
Optimizing Complex Queries with Multiple Relation
Instances

Yu Cao Gopal C. Das Chee-Yong Chan Kian-Lee Tan
School of Computing

National University of Singapore
{caoyu, gopal, chancy, tankl}@comp.nus.edu.sg

ABSTRACT
Today’s query processing engines do not take advantage of
the multiple occurrences of a relation in a query to improve
performance. Instead, each instance is treated as a distinct
relation and has its own independent table access method.
In this paper, we present MAPLE, a Multi-instance-Aware
PLan Evaluation engine that enables multiple instances of
a relation to share one physical scan (called SharedScan)
with limited buffer space. During execution, as SharedScan
pulls a tuple for any instance, that tuple is also pushed to
the buffers of other instances with matching predicates. To
avoid buffer overflow, a novel interleaved execution strategy
is proposed: whenever an instance’s buffer becomes full, the
execution is temporarily switched to a drainer (an ancestor
blocking operator of the instance) to consume all the tuples
in the buffer. Thus, the execution is interleaved between
normal processing and drainers. We also propose a cost-
based approach to generate a plan to maximize the shared
scan benefit as well as to avoid interleaved execution dead-
locks. MAPLE is light-weight and can be easily integrated into
existing RDBMS executors. We have implemented MAPLE in
PostgreSQL, and our experimental study on the TPC-DS
benchmark shows significant reduction in execution time.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems - Query processing

General Terms
Algorithms, Design, Performance

Keywords
shared scan, interleaved execution, query optimization, query
processing

1. INTRODUCTION
Many applications use relational DBMSs (RDBMSs) as

their data solutions to manage massive amount of data. In
these applications, it is not uncommon for a single query to
contain relations with multiple instances. For example, in
traditional business oriented applications, a query over mul-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

tiple views typically leads to multiple relational instances of
the base tables as a result of view unfolding. In decision-
support systems, such multi-instance queries are frequently
posed: among the 99 queries in the TPC-DS benchmark [3],
more than 60% of them contain at least one relation with
multiple instances; the maximum number of instances for a
relation is 8 (e.g., Q11 and Q88) and the maximum number
of relations with multiple instances is 15 (e.g., Q78). Even
in non-traditional applications such as web data manage-
ment that stores XML (RDF) data in relational DBMSs,
XPath/XQuery (SPARQL/RDQL) queries, when converted
to SQL, comprise many self-joins [9, 5, 16].

Query
Q

Conventional
Query

Optimizer

Query plan
plan(Q)

Shared Scan
Post-Optimizer

(SSPO)

Enhanced
query plan
eplan(Q)

Query
result

Interleaved Iterative
Query Evaluator

(IIQE)

Figure 1: Architecture of MAPLE

Surprisingly, most of today’s relational query engines do
not explicitly recognize instances within queries during query
optimization and/or evaluation. Instead, each instance is
treated as a distinct relation and has its own independent
access method (table or index scan). As such, the perfor-
mance can be very bad even for an optimal plan especially
when the relation with multiple occurrences is a large table.

While there have been some efforts to optimize multiple
scans on the same table to minimize disk I/O cost, these
works are limited in scope. In [1, 6, 10, 11, 12, 19], scans
are coordinated for better buffer reuse (increasing buffer lo-
cality). In particular, the data-sharing opportunity arises
mainly among scans from different queries running at the
same time. The performance improvement is achieved by ex-
haustively exploiting the knowledge of query access patterns
and carefully scheduling query executions. However, for a
single query with multiple relational instances, it is not pos-
sible to synchronize the disk access patterns under the pull
iterative execution model. As such, single multi-instance
queries do not benefit much from these buffer reuse meth-
ods. Works in [7, 17] look at facilitating sharing of a single
scan on the base relations at the operator level. However,
these works are targeted at pipelining table tuples to con-
sumers in different SQL [7] (OLAP [17]) queries handled by
independent threads. Instances within a single query have,
as we shall see, certain characteristics that these methods

fail to accommodate. Yet another approach is to employ
multi-query optimization (MQO) schemes (e.g., [14, 18]) to
exploit common subexpressions in queries. However, MQO
does not further optimize multiple scans on the materialized
views of common subexpressions, which can be considered
as base relations with multiple instances. Moreover, these
techniques do not handle instances that are not part of the
common subexpressions.

→ pull ��� push · · · drainer assignment

NestedLoopJoin

Build1

HashJoin1

HashJoin2

Scan3

ws1

Build3

Scan2

hd1

Build2

Scan1

wp1

Build4

HashJoin3

Scan6

hd2

Build5

HashJoin4

Scan5

ws2

Build6

Scan4

wp2

(a) Conventional Query Plan

NestedLoopJoin

Build1

HashJoin1

HashJoin2

Scan3

buf(ws1)

Build3

Scan2

buf(hd1)

Build2

Scan1

buf(wp1)

Build4

HashJoin3

Scan6

buf(hd2)

Build5

HashJoin4

Scan5

buf(ws2)

Build6

Scan4

buf(wp2)

SharedScan SharedScan SharedScan

ws hd wp

(b) MAPLE’s Enhanced Query Plan

Figure 2: Partial Query Evaluation Plans for Query
Q90 in TPC-DS Benchmark

In this paper, we present MAPLE, a Multi-instance-Aware
PLan Evaluation engine that takes advantage of multiple
instances in single queries to reduce disk I/O cost. MAPLE

comprises two key components (SSPO and IIQE) as shown
in Fig. 1. First, a shared scan post-optimizer (SSPO) builds
on a query evaluation plan (generated by any existing query
optimizer) to produce an enhanced plan as follows. The

SSPO opportunistically adds new materialize operators when
required and bundles multiple instances of a relation into
share groups such that instances within a group share one
physical table scan (called SharedScan). For each instance
of a relation that employs a SharedScan operator, it is al-
located a small buffer. Moreover, for each instance with
buffer overflow risk, an ancestor (blocking) operator in the
query plan will be designated as its drainer. Second, an in-
terleaved iterative query evaluator (IIQE) is used to execute
the enhanced query plan produced by SSPO. IIQE adopts an
interleaved pull iterative execution strategy to ensure that
each SharedScan operator scans the table only once (for all
instances within the same share group). Essentially, within
a share group, as SharedScan pulls a tuple for any instance,
that tuple is also pushed to other instances with matching
predicates and placed in their buffers for later use. When-
ever a buffer becomes full, the corresponding drainer be-
comes active. At this moment, query processing is tem-
porarily switched to this drainer until it consumes all tuples
in the buffer. Thus, query processing is interleaved between
normal processing and active drainers.

Example 1.1 Fig. 2(a) shows the partial evaluation plan
of Q90 in TPC-DS benchmark, generated by PostgreSQL
[2]. Q90 contains two instances ws1 and ws2 for relation
web sales (denoted by ws), two instances wp1 and wp2 for
relation web page (denoted by wp), and two instances hd1

and hd2 for relation household demographics (denoted by
hd). Here the hash operator Build is used to build hash
table in hash join. The plan tree contains one hash subtree
in each side of the top nested-loop join and all instances are
accessed by table scans.
MAPLE generates an enhanced plan, shown in Fig. 2(b),

with three share groups: {ws1, ws2}, {wp1, wp2} and {hd1,hd2}.
No additional materialize operators are introduced. Each re-
lation instance ri is now associated with a buffer buf(ri) for
storing the tuples pushed by the SharedScan operator. Un-
der the iterative model, the execution starts from Build1.
Since both wp and hd are small tables, the shared scans on
them did not incur buffer overflows in wp2 and hd2. How-
ever, when ws1 calls its SharedScan, matching tuples pushed
to ws2 will fill up its buffer since ws is a very large table.
Now, whenever buf(ws2) becomes full, the execution tem-
porarily switches to Build5, ws2’s drainer, which consumes
all tuples in the buffer to partially construct the hash ta-
ble, and then switches back to ws1. The switched execution
for ws2 will complete the normal execution of Build6 us-
ing cached tuples in buf(wp2). Finally, as all three shared
scans finish, the remaining execution continues as in the
traditional iterative model from Build4 (which completes
the execution of Build5 and then conducts the hash join by
probing the hash table with the cached tuples in buf(hd2)).

As illustrated, by using MAPLE, one share group reads the
relation only once from the disk. In this example, we save
one full scan on each ws, wp and hd. Our experimental
results show significant benefit from the saving of one scan
of ws since it is huge (1.5GB in 10GB TPC-DS dataset).
On the contrary, the CPU overhead of execution switches
is negligible. Intermediate results of execution switches are
naturally consumed by the Build drainers without incurring
additional I/O overhead. �

The key task of SSPO is to generate an enhanced plan
that maximizes the benefits of SharedScan. Ideally, all in-

stances of a relation should be grouped within a single share
group without introducing any additional blocking opera-
tors. However, it turns out that this is not always possi-
ble due to several reasons (e.g., interleaved execution dead-
locks). In this case, SSPO aims at finding a feasible shareable
scan plan with maximum performance benefit.
MAPLE is light-weight and can be easily integrated into

existing RDBMSs. We have prototyped our ideas in Post-
greSQL. Our extensive performance study on the TPC-DS
benchmark shows very significant reduction in execution
time of up to 70% for some queries.

