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ABSTRACT
We describe the implementation of memory protection by means
of aspect-oriented programming (AOP) in CiAO, an AUTOSAR-
like family of embedded operating systems. The use of AOP was
originally motivated by the fact that memory protection is a cross-
cutting policy, which, furthermore, has to be configurable at build-
time in AUTOSAR. We learned, however, that besides switching
between full protection and no protection, an AOP-based approach
also makes it easy to apply completely different models of protection.
For the domain of statically configured embedded systems, where
certain failure scenarios can often be excluded by means of code
analysis or even probability, this facilitates tailored and light-weight
“pay-as-you-use” protection strategies.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—Real-time
systems and embedded systems; D.3.3 [Programming Languages]:
Language Constructs and Features

General Terms
Languages, Experimentation, Design

Keywords
Aspect-Oriented Programming (AOP), AspectC++, CiAO, Config-
urability, Aspect-Aware Operating System, Memory Protection

1. INTRODUCTION
Software and electronics have become the driving factor for inno-

vation in the automotive industry. Today, a typical premium class car
(e.g., BMW 7, Audi A8) already offers more than 2,000 software-
based features, implemented by 10,000,000 lines of code. On the
hardware side, this software is run by more than 70 electronical
control units (ECUs), which are interconnected by up to 5 different
bus systems [5]. The rapidly increasing number of ECUs and bus
systems leads to significant problems with respect to wiring, com-
plexity, and scalability. Thus, car manufacturers are striving towards
a consolidation of µ-controllers; they want to switch from the high
number of individual ECUs (mostly 8- and 16-bit) to a small number
of more powerful 32-bit ECUs running multiple applications.
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However, the parallel execution of multiple applications from
different vendors on the same hardware requires a new generation
of automotive system software. With respect to safety and liabil-
ity issues, effective mechanisms for fault isolation and detection,
especially memory protection (MP), have to be enforced.

These requirements are reflected in a new OS specification
adopted by AUTOSAR [1], a consortium founded by all major
players in the automotive industry in order to specify a new system
software standard for car applications. The AUTOSAR OS spec-
ification [4] defines four scalability classes, which (among other
things) specify different levels of MP. Whereas scalability classes 1
and 2 offer no protection of the OS core and application domains,
MP has to be enforced in scalability classes 3 and 4. Thus, to be
competitive on all market segments, OS vendors have to understand
and implement MP as a configurable and optional feature.

On the implementation side, MP is a highly cross-cutting fea-
ture. It affects all system calls, the dispatcher, the access to system
resources, and so on – a situation that is especially problematic if
MP shall be configurable. System calls, for instance, have to be
invoked by some trap mechanism if protection applies; if, however,
protection is not an issue, system calls can be provided as a simple
linker library or even be inlined into the application code.

About this Paper
We present and discuss an implementation approach for MP by
means of aspect-oriented programming (AOP), a programming
paradigm that provides specific language support to deal with cross-
cutting concerns by the notion of aspects.

The paper is organized as follows: Sec. 2 starts with a short
analysis of MP in the domain of embedded systems and its issues.
Sec. 3 describes our AOP-based implementation in CiAO; first
results are discussed in Sec. 4. Finally, Sec. 5 gives an overview of
related work and the paper is concluded in Sec. 6.

2. ANALYSIS
In most embedded systems, all code and data sections are al-

located statically and mapped to physical addresses at link-time.
On the hardware side, MP is implemented by a simple memory
protection unit (MPU). An MPU offers a simple segmentation of
the physical address space and is relatively cheap to implement;
only a few memory range registers to specify size, location, and
access privileges (read/write/execute) to one or more memory re-
gions are required. This is different from page-based virtual memory
implemented by most general-purpose operating systems (such as
Windows or Linux), which requires a full-featured MMU. However,
in order to switch between the different trust levels in a controlled
manner, the MPU registers are programmable only if the CPU is run-
ning in supervisor mode. Hence, like in a general-purpose operating
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system, a trap mechanism has to be used to switch to supervisor
mode when entering the kernel.

In the software model of most embedded OSes that provide pro-
tection, communication between protection domains is typically
restricted to message passing only. This is comparable to most
µ-kernels, where IPCs are the only provided abstraction for process
interaction.

In short: MP in embedded operating systems is, overall, im-
plemented by the same concepts as are used in systems from the
domains of “big” computing.

