Peer Hasselmeyer

NEC Laboratories Europe, IT Research Division

Rathausallee 10
53757 Sankt Augustin, Germany

hasselmeyer@it.neclab.eu

Removing the Need for State Dissemination
in Grid Resource Brokering

ABSTRACT

Resource brokering in Grids is nowadays handled by resource
brokers that require detailed knowledge of the state of the
resources that they broker. In business settings, surrender-
ing internal information on resources to an outside party is
not an option. The traditional resource brokering method
based on intimate resource knowledge is therefore not a vi-
able possibility.

This paper argues that the publication of resource state
data is not needed for resource brokering. Instead, we ad-
vocate the use of service level agreements (SLAs). The use
of SLAs for brokering lets providers keep state information
internal and at the same time provides customers with guar-
antees on the used services.

The proposed model has been implemented in the form of
a resource broker that is based on Web Service technology.
It shows that the approach of using SLAs for scheduling is
a possible solution to keeping resource state private.

Categories and Subject Descriptors

D.4.7 [Organization and Design]: Distributed systems;
C.2.4 [Distributed Systems]: Distributed applications

General Terms

Algorithms, Design, Experimentation

Keywords

Service Level Agreements, Resource brokering, Grid, E-
Commerce

1. INTRODUCTION

Scheduling jobs and, in more general terms, scheduling
access to any kind of resource is a topic of major impor-
tance in Grids. Grid scheduling is defined as “the process of
making scheduling decisions involving resources over mul-
tiple administrative domains” [12]. While scheduling is a

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

MGC ' 07, November 26, 2007 Newport Beach, CA, USA

Copyright 2007 ACM 1-XXXXX-XXX-X/07/11 ...$5.00.

tough problem in itself, the additional challenge in Grids is
the integration of multiple administrative domains. Each
service provider in a Grid constitutes its own administrative
domain and acts autonomously. Each domain has its own
policies on resource access and usage. As those policies are
usually not made public, Grid resource schedulers can not
know them. Making good scheduling decisions in such an
environment is problematic at best.

Traditional schedulers (called resource management sys-
tems (RMSs) in the following) operate on local resources
only. They have intimate knowledge of the resources and
their state and have full control over the resources. Grid
schedulers (called resource brokers in the following) are dif-
ferent from local RMSs. They are commonly operated by
an organization separate from resource providers. They do
therefore not have direct control of resources and lack com-
plete knowledge of the resources’ state. To exercise control
over resources, resource brokers cooperate with RMSs on lo-
cal resources as shown in figure 1. They are therefore bound
to the information that RMSs provide as well as to the con-
trol that RMSs make available to them.

Resource
Broker
@ 2
S A RS
c?‘%g s % zoip%’b
J [®)

S N
"""""""" A7 NN
Resource Resource
Management Management
System System
Resource Resource
Provider A Provider B

Figure 1: Interaction between Resource broker and
RMS

A common solution for increasing the cooperation of re-
source brokers and local RMSs is the publication of current
resource state information, as done for example in the Eu-
ropean DataGrid project [7] and Condor [15]. That infor-
mation is used by resource brokers to perform scheduling
decisions. The decision could be based on the current state
of the job queues. For example, the broker could submit jobs
to the queue with the least waiting jobs. Another strategy is

to build a history of resource utilization and job throughput
and to predict future utilization or job start times based on
these [11].

Although such resource brokers work reasonably well, they
are mainly restricted to academic environments because of
their need of resource status information. In business set-
tings, service providers are reluctant to publish the state
of their resources. For compute resources, the state com-
monly contains data on job queue lengths and the number
of processors. Competitors as well as consumers would be
interested in learning such data as it gives them insight into
resource power, resource utilization, likelihood of success-
ful service provisioning, and even into business processes.
Providers therefore want to keep this information private.
This is presumably the reason why Amazon’s Elastic Com-
pute Cloud [1] web service does not publish real-time uti-
lization data of their resources.

