

A Service-Oriented Middleware for Context-Aware
Applications

Luiz Olavo Bonino da Silva
Santos

University of Twente
P.O. Box 217

7500AE – Enschede –
the Netherlands
+31 53 489 4454

l.o.bonino@ewi.utwente.nl

Remco Poortinga – van Wijnen
Telematica Instituut

P.O. Box 589
7500AN – Enschede –

the Netherlands
+31 53 485 0492

remco.poortinga@telin.nl

Peter Vink
Philips Research
P.O Box WB61

5656AA – Eindhoven –
the Netherlands
+31 40 274 9552

peter.vink@tass.nl

ABSTRACT
Context awareness has emerged as an important element in
distributed computing. It offers mechanisms that allow
applications to be aware of their environment and enable these
applications to adjust their behavior to the current context.
Considering the dynamic nature of context, the data flow of
relevant contextual information can be significant. In order to
keep track of this information flow, a flexible service mechanism
should be available for the client applications. In this document
we present a service-oriented middleware for context-aware
applications. This middleware provides support to leverage the
development of context-aware applications by providing a
scripting-like approach for context-aware application
development; allowing the subscription of rules containing
context-based events and conditions and a notification to be sent
when the specified context holds. Moreover, a domain-specific
language has been developed to express these context-based rules.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems – distributed applications.

General Terms
Design, Experimentation, Human Factors.

1. INTRODUCTION
Context awareness represents an important use of distributed
computing and introduces a new class of smart applications.
Awareness of a subject’s surroundings and state helps applications
to adapt their functionality depending on context changes and
without (or with fewer) direct user interaction. However, the
introduction of context-awareness in applications raises a series of
new challenging requirements such as discovery and selection of
context sources, interaction with these sources, and manipulation
and interpretation of contextual information, amongst others.
Coping with these challenges imposes a considerable effort for
system designers and developers of ad-hoc context-aware
solutions. To tackle these challenges, a flexible mechanism
allowing user applications to easily specify the relevant changes

in the environment is needed.

Commonly, context-aware systems involve the interaction of
distributed, mobile, and heterogeneous applications and devices.
In the approach presented here, we use the concepts and
technologies of Service-Oriented Computing to cope with the
issues of distribution, mobility, and heterogeneity. Here, we
present a middleware that provides: (i) facilities to manage
contextual information and context sources and (ii) support to
client applications to subscribe context-based rules and receive
notifications when a specified context holds.

The remainder of this paper is structured as follows. Section 2
introduces the service-oriented middleware for context-aware
applications. Section 3 details the Context Management Service
while section 4 details the Awareness and Notification Service.
Section 5 presents a use case scenario supported by the current
implementation of the middleware. And section 6 concludes and
positions our approach to related work found in literature.

2. THE CONTEXT-AWARE
MIDDLEWARE
Our context-aware middleware is the integration of two
components, the Context Management Service (CMS) [9] and the
Awareness and Notification Service (ANS) [3]. The Context
Management Service supports context sources to publish their
contextual information to be used by context-aware applications
and services. The Awareness and Notification Service offers a
rule-based facility allowing client applications to subscribe rules
containing context-based conditions and receive notification when
the specified context holds. shows the architecture of the
proposed combined middleware regarding the connections with
client applications and context sources.

CMS supports context sources to publish their contextual
information to be used by context-aware applications; it provides
the infrastructure and data model for context sources to publish
their contextual information. Applications or services interested in
particular types of context information, such as user location,
device’s status, amongst others, also use the CMS to find the
appropriate context source for providing this information. The
application can then query the context source for information or
subscribe to it, in which case the application will receive a
notification whenever there is a change in the context information
it is interested in.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MPAC 2007, November 26–30, 2007, Newport Beach, CA, USA.
Copyright 2007 ACM 978-1-59593-930-2/07/11…$5.00.

Figure 1 - Context-aware middleware architecture.

The client applications shown in can subscribe monitoring rules
to ANS. ANS then determines the types of context information it
needs for each given rule and tries to find, and subscribe to the
context source(s) that can provide the needed context information.
Based on the information from the context source ANS then,
continuously determines whether the condition specified in the
monitoring rule holds. If the condition holds, ANS proceeds to the
notification phase according to the notification information
specified in the rule, i.e., the message and the message’s target.

