

Edinburgh Research Explorer

Complexity and composition of synthesized web services

Citation for published version:
Fan, W, Geerts, F, Gelade, W, Neven, F & Poggi, A 2008, Complexity and composition of synthesized web
services. in Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2008, June 9-11, 2008, Vancouver, BC, Canada. ACM, pp. 231-240.
https://doi.org/10.1145/1376916.1376949

Digital Object Identifier (DOI):
10.1145/1376916.1376949

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS 2008, June 9-11, 2008, Vancouver, BC, Canada

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Apr. 2024

https://doi.org/10.1145/1376916.1376949
https://doi.org/10.1145/1376916.1376949
https://www.research.ed.ac.uk/en/publications/fb5946c6-1f8d-4f93-9a68-cb5e1f09ceb6

Complexity and Composition of Synthesized Web Services

Wenfei Fan
University of Edinburgh &

Bell Labs

wenfei@inf.ed.ac.uk

Floris Geerts

University of Edinburgh

fgeerts@inf.ed.ac.uk

Wouter Gelade
Hasselt University &

Transnational Univ. of Limburg

wouter.gelade@uhasselt.be

Frank Neven
Hasselt University &

Transnational Univ. of Limburg

frank.neven@uhasselt.be

Antonella Poggi

Sapienza Università di Roma

poggi@dis.uniroma1.it

Abstract

The paper investigates fundamental decision problems and
composition synthesis for Web services commonly found in
practice. We propose a notion of synthesized Web services

(SWS’s) to specify the behaviors of the services. Upon re-
ceiving a sequence of input messages, an SWS issues multiple
queries to a database and generates actions, in parallel; it
produces external messages and database updates by syn-
thesizing the actions parallelly generated. In contrast to
previous models for Web services, SWS’s advocate parallel
processing and (deterministic) synthesis of actions. We clas-
sify SWS’s based on what queries an SWS can issue, how the
synthesis of actions is expressed, and whether unbounded
input sequences are allowed in a single interaction session.
We show that the behaviors of Web services supported by
various prior models, data-driven or not, can be specified by
different SWS classes. For each of these classes we study the
non-emptiness, validation and equivalence problems, and es-
tablish matching upper and lower bounds on these problems.
We also provide complexity bounds on composition synthe-
sis for these SWS classes, identifying decidable cases.

Categories and Subject Descriptors: H.3.5 [Informa-
tion Storage and Retrieval]: Online Information Ser-
vices – Web-based services; F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic — Compu-

tational Logic
General Terms: Languages, Theory, Design, Verification.

1. Introduction
The prevalent use of Web services highlights the need

for studying fundamental decision problems associated with
Web services. Given a service and a transaction, one wants
to know whether the transaction is the result of a run of the
service. This problem is referred to as the validation prob-

lem [2, 29] and is useful for, e.g., fraud detection. We also
want to determine whether two given services are equivalent
(the equivalence problem [2, 29]). This allows us to replace
a service with an equivalent yet cheaper one. We are also
interested in finding out, at compile time, whether a service
makes sense, i.e., it can generate valid transactions (the non-
emptiness problem). These decision problems are not only
of theoretical interest, but are also important in practice.

Another central technical issue concerns Web service com-
position. When a client request cannot be satisfied by any
available service, one wants to automatically generate a
mediator [7] to coordinate available services and meet the
client’s requirements. The composition synthesis problem is
to determine, given a request and a set of available services,
whether there exists such a mediator that, taken together
with the available services, delivers the requested service.

The complexity of the decision problems and composition
synthesis highly depends on how Web services are defined.
A variety of standards (e.g., [7, 25, 27, 30, 31]) and models
(e.g., [2, 5, 6, 12, 13, 15, 18, 26, 29]) have been proposed
for Web services (see [21] for a survey). Some of the mod-
els specify the behaviors and interactions of Web services
in terms of finite-state automata (FSA) [6, 15, 18]. Other
models are based on data-driven transducers that support
(infinite) states parametrized with input relations and local
databases, and at each state, generate actions via queries on
the data [2, 5, 12, 13, 29]. The validation and equivalence
problems, as well as other interesting verification problems,
have been studied for the transducers [2, 12, 13, 29]. While
composition synthesis was studied for FSA abstractions [6,
18, 24], little is known for data-driven transducers.

To study the decision problems and composition synthe-
sis for various models in a comparative basis, this paper
proposes a notion of synthesized Web services (SWS’s) as a
uniform formalism to characterize FSA and transducer ab-
stractions. An SWS specifies the behavior of a service in
terms of actions, i.e., external messages and database up-
dates, generated in response to various sequences of input
messages. As opposed to prior models, SWS’s advocate de-
terministic synthesis of actions and parallel processing.

Example 1.1: Consider a service for booking travel pack-
ages to Disney World Orlando. Customers commit to pur-
chase a package only if they can get (1) a reasonable airfare,

start airfare hotel

a h
ticket

car

l

l

(a) An FSA expressing the service for travel packages

X3 = Y1 OR (Y1 AND Y2)

X

X1 X3

Y1

ticket

m m

airfare
local

Y2
car

m1 m1
hotel

X2
m

X = X1 AND X2 AND X3

start

(b) SWS specification

Figure 1: FSA specification vs. SWS specification

(2) a nice hotel, and (3) either (a) Disney tickets or (b) a
rental car with discount. An FSA abstraction of the service is
shown in Fig. 1(a), in which airfare, hotel, ticket and car de-
note FSA specifications for booking flights, hotel, tickets and
rental car, respectively (details omitted). Similarly a data-
driven transducer can be specified, which outputs actions at
each state transition. Such specifications are, however, ham-
pered by the following concerns. First, there is no temporal
dependency between airfare and hotel checking; they can be
conducted in parallel, instead of sequentially. Second, the
customers make a commitment only if conditions 1–3 are
conjunctively satisfied. Thus the booking of flight and hotel
should be deferred until condition 3 is inspected, since the
failure of 3 may force the earlier transactions to rollback.
Third, although conditions (a) and (b) are disjunctive, the
customers may want to deterministically commit to one of
the two options, rather than make decisions nondeterminis-

tically or worse, commit to book both rental car and tickets.
An SWS specification is depicted in Fig. 1(b), along the

same lines as alternating finite automata (AFA). Upon re-
ceiving an input message m from a user (e.g., travel date
and price range), the SWS checks airfare, hotel, followed by
car rental and ticket sale based on input message m1 spec-
ifying user requirements, in parallel. Each state inspects a
certain condition and keeps its truth value in a Boolean vari-
able. The value of the variable may also be computed by a
Boolean formula on variables associated with the successor
states. For example, X3 is defined by Y1∨ (Ȳ1∧Y2), in favor
of ticket sale when both Y1 and Y2 are true, and it is evalu-
ated as soon as the values of Y1, Y2 are available. The SWS

returns true only if the condition at the start state holds.
A data-driven SWS can be specified similarly. At each

state certain actions can be generated, beyond just Boolean
values, via queries on the input messages and databases
(e.g., information about flight tickets and hotel rooms). Ac-
tions are passed upward and synthesized at each state. The
actions are generated deterministically, and are not commit-
ted until the condition at the start state is confirmed to hold.
With SWS’s one can specify various versions of the service,
data-driven or not, in a uniform framework.