The NextGRID project [13] is concerned with developing
architecture for economically sustainable Grids. Within that
project, we developed a model for Grid scheduling that does
not rely on the direct surrender of information or control
to brokers. Instead, it uses service level agreements (SLAs)
to indirectly pass control on to resource brokers. SLAs are
used to capture the requirements and constraints of service
consumers and providers. Neither party is forced to provide
sensitive data to business partners. All private information
is kept locally at the owning entity. The only information
revealed is the information contained in SLAs.

SLAs describe promises of the resource provider to his
clients. In addition, SLAs usually state penalties that are
to be paid by the provider to the consumer in case such
a promise is broken. Besides the regular payment, the
provider thus has an additional incentive to adhere to the
promises made in an SLA. A resource broker having an SLA
with a provider therefore has some level of control over the
resources of the provider via that SLA. Although actual con-
trol is exerted by the local resource management system, an
SLA “forces” that management system to obey the rules set
out in that SLA. As the SLA reflects the needs of the broker
and therefore the service consumer, the service consumer in-
directly controls the resources via the broker and the local
RMS.

The degree of control depends on how much the provider
adheres to his promises in his SLAs. As mentioned above,
the incentive to follow an SLA is the payment to be received
upon successful provisioning of a service and the avoidance
of a penalty fee that is due upon SLA violation. Depending
on the values of the payment and the penalty, the provider’s
incentive to fulfil an SLA is larger or smaller.

To investigate the possibilities of SLAs as a method for
resource allocation, the author of this paper developed a
resource brokering service that bases all scheduling decisions
on the outcome of SLA negotiation.

The paper starts in section 2 with a description of the
model and the ideas behind our resource bokering system,
focussing on SLAs and how they can be used for resource
brokering. Section 3 details the architecture of the imple-
mentation of our SLA-based resource brokering service. Sec-
tion 4 shows an example of how resource brokering with
SLAs works. Related work is discussed in section 5 and
some conclusions are presented in section 6.

2. MODEL

This chapter introduces the model on which our solution
is based.

2.1 Grid Scheduling

Scheduling is the process of assigning jobs to resources.
The word “job” is used in a very broad sense in this pa-
per. It can be an executable program together with some
parameters that are shipped to a generic compute resource.
It can also be just some parameters that are sent to a ser-
vice offering a particular fixed functionality, e.g. a blood flow
simulation.

Local resource management systems perform scheduling
for their locally available resources. They usually follow
some policies that guide the scheduling decisions, e.g. giv-
ing higher priority to certain jobs. As already shown in
figure 1, Grid scheduling works on a level above the local
RMSs. A resource broker therefore assigns jobs to other re-
source management systems (including, potentially, another
resource broker) that are usually owned and operated by
different administrative entities.

A resource broker can be a centralized component that
is accessed by multiple clients. The clients can be within
the same administrative domain as the broker or they can
be in different ones. A resource broker can also be a local,
private component used by only a single consumer. The
system described in this paper does not mandate a particular
deployment scenario for the broker. It works equally well
with all possible set-ups. The implementation, though, is a
stand-alone Web Service.

The notion of scheduling is often associated with the no-
tion of matchmaking, i.e. finding a resource that matches
the requirements of a particular job. In this paper, we as-
sume both notions to be different. Matchmaking is more
than scheduling and consists of two steps: discovery and
scheduling.

Discovery is the process of finding resources that function-
ally fulfil the requirements of a job. Scheduling is the process
of finding the resource that optimizes the non-functional re-
quirements of a job. All resources considered in scheduling
are already checked for their functional compatibility.

As an example, imagine an engineer at a car company
looking for a crash simulation service. A search for such
a service might result in a number of service instances that
provide exactly that function (this is the discovery step). To
execute a concrete job, the engineer will supply information
about that job plus the previously discovered candidate ser-
vices to the broker which will then select the “best” service
out of the supplied candidates (whatever “best” means). A
simulation service that can produce the results within three
days might not fulfil the non-functional requirement of hav-
ing the results tomorrow, although the functional interface
fits the requirements.