The rest of this paper is organized as follows. In Section 2,
we present an overview of our MAPLE approach. Section 3
describes the shared scan post-optimizer. In Section 4, we
present how to integrate IIQE into existing query executors.
Section 5 presents results of an extensive performance study.
Section 6 reviews related work, and finally, Section 7 con-
cludes the paper and discusses directions for future work.

2. OVERVIEW OF MAPLE
In this section, we present an overview of our light-weight

optimization approach named MAPLE.
We use plan(Q) to denote a query evaluation plan for

Q generated by a conventional query optimizer, and use
eplan(Q) to denote an enhanced query evaluation plan for
Q produced by MAPLE based on plan(Q).

A query plan operator is classified as a blocking operator
if it needs to completely consume its operand(s) before pro-
ducing any output (e.g., sorting, building hash table, aggre-
gation); otherwise, it is a non-blocking operator (e.g., scan,
merge-join).

Given a multi-instance relation R in Q with n instances,
n > 1, we use G = {r1, r2, · · · , rn} to denote the instances
of R.

2.1 Share Groups & Shared Scans
In contrast to the conventional pull-iterative execution en-

gine [8], where the scans of instances of the same relation are
performed independently, MAPLE tries to maximize the shar-
ing of relation scans by partitioning the set of instances of a
relation into a small number of subsets called share groups.
Each relation instance ri in a share group is allocated some
small memory space, denoted by buf(ri), to hold the quali-
fied tuples that satisfied the selection predicates for the scan
of ri. Each share group is associated with a new scan opera-
tor called the SharedScan operator1 that can be invoked by
any instance in that group. When a scan of an instance ri

is invoked, MAPLE will first check whether buf(ri) is empty.
If a tuple is available in buf(ri), the scan of ri will sim-
ply remove this tuple from buf(ri) and pass it to the scan’s
parent operator. However, if buf(ri) is empty, the scan of
ri will invoke the SharedScan operator for its share group.
Besides pulling the qualified tuples for ri into buf(ri), the
SharedScan operator will also push qualified tuples for other
instances rj within the share group into their buffers buf(rj)
as well. For space efficiency, the tuples stored in each buf(ri)
only keep the relevant attributes of R for the scan of ri

2.

1Currently, MAPLE considers shared scans only for table
scans.
2An alternative buffering scheme is to have a single buffer
shared among all instances within the share group. But this
not only requires storing the entire tuple (in general), but

In the ideal scenario, the tuples in each buf(ri) are con-
sumed in a timely manner without causing any buffer over-
flows. However, in general, a shared scan can become blocked
when the SharedScan operator (invoked by some other in-
stance rj in the same share group as ri) tries to push qual-
ified tuples into a full buffer buf(ri). In this case, we say
that ri is an overflow instance and buf(ri) overflows.

A naive approach to fix a blocked shared scan (under the
iterative execution model) is to adopt a drop-out scheme,
where the overflow instance ri is dropped out of the shared
scan of R, and the shared scan of R is allowed to continue
among the remaining non-overflow instances of R within the
share group. However, this scheme requires a separate par-
tial scan of R to be initiated later to retrieve the remaining
non-buffered qualified tuples for the overflow instance ri,
thereby limiting its effectiveness.

Note that if there is only one instance ri in a group, the
scan for ri is not shared with any other instances of R; there-
fore, buf(ri) is not allocated and SharedScan is not used for
this group.

2.2 Interleaved Executions with Drainers
MAPLE adopts a more aggressive approach to resolve blocked

shared scans. Consider a shared scan invoked by ri that
becomes blocked due to the overflow of buf(rj). Instead
of dropping rj out of the shared scan of R, MAPLE tries
to “unblock” the shared scan by suspending the execution
of the scan and switching the execution control to another
operator, called the drainer of rj , denoted by drainer(rj).
drainer(rj) is an ancestor of rj , whose execution will re-
sult in “draining” the tuples from the full buffer buf(rj).
Once all the tuples in buf(rj) have been consumed (i.e.,
buf(rj) becomes empty), the suspended shared scan of R
becomes unblocked and can be resumed by ri. It is possible
for nested execution control switches to occur, where the ex-
ecution of the query subplan under a drainer operator causes
another execution control switch to another drainer, and so
on. We refer to the enhanced iterative execution model used
by MAPLE as interleaved iterative execution.

2.2.1 Drainer Operators
When buf(rj) overflows during a shared scan that is in-

voked by another instance ri, MAPLE will try to switch exe-
cution to a drainer operator, drainer(rj), to clear the buffer
buf(rj). Thus, drainer(rj) must necessarily be an ancestor
operator of rj in the query plan so that the scan of rj will
get evaluated as part of the evaluation of the subquery plan
rooted at drainer(rj).

Consider the scenario where all the ancestor operators of
rj up to and including drainer(rj) are non-blocking opera-
tors. In this case, any tuple produced by the evaluation of
drainer(rj) has to be either cached (possibly incurring disk
I/O) or returned to the parent operator of drainer(rj). The
latter option is not possible (under the iterative execution
model) since the execution control is passed to drainer(rj)
and not to its parent operator. To avoid incurring unnec-
essary disk I/O for caching output tuples from drainer(rj),
it makes sense to assign a blocking operator as a drainer.
In this way, the evaluation of the blocking drainer will not
generate any output tuple until its entire query subplan has
been completely evaluated. To minimize the number of op-

also involves a more elaborate tracking of the tuples that are
qualified for each instance scan.

erator evaluations for draining buf(rj), MAPLE chooses the
closest ancestor blocking operator of rj as its drainer.

Clearly, a drainer operator does not always exist for an
overflow instance. We can classify an overflow instance as a
drainable instance if it has an ancestor blocking operator in
the query plan; otherwise, the overflow instance is consid-
ered to be non-drainable.

Since a drainer operator cannot be assigned for a non-
drainable instance rj , it is not possible to drain buf(rj) (if
it becomes full) via an interleaved execution. Thus, non-
drainer instances cannot participate in shared scans (i.e, a
separate physical scan is necessary for each non-drainable in-
stance). However, a non-drainable instance rj can be made
drainable by inserting an explicit materialize operator op in
the query plan such that op becomes an ancestor operator
of rj (i.e., drainer(rj) = op).

Consider the example in Fig. 2(b), where ws1 and ws2 are
assumed to be overflow instances, the drainer assignment
for each overflow instance rj is indicated by a dotted line
between scan(rj) and drainer(rj).

2.2.2 Deadlock-free Interleaved Execution
To maximize shared scans, an ideal query plan is to have

a single share group for each distinct multi-instance relation
R that contains all its instances. In this way, only a single
physical scan of R is required to scan all its instances. How-
ever, this is not always feasible due to two reasons: (1) the
existence of non-drainable instances; and (2) the existence
of interleaved execution deadlocks.

Basically, an interleaved execution deadlock arises when-
ever an interleaved execution that is triggered to drain a full
buffer buf(rj) eventually leads to more tuples being pushed
into buf(rj). The following example illustrates a simple ex-
ample of an execution deadlock.

Sort

HashJoin

Scan

buf(ws1)

Build

Scan

buf(ws2)

SharedScan

ws

Figure 3: Simple Execution Deadlock

Example 2.1 Fig. 3 shows a self-join between two instances
ws1 and ws2 of the relation web sales in TPC-DS, where ws1

is an overflow instance sharing a scan with ws2. The exe-
cution starts with the scan of ws2. During the scan of ws2,
buf(ws1) will become full and the execution will be switched
to drainer(ws1), which is the Sort operator. However, since
the hash table has not been completely constructed yet, be-
fore the tuples from ws1 can be processed, it is necessary
to complete the scan of ws2. But since buf(ws1) is already
full, the execution is deadlocked. �

The following example illustrates a more complex dead-
lock scenario.

Example 2.2 Consider again the Q90 query plan in Fig. 2(b).
Suppose that hd2 is now an overflow instance. The execu-
tion will start with Build1. During the shared scan of hd1

and hd2, buf(hd2) becomes full and the execution switches
to Build4, which is the drainer for hd2. This eventually trig-
gers the execution of the scan of ws2 and hence a shared scan
of ws1 and ws2 which results in buf(ws1) becoming full.
Consequently, the execution now switches over to Build1,
which is the drainer for ws1. Here, a deadlock occurs since
both buf(ws1) and buf(hd2) are full but there are more tu-
ples to be pushed into them. �

To generate a deadlock-free query plan that maximizes
shared scans, MAPLE uses a cost-based approach to optimize
both the usage of explicit materialize operators as well as
the partitioning of share groups. Explicit materialize opera-
tors can be used not only to enable non-drainable instances
to become drainable (and therefore allowing them to partic-
ipate in shared scans) but also to avoid deadlock situations.

2.3 Architecture of MAPLE
Fig. 1 shows the architecture of MAPLE which consists of

two components: the shared scan post-optimizer (SSPO) and
the interleaved iterative query evaluator (IIQE).

An input query Q is optimized by MAPLE in two steps.
First, a conventional query optimizer is used to generate a
query evaluation plan (plan(Q)). Next, plan(Q) is used as in-
put for SSPO to produce an enhanced query plan (eplan(Q)).
An eplan(Q) enhances plan(Q) by using share groups, Shared-
Scan operators, and possibly explicit materialize operators.

The generated eplan(Q) is then evaluated by the IIQE

component which is a variant of the conventional iterative
query execution engine enhanced to support shared scans as
well as interleaved operator executions.