2.1 Properties and Issues of Memory
Protection in Embedded Systems

However, the development constraints of the typical ECU differ a
lot from the domain of desktop computing:

Hardware costs. ECUs are produced and sold in very large quanti-
ties. A strict tailoring of the per-unit hardware costs is crucial;
a few cents can decide over market success and failure and
especially SRAM is relatively expensive. System software
for this domain has offer an excellent “pay-as-you-use” scala-
bility by means of static configuration and tailoring.

Safety, not security. MP is motivated by safety concerns, not by
security issues. The software installed on an ECU is generally
considered as trustworthy – but not as bug-free, though.

Fault class constraints. Fault situations that impair dependability
are inherently limited. Code, for instance, is immutable at
run-time if placed into ROM/flash memory sections. Certain
classes of faults (e.g., those resulting from pointer arithmetic)
can sometimes be excluded by offline analysis of the source/bi-
nary code or by an official certification of the software with
respect to safety standards such as MISRA C [11].

Applying the traditional MP paradigms to the embedded systems
domain in an unabrigded form bears several problems, especially
with respect to tailoring and, thus, hardware costs.

System calls. The common implementation through traps and a
system service table effectively results in a late binding of
system services; this inhibits the elimination of unused code
by the linker. Furthermore, services cannot be inlined, which
disables another important source of cost optimization.

Message-based interaction. Even though conceptually considered
advantageous and well understood, message-based IPC be-
tween protection domains induces costs and complexity. The
necessity for extra server threads increases the number of sys-
tem objects and invocations of the dispatcher. The inherent
synchronization of message-based IPC impacts determinism
and worst case execution time (WCET) calculations.

2.2 Summary
Existing MP mechanisms neither support the specific constraints

of embedded systems nor exploit the available a-priory knowledge
about the applications. Potential for cost reduction is given away by
understanding fault isolation by MP as a “hundred percent solution”.
Whereas “hundred percent” is certainly desirable for ECUs with
functionality relevant to human safety, such as the ABS in a car,
most ECUs actually implement (dispensable) comfort functions.
For these systems, there is a trade-off between the user-perceivable
dependability gain and the hardware cost increase. The handling
of just the most probable fault situations (e.g., stack overflows)
might already increase dependability by an order of magnitude with

Figure 1: Syntactical Elements of an Aspect in AspectC++

minimal extra costs. Thus, protection mechanisms should scale
with respect to fault class tolerance and be tailorable to the actual
application requirements.

3. MEMORY PROTECTION IN CIAO

3.1 The CiAO Embedded OS
In the CiAO project (CiAO is Aspect-Oriented), our group has

been developing a family of aspect-aware operating systems for
embedded applications. The system is aspect-aware in the sense that
it has been developed with the idea of configurability by aspects from
the very beginning. The goal is to come up with a system design
that provides means to configure even fundamental and highly cross-
cutting OS policies, like synchronization and protection strategies.
In a previous paper [13], we demonstrated the approach on interrupt
synchronization; the focus of this paper is memory protection.

Primary development platform for CiAO is the Infineon TriCore,
an architecture of 32-bit µ-controllers mostly used in the automotive
industry that also serves as a reference platform for AUTOSAR.

3.2 AspectC++
The implementation language for CiAO is AspectC++ [15], an

AOP language extension for C++. The AspectC++ weaver ac++
transforms AspectC++ code into ISO C++ code, which can then be
compiled by any standard-compliant C++ compiler.

The most relevant AspectC++ language concepts are join-points
and advice. An advice definition describes a transformation to be
performed at specific positions either in the static program structure
(static cross-cutting) or in the run-time control flow (dynamic cross-
cutting) of a target program. A join-point denotes such a specific
position in the target program. Advice is given by aspects to sets of
join-points called pointcuts. Pointcuts are defined declaratively in
a join-point description language. The sentences of the join-point
description language are called pointcut expressions. An aspect
encapsulates a cross-cutting concern and is otherwise very similar
to a class. Besides advice definitions, it may contain class-like
elements such as methods or state variables.

Fig. 1 illustrates the syntax of aspects written in AspectC++.
The aspect increments the member variable elements after each
call of the function Queue::enqueue(). In AspectC++, pointcut
expressions are built from match expressions and pointcut func-
tions. Match expressions are already primitive pointcut expressions
and yield a set of name join-points which represent elements of
the static program structure such as classes or functions. Techni-
cally, match expressions are given as quoted strings that are eval-
uated against the identifiers of a C++ program. The expression
"% Queue::enqueue(...)", for instance, returns a name pointcut
containing every (member) function of the class Queue that is called
enqueue. Code join-points, on the other hand, represent events in
the dynamic control flow of a program, such as the execution of a
function. Code pointcuts are retrieved by feeding name pointcuts
into certain pointcut functions such as call() or execution().
The pointcut expression call("% Queue::enqueue(...)"), for
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Figure 2: Control Flows and Protection Domains

instance, yields all events in the dynamic control flow where a
function Queue::enqueue() is about to be called.