These SWS’s advocate parallelism by decoupling unnec-
essary temporal dependencies, and support “backward” de-
terminism to synthesize actions (messages and updates). 2

In a nutshell, an SWS specifies the observable behavior
of a Web service in response to inputs from users or other
services. It is defined with a set of states parametrized with
messages and a local database. At each state it simultane-
ously issues multiple queries to the database and input mes-
sage, and passes the result of each query to a successor state.

It generates actions when no more successor states can be
triggered. The actions are passed upward to its parent state,
which synthesizes actions from its successor states, again via
a query. The actions produced at the start state are the out-
put of the SWS. Intuitively, for each input sequence, the out-
put indicates the behavior of the service in a communication
session. The sessions are “flexible” in that they are deter-
mined by the lengths of the input sequences. At the end
of each session the actions are committed, i.e., the external
messages are sent and the updates are executed on the local
database. The behavior of the Web service is thus captured
by the runs of the SWS over all possible input sequences.

Main results. We characterize various service models with
different classes of SWS’s. For each of the classes we establish
matching lower and upper bounds on the decision problems,
and provide complexity on its composition synthesis.

FSA and transducer abstractions. We denote various classes
of SWS’s by SWS(LMsg,LAct), where LMsg and LAct are
the languages in which transition queries and action syn-
thesis are expressed, respectively. We consider LMsg and
LAct ranging over propositional logic (PL), conjunctive
queries (CQ), union of conjunctive queries (UCQ) and first-
order logic (FO). For each class we also study its subclass
SWSnr(LMsg,LAct) consisting of SWS’s that are not recur-
sively defined,i.e., for services that take a bounded number
of input messages in a communication session. We examine
Web services defined via FSA or transducer abstractions,
and show that their behaviors can be specified by various
SWS classes. We show that FSA of the Roman model [6]
can be expressed in SWS(PL, PL), while data-driven trans-
ducers of [2, 12, 13, 29] can be expressed in SWS(FO, FO).

Decision problems. We study the non-emptiness, validation
and equivalence problems for various SWS(LMsg,LAct) and
their nonrecursive subclasses SWSnr(LMsg,LAct). We estab-
lish lower and upper bounds on these decision problems, all

matching, ranging from np-complete to undecidable. The
results are proved using a variety of techniques, including
finite model constructions and a wide range of reductions.

Composition synthesis. We also provide complexity bounds
on service composition for various SWS(LMsg,LAct) and
SWSnr(LMsg,LAct) classes. The results are established by,
among other things, exploring connections between compo-
sition synthesis and (equivalent) query rewriting using views
[3, 8, 14, 23]. We show that composition synthesis is infea-
sible in most of the cases. In light of these undecidability
results we identify several decidable cases.

To our knowledge, this work is among the first efforts
to study the complexity of composition synthesis for data-
driven Web services. Moreover, the results on the decision
problems provide a comprehensive picture of the complex-
ity of static analyses for Web services with action synthesis.
The notion of SWS’s allows us to study various abstractions
of Web services in a uniform model. In addition, its ca-
pability of expressing synthesis of actions is a step toward
specifying practical Web services with aggregations, such as
finding a travel package with minimum cost.

Related work. There have been a number of standards for
specifying Web services, e.g.,WSDL [31], WSCL [30], OWL-

S [25], SWFL [27], BEPL [7]. A variety of models have also
been developed to characterize services supported by those
standards, e.g., [2, 5, 6, 12, 13, 15, 18, 26, 29]. The Roman
model [6] specifies a Web service as a deterministic finite

state automaton (DFA). This model is not data-driven: nei-
ther queries nor database updates are considered. A notion
of guarded automata [15], an extension of (nondeterminis-
tic) Mealy machine, is proposed to characterize conversation
protocols. Extending the two, Colombo [5] models a ser-
vice via a guarded nondeterministic finite state automaton
(NFA), and incorporates world states of local databases. The
model of [26] extends an NFA by directing transitions with
input and output. Data-driven transducer abstractions are
introduced in [2] and extended in [12, 13, 29]. Notably is the
powerful model of [12, 13]. It specifies transitions and gen-
erates actions via FO queries, and supports infinite states as
well as other features such as asynchronous message passing
and ideal vs. lossy communication channels, which are not
considered in this paper. As remarked earlier, SWS’s aim to
characterize FSA and transducer abstractions in a uniform
framework, and emphasize synthesis of actions generated by
services. To our knowledge, except the split-join operator of
OWL-S [25], action synthesis does not find counterparts in
FSA or transducer models. The connection between these
models and SWS’s will be explored in Section 3.

A variety of verification problems specified in terms of
e.g., linear-time temporal first-order logic, have been stud-
ied for transducer abstractions of data-driven services [2,
12, 13, 29]. In particular, (log) equivalence and validation
problems are shown undecidable for transducers defined in
terms of FO queries, but they become decidable with certain
restrictions, e.g., fixed database, bounded inputs, or decid-
able FO fragments [2, 29]. Validation problems have also
been studied for conversation protocols [15, 16]. We revisit
equivalence and validation analyses for SWS’s in this paper.

While there has been a host of work on Web service com-
position, few complexity bounds are known. An exptime

upper bound is established in [6] on composition synthe-
sis of services defined in the Roman model, by reduction
to the satisfiability problem for propositional dynamic logic
(PDL). A matching lower bound is given for the Roman
model in [24]. The upper bound is proved to hold for an ex-
tension of the Roman model with lookahead operations [18].
To our knowledge, the only complexity results on composi-
tion synthesis for data-driven services are 2exptime upper
bounds given in [5] for special cases of services definable in
Colombo, also by reduction to decision problems for PDL.

Another issue for service composition concerns orchestra-

tion [21]. It is to determine whether available services can be
coordinated, without building a mediator, such that when
taken together, these services deliver a requested service.
We focus on composition synthesis only in this paper.

There is a close connection between SWS composition syn-
thesis of Web services and query rewriting using views. This
connection will be studied in Section 5.

Organization. Section 2 defines SWS’s. Section 3 charac-
terizes FSA and transducer abstractions with various classes
of SWS’s. For each of these classes, Sections 4 and 5 study
the decision problems and the composition synthesis prob-
lem, respectively. Section 6 summarizes the main results
and identifies open problems.

2. Synthesized Web Services
In this section we define synthesized Web services (SWS’s).

An overview. Given a sequence I = I1, . . . , In of input
messages, an SWS τ iteratively issues queries to I and a local
database D, and produces an output relation O denoting

actions, i.e., tuples to be inserted into or deleted from D,
and external messages to be sent to other services or users.