3. SHARED SCAN POST-OPTIMIZER
In this section, we describe how the shared scan post-

optimizer (SSPO) component of MAPLE generates an enhanced
query plan that supports shared scans and interleaved oper-
ator executions.

3.1 Overflow Instances
Since SSPO optimizes a query plan statically, it needs to es-

timate the potential for an instance ri to overflow and assign
a drainer to ri if necessary. Specifically, for each instance ri

within a share group in the query plan, SSPO uses statistical
information on R (to estimate the number of qualified tuples
for the scan of ri) as well as information about the allocated
memory space for buf(ri) to decide whether ri has the po-
tential to overflow. If the total estimated qualified tuples for
ri cannot fit in buf(ri), ri is considered to be an overflow
instance, and SSPO then assigns drainer(ri) to be the closest
ancestor blocking operator of ri if ri is drainable.

Consider an instance ri that is determined by SSPO to be
a non-overflow instance (i.e., no drainer has not assigned
to ri). If ri actually overflows at runtime, then MAPLE has
no choice but to dynamically materialize the contents of
buf(ri).

3.2 Interleaved Execution Deadlocks
In this section, we provide a characterization of interleaved

execution deadlocks in terms of execution dependencies and
overflow dependencies.

3.2.1 Execution & Overflow Dependencies
Execution Dependencies. Whenever buf(ri) overflows
during a shared scan and execution control switches to drainer(ri)
which in turn causes the scan of some other relation instance
sj (where sj is a descendant of drainer(ri)) to be evaluated,
we say that there is an execution dependency from ri to sj

(denoted by ri → sj). Here, ri and sj can be instances of
the same relation or different relations. Note that execution
dependencies are transitive: if a → b and b → c, then a → c.
Moreover, if a → b and b → a, then both drainer(a) and
drainer(b) must be the same.
Overflow Dependencies. Consider two instances ri and
rj within a share group. If buf(rj) becomes full during a
shared scan invoked by ri, we say that there is an overflow
dependency from ri to rj (denoted by ri ��� rj).
Instance Dependency Cycles. We can now characterize
interleaved execution deadlocks in terms of execution and
overflow dependencies. An interleaved execution deadlock
occurs when there is an instance dependency cycle among a
set of relation instances {r1, s2, t3, · · · , zn}, n > 1, that con-
sists of an alternating sequence of ��� and → dependencies
of the form r1 ��� s2 → t3 ��� · · · ��� zn → r1.

Observe that in Example 2.1, there is an instance depen-
dency cycle ws2 ��� ws1 → ws2; and in Example 2.2, there
is an instance dependency cycle hd1 ��� hd2 → ws2 ���
ws1 → hd1.

3.2.2 Eliminating Dependencies
The above characterization of interleaved execution dead-

locks provides two ways to break deadlocks by eliminating
overflow or execution dependencies. For an overflow depen-
dency ri ��� rj , which arises when a shared scan for a group
containing ri and rj causes buf(rj) to overflow, the overflow
dependency can be eliminated by separating ri and rj into
two different share groups.

For an execution dependency ri → sj , the dependency
can be eliminated by introducing a materialize operator op
into the query plan such that op becomes the closest an-
cestor blocking operator for ri (i.e., op is a descendant of
drainer(ri)) and sj is outside of the query subtree rooted
op. In this way, drainer(ri) becomes op and the evaluation
of this new drainer for ri will not cause the scan of sj to be
evaluated.

Example 3.1 Consider once more Example 2.2 in Fig. 2(b),
where each distinct relation (i.e., hd, wp, and ws) has a sin-
gle share group for all its instances, and hd2 is an overflow
instance. There is an execution deadlock in this plan due
to the instance dependency cycle hd1 ��� hd2 → ws2 ���
ws1 → hd1. The execution dependency hd2 → ws2 can
be eliminated by introducing a materialize operator above
Scan6 which will then become the new drainer for hd2. The
overflow dependency hd1 ��� hd2 can be eliminated by sep-
arating hd1 and hd2 into two separate share groups.

3.2.3 Deadlock Avoidance
There are two approaches to handle interleaved execution

deadlocks. The first is a dynamic approach that detects and
breaks instance dependency cycles at run-time to resolve
deadlocks. The second is a static approach that avoids dead-
locks altogether by generating and processing only deadlock-
free query plans. MAPLE adopts the simpler static approach
as it provides a light-weight solution that can be easily inte-

grated into existing query engines. We plan to explore the
dynamic approach as part of our future work.

Due to the absence of run-time information on execution
and overflow dependencies, the deadlock-free plans gener-
ated by a static approach are necessarily more conservative.
Specifically, in MAPLE, if a relation instance ri in a share
group G is considered to be an overflow instance, then MAPLE

will conservatively assume the following:

• for every other instance rj in G, there is an overflow
dependency rj ��� ri; and

• if ri is a drainable instance, then for every other in-
stance sj within the query subtree rooted at drainer(ri),
there is an execution dependency ri → sj .

Given the above conservative assumptions regarding ex-
ecution and overflow dependencies, we can now generalize
the notion of instance execution dependencies to derive a
simpler and “higher level” characterization of interleaved ex-
ecution deadlocks in terms of group execution dependencies.
Group Execution Dependencies. Consider two share
groups G1 and G2. We say that there is a group execution
dependency from G1 to G2, denoted by G1 → G2, if there
is an instance x in G1 and an instance y in G2 such that
x → y. We refer to x and y as participants of the group
execution dependency G1 → G2. Note that G1 and G2 are
not necessarily distinct.
Group Dependency Cycles. We say that there is a group
dependency cycle among a set of share groups {G1, · · · , Gn},
n ≥ 1, if there is a cycle of group dependencies G1 → G2

→ · · · → Gn → G1 such that for each Gi, i ∈ [1, n], the
two participants of the two group execution dependencies
involving Gi are distinct.

ws1 ws2

G

(a) Example 2.1

ws1

hd2

ws2

hd1

G1

G2

(b) Example 2.2

Figure 4: Examples of Group Dependency Cycles

Example 3.2 Consider the examples in Fig. 4, where in-
stances within the same share group are boxed and the di-
rected edges between instances represent instance execution
dependencies. Fig. 4(a) represents the group dependency
cycle in Example 2.1 formed within a single share group G
(i.e., G → G). Fig. 4(b) represents the group dependency
cycle in Example 2.2 formed between share groups G1 and
G2. �

Note that each group in a group dependency cycle must be
involved in two group execution dependencies. For example,
in Fig. 4(b), we have G1 → G2 and G2 → G1. Moreover, the
two participants in each group must necessarily be distinct;
otherwise, it would imply that a shared scan that is invoked
by the scan of an instance ri causes its own buffer buf(ri)
to overflow, which is impossible.

The following results state a useful sufficient condition on
deadlock-free interleaved executions based on the absence of
group dependency cycles.

Theorem 3.1. If there are no group dependency cycles in
a query plan P , then there are also no instance dependency
cycles in P .

Corollary 3.2. If there are no group dependency cycles
in a query plan P , then P is free of interleaved execution
deadlocks.

3.3 Enhanced Query Plan Optimization
In this section, we describe how SSPO generates an en-

hanced query plan eplan(Q) from the optimal query plan
plan(Q) produced by a conventional optimizer such that
eplan(Q) maximizes shared scans without any interleaved
execution deadlocks. Specifically, an enhanced plan for plan(Q),
denoted by eplan(Q) = (plan(Q), G, M), specifies two ad-
ditional components:

1. a list of share groups G = {G1, · · · , Gk}, where each Gi

contains a subset of instances from the same relation,Sk
i=1 Gi is the set of all relation instances in Q, the Gi’s

in G are pairwise disjoint. Clearly, G must contain at
least one group for each distinct multi-instance relation
in Q, and the maximum number of share groups occurs
when each group is a singleton (i.e., without any shared
scans).

2. a set (possibly empty) of materialize operators M =
{M1, · · · , Mn} to be added to plan(Q).

Following the discussion in Section 3.2.2, both G and M
help to eliminate some dependencies, while M also serves to
enable some non-drainable instances to become drainable.

For notational convenience, given an enhanced query plan
P , we use G(P) to refer to the share group list component
of P , and use M(P) to refer to the materialize operator set
component of P .
Cost Model. We now explain the cost model used by SSPO

to select an optimal enhanced plan. Let R = {R1, · · ·Rd}
denote the set of distinct multi-instance relations in query
Q, and ni denote the number of instances of Ri. Given the
share group list G, let gi denote the number of groups in G
that have instances of Ri ∈ R. Thus, each ni > 1 and each
gi ≥ 1. In Example 1.1, we have d = 3, and ni = 2, gi = 1,
i ∈ [1, 3].

For each Ri ∈ R, let scanCost(Ri) denote the cost of a
single complete scan of Ri. For each Mi ∈ M, let matCost(Mi)
denote the materialization cost of Mi, which includes the
cost of writing the intermediate results to disk and the cost
of reading them back later. Given M ⊆ M, we define
matCost(M) =

P
Mi∈M matCost(Mi).