As pointcuts are described declaratively, usually the target code
itself does not have to be prepared or instrumented to be affected by
aspects. Furthermore, the same aspect can affect various and even
unforeseen parts of the target code.

3.3 Design

3.3.1 Basic Design Decisions
Two design decisions are fundamental to our concept of MP:

Protect the data, not the code. CiAO does not prevent conceptu-
ally protected code to be executed, it rather prevents the pro-
tected data from being modified. Execution of disallowed
code is only trapped when that code modifies protected data.
This way, a control flow can only inadvertently modify its own
data structures, without affecting the other protected domains.
This ensures safety, not security (see Sec. 2.1).

Control flows and protection domains are orthogonal. We
clearly separate between the protection domains and the
control flows present in a system. A control flow (e.g., a
task or an interrupt service routine (ISR)) has a defined
initial protection domain, but it can transit into other domains
when calling an exported function from a foreign application,
for instance. When a control flow is switched to another
protection domain, the remaining stack can be used in the
new domain; that is, at the time of the transition, the current
stack pointer is used as top of stack.

3.3.2 Protection Models
Depending on the configuration, MP is applied in different de-

grees:

No protection does not feature any protection mechanism at all;
OS functions are regularly linked to the application and even
inlined if applicable.

Kernel protection defines one protection domain for the kernel
and one for all applications.

Application protection additionally separates the different appli-
cations from each other; each application constitutes an own
protection domain. Domain barriers have to be crossed on the
invocation of an exported function of another application.

Task protection even protects the task-local data (i.e., its stack
and possibly thread-local storage) from modification of other
control flows in the same application. Due to space limitations,
this model is not further pursued in this paper.

3.3.3 Join-Points
The points in the control flow of a CiAO system that are possibly

affected by a MP domain switch can be understood as AOP join-
points. These join-points can be influenced by advice given by
different aspects that, depending on the configured protection model,
do or do not switch protection domains in one or the other way.

Fig. 2 depicts an example control flow in a scenario with two
distinct application domains App1 and App2, and the kernel domain
Krn. Domain transitions occur when Task1 calls the kernel primitive
ActivateTask(), for instance, or when Task2 invokes the function
Service() exported by App1. These join-points can be matched
by the generic pointcut expressions assigned to pcAppToKrn and
pcAppToApp, respectively:

pointcut pcApp1() = "% App1 ::...::%(...)";
pointcut pcApp2() = "% App2 ::...::%(...)";
pointcut pcKrn() = "% Krn::...::%(...)";
pointcut pcConst() = "% ...::%(...) const";
pointcut pcAppToApp() =

(call(pcApp1()) && !within(pcApp1()) ||
call(pcApp2()) && !within(pcApp2())) &&
!call(pcConst());

pointcut pcAppToKrn() =
call(pcKrn()) && !within(pcKrn()) &&
!call(pcConst());

As a further optimization, the domain transition pointcut expressions
exclude calls to functions declared as const in C++. Since security
is not relevant in our context, all of the memory is readable by all
control flows. Hence, a protection domain switch is only necessary
for state-changing functions.

The second location where a domain switch must be considered is
the dispatching to another control flow; the newly activated control
flow might belong to a different protection domain than the one that
was interrupted or terminated. These points in the control flow of
the system are represented by the pointcut pcDispatch:

pointcut pcDispatch() = execution
("% Krn::dispatch(Task current , Task next)");

3.3.4 Basic Operations
The aspects that give advice to these join-points make use of the

following conceptual operations, which are provided by CiAO’s MP
system:

enterKernel() enters the kernel’s protection domain. It either dis-
ables the MP hardware or configures it for full memory access.
If the CPU supports privilege modes, the supervisor mode is
entered and privileged instructions may be executed; that is, in
particular instructions that reconfigure the MP hardware are
now available. switchApplication() can only be called
from within the kernel’s protection domain.

leaveKernel() leaves the kernel’s protection domain and enters the
domain of the currently active application. It leaves the super-
visor mode and configures the MP hardware for memory write
access restrictions according to the currently active control
flow and application, if that degree of protection is demanded.

switchApplication() changes the currently active application and
updates the MP system for the activated application’s domain,
which is then entered upon the invocation of leaveKernel().