An example of such a rule specifies that when John enters his
home, his mother Maria should be notified. In this simple
example, ANS finds the appropriate context source by asking
CMS for a reference to a context source that can provide location
information. ANS then monitors the location by subscribing to
that context source for the location information of John. The
context source informs ANS whenever the location of John
changes. When John enters his home, ANS sends the specified
notification to Maria.

Our approach considers that changes in the application’s
environment are modeled by means of Event-Condition-Action
(ECA) rules [1][2]. Our domain-specific language has been
developed to define context and context events supporting the
specification of context-based reactive behaviors.

The architectural design of both CMS and ANS follows the
Service-Oriented Architecture (SOA) principles; each component
is implemented as a web service relying on standards such as
SOAP, WSDL, web service dynamic discovery (WS-Discovery),
WS-Eventing, amongst others.

The following sections provide a more detailed description of
both CMS and ANS.

3. THE CONTEXT MANAGEMENT
SERVICE
The Context Management Service (CMS) [9] provides the
necessary middleware to manage context sources and their
contextual information. CMS consists of a set of well-defined
component interfaces and data model for representing context.
Figure 2 shows the main components defined in the CMS
architecture as well as the various operations that can be invoked
on these components. In the figure the methods that can be

invoked are shown as text on the arrows between the different
components, where the arrows indicate the direction of the typical
interactions that take place between the components.

The CMS architecture consists of three main component types;
context sources (CS), context broker (CB), and context consumers
(CC); each having their own responsibilities:

• CB: keeps track of all the context sources within a (network)
domain and acts as a service directory for context sources.

• CS: provides context information of a specific type to
context consumers. When a CS starts up, it registers with the
CB at startup, describing the type of context it produces.

• CC: uses the context information provided by the context
source. Finds the appropriate context sources by asking the
context broker.

Figure 2: Context Management Service (CMS) architecture.

A context source provides two main modes of operation:

• Synchronous (request/response): a context consumer asks for
context matching certain specified criteria, the context source
responds to that query by providing the appropriate context
information.

• Asynchronous (publish/subscribe): a context consumer
indicates to the context source that it wants to be informed of
the changes in context information meeting certain specified
criteria, the context source informs the context consumer of
these changes whenever they occur.

The former mode of operation allows a context consumer to ask
context sources for relevant context information when that is
needed by the context consumer, while the latter allows a context
consumer to act reactively to changes in context information since
it will be notified of the changes in the context information it is
interested in.

Next to a standardized interface, context sources in CMS also use
a standardized context representation format.

Figure 3: Generic ContextParameter.

CMS uses ontologies (OWL/RDF) for context representation.
Figure 3 shows the generic ContextParameter concept from which
all other types of context information are derived. A
ContextParameter has one or more object type properties referring
to a (subclass of an) Entity. Every ContextParameter also has
metadata associated with it, in the form of data or object type
properties, which tell something about that particular
ContextParameter, such as the probability of correctness or its
timestamp.

For specific types of context information, subclasses of the
ContextParameter concept are derived. The isContextOf property
is subclassed as well for specific context information.

Figure 4: Example of context information.

Figure 4 shows an example for representing the location of a user.
Here the subclass of ContextParameter is called UserLocation,
which has two subproperties of isContextOf defined: an
isLocationOf object property that refers to the User for which the
location is specified, and a hasLocation object property that refers
to the Space that is the location of the user. The timestamp
indicates when this context information was determined. The
specific example in the figure tells us that in the early morning of
January 17th 2007, Jerry was in the Kitchen. The probability and
other attributes are omitted in this example. Note that if no
intermediate UserLocation (or ContextParameter) concept was
used to link a User with a Space; it would be impossible to
reliably represent when Jerry was in the kitchen. This problem is
depicted in Figure 5. Linking a timestamp property to the relation
is not possible here; neither would linking to the user or the space
provide the same information, since the precise meaning of that
timestamp property would then be ambiguous.

Figure 5: Metadata problem if not using ContextParameter.