2.2 ServiceLevel Agreements

Service level agreements are used for codifying service
properties. Properties are expressed as terms in an SLA.
Terms can be separated into high-level, often legal terms
and low-level, technical terms. While the high-level terms
are to be processed and understood by humans, technical
terms can be processed automatically when put into an ap-
propriate format. They typically describe the provided ser-
vice and the quality of service (QoS) levels that have been
agreed between a provider and a consumer. Technical terms

are usually described in the form of name/value-range pairs.
The name refers to a concept that is known to all the par-
ties involved in the SLA (usually the provider and the con-
sumer). The associated value range expresses a set of values
that determines the valid range of the values for the named
variable.

SLAs are contracts (or parts of contracts) that describe
QoS properties of the service to be provided. A service can
be offered with different properties that are independent of
its function. For example, a job submission service could be
offered with different numbers of processors. A service can
therefore be offered with multiple different SLAs.

SLAs help both service provider and service consumer
to run their businesses more efficiently. Service consumers
often need certain minimum QoS levels on service access
maintained to run their business satisfactorily. They de-
termine a set of non-functional quality of service properties
that are important to them and put them into SLAs es-
tablished with their service providers. Service providers use
SLAs to plan service provisioning and to optimize service
utilization. SLAs express the intent of future service access
and can therefore be used to predict future resource utiliza-
tion. Service providers can use this data to plan ahead and
dedicate the right amount of resources to the services used
and calculate prices for the services offered.

2.3 Negotiation

Establishing an SLA involves a negotiation phase in which
provider and consumer try to find SLA terms that both can
agree on. In our model, negotiation starts with the con-
sumer getting SLA templates from the provider. An SLA
template is a non-binding agreement proposal. Based on an
SLA template, consumer and provider repeatedly exchange
SLA proposals containing altered terms until both sides are
willing to accede to that proposal or they cancel negotia-
tions. Multiple negotiations can happen in parallel, both on
the provider and on the consumer side.

2.4 SLAsasAdvance Resource Reservations

Historically, SLAs have a lifetime of months to years.
Lately it became clear that such a long lifetime does not fit
all customer requirements and shorter validity periods are
desired [8]. Shorter periods can easily be accommodated by
SLAs. With shortening the validity period, terms in SLAs
are likely to change. The terms used in short-term SLAs
tend to be more technical as with the shrinking time span,
requirements on services become clearer and more specific.

When the lifetime of an SLA becomes reasonably short,
e.g. a few hours, it can usually be seen as an advance re-
source reservation. SLAs contain information on the service
to be provided, the time frame within which the service is
provided and the circumstances under which it will be pro-
vided. The first two items represent exactly the information
that is commonly used in advance resource reservations. As
SLAs contain additional terms, they are actually a superset
of such reservations and can substitute them. In an SLA-
based resource reservation system start and end times of
service provisioning become just ordinary QoS parameters
that can be negotiated. A separation of reservation period
and service properties that is common in traditional advance
resource reservation systems is not needed.

Short-term, resource-reservation-like SLAs are expected
to contain machine-processable terms only. As such SLAs

have a short lifetime only, negotiation should happen fast
and consume as little resources as possible. It is therefore
expected that such SLAs are negotiated by computers with-
out human intervention. As legal terms usually do not make
sense to computers, they are left out of short-term SLAs.
The SLAs therefore only contain technical terms. The re-
source broker described in this paper only works on those
technical terms.

Legal terms are nevertheless important in resource bro-
kering systems. Short-term SLAs are therefore expected to
exist within the context of longer term SLAs that contain
all the legalese. Such framework SLAs need to be estab-
lished (manually) before short-term SLAs can be negotiated
for individual service access. Many short-term SLAs are cre-
ated within the context of one long-term SLA. Short-term
SLAs only reference the containing long-term SLA. Particu-
lar SLAs are thus much easier to set up and maintain. Short
term SLAs therefore resemble resource reservations while
framework contracts resemble collaboration agreements such
as those commonly used for establishing virtual organiza-
tions.