Let cost(plan(Q)) refer to the total cost of scanning each
relation instance in plan(Q) independently; i.e.,

cost(plan(Q)) =
X

Ri∈R
(scanCost(Ri) × ni) (1)

Let cost(eplan(Q)) refer to the sum of the total relation scan
cost of G and the total materialization cost of M incurred
by eplan(Q); i.e.,

cost(eplan(Q)) =
X

Ri∈R
(scanCost(Ri) × gi) + matCost(M)

(2)
The benefit of eplan(Q) over plan(Q), which measures the

savings in the evaluation cost of using eplan(Q) instead of
plan(Q), is given by

benefit(eplan(Q)) = cost(plan(Q)) − cost(eplan(Q)) (3)

Ideal Enhanced Plan. Based on Equations (1) to (3), the
upper bound for benefit is given by

P
Ri∈R(scanCost(Ri)×

(ni − 1)) which happens when eplan(Q) scans each distinct
relation exactly once (i.e., there is exactly one share group
for each distinct relation), and eplan(Q) does not incur any
materialization cost (i.e., M is empty). We refer to such a
eplan(Q) as an ideal enhanced query plan.

We can now state the query optimization problem for SSPO
more formally as follows.
Enhanced Plan Optimization Problem. Given an op-
timal query plan plan(Q) produced by a conventional opti-
mizer for a query Q, find an enhanced query plan eplan(Q)
= (plan(Q), G, M) such that eplan(Q) is free of interleaved
execution deadlocks and benefit(eplan(Q)) is maximized.

The above optimization problem is (not surprisingly) a
difficult problem as indicated by the following result for a
simplified version of the problem.

Theorem 3.3. Given plan(Q) and a set of materialize
operators M, the problem of finding a share group list G
such that eplan(Q) = (plan(Q), G, M) is free of interleaved
execution deadlocks and benefit(eplan(Q)) is maximized is
NP-hard.

3.4 Optimization Algorithm
Given the hardness of the enhanced plan optimization

problem, SSPO uses a heuristic approach that is shown in
Algorithm 1.

Consider a query Q consisting of d distinct multi-instance
relations R1, · · · , Rd with a query plan plan(Q). For each
instance rj of each Ri, SSPO first estimates whether rj is an
overflow instance and initializes the drainer for each drain-
able relation instance, drainer(rj), to be the closest ancestor
blocking operator of rj (steps 1 to 4).

Next, SSPO checks whether a deadlock-free ideal enhanced
query plan exists for plan(Q) (steps 5 to 9). Recall that an
ideal enhanced query plan has an “ideal” enhancement with
an empty set of materialize operators and a share group
list given by G = {G1, · · · , Gd}, where each share group
Gi contains all the instances of Ri except for non-drainable
instances. If the set of group dependency cycles in G, speci-
fied by C, is empty and all the overflow instances in plan(Q)
are drainable, then the constructed plan Popt is indeed a
deadlock-free ideal enhanced plan, in which case SSPO re-
turns Popt and terminates.

If the constructed enhanced plan Popt is not a deadlock-
free ideal enhanced plan, SSPO then optimizes Popt by refin-
ing its share group list G and/or adding materialize opera-
tors using a two-phases approach. In the first phase (steps
10 to 17), SSPO generates a collection of candidate material-
ize operator sets. In the second phase (steps 18 to 30), SSPO
takes each candidate materialize operator set M to create a
deadlock-free candidate enhanced plan P with M(P) = M
and G(P) = Gopt, where Gopt is an optimized refinement of
G (w.r.t. M). Among all the candidate enhanced plans gen-
erated, SSPO returns the plan with the maximum benefit as
the optimized enhanced query plan.

The details of the two phases are presented in the rest of
this section.

3.4.1 Generating Materialize Operator Sets
Useful Materialized Operator Sets. Let Mall denote
the set of all possible materialize operators that can be in-
serted into plan(Q). Instead of generating all possible subsets
of Mall, SSPO considers only candidate materialize operator

Algorithm 1 Post-Optimizer

Input: optimal plan plan(Q) for query Q
Output: enhanced query plan eplan(Q)

1: let Rmulti = {R1, · · · , Rd} be the set of distinct multi-
instance relations in Q

2: for each Ri ∈ Rmulti do
3: for each overflow instance rj of Ri do
4: initialize drainer(rj) if rj is drainable
5: let G = {G1, · · · , Gd}, where each share group Gi contains

all instances of Ri except for non-drainable instances
6: let Popt = (plan(Q), G, ∅)
7: let C be the set of group dependency cycles in G
8: if (C = ∅) and (every overflow instance is drainable) then
9: return Popt

10: let Mall be the set of all possible materialize operators that
can be inserted into plan(Q)

11: let Mdrain = {Mi ∈ Mall | drainSet(Mi) �= ∅}
12: let Sdrain be the collection of all useful subsets of Mdrain

13: let Mcycle = {Mi ∈ Mall | cycleSet−(Mi, C) �= ∅}
14: for each Mdrain ∈ Sdrain do
15: let C′ = C ∪ cycleSet+(Mdrain, C)
16: let Scycle(Mdrain) be the collection of all useful subsets of

Mcycle w.r.t C′
17: let S = {(Mdrain,Mcycle) | Mdrain ∈ Sdrain, Mcycle ∈

Scycle(Mdrain)}
18: initialize Pbest = (plan(Q), ∅, ∅)
19: for each (Mdrain,Mcycle) ∈ S do
20: for each instance rj ∈ drainSet(Mdrain) do
21: drainer(rj) = the closest ancestor operator of rj from

Mdrain ∪ Mcycle
22: let G′ = {{ri} | ri is a non-drainable instance }
23: let Gnew = {G1, · · · , Gd}, where each share group Gi con-

tains all instances of Ri except for non-drainable instances
24: if (Rmulti = {R1}) and (no two drainable instances in R1

have the same drainer) then
25: Gnew = OptimalGrouping (G1)
26: else
27: Gnew = HeuristicGrouping (Gnew)
28: P = (plan(Q), Gopt, Mdrain ∪Mcycle), where

Gopt = Gnew ∪ G′
29: if (cost(P) < cost(Pbest)) then
30: Pbest = P
31: return Pbest

sets that are useful. Intuitively, a set of materialize opera-
tors M ⊆ Mall is considered to be useless (or not useful)
if there exists a deadlock-free enhanced query plan P ′ with
M(P ′) �= M such that for every deadlock-free enhanced
query plan P ′′ with M(P ′′) = M, cost(P ′) < cost(P ′′).
Thus, a useless set of materialize operators can be safely ig-
nored without affecting the optimality of the enhanced query
plan.

We now provide a more concrete characterization of the
notion of a useful set of materialize operators. Recall that
adding a materialize operator M to plan(Q) can help en-
hance its performance in two ways. First, M can enable a
non-drainable instance ri to become drainable thereby al-
lowing ri to participate in a shared scan. Second, M can
eliminate some execution dependencies thereby enabling a
plan to become deadlock-free (i.e., C = ∅). These two ben-
efits of M can be formalized in terms of its drain set and
remove-cycle set defined as follows.

The drain set of M , denoted by drainSet(M), is defined to
be the set of non-drainable instances in plan(Q) that become
drainable if M is added to plan(Q). Thus, M becomes the
drainer operator for each of the instances in drainSet(M).

The remove-cycle set of M (w.r.t. C), denoted by

cycleSet−(M, C), is defined to be the subset of group de-
pendency cycles in C that are eliminated by the addition of
M to plan(Q).

The following result states a useful relationship between
drainSet(M) and cycleSet−(M, C).

Lemma 3.4. At most one of drainSet(M) and
cycleSet−(M, C) can be non-empty.

Lemma 3.4 follows from the observation that if drainSet(M) �=
∅ (i.e., M becomes a drainer for some non-drainable instance
ri), then ri cannot have any ancestor drainer operator prior
to the addition of M , which implies that there are no in-
stance execution dependencies (and hence group execution
dependencies) that M can eliminate. Hence cycleSet−(M, C) =
∅. Conversely, if cycleSet−(M, C) �= ∅, then M is able to
eliminate some group dependency cycle (via the elimination
of some instance execution dependency) which implies that
there must exist some drainer operator that is an ancestor
of M . Hence, there cannot be any non-drainable instances
within the query subtree rooted at M (i.e., drainSet(M) =
∅).

Based on Lemma 3.4, the useful materialize operators
(w.r.t. C) can be partitioned into two disjoint sets Mdrain

and Mcycle defined as follows:

Mdrain = {M ∈ Mall | drainSet(M) �= ∅}
Mcycle = {M ∈ Mall | cycleSet−(M, C) �= ∅}

A materialize operator that is not contained in Mdrain ∪
Mcycle is useless.

However, adding a materialize operator M to plan(Q) not
only incurs a processing cost (i.e., matCost(M)) but could
also introduce additional group dependency cycles. We char-
acterize the latter cost for M as follows. The add-cycle set of
M (w.r.t. C), denoted by cycleSet+(M, C), is defined to be
the set of new group dependency cycles (i.e., not contained
in C) that are introduced by the addition of M to plan(Q).

The following result states that adding a materialize oper-
ator from Mcycle to plan(Q) does not create any new group
dependency cycles.

Lemma 3.5. cycleSet+(M, C) = ∅ for each M ∈ Mcycle.

Lemma 3.5 can be established by contradiction. Suppose
cycleSet+(M, C) �= ∅. Then the addition of M must have
introduced a new instance execution dependency ri → sj

(that contributed to a new group dependency cycle), where
both ri and sj are within the query subtree rooted at M .
However, M ∈ Mcycle implies that there must be a drainer
operator that is an ancestor of M in the query plan which
contradicts the fact that ri → sj is a new dependency.