A context consumer uses SPARQL [10] for querying a context
source, allowing a context consumer to ask only for the specific
context information it is interested in. Taking the context from
Figure 4 as a further example: the following SPARQL query
shows how to ask for all the last known locations of users:

PREFIX amigo: <http://amigo.../Amigo.owl#>

PREFIX context: <http://amigo.../ContextTransport.owl#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?username ?roomname WHERE {

 ?user rdf:type amigo:User .

 ?user context:identifier ?username .

 ?userloc rdf:type context:UserLocation .

 ?userloc context:isLocationOf ?user .

 ?userloc context:isLocatedIn ?room .

 ?room context:identifier ?roomname

}

Any component implementing the context source interface,
registering itself with the broker, and providing context
information in the appropriate format is considered a context
source. This implies that components can be a context source and
context consumer at the same time, such as a component that
combines different types of (typically lower-level) context
information from other context sources into new (higher-level)
context information for republishing. An example of this is a
Location Management Service (LMS), which keeps track of users
by combining information from different technologies, such as
RFID, Acoustic positioning, Bluetooth, etc. This LMS would be a
context consumer for the context sources providing the lower-
level context for the individual technologies, but would be a
context source for providing the combined measurements as User
locations.

The project in which the Context Management Service is
developed is targeted at the future connected home; assuming that
all future Consumer Electronics devices will have network (IP)
connectivity. To accommodate different specifications from the
manufacturers of these devices, two different platforms were used
for implementing the CMS: OSGi/Java [4][5] and .NET. By
providing CMS implementations for different platforms,
manufacturers are free to choose the implementation that is best
suited for their devices. The context broker was implemented in
OSGi only. For processing queries from context consumers, .NET
context sources typically use SemWeb [16], while OSGi context
sources use Jena [17] for the same purpose.

4. THE AWARENESS AND
NOTIFICATIONS SERVICE
The Awareness and Notification Service (ANS) supports
developers in adding context-awareness capabilities to their
applications. Using ANS, developers do not have to deal with
monitoring, controlling and managing contextual information
inside their applications. This avoids the necessity of creating
specific context-awareness features for each application and,
therefore fosters rapid development of context-aware applications.
Applications are only responsible for registering so-called
monitoring rules. These rules specify the context to be monitored
and the notification to be sent once the expected context holds.

Once the client application has subscribed and started the
monitoring rule, ANS starts gathering the required contextual
information. In the case that the triggering condition contained in
the monitoring rule holds, ANS proceeds to notify the client
application according to the notification message specified in the
rule. An example of such rule specifies that John should be
notified when his children arrive at home. In this example, the
ANS monitors the location of John’s children and notifies him
when they enter the home.

Following the Event-Control-Action pattern described in [1], four
main sub-components are present in ANS as depicted in .
EventMonitor receives context data events from context sources
through the CMS. EventMonitor sends these events to the
Controller that monitors them and evaluates the registered rules.
When the triggering condition of the rule is evaluated to true, the
Notifier is called to perform the suitable action. The action (in this
case, the notification) also depends on the user’s context, for
instance, if the user is in a meeting the notification can be sent via
SMS to his mobile phone instead of via e-mail; which would be
the case if he were in his office. The subscribed rules and the
ontologies used in ANS are stored in a KnowledgeRepository and
made available for both RuleManager and EventMonitor.

As previously mentioned the architectural design of ANS follows
the Service-Oriented Architecture (SOA) principles and is
implemented as a web service. The external entities with which
ANS interacts are also implemented as web services, such as the
client applications and the CMS. In the internal perspective, the
ANS implementation follows the OSGi component based
framework approach [4]. The current implementation of ANS
uses the Oscar OSGi Framework [5].

ANS exports two interfaces available both in the Oscar
framework and as web service’s interfaces through WSDL:

• IManageRule, used by client applications to manage rules,
and;

• IReceiveContext, which is a call back mechanism to receive
information from context sources through the CMS. In addition,
ANS reacts to Web Service events generated by CMS.