The run of the SWS τ on I can be illustrated using an
execution tree of depth at most n+1. The tree is built top-
down, starting from the root. Consider the tree of depth
j ≤ n constructed so far. At each leaf node v of the tree, τ
spawns k children of v, in parallel, following a transition rule;
at each child ui it issues a query to D and Ij , and stores the
result in a message register Msg(ui). Intuitively, τ processes
input Ij at the j-th level of the tree. The expansion of the
tree proceeds at ui except when (a) j = n+1 (i.e., all inputs
have been processed), or (b) Msg(ui) = ∅ (i.e., the input Ij

is not meaningful), or (c) no further expansion is required
by the transition rule (i.e., τ reaches a “final” state). If
any of the conditions are satisfied, actions are generated at
ui, via a query to D, Ij and Msg(ui), and are stored in
an action register Act(ui). The parent v of ui generates its
own actions via a query on the action registers Act(ui) of
all of its children, following a synthesis rule. The process
continues until the actions at the root are generated, which
are returned as the output O of the run of τ on I and D.

In a nutshell, O denotes the actions of τ in response to a
sequence I of input messages in a communication session.
The notion of sessions is proposed in [12], denoting runs be-
ginning at login and ending at logout such that no database
updates occur within a session. Here we adopt a more flexi-
ble notion: a session is determined by an input sequence I,
and the actions of τ are committed at the end of the session.
This notion of sessions suffices for the study of the decision
problems and composition synthesis of SWS’s, for which we
consider the behaviors of an SWS in response to all possi-
ble input sequences. One can also treat a long (possibly
infinite) input sequence as a list of consecutive sessions, by
adding a delimiter # to indicate the end of a session, such
that actions are committed whenever # is encountered.

Notations. An SWS τ is defined on a relational schema
R for local databases D, an input schema Rin for input
messages I, and an external schema Rout for output rela-
tions O. To simplify the discussion, following [12, 13] we
assume that the local database D remains unchanged dur-
ing a run of τ until the output actions are committed. We
also assume an infinite domain D of data values, on which
the local databases, input messages and output actions are
defined.

To specify an input sequence I we assume that the input
schema Rin has a timestamp attribute ts of natural numbers,
such that Ij = {t | t ∈ I ∧ t[ts] = j} denotes the j-th input
message of I. In other words, I encodes an input sequence
I1, . . . , In. We also assume that Rin and Rout simply consist
of a single relation schema to simplify the presentation.

The SWS τ is defined with a set Q of states to control its
behavior. Associated with each state q ∈ Q are an internal

message register Msg(q) and an action register Act(q). We
assume w.l.o.g. that Msg(q) and Act(q) store relations of
schemas Rin and Rout, respectively.

The queries in the transition and synthesis rules of τ are
expressed in languages LMsg and LAct, respectively.

SWS’s. Putting these together, we define SWS’s as follows.

Definition 2.1: Over schemas R, Rin, Rout, a synthesized

Web service τ in the class SWS(LMsg,LAct) is defined to be
(Q, δ, σ, q0), where Q is a finite set of states, q0 is the start

state, and δ, σ are sets of transition rules and synthesis rules,

respectively, such that for each q ∈ Q, there exist a unique
transition rule δ(q) and a unique synthesis rule σ(q):

δ(q) : q → (q1, φ1(x̄1)), . . . , (qk, φk(x̄k)).

σ(q) : Act(q) ← ψ(ȳ).

Here qi ∈ Q, φi is a query in LMsg from R, Rin,Msg(q) to
Msg(qi); ψ ∈ LAct is from Act(q1), . . . ,Act(qk) to Act(q) if
k > 0, i.e., if the rhs of δ(q) is nonempty, and it is from
R, Rin,Msg(q) to Act(q) if k = 0. Note that for k > 0 we
allow ψ to only access previously computed action registers,
while at final states (k = 0), ψ has access to external infor-
mation stored in the local database, the current input, and
its internal message register. As will be seen in Section 3,
SWS’s of this form are already expressive enough to express
services supported by previous models. We assume that q0
does not appear in the rhs of any rule. We refer to q as the
parent state of qi, and qi as a successor state of q. 2

Note that δ(q) is parametrized with instances of R, Rin and
Msg(q), i.e., δ is a finite representation of infinitely many
transition rules; similarly for synthesis rules σ. We remark
that the synthesis rules allow to model alternation in Web
services, for which the need is advocated in Section 1.

Example 2.1: We define an SWS τ1 = (Q, δ, σ, q0) to
specify the service described in Example 1.1. Assume that
Rin consists of attributes specifying user requirements, and
an additional attribute tag with values of a, h, t, c, indicat-
ing whether an Rin tuple is about airfare, hotel, ticket or
car rental. Also assume that an Rout tuple is of the form
Rout(x̄a, x̄h, x̄t, x̄c), with attribute lists x̄a, x̄h, x̄t, x̄c for air-
fare, hotel, tickets and cars, respectively. Moreover, assume
that R consists of relations Ra, Rh, Rt, Rc containing infor-
mation about airfares, hotels, tickets or cars, respectively.
The set Q of states includes q0, qa, qh, qc, qt, and their tran-
sition and synthesis rules δ and σ are given as follows:

q0 → (qa, φa), (qh, φh), (qt, φt), (qc, φc).
Act(q0) ← ψ0(ȳ), where

φa(tag, x̄) = Rin(tag, x̄) ∧ tag = a /* similarly for φh, φt, φc*/

ψ0(x̄a, x̄h, x̄t, x̄c) = Act(qa)(x̄a, , ,) /* for don’t-care */
∧ Act(qh)(, x̄h, ,) ∧

`

Act(qt)(, , x̄t, x̄c)
∨ ¬∃x̄Act(qt)(x̄) ∧ Act(qc)(, , x̄t, x̄c))

qa → . Act(qa) ← ψa(ȳ). /* similarly for qh, qt, qc */

Here ψa (not shown) is an FO query that accesses Msg(qa)
and Ra, and returns airfares that satisfy the user’s require-
ment. The register Msg(qa) is computed by φa that sim-
ply selects input tuples for airfare; similarly for φh, φt and
φc. Synthesis queries ψh, ψc and ψt (not shown) instantiate
Act(qh), Act(qc) and Act(qt) with hotel room (x̄h), car rental
(x̄c) and ticket sale (x̄t) information, respectively. The out-
put Act(q0) is deterministically computed by ψ0, which syn-
thesizes actions from successor states of q0, in favor of sale
tickets, i.e., it copies Act(qt) if it is nonempty, and takes
Act(qc) otherwise. It is nonempty only if airfares, hotels
and either sale tickets or rental cars are found, as required.

One can readily extend τ1 and define τ2 to accommodate
repeated user inquiries I for, e.g., airfare, as follows:

qa → (qa, φa), (qf , φa), Act(qa) ← ψ′
a(ȳ), where

ψ′
a(x̄a, x̄h, x̄t, x̄c) = Act(qa)(x̄a, x̄h, x̄t, x̄c)

∨ ¬∃x̄Act(qa)(x̄) ∧ Act(qf)(x̄a, x̄h, x̄t, x̄c)

qf → . Act(qf) ← ψf (ȳ),

where φa selects user requirements for airfare from input
message Ij in I as above, and ψf finds airfares based on user

inquiry Ij by querying Msg(qa) and Ra, similar to ψa. The
synthesis query ψ′

a is in favor of actions Act(qa) that are in
turn synthesized at the “recursive” state qa; in other words,
it returns airfares that meet the latest user requirement Ij

in I, if there is any, discarding earlier inquiry results. 2

Runs of SWS’s. Following [5, 6], we specify the run of
an SWS τ on a local database D and an input message se-
quence I using a notion of execution trees. Each node v in
an execution tree is labeled with a state q ∈ Q, a timestamp
j, a message register Msg(v) and an action register Act(v).
Every step of the run rewrites an execution tree to another,
following a step relation ⇒(τ,D,I).