The definitions of drainSet(M), cycleSet+(M, C), and
cycleSet−(M, C) can be generalized naturally for a set of
materialize operators M ⊆ Mall (e.g., drainSet(M) =S

M∈M drainSet(M)).
By Lemmas 3.4 and 3.5, we can define a useful materialize

operator set in terms of its two disjoint subsets: a useful
subset of Mdrain and a useful subset of Mcycle as follows.

We say that M ⊆ Mdrain is useful (w.r.t. C) if there does
not exist another M′ ⊆ Mdrain such that all the following
four conditions hold: (1) drainSet(M) ⊆ drainSet(M′), (2)
cycleSet+(M, C) ⊇ cycleSet+(M′, C), (3) matCost(M) ≥
matCost(M′), and (4) at least one of the three previous
conditions is strict.

Similarly, we say that M ⊆ Mcycle is useful (w.r.t. C)
if there does not exist another M′ ⊆ Mcycle such that all
the following three conditions hold: (1) cycleSet−(M, C) ⊆
cycleSet−(M′, C), (2) matCost(M) ≥ matCost(M′), and
(3) at least one of the two previous conditions is strict.

Finally, consider a set M ⊆ Mall, where M = Mdrain ∪
Mcycle, Mdrain ⊆ Mdrain, and Mcycle ⊆ Mcycle. We say
that M is useful (w.r.t. C) if Mdrain is useful (w.r.t. C)
and Mcycle is useful (w.r.t. C ∪ cycleSet+(Mdrain, C)).

A materialize operator set that is not useful cannot form
an optimal enhanced query plan.
Algorithm. SSPO (steps 10 to 17 in Algorithm 1) gener-
ates a collection of useful candidate materialize operator
sets (denoted by S) as follows. First, SSPO generates Sdrain,
the collection of all useful subsets of Mdrain. Next, SSPO

takes each Mdrain ∈ Sdrain to generate Scycle(Mdrain), the
collection of all useful subsets of Mcycle w.r.t. C′, where
C′ = C ∪ cycleSet+(Mdrain, C). The final collection S is
given by {Mdrain ∪ Mcycle | Mdrain ∈ Sdrain, Mcycle ∈
Scycle(Mdrain)}. Note that as the empty set is contained in
both Sdrain and Scycle(Mdrain), an empty set of materialize
operators is also generated by SSPO.

Although the time complexity of the procedure above is
exponential in the number of materialize operators in Mdrain

and Mcycle, this number is reasonably small in practice. Al-
ternatively, some heuristic can be applied to generate smaller
Mdrain and Mcycle so as to reduce the running time, in the
cost of missing some useful candidate materialize operator
sets in S.

Example 3.3 Fig. 5(a) shows two useful materialize oper-
ators, M1 and M2, that can be used to break the execution
dependency cycle hd1 ��� hd2 → ws2 ��� ws1 → hd1 for the
query plan of Q90 in Example 2.2. M1 breaks the cycle by
eliminating ws1 → hd1 while M2 breaks the cycle by elim-
inating hd2 → ws2. Ignoring the matCost(.) component,
there are three useful sets of materialize operators: ∅, {M1}
and {M2}. �

3.4.2 Optimizing Share Group List
Given a candidate set of materialize operators M, the sec-

ond phase of SSPO (steps 18 to 30 in Algorithm 1) computes
an optimized share group list G to produce a deadlock-free
enhanced plan P with M(P) = M and G(P) = G. SSPO

has two algorithms for this computation: an optimal al-
gorithm (that can compute an optimal share group list) is
used if plan(Q) meets certain conditions; otherwise, a greedy
heuristic algorithm is used.
Optimal Grouping. An optimal share group list can be
computed using Algorithm 2 when plan(Q) satisfies two con-
ditions:

(C1) there is exactly one multi-instance relation R1 in plan(Q);
and

(C2) the drainers for all the drainable-instances of R1 are
all distinct.

Algorithm 2 takes a single share group G1 as input, where
G1 contains all the instances of R1 except for non-drainable
instances. The algorithm first constructs a directed graph
G, where the nodes in G are instances in G1, and the edges
represent execution dependencies among the instances in
G1. By condition (C2), G must be a directed acyclic graph.
The algorithm then iteratively refines G1 into a collection

NestedLoopJoin

Build1

HashJoin1

HashJoin2

Scan3

M1

ws1

Build3

Scan2

hd1

Build2

Scan1

wp1

Build4

HashJoin3

Scan6

M2

hd2

Build5

HashJoin4

Scan5

ws2

Build6

Scan4

wp2

(a) Candidate Materialize Operators

Plan M Share Groups

P1 ∅ {ws1, ws2}, {hd1}, {hd2}, {wp1, wp2}
P2 {M1}
P3 {M2} {ws1, ws2}, {hd1, hd2}, {wp1, wp2}

(b) Candidate Enhanced Query Plans

Figure 5: Enhanced Query Plans for Example 2.2

of share groups G′
1, · · · , G′

n such that G′
1 → G′

2 · · · → G′
n.

The time complexity of Algorithm 2 is O(m2), where m is
the number of instances in G1.
Heuristic Grouping. Algorithm 3 is a greedy heuristic ap-
proach to optimize an input share group list {G1, · · · , Gd},
where each Gi contains all the instances of relation Ri ex-
cluding the non-drainable instances. The share groups are
ordered such that scanCost(R1) ≤ · · · ≤ scanCost(Rd).
The heuristic refines each share group Gi by splitting it into
a collection of smaller groups Si in the order G1, · · · , Gd.
The intuition behind processing the share groups in non-
descending order of the scan cost of the associated rela-
tions is to minimize the total scan cost of the refined share
groups. For each group Gi, the heuristic tries to split Gi

into the smallest number of groups by iteratively removing
from Gi, the instance that is involved in the largest number
of cycles. The removed instance is inserted into an existing
split group of Gi whenever possible; otherwise, it is inserted
into a new split group. The insertions into split groups are
performed such that no new group dependency cycles are
formed. The time complexity of of Algorithm 3 is O(n2),

where n =
Pd

i=1 |Gi|.
Example 3.4 Continuing with Example 3.3, Fig. 5(b) shows
the optimized share group lists computed for each candidate
materialize operator set using the heuristic algorithm in Al-
gorithm 3. �

Algorithm 2 OptimalGrouping

Input: a single share group G1 containing the instances of R1

excluding non-drainable instances
Output: an optimal list of share groups

1: let G = (V, E), where
V = G1 and E = {(a, b) | a, b ∈ V , a → b}

2: initialize n = 0
3: repeat
4: n = n + 1; G′

n = {v ∈ V | v has in-degree of 0 in G}
5: remove each v ∈ G′

n from G and its incident edges
6: until V = ∅
7: return {G′

1, · · · , G′
n}

Algorithm 3 HeuristicGrouping

Input: {G1, · · · , Gd}, where each Gi is a share group containing
all instances of relation Ri excluding non-drainable instances such
that scanCost(R1) ≤ · · · ≤ scanCost(Rd)
Output: an optimized list of share groups

1: let C = set of group dependency cycles among G1, · · · , Gd

2: for i = 1 to d do
3: initialize Si = {Gi}
4: while (C contains a cycle involving Gi) do
5: let rj be the instance in Gi that participates in the largest

number of cycles in C
6: if rj can be added into some Gk ∈ Si, k �= i, without

introducing any new group dependency cycles then
7: add rj into Gk

8: else
9: create a new group G′ = {rj}
10: add G′ into Si

11: remove rj from Gi

12: remove cycles in C that involved rj

13: return S1 ∪ · · · ∪ Sd

4. INTERLEAVED ITERATIVE EXECUTION
In this section, we explain how the IIQE component of

MAPLE can be implemented by making only moderate modifi-
cations to the conventional iterative query execution engine;
thus, demonstrating that MAPLE is indeed a light-weight ap-
proach to optimize complex queries with multiple relation
instances.

For each relation instance ri in eplan(Q), IIQE maintains
the following static information: (1) a boolean flag, denoted
by switchEnabled(ri), which has a true value if and only
if ri is estimated by SSPO to be an overflow instance; and
(2) drainer(ri) if if ri is a drainable instance. In addition
to the above information, which remains unchanged dur-
ing the execution of the query, IIQE also maintains some
global runtime information that is updated dynamically as
the query execution progresses. Specifically, each relation in-
stance ri is associated with a status variable for its drainer,
denoted by drainerStatus(ri), which has three possible val-
ues: inactive, active, and successful, indicating, respectively,
that the drainer is not active, the drainer is active and the
draining is in progress, and the drainer is active and the
draining has completed. The value of drainerStatus(ri) is
initialized to inactive for each relation instance ri before
the execution of eplan(Q). Whenever buf(rj) becomes full
during the shared scan of some other instance of r (say
ri) and IIQE decides to switch execution to drainer(rj),
the value of drainerStatus(rj) is updated to active. Sub-
sequently, when all the tuples in the full buffer buf(rj) have
been consumed, the scan operator for rj will update the
value of drainerStatus(rj) from active to successful. When

the execution control is returned from drainer(rj), the value
of drainerStatus(rj) is reset to inactive.