The RuleManager component is externally accessed via the
IManageRule interface. The RuleManager provides facilities for
(un)subscribing, updating, starting and stopping rules. When a
client application wants to register a rule, it sends the rule to the
RuleManager that is responsible for parsing, validating and
storing the incoming rule. In the parsing and validating phases, the
RuleManager translates the given user rules to reaction rules that
can be handled by the Controller.

Figure 6 - The ANS architecture

The rules received by the RuleManager from client applications
are expressed in the ANS domain-specific ECA language called
ECA-DL [6]. RuleManager transforms this ECA-DL rule into a
rule that can be handled by the underlying rule-engine. Currently,
ANS uses the JESS rule engine [11].

Once a rule is registered, it is available to ANS but not yet subject
to monitoring, i.e., the rule is only registered in the system’s
Knowledge Repository but its triggering condition is not
susceptible to be evaluated. An application has to “start” the rule
to start the evaluation of the rule’s triggering condition. When a
registered rule is started the RuleManager sends it to the
Controller. The Controller then extracts the context variables (the
eventing part) and other context variables of the rule and submits
these events to the EventMonitor. Figure 7 shows a fragment of an
UML Sequence Diagram depicting the message exchange of the
rule subscription.

: Client_App : RuleManager

parseRule(rule)

storeRule(rule, appID)

ruleID

subscribe(rule, applicationID, ruleID)

startRule(ruleID)

: Controller

monitorRule(ruleID)

: EventMonitor

extractEvent(rule)

subscribeEvent(event)

Figure 7 – UML fragment of the rule subscription activity

The main functionality of the EventMonitor is to provide easy
access to context data. The EventMonitor provides to other ANS
components a mechanism for subscribing to or querying for
context data. As an example, if the Controller needs to monitor
the battery level of a device, the EventMonitor, through CMS,

searches for an appropriate context source that could supply this
information. Once found, EventMonitor subscribes to the request
battery level data and informs the Controller of events containing
the request data.

The EventMonitor maintains a subscription to the corresponding
context source for every event that the Controller has requested.
The maintenance of a list relating events and context sources is
important to avoid redundant subscriptions. To accomplish this,
the EventMonitor analyzes the requested subscriptions searching
for overlaps in the subscription’s requirements. An example of a
requirement overlap is when different rules request the same event
from a single context source. In this case the EventMonitor keeps
only one subscription to the context source.

After subscribing the events contained in the rule to the
EventMonitor, the Controller starts receiving notifications of the
occurrence of these events. For every event notification received,
the Controller evaluates the new information against the
notification rules. When the rule’s condition is evaluated true, the
Controller invokes the Notifier.

The task of the Notifier is to send notifications to applications and
users. For each notification it determines the appropriate level of
intensity before sending the notification. Users create an
individual user notification profile using the User Modeling and
Profiling Service (UMPS) (not shown here due to space
restrictions). The profile describes how and when a user wants to
be notified. Before sending the notification, ANS checks the
notification profile of the user that is to be notified. Based on this
profile, ANS sends a notification with the intensity information
and the receiving application notifies the user accordingly. If a
user has not created a notification profile, a standard profile is
assigned. An example is that a user had set in his notification
profile an intensity of 1 (ambient notification) when he is at home.
In this case, when he receives a notification at home, the receiving
application notifies him by changing the ambient lights.

The notification of a user works as follows. When an active rule
evaluates to true, the Controller sends a notification event to the
Notifier. The Notifier transforms the event into a notification. An
event encompasses the message, the UserIDs of the users that are
to be notified and references to applications. First the Notifier
determines the right intensity for the notification. It does so by
retrieving the relevant user notification profiles. In case additional
context parameters are necessary in order to determine the
intensity of the notification, the Notifier queries the EventMonitor.
This is for example the case if a user has specified not to be
notified at home. In this case the Notifier queries the
EventMonitor for the current location of the user. Once the
notification profiles are evaluated and the intensity of the
notification is determined, the Notifier sends the notification to the
application. It is then the task of the application that receives the
notification to interpret the level of intensity, e.g. to change the
color of an ambient light in order to send a notification with a low
level of intensity to a user.

The ANS’ domain-specific rule language, namely ECA-DL,
allows application developers to conveniently enhance their
applications with reactive context aware behavior by using a
scripting format. This relieves the developer from writing
programming code inside his application to deal with context
management; this is handled by the ANS. ECA-DL has been
developed following the event-condition-action (ECA) pattern.