The run starts from the root node r of an execution tree
ξ labeled with q0 and j = 0, carrying Msg(r) = ∅ whereas
Act(r) = ⊥ (undefined). For two execution trees ξ and ξ′,
ξ ⇒(τ,D,I) ξ

′ if one of the following conditions holds.

Generating. If there is a leaf node v of ξ labeled q, j,Msg(v)

and Act(v) = ⊥, ξ′ is obtained from ξ as follows. Assume
that I = I1, . . . , In, and that the rules δ(q), σ(q) are

q → (q1, φ1(x̄1)), . . . , (qk, φk(x̄k)). Act(q) ← ψ(ȳ).

(1) If either j > n or Msg(v) is empty, then ξ′ is obtained
from ξ by setting Act(v) = ∅. A special case is when q =
q0, at the root r: even if Msg(r) is empty, we allow the
construction to proceed as follows if I is nonempty.

(2) Otherwise, if k > 0, then ξ′ is obtained from ξ by
spawning k children u1, . . . , uk for v, in parallel. More
specifically, for each i ∈ [1, k], a distinct node ui is created
as the i-th child of v, labeled qi and j+1 such that Msg(ui)
carries φi(D, Ij ,Msg(v)) but leaving Act(ui) = ⊥. Here
φi(D, Ij ,Msg(v)) = {d̄ | (D, Ij ,Msg(v)) |= φi(d̄)}.

Gathering. Action register Act(v) is populated as follows.

(3) If k = 0, i.e., the rhs of δ(q) is empty and v is a
leaf node, then ξ′ is obtained from ξ by letting Act(v) =
ψ(D, Ij ,Msg(v)), where ψ(ȳ) is the query in the synthesis
rule σ(q), producing actions by accessing Msg(v), Ij and D.

(4) Otherwise, if for all the children u1, . . . , uk of v,
Act(ui) 6= ⊥, then ξ′ is obtained from ξ by setting
Act(v) = ψ(Act(u1), . . . ,Act(uk)), i.e., the query ψ synthe-
sizes actions from Act(ui). In other words, the synthesis is
halted at v until Act(ui) is available for all i ∈ [1, k].

Observe that an execution tree stops spawning new nodes
at v if (a) the input message I is entirely consumed (i.e.,
j > n), (b) it receives an empty internal message Msg(v)
(if q 6= q0), or (c) v is at a “final state” indicated by the
transition rule (with an empty rhs). While the tree is gen-
erated top-down, action gathering and synthesis are con-
ducted bottom-up. The run takes one sweep: each node
is accessed at most twice, for node generation and action
gathering, respectively.

Output. Denote by ⇒∗

(τ,D,I) the reflexive and transitive
closure of ⇒(τ,D,I). The result of the run of the SWS τ

on (D, I) is an execution tree ξ such that r ⇒∗ ξ, where
r is the root labeled q0 and timestamp 1, and there exists
no node v in ξ with Act(v) = ⊥. The output of the τ -run,
denoted by τ(D, I), is the content of the action register
Act(r).

Example 2.2: Recall the SWS τ1 defined in Example 2.1.
Given an instance D = (Ia, Ih, Ic, It) of the local database

schema R and a sequence of input messages I = I1, . . . , In,
the result τ1(D, I) of the run of τ1 is a relation that is
nonempty iff the conditions 1–3 given in Example 1.1 are
all satisfied. The execution tree of the run is constructed
as follows, starting from the root node r. Four children
va, vh, vt, vc of r are created in parallel. The node va is a
leaf of the tree labeled with ts = 1, state qa and two reg-
isters. Its message register Msg(va) is set by φa(I1) with
input tuples for airfare, followed by the instantiation of the
action register Act(va) by ψa(Ia,Msg(va)) with tuples for
booking flights that meet the user request, if any; simi-
larly for vh, vt and vc. As soon as values are assigned to
Act(va), Act(vh), Act(vt) and Act(vc), the synthesis query
ψ0(Act(va),Act(vh),Act(vc),Act(vt)) populates Act(r), as
described in Example 2.1. The content of register Act(r)
is the output. Here I2, . . . , In are not consumed by τ1; i.e.,

it suffices for τ1 to produce output when I consists of a
single input message.

Note that the synthesis query ψ0 makes a deterministic
decision between Act(vc) and Act(vt), and it specifies a con-
junctive condition on reservations of flight, hotel and local
arrangement (either car rental or tickets). To simplify the
discussion, while user requests for flight, hotel, tickets and
cars are usually given in different input relations, we encode
them in a single relation.

The SWS τ2 behaves similarly, except that it can accept
an input sequence I = I1, . . . , In of an unbounded length n.
Here below va is a chain of node pairs (vj , fj), which indicate
the processing of user inquiry Ij for airfare, for j ∈ [2, n].
The synthesis query ψa assures that the nonempty Act(fj)
with the largest j is used to populate Act(va). 2

SWS classes. To characterize prior models developed for
specifying Web services, we study various SWS(LMsg,LAct)
classes, where LMsg and LAct are the languages for express-
ing queries embedded in transition and synthesis rules, re-
spectively. As suggested by condition (3) in the definition of
execution trees, we assume LAct to be at least as expressive
as LMsg, but also consider special cases when LAct is not
as powerful as LMsg. In particular, we study the following
classes: SWS(FO, FO), SWS(CQ, UCQ) and SWS(PL, PL),
for first-order logic (FO), conjunctive queries (CQ), union
of conjunctive queries (UCQ), and propositional logic (PL),
with ‘=’ and inequality ‘ 6=’ in CQ and UCQ. For example,
τ1, τ2 given in Example 2.1 are in SWS(FO, FO). We do not
consider SWS(CQ, CQ) since not many interesting services
can be specified in the absence of union in synthesis rules.

As will be seen shortly, Web services of the Roman model
[6] can be modeled as a special case of SWS(PL, PL). Unlike
CQ, UCQ or FO, a PL-formula is defined over propositional
variables. An SWS τ in SWS(PL, PL) aims to specify a ser-
vice that is not data-driven, i.e., on empty local databases.
An input message Ij of Rin for τ is a truth assignment,
represented as a set of propositional variables such that a
variable X is true iff X ∈ Ij . Note that a sequence I of Rin

instances can encode a string over an alphabet found in FSA

abstractions of Web services. Message and action registers,
as well as output O of τ consist of a single truth value true

or false, along the same lines as FSA abstractions.
For each SWS(LMsg,LAct), we also study its subclass

SWSnr(LMsg,LAct) consisting of all nonrecursive SWS’s, de-
fined in terms of a notion of dependency graphs as follows.
The dependency graph Gτ of an SWS τ is a graph in which

each q ∈ Q is a distinct node, and there is an edge from q

to qi iff qi is in the rhs of the transition rule of q. An SWS

τ is said to be recursive if the graph Gτ is cyclic. For in-
stance, τ2 of Example 2.1 is recursive, but τ1 is nonrecursive.
Nonrecursive SWS’s aim to model services that respond to a
user input within a bounded number of computation steps.
As will be seen in Section 5, a nonrecursive SWS may be
repeatedly invoked by a composite service (mediator) for an
unbounded number of times to process various inputs.