Algorithm 4 Scan

Input: ri, the instance being scanned

1: let Op be the parent operator of Scan(ri) in query plan
2: if (buf(ri) is not empty) then
3: let t be the first tuple in buf(ri)
4: deliver t to Op
5: remove t from buf(ri)
6: else
7: if (drainerStatus(ri) = active) then
8: drainerStatus(ri) = successful
9: deliver a dummy-null tuple to Op

10: else
11: SharedScan (ri)

Algorithm 5 SharedScan

Input: ri, the instance being scanned

1: let Gx be the share group that ri belongs to
2: initialize continueScan = true

3: while (continueScan) do
4: let t be the next tuple from relation r
5: if (t is null) or (t qualifies for Scan(ri)) then
6: deliver t to the parent operator of Scan(ri)
7: continueScan = false

8: for each (rj ∈ Gx, rj �= ri) do
9: if (t is null) or (t qualifies for Scan(rj)) then

10: if (buf(rj) is full) and switchEnabled(rj) then
11: SwitchExecution (rj)
12: append t into buf(rj)

Algorithm 6 SwitchExecution

Input: ri, an overflow instance

1: drainerStatus(ri) = active
2: transfer execution control to drainer(ri) operator
3: drainerStatus(ri) = inactive

Recall that in the iterative execution model, each operator
is specified in terms of three functions: open, getNext, and
close. Algorithm 4 highlights the modifications required for
the getNext procedure of the table scan operator (referred
to as Scan). Given a relation instance ri, Scan first checks
whether its associated buffer buf(ri) is empty: if it is not
empty, the first tuple in buf(ri) will be returned to the par-
ent operator of Scan(ri) and then removed from buf(ri).
The key modification for the Scan algorithm occurs when
the buffer is empty, where there are two cases to consider.
In the first case (steps 8-9), if the scan of ri has been initiated
to drain its buffer (i.e., drainerStatus(ri) = active), then it
means that the draining process has completed successfully.
The value of drainerStatus(ri) is then updated to successful,
and a dummy-null tuple is returned to the parent operator of
Scan(ri). The use of dummy-null tuples is important to dis-
tinguish a successful draining process (i.e., all the tuples in
a full buffer have been consumed) from a completed relation
scan event (i.e., there are no more tuples to be placed in the
buffer). In the latter case, an actual null tuple is returned.
In this way, whenever an operator op receives a dummy-null

tuple from its child operator, op will know that the tuple
is due to a completed draining process and will therefore
pass the dummy-null tuple up to its parent operator, and
so on. The upward propagation of the dummy-null tuple in
the query plan tree continues until the tuple is received by
a successful drainer operator op (i.e., op = drainer(rk) and
drainerStatus(rk) = successful). Thus, the drainer operator
op then returns execution control to the interrupted relation
scan that initiated op. The value of drainerStatus(rk) is also
reset to inactive. In the second case (step 11), where the
scan of ri is a “normal” scan (i.e., not initiated for buffer
draining), the SharedScan of ri will be invoked.

The details of SharedScan are shown in Algorithm 5. Es-
sentially, SharedScan continues scanning r for the next tuple
that qualifies for ri; i.e., satisfies the selection predicate con-
ditions associated with the scan of ri. For each scanned tu-
ple t, SharedScan also checks if t qualifies for other instances
rj that are in the same share group as ri; the qualified tu-
ples are pushed into the appropriate buffers. If some buffer
buf(rj) becomes full, then there are two cases to consider. If
SSPO has correctly estimated that rj is an overflow instance
(i.e., switchEnabled(rj) has a true value), a drainer opera-
tor drainer(rj) would have been assigned by SSPO and the
execution control then switches to this drainer (step 11) by
invoking the SwitchExecution function. Otherwise, if the
overflow of buf(rj) has not been anticipated by SSPO, the
full buffer buf(rj) will not be drained and it will instead
be implicitly materialized; i.e., in IIQE, whenever a tuple is
added to a full buffer buf(rj), the buffer contents will be
materialized.

In general, the SharedScan of ri could lead to full buffers
for multiple instances in the same share group as ri. When
this happens, there is the issue of the execution order of
the multiple drainers. The current implementation of MAPLE
simply picks an arbitrary sequence; possible optimization of
this ordering is part of our future work.

The SwitchExecution function (shown in Algorithm 6)
is invoked to switch execution to drainer(ri) for an over-
flow instance ri. The function needs to update the ac-
tiveDrainer status of ri to active before transferring control
to the drainer and reset the activeDrainer status to inactive
upon its return.

In summary, implementing the IIQE component of MAPLE
requires only moderate modifications to the traditional it-
erative execution evaluation engine used by most RDBMSs.
Specifically, the main changes include: two new functions
SharedScan and SwitchExecution; and minor modifications
to operator code to distinguish between null and dummy-

null tuples.

5. PERFORMANCE STUDY
We validated our techniques using an experimental pro-

totype built on PostgreSQL 8.1.3. All experiments were
performed on a Dell workstation with a Quad-Core Intel
Xeon 2.33GHz processor, 3GB of memory, one 160GB SATA
disk and another 750GB SATA disk, running Linux 2.6.20.
Both the operating system and PostgreSQL system are built
on the 160GB disk, while the databases of PostgreSQL are
stored on the 750GB disk.

Since PostgreSQL 8.1.3 does not support the WITH clause,
we replaced those WITH procedures in queries with VIEW
definitions. In this way, PostgreSQL applies view unfolding
to replace the views by their definitions during optimization.

As default, the initial system buffer pool in PostgreSQL
is set to 1,000 8K-pages. We also tested with larger buffer
pool sizes. The results were similar and thus omitted.

5.1 Test Queries
As mentioned, more than 60% (61 out of total 99) of the

TPC-DS queries contain multiple instances. We have con-
ducted experiments on many of these queries. We present
here a representative set that offers some interesting insights.
A query is chosen if it satisfies all the following criteria: (a) It
contains multiple instances that are eligible for scan sharing,
i.e., apply sequential scan on the same table. (b) It contains
multiple instances of at least one of the three big relations:
store sales (ss), catalog sales (cs) and web sales (ws). (c) It
is executable by PostgreSQL. Some operators in the queries
are not recognized/supported by PostgreSQL. (d) It can be
optimized by PostgreSQL’s dynamic programming (DP) op-
timizer. For queries that are too complex to optimize using
the DP method, PostgreSQL provides another genetic op-
timizer(geqo). However, since geqo does not guarantee to
generate consistent plans for the same query, we cannot use
it. (e) It is not a batch query which contains a batch of
separate queries that run in parallel. We have to exclude
batch queries because our current implementation only sup-
ports single queries, although our techniques can be easily
extended to support batch queries. (f) Its execution time is
affordable for us. Some queries, like Q74 and Q95, require
super long-time executions. Table 1 presents a summary of
the 49 queries excluded according to the criteria above.

criterion a b c d e f
of queries 5 28 8 2 4 2

Table 1: Queries Filtered by Each Criterion

Finally we are left with 12 queries listed in Table 2, along
with the instance number of ss, cs and ws inside. However,
all other instances within a chosen query, irrespective of their
sizes, were also considered by MAPLE.

rel ∗ inst# rel ∗ inst#
Q2 cs ∗ 2, ws ∗ 2 Q61 ss ∗ 2
Q4 ss ∗ 4, cs ∗ 4 Q65 ss ∗ 2
Q11 ss ∗ 4, ws ∗ 4 Q72 ss ∗ 2, cs ∗ 2
Q31 ss ∗ 3, ws ∗ 3 Q88 ss ∗ 8
Q51 ss ∗ 2 Q90 ws ∗ 2
Q59 ss ∗ 2 Q97 ws ∗ 2

Table 2: Test Queries in Experiments

Since TPC-DS queries are all very complex, we cannot
afford to draw full queries/plans in the paper due to space
limitation.

5.2 Experiment Design
In our implementation, MAPLE is integrated into the orig-

inal system. By setting a flag, we can switch between the
original mode and MAPLE mode. In the original mode, the
original execution engine will be used; in the MAPLE mode,
the MAPLE engine will be used. Both engines share the same
query optimizer.

In each experiment below, we ran the same test query in
both the original mode and the MAPLE mode to compare the

execution time difference. When a test query was running,
no other queries was running in parallel. Between queries
we restarted the operating system to clear caches.

In PostgreSQL, each sorting and hashing operation has a
dedicated operator memory. In MAPLE, besides the opera-
tor memories, each overflow instance uses additional buffer
memory, which we shall refer to as instance-buffer. For a
fair comparison, in each experiment we distributed the to-
tal amount of instance-buffer used in MAPLE mode evenly to
each operator memory in original mode.

We studied the effect of three experiment parameters: op-
erator memory (operator mem), instance-buffer size (buffer)
and the dataset size. For the latter, we used both 10 GB and
100 GB TPC-DS datasets.

The TPC-DS datasets are imported into PostgreSQL’s
databases, which are stored on the 750GB disk. In the ex-
periments, the same disk was used to store the temporary
files generated during query execution.

The default settings that we used for our experiments
are 1 MB (instance) buffer, 10 MB operator memory and
a 10 GB dataset.

In following subsections, we shall refer to the system under
original mode as PostgreSQL.

5.3 Optimization Overhead

psql MAPLE psql MAPLE

Q2 90 125 Q61 366 434
Q4 113 126 Q65 311 351
Q11 117 133 Q72 137570 137789
Q31 104 115 Q88 397 413
Q51 427 502 Q90 346 354
Q59 88 119 Q97 420 473

Table 3: Optimization times (in microsecond) with
Default Settings

It is desirable to measure the optimization overhead of
MAPLE, which is incurred mainly by SSPO. Therefore, we
compared the actual optimization times of PostgreSQL and
MAPLE with default parameter settings. In order to eliminate
any first-level instruction cache effect in query optimization,
we restarted the operating system between optimizations.
The optimization times of PostgreSQL and MAPLE can be
found in Table 3. It is very clear that the optimization over-
head of MAPLE is low, and as we shall see shortly, it is also
negligible compared to the query execution time.