Rules in ECA-DL are composed of an Event part that models an
occurrence of interest in the context, a Condition part that
specifies a condition that must hold prior the execution of the
action, and an Action part which consists of reactive invocations.

ECA-DL is defined upon two complementary information and
behavior foundations. Information foundation refers to the
representation of the applications’ universe of discourse, i.e., a
domain ontology. For example, we should be able to express
within ECA rules whether people are in the house or not, whether
objects are plugged in or not, whether persons and objects are
collocated, among others. Behavior foundation of the ECA
language refers to the dynamics of rule execution, i.e., how and
when a rule should be executed and what are the elements of the
language that should be used to perform a particular piece of
reactive behavior.

For the information part, a domain ontology should be referenced.
In the scope of the Amigo project [12], where this work is being
developed, the Amigo Ontology is used. ANS assumes that one is
only allowed to use a piece of knowledge in the ECA rule, if this
has been previously defined in the ontology. If the ontology does
not define the concept co-location, for example, this concept
cannot be referenced in ECA rules (due to space limitations, more
details about ECA-DL can be found in [6]).

A simple, non-parameterized rule is composed by the basic
structure:

Upon <event-expression>
When <condition-expression>
Do <action>
<lifetime>

5. USE CASE
In order to illustrate and evaluate the usability of our middleware,
we present a use case in the scope of Amigo project [12]. The
Amigo project aims at developing open, standardized,
interoperable middleware and intelligent user services for the
networked home environment. In our use case example, the
following scenario is envisioned:

“During the week days, when John leaves the house without
his laptop on a day with a scheduled meeting, he should be
informed.”

In this use case location sensors are used as context sources and
can provide the location of people and devices. Moreover, John’s
personal calendar application is also used as a context source
registered in CMS to provide information about his meetings. The
rule to be subscribed to ANS is:

Upon EnterFalse(isAtHome(User.John))
When isAtHome(Device.Laptop123) and

isOwnedBy(Device.Laptop123,
User.John) and hasMeeting(User.John)

Do notify(User.John, “You forgot your
laptop at home”)

Lifetime from “Monday” to “Friday”

After the subscription and the parsing phases being carried out by
the RuleManager and the Controller components, ANS queries
CMS for suitable context sources. CMS searches among its
database of registered context source for a match. Once found,
CMS returns the reference of the context source to ANS which
subscribes to the necessary contextual information.

For the isAtHome event part of the example, ANS asks CMS for a
context source that keeps track of which users are at home. When
CMS returns the reference for a context source, ANS subscribes
to it with a query parameterized for John. After the ANS’
subscription to the contextual information, the context source
informs ANS every time the result of the query changes. This
allows ANS to test if the answer changed from TRUE to FALSE
(the EnterFalse part of the Upon clause). In this example, the
transition EnterFalse is used to express when John is no longer at
home. ANS performs similar subscriptions to other contextual
information for the conditions in the When clause.

All the information from incoming events is evaluated by the
Controller by pushing it into the internal rule engine of ANS [11]
for evaluation. Since the triggering element is the event, i.e., the
element in the Upon clause, the conditions in the When clause are
only evaluated if the event occurs. Once all the events and
conditions specified in the ECA rule are met, John will be notified
with the message ‘You forgot your laptop at home’. The
notification is sent to John according to his notification
preferences and current context. For example, depending on the
notification intensity he defined, the notification could be
delivered by SMS or by email.

6. CONCLUSION
Current approaches for context-aware support middleware
[13][14][15] provide ways to subscribe to and manage context
data, but fall short on providing a decision support; i.e., providing
a mechanism for applications to specify what context data they are
interested in and what to do in case a given situation occurs.
Moreover, these approaches do not offer a reaction process based
on the users’ context. Gaia [7] presents a distributed middleware
infrastructure using the abstraction of a meta operating system,
but although context is an important concept in Gaia, it is
externalized and is not a class entity that drives the behavior of the
system.