3. Specifying Web Services as SWS’s
In this section we show that the behaviors of Web services

defined in terms of FSA or transducer abstractions can be
specified by various SWS classes. We consider two represen-
tative models: the Roman model [6] and the peer model of
[13]. The Roman model is an FSA abstraction for specifying
non-data-driven services, and peers of [13] are a transducer
abstraction for specifying data-driven Web services.

For each of these models, we identify an SWS class S and
give two functions fτ and fI , such that (a) for each service
ω defined in the model, fτ (ω) is an SWS τ in S, and (b) for
any input sequence I of ω, fI(I) is an input sequence I for τ
such that for any local database D, τ(D, I) yields the same
output as ω on I and D.

The Roman model [6]. A service in the model is ex-
pressed as a DFA (or an NFA for a composite service), in
which the alphabet is interpreted as a set of actions. It takes
a string over the alphabet and returns true if the string leads
to a final state, indicating that the service legally terminates.

One can define a function fτ that, given such a DFA ω,
derives τ in SWS(PL, PL). The SWS τ includes all the states
of ω and an additional qf . The transition rule for each
state q from ω collects all transition rules for q in ω: q →
(q1, φ1), . . . , (qk, φk), [(qf , φf)], where q → qi is a transition
in ω upon receiving a letter ai, and φi simply checks whether
the input message is ai; moreover, if q is a final state, it has
qf as a successor state, for which φf checks whether the
input is a special delimiter #. The synthesis rule for qf is
Act(qf) ← Msg(qf), while the synthesis query for q is the
disjunction of Act(qi) of all qi. The function fI is defined
such that given a string I over the alphabet, it derives I
that augments each letter with its index in I and adds the
delimiter # to the end of I. One can easily see that for
any I, ω(I) = τ(D, I), where D is an empty local database.
Note that τ only needs disjunction in its synthesis rules.

One can also define τ in SWS(CQ,UCQ) that returns
the empty set if I is not accepted by ω, and the same
I otherwise. That is, τ defers the commitment of the
actions until it confirms that all actions in I can be legally
conducted.

The peer model [13]. A peer of [13] is characterized by (1)
a local database D that is fixed during execution; (2) a set
S of state relations keeping track of updates to D; (3) a set
I of user input relations; (4) a set A of action relations; (5)
a set of in-queues Qi and out-queues Qo, in which elements
are input and output message relations from and to other
services, respectively; and (6) a set of rules defined as FO

queries onD,S,Qi, current and previous I. At each step the
peer uses the rules to produce actions, updates and output
messages to be included in A, S and Qo, respectively.

A function fτ can be defined that derives from a peer
ω an SWS τ in SWS(FO, FO). The SWS τ encodes I and

Non-emptiness Validation Equivalence

SWSnr(FO, FO) undecidable undecidable undecidable
SWS(CQ, UCQ) exptime-complete undecidable undecidable
SWSnr(CQ, UCQ) pspace-complete nexptime-complete conexptime-complete
SWS(PL, PL) pspace-complete pspace-complete pspace-complete
SWSnr(PL, PL) np-complete np-complete conp-complete

Table 1: Complexity of decision problems

Qi in terms of a single input schema Rin, and S, A and
Qo with a single Rout. It is recursively defined, with three
states q0, qs, qf . The transition rule for qf has an empty
rhs, while for q0, qs, they are q0 → (qs, φ), (qf , φ) and qs →
(qs, φ), (qf , φ), where φ is an FO query that combines all
queries in the rules of ω. The synthesis rule for qf copies
the query result to the output; the synthesis rules for q0 and
qs take unions of actions generated by their successor states.

The peer ω produces an output at each step of execution.
To cope with this interactive behavior, we define function
fI such that for each input sequence Ī = I1, . . . , In for ω, it
returns I = I1,#, I1, I2,#, . . . ,#, I1, . . . , In,#. The SWS τ

produces an output whenever a delimiter # is encountered.
Then for any Ī and any database D, τ(D, I) yields the same
output as ω(Ī , D) at each step j ∈ [1, n].

Other models. As observed in [13], services supported by
the Colombo model [5] or expressed as guarded automata
of [15] can also be expressed as peers of [13]. As a result,
one can also use SWS(FO, FO) to study the behaviors of the
Colombo services and guarded automata [15].

4. Complexity of Synthesized Web Services
In this section we investigate static analyses of SWS’s. For

a class SWS(LMsg,LAct), we study the following decision
problems. As remarked in Section 1, these problems are of
both theoretical and practical interest.

• The non-emptiness problem is to determine, given an SWS

τ in the class defined over a database schemaR and an input
schema Rin, whether there exist an instance D of R and a
sequence I of Rin instances such that τ(D, I) is nonempty.
That is, whether or not τ can generate actions at all.

• The validation problem is to determine, given τ in the class
over R and Rin, and an instance O of its external schema
Rout, whether or not there exist an instance D of R and a
sequence I of Rin instances such that τ(D, I) = O. That
is, whether τ is capable of producing the desired actions.

• The equivalence problem is to determine, given two SWS’s

τ1 and τ2 in this class, both defined over the same R,
Rin and Rout, whether or not τ1(D, I) = τ2(D, I) for all
instances D of R and sequences I of Rin instances. With
a cost model, the equivalence analysis helps users decide
what service to choose from a set of available services.

We establish matching complexity bounds on these prob-
lems for the SWS classes given in Section 2, recursive or not.
The results are summarized in Table 1. They tell us the
following. First, for nonrecursive SWSnr(FO, FO) all these
problems are already beyond reach. Second, while compile-
time equivalence and validation analyses are still infeasi-
ble for SWS(CQ, UCQ), they are decidable for SWSnr(CQ,
UCQ) in conexptime and nexptime, respectively. That is,
the absence of recursion makes our lives easier, although
still not easy enough. Third, the equivalence problem for
SWS(PL, PL) has the same complexity as its NFA and AFA

counterparts, and its emptiness analysis is no harder than
that for AFA.

Theorem 4.1: The non-emptiness, validation and equiva-
lence problems are

1. undecidable for SWS(FO, FO) and SWSnr(FO, FO);
2. exptime-complete, undecidable and undecidable for

SWS(CQ, UCQ); but for SWSnr(CQ, UCQ) they
become pspace-complete, nexptime-complete and
conexptime-complete, respectively;

3. pspace-complete for SWS(PL,PL); for SWSnr(PL,PL)
these problems become np-complete, np-complete and
conp-complete, respectively. 2

Proof. (1) For SWSnr(FO, FO), the undecidability of
these problems is proved by reduction from the satisfiability
problem for FO queries, which is undecidable (cf. [1]).