3. RESOURCE BROKERING SERVICE

The resource brokering service introduced in this paper is
based on service level agreements and builds on the ideas
presented in the previous chapter. In particular, it performs
SLA negotiation to acquire advance resource reservations.
As SLA negotiation is a complex task it is a suitable can-
didate for outsourcing [9]. We therefore implemented the
resource brokering service as a Web Service that can be op-
erated by the service consumer’s organization or some ex-
ternal third party. This approach is also consistent with
other Grid resource brokering systems, e.g. the European
DataGrid workload management system [7].

During the brokering process, the broker negotiates ac-
cess with candidate resource providers. It gets offers from a
number of possible providers and then selects the one with
the best offer. The metric for “best” depends on the client
of the broker and could be price, time, etc. In the follow-
ing, interactions between the broker and just one provider
are described. In reality, though, interaction with multiple
providers is occuring. As the terms within SLA proposals
are the deciding factor for doing business with a particu-
lar provider, the broker’s scheduling decisions are based on
those SLAs.

3.1 Architecture

The architecture of the resource brokering system is shown
in figure 2. As is common in service-oriented architectures,
resources are abstracted by services that grant access to the
resources via well-defined interfaces. Furthermore, the ar-
chitecture follows the WS-Agreement [14] conceptual layered
service model in which the agreement layer and the service
layer are separated. While regular service access happens
at the service layer, SLA negotiation occurs at the agree-
ment layer. This clean separation of functionalities makes
it possible for the resource broker to work on the agreement
layer only. It is not concerned with subsequent service ac-
cess. Service consumers have to first get an SLA (possibly
via the resource broker) and then directly access the needed
service together with a reference to the SLA.

At the agreement layer, the resource brokering service and
the resource provider’s agreement service manage the cre-

SLA-Based
Resource
Broker

Application

Service Access

Agreement
Service

Service Customer
Domain

!
1

1

1

1

|

1

Vocal e 1
Resource Resources | |
Management 1
1

]

1

1

1

1

1

1

1

1

]

]

Figure 2: SLA-Based Resource Brokering Architecture

ation and representation of SLAs through Web Service in-
terfaces. The service provider hosts an agreement service
which exposes the local resource management system via
an SLA negotiation interface. The most important func-
tion of the agreement service is to perform SLA negotiation
based on the state of local resources. In addition, the agree-
ment service is also responsible for managing SLA templates,
checking the realisability of agreement offers, and managing
established SLAs.

The provider’s agreement service is resource-specific and
tightly coupled to the resource management system it ne-
gotiates SLAs for. It needs to know the kind of resources
it is establishing SLAs for as well as the current state of
the resources. It performs SLA negotiation based on the re-
source’s state, but it does not directly reveal that state to
its clients.

In addition, negotiation is influenced by provider-specific
policies. The agreement service needs to enforce such poli-
cies. The agreement service is therefore not only resource-
specific — it is also provider-specific. The policies are usually
proprietary information and are hidden inside the agreement
service. The architecture can therefore be generic with the
agreement service being a defined point for introducing pro-
prietary behaviour of individual service providers.

3.2 SLA Representation

SLAs can be represented in different formats and a num-
ber of standards exist. As Web Services are based on XML,
it is an obvious and adequate choice to use XML for repre-
senting SLAs in those environments. The NextGRID project
developed an XML schema for describing SLAs. The schema
provides an extensible structure to represent SLAs contain-
ing arbitrary terms. It does not specify any SLA terms itself
or mandate the use of particular terms. It only provides a
well-known place for storing those terms and attaching them
to contextual data, e.g. contact information of stakeholders
involved in a service exchange. The actual terms used de-
pend on the application domain. Both service consumer and
provider need to use the same structure (e.g. the NextGRID
schema) as well as the same term language for SLAs in order
to be able to cooperate.

3.3 Negotiation

The broker does currently not implement a real negoti-
ation protocol. It follows a simple accept/reject protocol.
Consumers have to present a completely filled-out SLA pro-
posal and the provider can then decide whether to accept or
reject it.