3.3.5 Aspects
Depending on the configured protection model, different aspects

are deployed to give advice to the previously described pointcuts.
If only the kernel is to be separated from the applications, the

advice code is straightforward when making use of the basic op-
erations described above. Upon the dispatching of a new task, the
kernel domain is left for the first time:

aspect KernelProtection {
advice pcAppToKrn() : before() {

enterKernel();
}
advice pcAppToKrn() : after() {

leaveKernel();
}
advice pcDispatch() : after() {

if (tjp->arg <1>()->firstRun_)
leaveKernel();

}
};

If application protection is desired, cross-application calls are also
advised to switch the protection domain. Dispatches that cause a
change of application are also targeted:

aspect ApplicationProtection {
advice pcAppToApp() : before() {

enterKernel();
switchApplication(JoinPoint::That::AppId)
leaveKernel();

}
advice pcAppToApp() : after() {

enterKernel();
switchApplication(JoinPoint::Target::AppId)
leaveKernel();

}
advice pcDispatch() : before() {

if ( tjp->arg <0>()->owningApp_
!= tjp->arg <1>()->owningApp_)

switchApplication(tjp->arg <1>()->owningApp_);
}

};

3.4 Implementation Variants
Our implementation targets the Infineon TriCore platform

(TC1796b). It currently offers two variants that implement the
actual MP switch:

Standard Variant. This configuration represents a “traditional” im-
plementation. Protection domains are write-protected from
each other; system calls trap into the kernel to get the CPU
privilege level required to reprogram the MPU.

Semi-Trusted Variant. An interesting peculiarity of the TriCore is
that MP is not implicitly disabled when the processor runs in
supervisor mode; the supervisor mode just permits to repro-
gram the MPU. This variant exploits this peculiarity by run-
ning even the application code in supervisor mode. Thereby,
only the MPU has to be reprogrammed by the OS in case of
a domain switch; no costly traps into the kernel are required.
As a consequence, short system services can be inlined, and
unused services are automatically eliminated by the linker by
means of dead code elimination (see Sec. 2.1).

The standard variant is probably more expensive but also offers
more safety. In case of the semi-trusted variant, the application
code may theoretically reprogram the MPU by itself, which would
compromise safety. On the TriCore, however, it is relatively easy to
perform an offline analysis which proves that application code does
not reprogram the MPU, as this requires dedicated instructions. The

protection GetTaskID() ActivateTask() dispatch() Service()

none 3 24 88 -
semi-trusted 3 43 148 89

standard 3 86 148 174

Table 1: Number of CPU Cycles for Characteristic Functions
and Protection Implementation Variants

Harvard architecture effectively prevents code modifications at run-
time. Furthermore, the TriCore uses an extra (protectable) stack to
manage call frames that is independent from the stack used by local
variables; hence, an unsafe jump caused by an accidental modifica-
tion of the return address is not possible. Only function pointers bear
a categorical danger; an accidentally overwritten function pointer
may result in a situation where the application directly jumps into
parts of the kernel that modify protection registers. Hence, this
variant is not a “hundred percent” solution.

3.5 Preliminary Evaluation
We measured the clock cycles needed to perform characteristic

functions with both application and kernel protection enabled. Tab.
1 shows first results1 of the two protection implementation variants
(standard, semi-trusted), and the basic overhead of the respective
function with protection disabled (none). GetTaskID() does not
induce any overhead in any implementation since it is a read-only
kernel function (declared const) and therefore not affected by pro-
tection advice. ActivateTask() is a service that modifies kernel
structures and, thus, is protected. The semi-trusted variant, which
only temporarily disables MP, costs 43–24=19 extra clock cycles for
the enterKernel() / leaveKernel() round-trip, while the over-
head of a full kernel trap is three times as much with 86–24=62
cycles.

The dispatch() operation is internal to the kernel and performs
a switchApplication() in both protected variants. A protection
domain switch from one application to another costs 148–88=60
clock cycles. The cross-application call Service() in the semi-
trusted variant has to invoke switchApplication() twice, which
costs 89 CPU cycles. The standard variant additionally traps into the
kernel for each of the protection modifications, which is worth 174
cycles. A configuration without application protection (not shown
here) would let the dispatch() and the Service() functions unaf-
fected, and, hence, would not induce this overhead.