(2) For SWS(CQ, UCQ), the validation and equivalence
problems are shown undecidable by reduction from the
non-emptiness problem for deterministic finite 2-head ma-
chines, which is undecidable [28]. The lower bound on non-
emptiness analysis is by reduction from the problem for
deciding whether a single ground fact, single rule datalog
program (sirup) accepts a goal, an exptime-complete prob-
lem [19]. Its upper bound is by reduction to the emptiness
problem for a form of tree automata [8] that characterize the
execution trees of SWS’s; while the latter can be checked in
ptime, the reduction takes exptime.

For SWSnr(CQ, UCQ), we show the lower bound on non-
emptiness analysis by reduction from Q3SAT, a pspace-
complete problem (cf. [17]), and the upper bound by giv-
ing a pspace checking algorithm. The lower bound on the
equivalence problem is by reduction from the problem for
checking whether a nondeterministic Turing machine (NTM)
halts in exponential steps on a given input. Similarly we
prove the lower bound on validation analysis. We develop a
conexptime checking algorithm for SWSnr(CQ, UCQ) equiv-
alence, by extending the containment algorithm of [22] for
nonrecursive datalog with inequality. We show that valida-
tion analysis is in nexptime by establishing a small model
property: given an SWS τ and output O, if there exist a
database D and an input sequence I such that τ(D, I) = O,
then there exist such D and I bounded by an exponential
in the size of O and τ . Since evaluating τ on such a (D, I)
and checking whether τ(D, I) = O are both in exptime, a
nexptime algorithm is immediate.

(3) For SWS(PL, PL), the non-emptiness problem coincides
with the validation problem, and is ptime-equivalent to the
complement of the equivalence problem. The lower bound
on the non-emptiness problem follows from the pspace lower
bound on the emptiness problem for AFA [32], which can be
expressed in SWS(PL, PL), in ptime. For the upper bound,
one can check non-emptiness in pspace along the same lines
as AFA non-emptiness checking.

For SWSnr(PL, PL), the lower bound is proved by reduc-
tion from SAT, which is np-complete (cf. [17]), and the upper

bound by noting that the non-emptiness checking algorithm
for SWS(PL, PL) is in np on nonrecursive SWS’s. 2

Special cases. For services defined as NFA (resp. DFA)
in, e.g., the Roman model, the complexity on the equiva-
lence and non-emptiness problems is known to be pspace-
complete (resp. nlogspace-complete) and nlogspace-
complete, respectively [32]. Note that the validation prob-
lem studied here is quite different from the membership
problem for NFA (resp. DFA). We remark that for SWS(PL,
PL) and for services defined as NFA (resp. DFA), the vali-
dation problem coincides with the non-emptiness problem.
In contrast, it is entirely different from non-emptiness for
data-driven services in SWS(FO, FO) and SWS(CQ, UCQ).

5. Composition Synthesis
We next focus on composition synthesis of SWS’s. We

first formalize the notion of SWS mediators, and then pro-
vide complexity bounds on composition synthesis for various
classes of SWS’s identified in Section 2. Our main conclusion
is that the composition synthesis problem is nontrivial: it is
undecidable or highly intractable for data-driven or recur-
sive SWS’s. In light of the undecidability results we identify
decidable cases of data-driven or recursive SWS’s.

5.1 SWS Mediators and Composition
A mediator coordinates available services by routing the

output of one service to the input of another, in order to
deliver a requested service by invoking available services as
component services [7, 5]. It receives and redirects mes-
sages, but does not directly access local databases. An SWS

mediator also synthesizes actions produced by component
services.

We parametrize SWS mediators with languages LAct for
expressing action synthesis. For a fixed LAct, we define a
class of mediators, denoted by MDT(LAct), in the same way
as SWS’s except that component services are embedded in
transition rules and are treated as “oracle queries”.

Definition 5.1: Over a set S of available SWS’s defined
on schemas R, Rin, Rout, an SWS mediator in MDT(LAct) is
defined to be π = (Q, δ, σ, q0), where Q and q0 are as given
in Definition 2.1, and δ is a set of transition rules such that
for each q ∈ Q, there exists a unique rule of the form

q → (q1, eval(τ1)), . . . , (qk, eval(τk)).

Here qi ∈ Q, τi ∈ S, where τi is referred to as a component

service of π, and eval(τi) is an evaluation operator whose
semantics will be explained below. The synthesis rule σ(q)
is defined via a query ψ ∈ LAct as in SWS’s, except that if
k = 0, ψ is from Msg(q) to Act(q) without accessing database
and input. 2

To simplify the presentation we assume that SWS’s in
S are defined over the same input, external and database
schemas R, Rin and Rout. This does not lose generality for
composition synthesis since one can take R as the collection
of local database schemas of all component SWS’s in S, and
unify Rin (resp. Rout) by e.g., taking outer union of input
(resp. external) relations of SWS’s in S.

Runs of mediators. Like SWS’s, a mediator π takes as
input an instance D of the database schema R and a se-
quence I of instances of the input schema Rin; the run of π
on (D, I) returns an instance of the external schema Rout.
A step relation⇒(π,D,I) is defined for runs of π as for SWS’s.

There are, however, subtle differences in the run of π on
D and I. More specifically, for execution trees ξ and ξ′,
cases (2) and (3) of the transition ξ ⇒(π,D,I) ξ

′ described in
Section 2 are now modified as follows. Consider a leaf node
v in ξ, labeled with q, j,Msg(v) and Act(v) = ⊥. Assume
that I = I1, . . . , In, and that δ(q) and σ(q) are

q → (q1, eval(τ1)), . . . , (qk, eval(τk)), Act(q) ← ψ(ȳ).

(2) If k > 0, then as before, ξ′ is obtained from ξ by spawn-
ing k children u1, . . . , uk for v, in parallel, such that for each
i ∈ [1, k], a distinct node ui is created as the i-th child of
v, labeled with qi and Act(ui) = ⊥. In contrast to its SWS

counterpart, here Msg(ui) is instantiated with the result of
eval(τi). That is, eval(τi) is equal to τi(D, I

j) of the com-
ponent SWS τi on D and Ij , where Ij = Ij , . . . , In. That
is, τi operates on Ij , . . . , In, runs to completion, and its out-
put is used as the internal message of ui. Moreover, in the
run of τi, the message register of the start state of τi is
instantiated with Msg(v). Furthermore, ui is labeled with
timestamp li +1, where li is the maximum timestamp in the
result execution tree of the run of τi on (D, Ij). In other
words, Ili+1 indicates the first input message that has not

been “consumed” by the run of τi.

(3) If k = 0, then the synthesis query ψ can access
Msg(v) but neither the database D nor the input message
Ij ,i.e., ξ

′ is obtained from ξ by letting Act(v) = ψ(Msg(v)).

The rest of the run is defined as for SWS’s, as described
in Section 2. The commitment of actions produced by the
component services is deferred to the end of the run of π.
The output of the run of π on (D, I) is denoted by π(D, I).

