the problems of traditional
grid partitioning techniques, thus managing to reduce the
response time and share the computational workload more
fairly. As demonstrated by our experimental study, we are
up to 10 times better than grid in terms of response time and
constantly outperform both grid and random partitioning,
thus becoming an efficient and scalable solution for skyline
query processing in parallel environments.

In our future work, we aim to examine the performance
of angle-partitioning for subspace skyline queries. The novel
angle-partitioning is not affected by the projection of the
data points, during subspace skyline queries, since again the
region near the origin is equally spread to all partitions.
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