In an environment without negotiation, SLA templates
must already contain all the information that is necessary for
a consumer to determine whether an SLA based on a tem-

plate would fulfil its requirements. It also means that the
SLA templates are non-negotiable and the price tag must
be part of the template. As the price is fixed, the valid
value ranges for SLA terms are rather small (otherwise the
provider could not operate with a profit). To compensate for
that, a number of templates need to be published, with each
one applying to just a small subset of term values. This ap-
proach is reflected in the current practice of offering bronze,
silver and gold service levels. That method works well with
a small number of terms, resulting in a small number of tem-
plates. But with an increasing number of variable terms the
number of templates also increases.

4. EXAMPLE

The implementation of the resource brokering model has
been used with the example introduced in this section. The
scenario deals with a digital media production company that
is creating rendered video animations. The company pro-
duces the models for their films by themselves, but has them
rendered by external rendering service providers. Thos ser-
vice providers supply both hardware and software to perform
the particular function of video rendering. For outsourcing
the rendering the company has framework agreements (ne-
gotiated face-to-face by humans) with a number of render-
ing service providers. Under these framework agreements,
individual rendering jobs can be submitted. For every job
submission, an SLA must be negotiated with the respective
service provider. The resource broker takes care of selecting
the most appropriate service for a given job and negotiates
an SLA with that provider. The selected provider can accept
or reject the broker’s SLA proposal. In case of rejection, the
broker tries to get an SLA with the next best provider. If
none of the providers is willing to accede to the SLA pro-
posal, the job is rejected.

The SLA terms used in the example are:

e start time: this is an obligation on the service con-
sumer and it describes the time range in which upload-
ing the rendering source files has to happen in order
not to breach this SLA. If the files are uploaded out-
side this range, the service provider does not guarantee
the timely delivery of the results.

e end time: the time range within which the results
of the rendering process are to be made available. If
the input files are supplied on time (i.e. within the
start time time range), the service provider guarantees
to produce the result at some point within this time
range.

e resolution: the resolution of the produced video im-
ages. This information is needed by the provider to

<Term>
<Name>http://nextgrid.org/endTime</Name>
<Value>
<xs:simpleType>
<xs:restriction base="xs:dateTime">
<xs:maxInclusive value="2007-08-24T00:00:00Z"/>
</xs:restriction>
</xs:simpleType>
</Value>
</Term>
<Term>
<Name>http://nextgrid.org/frameCount</Name>
<Value>
<xs:simpleType>
<xs:restriction base="xs:positivelnteger">
<xs:maxInclusive value="45000"/>
</xs:restriction>
</xs:simpleType>
</Value>
</Term>

Figure 3: SLA Template Excerpt

<Term>
<Name>http://nextgrid.org/endTime</Name>
<Value>
<xs:simpleType>
<xs:restriction base="xs:dateTime">
<xs:maxInclusive value="2007-08-24T08:00:00Z"/>
</xs:restriction>
</xs:simpleType>
</Value>
</Term>
<Term>
<Name>http://nextgrid.org/frameCount</Name>
<Value>
<xs:simpleType>
<xs:restriction base="xs:positivelnteger">
<xs:enumeration value="60000"/>
</xs:restriction>
</xs:simpleType>
</Value>
</Term>

Figure 4: SLA Requirements Excerpt

calculate the amount of resources needed for the job.

e frames: the number of frames of the produced video
file. This information is needed by the provider to
calculate the amount of resources needed for the job.

e objects: the average number of objects in the files
to be rendered. This information is needed by the
provider to calculate the amount of resources needed
for the job.

Figure 3 shows an excerpt from an example SLA template.
For brevity, it only shows the end time and the number of
frames. Figure 4 shows a similar excerpt from the require-
ments document of the consumer. It can be seen directly
that the value ranges specified for the number of frames
have no overlap and the given SLA template can therefore
not fulfil the requirements of the consumer. The broker will
therefore not try to negotiate an SLA with the provider of
that template. An actual SLA is not shown here as it would
look the same as the template.