We can compare SWS’s and mediators as follows. Con-
sider a mediator π over a set of component SWS’s defined
on schemas R, Rin, Rout, and an SWS τ defined on the same
R, Rin, Rout. We say that π and τ are equivalent, denoted
by π ≡ τ , if π(D, I) = τ(D, I) for any instance D of R and
any input sequence I of Rin instances.

We study MDT(LAct) for LAct ranging over PL, UCQ and
FO. We denote by MDTnr(LAct) the class of nonrecursive me-
diators in MDT(LAct) defined in the same way as their non-
recursive SWS counterparts. Note that component SWS’s

embedded in a nonrecursive mediator may be recursive.

Example 5.1: Recall SWS τ1 and Rout(x̄a, x̄h, x̄t, x̄c) from
Example 2.1. Suppose that we are given a set S of com-
ponent services consisting of τa for flight reservations, τhc

for reserving both hotel rooms and rental cars, and τht for
reserving both hotel and Disney tickets. One can define a
mediator π1 = (Q1, δ1, σ1, q1), where Q1 = {q1, qa, qhc, qht},
and transition and synthesis rules δ1 and σ1 are as follows.

q1 → (qa, eval(τa)), (qhc, eval(τhc)), (qht, eval(τht)),
Act(q1) ← ψ1(ȳ), where
ψ1(x̄a, x̄h, x̄t, x̄c) = Act(qa)(x̄a, , ,) ∧

(Act(qht)(, x̄h, x̄t, x̄c) ∨
¬∃ȳ Act(qht)(ȳ) ∧ Act(qhc)(, x̄h, x̄t, x̄c))

qa → . Act(qa) ← ψa(ȳ) /* similarly for qhc and qht */
where ψa(x̄a, , ,) = Msg(qa)(x̄a, , ,)

Here τa is invoked by q1 to find airfares, and its output is
used to instantiate Act(qa); similarly for τhc and τht. The
outputs of these component services are synthesized by ψ1,
which is in favor of Disney tickets. One can verify that τ1
and π1 are equivalent provided that (a) τa finds all flights
that φa of Example 2.1 can find, (b) both τhc and τht find
all hotel rooms that φa finds, and (c) τht (resp. τhc) finds all

tickets (resp. cars) that φt (resp. φc) finds, and vice versa.
This mediator is in the class MDTnr(FO). 2

Composition synthesis. In the reminder of the section
we study the following family of composition synthesis prob-

lems, referred to CP(G,M, C), where G,M and C are called
the goal (user-requested) service, mediator and component

(available) service classes, respectively. Here G and C are
either SWS(LMsg,LAct) or SWSnr(LMsg,LAct), and M is ei-
ther MDT(LAct) or MDTnr(LAct). We consider (LMsg,LAct)
ranging over (PL, PL), (CQ, UCQ) and (FO, FO).

Given a goal SWS τ ∈ G and a finite set S ⊂ C of com-
ponent services, all defined over the same schemas R, Rin

and Rout, CP(G,M, C) is to determine whether or not there
exists a mediator π ∈M over S such that π ≡ τ .

5.2 Complexity of Composition Synthesis

There is a connection between SWS composition and
query rewriting using views. For a fixed relational query
language L, the problem of equivalent query rewriting using
views (cf. [20]) is to determine, given a query ψ ∈ L and a
set of view definitions V in L, whether or not there exists
an equivalent rewriting of ψ, i.e., a query ψ′ ∈ L such that
ψ and ψ′ are equivalent, and ψ′ accesses only relations in V.
A query ψ′ is referred to as a maximally-contained rewriting
of ψ if ψ′ is contained in ψ, ψ′ accesses only relations in
V, and there exists no ψ1 ∈ L such that ψ′ is contained in
ψ1, ψ1 is contained in ψ, and ψ1 accesses only relations in
V. For L ranging over datalog, UCQ, CQ and regular path
queries, the problems of finding equivalent and maximally-
contained rewritings have been studied (e.g., [8, 3, 14, 23]).
The connection between these problems and SWS composi-
tion is evident if we treat the goal service τ ∈ G and mediator
π ∈M as queries, and component services S ⊂ C as views.

We study SWS composition synthesis by capitalizing on
this connection. It is, however, nontrivial to apply prior re-
sults on query rewriting to SWS composition. First, SWS’s

may not be expressible in any well-studied query languages.
Second, for SWS’s that can be expressed in a query lan-
guage, the rewriting problem for that language may not be
settled. For example, although SWS’s in SWSnr(CQ, UCQ)
can be converted to UCQ queries with inequality, to our
knowledge, the complexity on equivalent query rewriting for
UCQ with inequality is not yet known (some special cases
are considered in [4]). Our results on SWS composition may
shed light on the study of equivalent query rewriting.

For SWS composition synthesis we show the following.
First, it is infeasible already for nonrecursive SWS’s and me-
diators defined in terms of FO. Second, it remains undecid-
able for goal services in SWS(CQ, UCQ) even when either
mediators or components are nonrecursive, but it becomes
decidable when all of them are nonrecursive. Third, for
SWS(PL, PL) composition synthesis involves arbitrary com-
binations of concatenation, intersection and complementa-
tion of SWS’s, and is more intriguing than the rewriting
problems studied for regular path queries in previous work
(e.g., [8]). While we do not yet know whether it is decidable
in general, we show that it is decidable when either goal
SWS’s or both mediators and components are nonrecursive.

Theorem 5.1: Composition synthesis CP(G,M, C) is
1. undecidable when G, C are SWS(FO, FO) and M is

MDT(FO), even when G,M, C are all nonrecursive;
2. undecidable when G, C are SWS(CQ, UCQ) and M is

MDT(UCQ), even when eitherM or C is nonrecursive;

3. in 2expspace when G, C are SWSnr(CQ, UCQ) andM
is MDTnr(UCQ), i.e., when services and mediators are
all nonrecursive;

4. decidable when G is SWSnr(PL,PL), C is SWS(PL, PL)
and M is MDT(PL); and

5. decidable when G is SWS(PL,PL), C is SWSnr(PL, PL)
and M is MDTnr(PL).

2

Proof. (1) The undecidability of CP(SWSnr(FO,FO),
MDTnr(FO), SWSnr(FO,FO)) is verified by reduction from the
satisfiability problem for FO queries.

(2) When either mediators or component services are non-
recursive, the undecidability can already be established by
reduction from the equivalence problem for SWS(CQ,UCQ),
which is proved undecidable by Theorem 4.1.

(3) We first show that CP(SWSnr(CQ,UCQ), MDTnr(UCQ),
SWSnr(CQ,UCQ)) can be reduced to the problem for equiv-
alent query rewriting using views for UCQ with 6=, in exp-

time. We then show that the rewriting problem is decidable
in expspace for UCQ queries with 6=, by establishing a small
model property, i.e., if there exists an equivalent rewriting
then there exists one bounded by expspace.