5.4 Operator Memory
In this experiment, we study the effect of operator mem.

We use three different sizes: 5 MB, 10 MB and 20 MB.
Fig. 6 shows the performance improvements (in %) of

MAPLE over the PostgreSQL; and Fig. 7 shows the corre-
sponding query execution times in MAPLE and PostgreSQL.
In Fig. 7, the execution times of PostgreSQL can be com-
puted by adding the execution time of MAPLE with the time
MAPLE saved. Fig. 8 depicts the expected saving and the ac-
tual saving for all queries with 5 MB operator mem. The
expected saving refers to the time MAPLE is expected to save
over PostgreSQL. The actual saving is the saving of MAPLE
over PostgreSQL for the actual total query execution time.
Due to space limitations, we shall not present detail query-
by-query analysis. Instead, we will summarize the more in-
teresting findings here.

operator_mem = 5 MB
operator_mem = 10 MB
operator_mem = 20 MB

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

Q97Q90Q88Q72Q65Q61Q59Q51Q31Q11Q4Q2

O
ve

ra
ll

 I
m

pr
ov

em
en

t

Figure 6: Performance Improvements By MAPLE

expected saving
actual saving

 0

 100

 200

 300

 400

 500

 600

 700

 800

Q97Q90Q88Q72Q65Q61Q59Q51Q31Q11Q4Q2

T
im

e
(i

n
se

c)

Figure 8: Expected Saving and Actual Saving With
5MB operator mem

First, as shown, MAPLE offers significant performance im-
provement in almost all queries (except Q59, for which we
will explain shortly). The average improvement is around
30% and the highest improvement is 67% achieved by Q88.
In terms of absolute time, the savings range from a few sec-
onds to 700 seconds. These results are expected as MAPLE

requires only one scan of multiple instances of a relation.
Second, we also observe that MAPLE remains superior as we
vary operator mem.

Second, we note that, for some queries (Q2, Q4, Q11, Q31,
Q59 and Q65), the execution times of both MAPLE and Post-
greSQL vary with different operator mem. There are two
main reasons for this:(a) The query plan generated by Post-
greSQL (and hence MAPLE) may be different under different
operator mem size. In the experiment, the plans for Q4 and
Q65 are different when we change operator mem from 5 MB
to 10/20 MB; for Q11, there are three different plans for the
three operator mem sizes; for the other queries, their plans
remain the same for the three operator mem sizes. (b) A
larger operator mem may reduce the I/O cost, e.g., for sort-
ing, the number of runs may be reduced, and for hybrid hash
join, the amount of data in the partitions to be written out
and re-read will also be smaller. This reduces the execution
times. With a reduced execution time, the savings for MAPLE
over PostgreSQL may correspondingly reduce.

Third, from Fig. 8, we find that the actual savings in MAPLE

are close to the expected savings for most queries. The dif-
ference is mainly due to the additional overhead (like the

time saved
MAPLE’s execution time

 0

 100

 200

 300

 400

 500

 600

 700

 800

2
0
M

B
1
0
M

B
0
5
M

B

2
0
M

B
1
0
M

B
0
5
M

B

2
0
M

B
1
0
M

B
0
5
M

B

2
0
M

B
1
0
M

B
0
5
M

B

2
0
M

B
1
0
M

B
0
5
M

B

2
0
M

B
1
0
M

B
0
5
M

B

2
0
M

B
1
0
M

B
0
5
M

B

2
0
M

B
1
0
M

B
0
5
M

B

E
x
e
c
u
ti

o
n
 T

im
e
 (

in
 s

e
c
)

Q2 Q31 Q51 Q61 Q65 Q72 Q90 Q97

time saved
MAPLE’s execution time

 0
 500

 1,000
 1,500
 2,000
 2,500
 3,000
 3,500
 4,000
 4,500

2
0

M
B

1
0

M
B

0
5

M
B

2
0

M
B

1
0

M
B

0
5

M
B

2
0

M
B

1
0

M
B

0
5

M
B

E
x

e
c
u

ti
o

n
 T

im
e
 (

in
 s

e
c
)

Q4 Q11 Q88

original system
MAPLE

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

20MB10MB5MB

E
x

e
c
u

ti
o

n
 t

im
e
 (

in
 s

e
c
)

Q59

Figure 7: Query Execution Times

cost of copying tuples to buffers) incurred by interleaved
execution. However, for Q11, the actual saving is signifi-
cantly lower than expected, whereas for Q51, Q61 and Q72,
the actual savings are much higher than expected! Our in-
vestigation shows these are contributed by several effects
of the interleaved execution: (a) FragmentedReadWrite ef-
fect. Under the interleaved execution model, the processing
of one drainer may trigger other drainers to become active.
As a result, when the processing of these drainers involve
disk accesses (e.g., sorting), the intermediate results writ-
ten (and subsequently read) are more fragmented across the
disk (than it would be had there been only one single drainer
running, as in PostgreSQL). (b) BufferHit effect. This ef-
fect arises when both an active drainer and an interrupted
drainer share some cache content. As a result, when the
active drainer requires some data, it finds it in the buffer,
and when the suspended drainer resumes processing, it also
finds its required data in the buffer. Clearly, the Fragment-
edReadWrite is a negative effect while the BufferHit is a
positive effect.

For Q51, Q61 and Q72, we observe the BufferHit effect
For example, in Q51, there are some common index scans in
subtrees of two drainers: while execution switches between
these two drainers, the index pages fetched from disk can be
shared via the system buffer. As such, besides the expected
savings from using SharedScan, the sharing of these indexed
pages also contributes to the actual savings.

On the other hand, for Q11, it turns out that the drainers
that are processed in an interleaved fashion need to write
out large amount of intermediate results, resulting in the
FragmentReadWrite effect that reduces the savings.

For Q90 and Q97, little improvement opportunity was left
to MAPLE due to the OS CacheHit effect. This is because in
these two queries ws is the only large table for which a large
part is cached by the OS in the 3GB RAM.

Finally, for Q59, the plan involves a sort operator on a
large intermediate result produced by a hash join operator.
When the operator mem is small (5 MB), the buffer is not
sufficient to hold the entire hash table, and the sort opera-
tion incurs more disk I/O cost. As such, although there is a
FragmentReadWrite effect in MAPLE, this is relatively small
and hence MAPLE outperforms PostgreSQL. However, when
the operator mem increases to 10/20 MB, the hash join can
be processed in memory, and the sort operator incurs lesser
I/O cost. As a result, PostgreSQL’s execution time reduces
significantly. On the contrary, the FragmenReadWrite effect

remains in MAPLE. It turns out that this effect far outweighs
the benefits of SharedScan, resulting in its poorer perfor-
mance than PostgreSQL. We note that we can statically
determine the number of switches (which gives a hint on
how fragmented the drainer’s output will be). If the value
is above a certain threshold, we will not post-optimize the
PostgreSQL plan. We plan to explore this further.

5.5 Instance-buffer Size
We next study the effect of instance-buffer size. In this ex-

periment, we use two different instance-buffer sizes: 100 KB,
1 MB. Recall that for PostgreSQL, the total amount of
instance-buffer sizes used for MAPLE goes to its operator mem-
ories. The results for this experiment are shown in Fig. 9.

100 KB
1 MB

 0.0%

 10.0%

 20.0%

 30.0%

 40.0%

 50.0%

 60.0%

 70.0%

 80.0%

Q97Q90Q88Q72Q65Q61Q59Q51Q31Q11Q4Q2

O
ve

ra
ll

 I
m

pr
ov

em
en

t

Figure 9: MAPLE Effect of Changing Instance-buffer
Size

Generally, the performance of MAPLE under different buffer
sizes are more or less the same. We see two different effects
of the buffer size. For MAPLE a larger instance-buffer reduces
the number of interleaved executions, and hence less Frag-
mentReadWrite effect. On the other hand, for PostgresSQL,
a larger operator memory (recall that the instance-buffer of
MAPLE are distributed to the operator memory) reduces the
I/O cost of sort and hash operators. For some queries (e.g.,
Q4, Q11, Q51, Q59, Q61, Q97), the improvement over Post-
greSQL increases with larger instance-buffer. However, for
some queries, like Q72 and Q88, the performance improve-
ment over PostgreSQL degraded marginally with increased
buffer sizes.

5.6 Dataset
We also conducted an experiment with a 100 GB dataset

to study the scalability of MAPLE. Here, we use 10 MB oper-
ator mem and 1 MB buffer. Fig. 10 shows both the results
of 100GB dataset and the results of 10GB dataset with the
same parameter settings.

10GB dataset
100GB dataset

 0.0%

 10.0%

 20.0%

 30.0%

 40.0%

 50.0%

 60.0%

 70.0%

 80.0%

Q97Q90Q88Q72Q61Q51Q31Q11Q2

O
ve

ra
ll

 I
m

pr
ov

em
en

t

Figure 10: MAPLE Effect in 100GB Dataset

Since the execution times of queries on 100GB dataset
were very long, we did not finish all 12 queries. From the
figure, we see that MAPLE still performs well with a larger
dataset.