From the example it can be seen that the provider does
not need to hand out any internal resource state informa-
tion to the consumer. All terms in the SLA template are on
an abstract, application-related level. Not needing to give
out details about its resources’ state gives the provider a
great amount of freedom in organizing its resources, includ-
ing using them for other, unrelated work or for overbooking
them.

The specification of an end time range gives the provider
the freedom to schedule the job on its internal resources as
he sees fit. For example, it allows him to use parallelized
rendering software if he wants to speed up processing. The
actual number of processors used for rendering is completely
up to the provider. The consumer cannot influence this
choice nor can he get to know it.

The benefit to the consumer is the guaranteed delivery
time. By the end of the end time time range, the consumer
can get his results. In case the provider is late delivering re-
sults, the consumer is eligible for a penalty fee which should
be set at a value that covers all the costs incurred by a late
delivery.

5. RELATED WORK

Traditional Grid resource brokers work on a best-effort
basis. To decrease time to completion, they try to estimate
the start or end times of jobs at different providers and select
the one with the (presumably) closest start/end time. The
workload management system of the European DataGrid is
an example of such a broker [7]. It can base scheduling deci-
sions on different parameters such as queue length, number
of processors, processing power, etc. GRUBER [3] works in
a similar way. Both brokers need large amounts of current
resource state information to perform their function. All
that information must be supplied by the service providers.
With the system described in this paper, such information
surrender is not needed.

Although there are many dedicated protocols for advance
resource reservation, e.g. [10, 6], SLAs are equally well suited
for that purpose. SLA negotiation offers the same features
as the dedicated protocols. In addition, details on stake-
holders, pricing, penalties, payment methods, etc. are an
integral part of SLAs and are not regarded as mere add-ons.
The examples given in the WS-Agreement specification [14]
already hint at the use of SLAs as a means of advance reser-
vation. Czajkowski et al. also mention that possibility in [2].
Elmroth and Tordsson use WS-Agreement as resource reser-
vation protocol in [4]. WS-Agreement replaces a proprietary
reservation protocol that was used in earlier versions of their
broker.

That broker is one of the few examples that use resource
reservation [5]. Although, on an abstract level, the func-
tionality of their broker is the same as the broker described
in this paper, there are a number of significant differences:
reservations only cover job submission, information on re-
source state is required, and prediction of execution time
is needed. One reason for the differences is that their bro-
ker is aimed at academic users. Neither objectives of service
providers nor costs to consumers are taken into account. An
example is the main aim of their broker, which is to mini-
mize time to delivery, i.e. the time taken by a job including
data transfer and waiting time. Monetary costs — which
might serve as an alternative optimization goal — are not
taken into account by their approach.

6. CONCLUSION

This paper argues for the replacement of the dissemination
of detailed resource state information by the negotiation of
bi-lateral SLAs in Grid scheduling. The benefits of that
approach are:

e guaranteed delivery time: as SLAs are advance re-
source reservations, jobs will be executed by a certain
negotiated deadline. Traditional resource brokers do
only work on a best-effort basis.

e secrecy of state information: resource providers can
keep the state information of their resources hidden
from external parties. They do therefore not run the
risk of revealing internal resource usage practices.

e reduced network load: resource state data, which can
be rather large, does not need to be transfered. On the
other hand, negotiations might involve many possible
service providers, reducing this benefit.

e up-to-date state information: as SLA acceptance and
rejection decisions are made by the local RMSs, up-to-
date state information is used for these decisions. State
information transferred to a broker is always old.

Our model results in increased autonomy for service
providers and looser coupling between consumers, providers,
and the broker while promoting the use of quality of service
guarantees for consumers.

The implementation of our resource brokering model
showed that SLAs can be used for advance resource reser-
vation and scheduling decisions. It also proved that SLA-
based resource brokering can eliminate the requirement for
providing sensitive resource information to external parties.
However, the success of the model greatly depends on the
service provider’s ability to dynamically calculate compet-
itive, yet lucrative prices. This topic needs to be actively
researched.