In this paper we presented a middleware platform that supports
the development of context-aware applications. The context
middleware is composed of two main components, namely CMS
and ANS. The Context Management Service (CMS) component is
responsible for handling context sources’ registration and
management of contextual information. The Awareness and
Notification Service (ANS) handles the subscriptions of
notification rules from client applications. These rules contain
events and conditions based on contextual information that ANS
gathers from context sources through CMS. CMS and ANS share
an ontology for context representation allowing the expression of
relations between entities and data.

Context is used in this middleware not only as event and
conditional elements of the rules but also to evaluate how the
client will be notified based on the notification parameters of
user’s preferences. Both ANS and CMS have been designed
following the SOA guidelines and are implemented as web
services using communication protocols such as SOAP, WSDL,
WS-Discovery, and WS-Eventing, among others.

The middleware presented here by the integration of ANS and
CMS is being evaluated in the scope of the Amigo project. The
evaluation performed by implementing several use case scenarios
and verifying their effectiveness in the home labs available for the
project. A final result of this evaluation is expected by the end of
the project, in February 2008.

7. ACKNOWLEDGMENTS
The work reported here is supported by the European Commission
as part of the IST-IP Amigo project under contract IST-004182.

8. REFERENCES
[1] Dockhorn Costa, P., Pires, L. F., Sinderen, M., Architectural

Patterns for Context-Aware Services Platforms in
Proceedings of the 2nd International Workshop on Ubiquitous
Computing (IWUC 2005), Miami, May 2005, pp 3-19.

[2] Ipina, D., Katsiri, E., An ECA Rule-Matching Service for
Simpler Development of Reactive Applications. Published as
a supplement to the Proc. of Middleware 2001 at IEEE
Distributed Systems Online, Vol. 2, No. 7, November 2001.

[3] Bonino da Silva Santos, L.O., Ramparany, F., Dockhorn
Costa, P., Vink, P., Etter, R., Broens, T., A Service
Architecture for Context Awareness and Reaction
Provisioning, 2nd Modeling, Design, and Analysis for
Service-Oriented Architecture Workshop (MDA4SOA
2007), Salt Lake City, USA, July 13th 2007.

[4] OSGi Consortium, http://www.osgi.org.
[5] Oscar OSGi Framework -

http://forge.objectweb.org/projects/oscar/
[6] Dockhorn Costa, P., Ferreira Pires, L., van Sinderen, M.,

Broens, T., Controlling Services in a Mobile Context-Aware
Infrastructure, in Proceedings of the 2nd Workshop on
Context Awareness for Proactive Systems – CAPS 2006,
Kassel, Germany, June 2006.

[7] Román, M., et al, A Middleware Infrastructure for Active
Spaces. IEEE Pervasive Computing, 1(4):74-82, Oct-Dec
2002.

[8] Chan, A.T.S., Chuang, S.N., Mobi-PADS: A Reflective
Middleware for Context-Aware Mobile Computing, IEEE
Transactions on Software Engineering, vol. 29, n. 12,
December 2003.

[9] Ramparany, F., Poortinga, R., Stikic, M., Schmalenströer, J.,
Prante, T., An open Context Management Infrastructure, 3rd
IET International Conference on Intelligent Environments
2007 – IE07, Ulm, Germany, September 24-25 2007.

[10] http://www.w3.org/TR/rdf-sparql-query/
[11] JESS – the Rule Engine for the Java Platform. Available at

http://herzberg.ca.sandia.gov/jess/.
[12] Ambient Intelligence for the Networked Home Environment

– Amigo, http://www.hitech-projects.com/euprojects/amigo/
[13] Bardram, J. E., “Applications of Context-Aware Computing

in Hospital Work – Examples and Design Principles” in
Proceedings of the ACM Symposium on Applied
Computing, 2004, pp. 1574-1579.

[14] Chen, H., “An Intelligent Broker Architecture for Context-
Aware Systems”, PhD proposal in Computer Science,
University of Maryland, Baltimore, USA, 2003.

[15] Dey, A. K., “Providing Architectural Support for Building
Context-Aware Applications”, PhD thesis, College of
Computing, Georgia Institute of Technology, 2000.

[16] http://razor.occams.info/code/semweb/
[17] http://jena.sourceforge.net/