For some queries like Q2, Q31 and Q88, the improvements
over PostgreSQL (in %) with the 100 GB dataset is lower
than that with the 10 GB dataset. There are two main
reasons for this behavior: a) while (big) relation sizes have
increased ten fold from 10 GB to 100 GB dataset, their scan
times have not increased proportionally. For example, the
scan time of web sales in Q2 increased from 20 seconds to
90 seconds in 100 GB dataset. b) With the 100 GB dataset,
in PostgreSQL the ratio of the total table scan time of in-
stances to the total execution time is reduced compared to
that of 10 GB dataset. For example, the total table scan
time of instances of Q2 took around 49% and 39% of the
total execution time in 10GB and 100GB dataset, respec-
tively.

On the other hand, for Q90 and Q97, MAPLE performs
much better in the 100 GB dataset. This is because the OS
CacheHit effect present in the 10 GB dataset disappeared
in 100 GB case, and the gain of shared scan becomes more
significant.

6. RELATED WORK
The need to efficiently coordinate multiple disk scans on

the same table to exploit data-sharing has long been recog-
nized. Early work focused on designing buffer replacement
algorithms (e.g., LRU-K [13]) to maximize buffer locality.
However, these works do not explicitly optimize data shar-
ing. Moreover, their effectiveness is limited especially for
large tables that do not fit in the cache. Several commer-
cial Database systems have implemented various forms of
circular scans on database relations (Teradata [4], RedBrick
[6] and Microsoft SQL Server [1]). The basic idea is to let
a newly starting scan attach to an ongoing scan to reuse
buffer pages brought by the ongoing scan. In QPipe [10],
Harizopoulos et al. propose to maintain one scan thread
that keeps scanning a table while table scan operators can

attach to and detach from this thread in order to share the
scanned buffer pages. However, the degree of sharing the
buffer pool provided in these methods is extremely sensi-
tive to the speed diversity of scans. Recently, a modified
circular scan has been proposed in IBM DB2 system [11,
12] by adding explicit group control and allowing throttling
of faster scans. Zukowski et al. [19] introduce an enhanced
buffer manager that dynamically schedules disk reads of scan
operators such that multiple concurrent scans reuse the same
buffer pages.

Sharing scan of base relations and pipelining of common
subexpression results reduce disk access costs on the level
of query processing operators. Zhao et al. [17] consider
sharing scans and pipelining subexpressions among OLAP
queries (aggregation on a join of fact table with dimension
tables). Nilesh et al. [7] discussed the feasibility of pipelin-
ing in multi-query optimization. They aim to pipeline re-
sults of a common subexpression or tuples of a base relation
to consumers in different SQL queries. Our work can also
be extended to handle common subexpressions and multiple
queries.

In [7], the determination of a valid pipeline schedule has
a similar motivation as our deadlock avoidance method in
Section 3.2.3. However, the two are actually different. As
an example, consider Q90 in Fig. 2. The schedule of shar-
ing the scan of all three relations will be considered valid by
[7] as each cycle has two opposite materialized edges (the
build edges of hash join). However, as we discussed in the
paper, whether it is a valid sharing scan schema depends on
whether hd2 is an overflow instance or not (see example 1.1
and example 2.2). In fact, the interleaved execution dead-
lock described in this paper is different from the deadlock
situation in [7, 10].

In multi-query optimization(MQO) [14, 18], exploiting com-
mon subexpressions in (multi-instance) queries indirectly
leads to avoiding multiple scans on the same relation table.
However, the materialized results of a common subexpres-
sion need be separately read by different consumers, just
like the independent scans of relation instances. Moreover,
MQO is not able to optimize scans of instances that are
outside the common subexpression. Therefore, for multi-
instance queries, MAPLE can be either applied independently
or ultilized as the next optimization step after MQO.

The philosophy under our interleaved execution strategy
is that when event a is blocked, process event b to continue
a. The query scrambling [15] technique follows another sim-
ilar but different philosophy: when event a is blocked, pro-
cess event b until a resume itself. Used in distributed query
processing, query scrambling reacts to unexpected delays
in obtaining initial requested tuples from remote sources
by performing other useful work which would normally be
scheduled for a later point in the execution.

We also note that Graefe has hinted on the idea of switched
execution in [8]. However, there is no discussion on how to
realize it. We are the first to investigate the interleaved
execution model and demonstrate its practical effectiveness.

7. CONCLUSION
In this paper, we have presented MAPLE, a Multi-instance-

Aware PLan Evaluation engine. MAPLE enables multiple in-
stances of a relation in single queries to share one physical
scan with limited buffer space. MAPLE is light-weight and
can be easily integrated into existing RDBMS executors.

We have developed a prototype in PostgreSQL, and our ex-
perimental study using the TPC-DS benchmark showed that
MAPLE can significantly reduce the execution time (compared
to the original plans produced by PostgreSQL).

There are several directions for future work. First, MAPLE
can be easily extended to support common subexpressions
within a single query (instead of just table scans) as well
as across multiple queries. The result of a common subex-
pression, either pipelined or materialized, can be treated as
a virtual table and shared “scanned” by all instances. For
multiple queries, common subexpressions or tables across
multiple queries can be shared in a similar manner. In ad-
dition, we note that these queries can be processed simulta-
neously without any execution dependency between them.
We plan to complete our implementation to support these.

Second, as shown in our experimental study, interleaved
execution of operators may impact performance of a query in
a negative way, i.e., the FragmentReadWrite effect. We plan
to explore how we can extend MAPLE to consider these fac-
tors. In particular, we need to ensure that a MAPLE-enhanced
plan must not be inferior to the corresponding PostgreSQL
plan.

Finally, MAPLE is a post-optimization strategy. As such, it
only enhances a single plan generated by the optimizer. We
also plan to explore an integrated strategy, i.e., to extend
the search space of a query optimizer to support instance-
awareness as a plan is built. In this way, the generated plan
is expected to be superior over that of MAPLE’s plan.

8. REPEATABILITY ASSESSMENT RESULT
The repeatability committee has not been able to repeat

the experiments of this paper due to the lack of appropriate
hardware.

Acknowledgements This research is supported in part by
NUS Grant R-252-000-271-112.

9. REFERENCES
[1] Microsoft SQL Server Library. http://msdn2.

microsoft.com/en-us/library/bb545450.aspx.

[2] PostgreSQL. http://www.postgresql.org/.

[3] TPC BENCHMARK Decision Support.
http://www.tpc.org/tpcds/.

[4] R. Bhashyam. TPC-D: the challenges, issues and
results. SIGMOD Rec., 25(4):89–93, 1996.

[5] E. I. Chong, S. Das, G. Eadon, and J. Srinivasan. An
efficient sql-based rdf querying scheme. In VLDB,
pages 1216–1227, 2005.

[6] L. S. Colby, R. L. Cole, E. Haslam, N. Jazayeri,
G. Johnson, W. J. McKenna, L. Schumacher, and
D. Wilhite. Redbrick vista: Aggregate computation
and management. In ICDE, pages 174–177, 1998.

[7] N. Dalvi, S. Sanghai, P. Roy, and S. Sudarshan.
Pipelining in multi-query optimization. Journal of
Computer and System Sciences, 66(4):728–762, 2003.

[8] G. Graefe. Query evaluation techniques for large
databases. ACM Computing Surveys, 25(2):73–170,
1993.

[9] T. Grust, M. V. Keulen, and J. Teubner. Accelerating
xpath evaluation in any rdbms. ACM Trans. Database
Syst., 29(1):91–131, 2004.

[10] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki.
Qpipe: a simultaneously pipelined relational query
engine. In SIGMOD, pages 383–394, 2005.

[11] C. A. Lang, B. Bhattacharjee, T. Malkemus,
S. Padmanabhan, and K. Wong. Increasing
buffer-locality for multiple relational table scans
through grouping and throttling. In ICDE, pages
1136–1145, 2007.

[12] C. A. Lang, B. Bhattacharjee, T. Malkemus, and
K. Wong. Increasing buffer-locality for multiple index
based scans through intelligent placement and index
scan speed control. In VLDB, pages 1298–1309, 2007.

[13] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The lru-k
page replacement algorithm for database disk
buffering. In SIGMOD, pages 297–306, 1993.

[14] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe.
Efficient and extensible algorithms for multi query
optimization. In SIGMOD, pages 249–260, 2000.

[15] T. Urhan, M. J. Franklin, and L. Amsaleg. Cost-based
query scrambling for initial delays. SIGMOD Rec.,
27(2):130–141, 1998.

[16] K. Wilkinson, C. Sayers, H. A. Kuno, and
D. Reynolds. Efficient rdf storage and retrieval in
jena2. In SWDB, pages 131–150, 2003.

[17] Y. Zhao, P. M. Deshpande, J. F. Naughton, and
A. Shukla. Simultaneous optimization and evaluation
of multiple dimensional queries. In SIGMOD, pages
271–282, 1998.

[18] J. Zhou, P.-A. Larson, J.-C. Freytag, and W. Lehner.
Efficient exploitation of similar subexpressions for
query processing. In SIGMOD, pages 533–544, 2007.

[19] M. Zukowski, S. Héman, N. Nes, and P. Boncz.
Cooperative scans: dynamic bandwidth sharing in a
dbms. In VLDB, pages 723–734, 2007.