4. DISCUSSION
MP is an inherently cross-cutting strategy of an OS kernel. Its

actual implementation affects all cross-domain transitions of control
flows. AOP, with its model of dynamic cross-cutting and advice (see
Sec. 3.2), seems to be a natural choice for this kind of problems. In
the following, we discuss our approach.

4.1 Applying Memory Protection by AOP
A big advantage of the AOP-based solution is configurability by

a clear separation of what and where. The implementation of MP
by advice defines only the what, whereas the where is described
by the declarative pointcut mechanism. Thereby, it becomes very
easy to adapt either dimension; the protection strategy and its level
of granularity can be configured independently of each other. A
time-critical but formally certified application could, for example,
be considered as fully trusted and be excluded from protection
by merely modifying the pcAppToKrn and pcAppToApp pointcuts.

1TC1796b@50MHz, internal no-wait-state RAM, tricore-gcc
3.4.2 (-O1). Measurements performed and averaged over 10 itera-
tions with a hardware trace analyzer (Lauterbach).



The AOP-based CiAO approach makes it easy to experiment with
different protection models.

A potential issue might be that all components have to be available
as source code. This is required by the source-to-source transfor-
mation approach of the AspectC++ weaver and the CiAO approach
to understand aspects as part of the OS interface. In the domain of
embedded systems, components are usually provided as source code.
If, however, the source code is not available, a potential solution
may be to weave directly into binary code [8, 7]. This remains a
topic for further research.

4.2 Light-Weight Memory Protection
Configurability (and, thereby, tailorability) is of particular im-

portance in the domain of embedded systems. For this very cost-
sensitive domain, MP should not be understood as a one-fits-all
property; there is always a trade-off between better dependability
and cost increase.

On the other side, embedded systems integrators usually have
more knowledge about the actual application code than in general-
purpose computing. The illegal use of privileged instructions, for
instance, can be ruled out by means of static code analysis. Specific
properties of the hardware (such as the dedicated call stack of the
TriCore) might rule out other potential run-time faults. Dangerous
code constructions, such as the use of function pointers, are forbid-
den by coding standards like MISRA C. Our semi-trusted variant
exploits this extra knowledge to provide a light-weight MP mech-
anism that still isolates the effects of the most typical errors such
as stack overflows and invalid pointers. Of course, one can argue
if one should really go for “semi-trusted” MP. In our opinion, this
decision should depend only on the specific constraints of the actual
ECU and the applications to be deployed. The AOP approach just
offers the option to choose.

4.3 Hardware- Versus Software-Based MP
A lot of work has been conducted in the field of MP in operating

systems by restricting developers to type-safe languages such as Java
[10, 16] or Sing# [3]. AIKEN and colleagues could furthermore show
that constructive (language- and compiler-based) MP is generally
more efficient than hardware-based approaches [3]. The reason is
that MMUs (and MPUs) are well optimized for the standard case
(legal memory access), but induce a significant overhead in the cases
of detecting and handling the relatively infrequent access violations
and domain transitions.

The semi-trusted variant of CiAO’s MP can be seen as a mixture
of hardware- and software-based protection. Control of memory
write operations (and thus the isolation of pointer problems in C/C++
code) is still ensured by the MPU. The protection of the MPU itself,
however, is ensured constructively. Only the aspects that handle the
domain transitions are permitted to use MPU-modifying operations.
Thereby, the responsibility for exactly those parts that induce an
overhead in hardware-based MP – detection and handling of domain
transitions – has been moved to the software level.

5. OTHER RELATED WORK
We are not aware of any existing work that addresses the issue of

configurable MP by means of AOP. Several projects have applied
AOP techniques to improve the implementation of other concerns
in Linux [9, 2], FreeBSD [6], and NetBSD [8], as well as in the
embedded OS kernels eCos [12] and PURE [14]. In these projects,
AOP was applied as an ex post mechanism to existing kernels. The
CiAO idea, in contrast, is to use aspects as a fundamental concept
for kernel design from the very beginning.

6. SUMMARY AND CONCLUSIONS
Having been a crucial feature in general-purpose operating sys-

tems for 30 years, fault protection and isolation concepts now be-
come more and more important in the domain of embedded systems.
ECU consolidation in the automotive industry is a major driver
for this trend; the new AUTOSAR OS software standard explicitly
requires memory protection.

However, in the domain of embedded systems, memory protec-
tion has to be understood and provided as a statically configurable
and tailorable policy. Aspect-oriented programming provides the
necessary means to reach this configurability in the implementation.
By a combination of hardware and software techniques, light-weight
application-tailored protection concepts can be achieved.
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