The implemented brokering system does not make use of
a negotiation protocol. All SLA templates contain fixed,
pre-defined value ranges which are non-negotiable. As ser-
vice offerings are becoming increasingly dynamic, flexible,
and personalized, we expect a migration from this approach
to one that is based on “real” negotiation. Further research
needs to be done that evaluates the possibility of dynami-
cally adjusting term values to requirements of consumers.

Acknowledgements

This work has been supported by the NextGRID project
and has been partly funded by the European Commission’s
IST activity of the 6th Framework Programme under con-
tract number 511563. This paper expresses the opinions of
the author and not necessarily those of the European Com-
mission. The European Commission is not liable for any
use that may be made of the information contained in this

paper.

7. REFERENCES
[1] Amazon.com. Amazon Elastic Compute Cloud
(Amazon EC2), 2007. http://aws.amazon.com/ec2.
[2] Karl Czajkowski, Ian Foster, Carl Kesselman, Volker
Sander, and Steven Tuecke. SNAP: A Protocol for
Negotiating Service Level Agreements and

(10]

(11]

(12]

(13]

(14]

Coordinating Resource Management in Distributed
Systems. In: Job Scheduling Strategies for Parallel
Processing. Springer Verlag, 2002.

Catalin L. Dumitrescu and Ian Foster. GRUBER: A
Grid Resource Usage SLA Broker. In: Euro-Par 2005
Parallel Processing. Springer Verlag, 2005.

Erik Elmroth and Johan Tordsson. An Interoperable,
Standards-based Grid Resource Broker and Job
Submission Service. In: Proceedings of the First
International Conference on e-Science and Grid
Computing (e-Science ’05), Melbourne, Australia,
December 2005.

Erik Elmroth and Johan Tordsson. A Grid Resource
Broker Supporting Advance Reservations and
Benchmark-based Resource Selection. In: Applied
Parallel Computing — State of the Art in Scientific
Computing. Springer Verlag, 2006.

Tan Foster, Carl Kesselman, Craig Lee, Bob Lindell,
Klara Nahrstedt, and Alain Roy. A Distributed
Resource Management Architecture that Supports
Advance Reservations and Co-Allocation. In:
Proceedings of the 7th International Workshop on
Quality of Service (IWQoS ’99), London, England,
June 1999.

G. Avellino et al. The EU DataGrid Workload
Management System: towards the second major
release. In: Proceedings of the International
Conference on Computing in High Energy and Nuclear
Physics (CHEP 2003), San Diego, CA, March 2003.
Kamel Haddadou, Samir Ghamri-Doudane, Yacine
Ghamri-Doudane, and Nazim Agoulmine. Designing
Scalable On-Demand Policy-Based Resource
Allocation in IP Networks. IEEE Communications
Magazine, 44(3):142-149, March 2006.

Peer Hasselmeyer, Changtao Qu, Lutz Schubert,
Bastian Koller, and Philipp Wieder. Towards
Autonomous Brokered SLA Negotiation. In:
Proceedings of the eChallenges e-2006 Conference,
Barcelona, Spain, October 2006.

Dean Kuo and Mark Mckeown. Advance Reservation
and Co-Allocation Protocol for Grid Computing. In:
Proceedings of the First International Conference on
e-Science and Grid Computing (e-Science ’05),
Melbourne, Australia, December 2005.

Hui Li, David Groep, Jeff Templon, and Lex Wolters.
Predicting Job Start Times on Clusters. In:
Proceedings of the IEEE International Symposium on
Cluster Computing and the Grid (CCGrid 2004),
Chicago, IL, April 2004.

Jarek Nabrzyski, Jennifer M. Schopf, and Jan Weglarz.
Grid Resource Management: State of the Art and
Future Trends. Kluwer Academic Publishers, 2004.
NextGRID Consortium. NextGRID Homepage.
http://www.nextgrid.org/.

Open Grid Forum. Web Services Agreement
Specification (WS-Agreement), March 2007.
http://www.ogf.org/documents/GFD. 107 .pdf.

Todd Tannenbaum, Derek Wright, Karen Miller, and
Miron Livny. Condor: a distributed job scheduler.
MIT Press, 2001.