(4) We use the notion of k-prefix recognizable languages,
i.e., languages for which membership is determined by the
first k symbols of the input sequence, for some k ∈ N. We
show that for each τ in SWSnr(PL,PL) there is a k such that
τ defines a k-prefix recognizable language. Moreover, given
k, there is a bound on the size of mediators defining k-prefix
recognizable languages. Thus we can guess a mediator of
bounded size and check equivalence with the goal SWS.

(5) Similarly, we show that an MDTnr(PL) mediator over
component SWS’s in SWSnr(PL,PL) is only capable of defin-
ing k-prefix recognizable languages, for some k ∈ N. Fur-
ther, we show that if the language defined by the goal SWS

τ is k-prefix recognizable, then we can put a bound on the
value of k. If π and τ are equivalent, τ must be k-prefix rec-
ognizable. This again yields a bound on the size of possible
mediators equivalent to τ , and thus decidability. 2

For SWS(CQ, UCQ), one might be tempted to consider
finding a nonrecursive mediator π over nonrecursive compo-
nent SWS’s for a recursive goal SWS τ such that π ≡ τ .
Indeed, there has been work on equivalence between re-
cursive and nonrecursive datalog programs [10]. There is,
however, a subtle difference between equivalence of SWS’s

and mediators, and equivalence on datalog queries. To see
this, recall the runs of SWS’s and mediators. Each time
when an execution tree is expanded, i.e., whenever new leaf
nodes are spawned, an input message in the sequence I is
consumed, by SWS’s and (component services in) mediators
alike. In other words, the computation steps of an SWS or
a mediator is bounded by the length of I. Therefore, while
the computation of a nonrecursive π can be conducted in
a fixed number of steps, the computation of a recursive τ
may need an unbounded number of steps. Hence one can
find a long enough sequence I of input messages such that
different outputs are produced by π and τ on I. In other
words, π and τ are not equivalent on all input sequences.
Indeed, in this setting the composition synthesis problem is
reduced to composition synthesis of nonrecursive goal SWS’s

and nonrecursive mediators and components, i.e., case (3)
above. This is what the proof of (5) does for SWS(PL, PL):
only k-prefix recognizable goal services make sense in that

context. In contrast, this is not an issue for the study of
equivalence between datalog programs.

For the same reason, as indicated in the proof of (4), for
a goal SWS τ in SWSnr(CQ, UCQ), it suffices to consider
only nonrecursive mediators and component SWS’s, i.e.,

case (3). This is in contrast to containment of nonrecursive
datalog programs in recursive datalog programs (e.g., [11]).

Special cases. Theorem 5.1 tells us that in general, com-
position synthesis for data-driven SWS’s is beyond reach in
the presence of recursion. Below we identify a decidable
case for recursive data-driven services in SWS(CQ,UCQ), by
leveraging a result on UC2RPQ queries established in [9].

A 2-way regular path query (2RPQ) Q expresses a regular
expression on a semistructured database D. The database
is an edge-labeled graph, encoded by a collection of bi-
nary relations for edges, along with their inverse. On D

the query Q computes a set (d0, dq) of nodes such that
e1(d0, d1), . . . , eq(dq−1, dq) is a path in D and e1, . . . , eq

is a word in the regular language of Q. Unions of con-
junctions of 2RPQ’s can be naturally defined, denoted by
UC2RPQ’s. It is shown [9] that containment of UC2RPQ’s
is decidable in 2exptime. One can express a UC2RPQ in
SWS(CQ,UCQ). Let us denote by SWS(UC2RPQ) the class
of all SWS’s in SWS(CQ,UCQ) that express UC2RPQ’s, and
by MDT(UC2RPQ) the class of all mediators in MDT(UCQ)
that are equivalent to some SWS in SWS(UC2RPQ). We
also denote by SWSnr(CQr) the subclass of SWSnr(CQ, UCQ)
such that each SWS in the class expresses a CQ query (with
two states). We show below that given a goal service τ in
SWS(UC2RPQ) and a set S of components in SWSnr(CQr), it
is decidable in 2exptime to determine whether or not there
exists a mediator π in MDT(UC2RPQ) such that π ≡ τ .

Corollary 5.2: The synthesis problem CP(SWS(UC2RPQ),
MDT(UC2RPQ), SWSnr(CQr)) is decidable in 2exptime. 2

Proof. One can verify that the composition synthesis
problem is ptime equivalent to the problem for equivalent
query rewriting for UC2RPQ queries using CQ views. Fur-
ther, using the maximally-contained rewriting algorithm de-
veloped for datalog [14] one can show that if an equiva-
lent rewriting of a UC2RPQ query exists, then an equiva-
lent UC2RPQ rewriting can be found in ptime. From these
and [9] the 2exptime upper bound follows. 2

While the composition synthesis problem is open when
goal and component services are in SWS(PL, PL) and me-
diator is in MDT(PL), we identify several decidable cases.
First, the analysis is simplified when only disjunction is al-
lowed in the synthesis queries of mediators. We denote this
subclass of MDT(PL) by MDT(∨). In this setting the prob-
lem becomes decidable in 3expspace when mediators, goal
and component services are all recursive. Second, we can re-
duce the complexity if goal services are NFA’s (2expspace-
complete) or DFAs (in expspace), as found in, e.g., the Ro-
man model. Third, we restrict MDT(PL) such that each
component services is invoked at most a fixed number of
times in all transition rules combined, and the sizes of the
synthesis functions are bounded. We refer to MDT(PL) with
such a bound as MDTb(PL). Then the composition synthesis
problem is decidable in expspace, and it is pspace-complete
if only nonrecursive component services are allowed.

Theorem 5.3:
1. CP(SWS(PL, PL), MDT(∨), SWS(PL, PL)) is decidable

in 3expspace;

2. CP(NFA, MDT(∨), SWS(PL, PL)) is 2expspace-
complete, while CP(DFA, MDT(∨), SWS(PL, PL)) is
in EXPSPACE;

3. CP(SWS(PL, PL), MDTb(PL), SWS(PL, PL)) is in EXP-

SPACE; CP(SWS(PL, PL), MDTb(PL), SWSnr(PL, PL))
is pspace-complete.

2

Proof. (1) Every SWS(PL,PL) is translated in exponen-
tial time to an equivalent NFA. The proof then employs the
2expspace NFA rewriting algorithm of [8], taking into ac-
count the subtle interplay between a mediator and the SWS’s

it calls. That is, the corresponding NFA’s should stop pro-
cessing the input the first time a final state is encountered.
The overall algorithm is therefore in 3expspace.

(2) When goal services can be expressed as an NFA, and
mediators are in MDT(∨) we show that composition synthe-
sis is ptime-equivalent to the rewriting problem of [8] for
NFA. From these and the complexity bounds of [8] follows
the result for an NFA goal. We show that the bound can be
lowered to expspace for a DFA goal.

(3) For MDTb(PL), composition synthesis has a small model
property: if a mediator in MDTb(PL) exists, then there must
be one of which the size is bounded by a polynomial in the
size of the goal SWS and component SWS’s. Further, testing
equivalence of an SWS and such a mediator can be done in
expspace in general, and in pspace when the component
SWS’s are nonrecursive. From this the upper bounds of (3)
follow. The pspace lower bound is by a reduction from non-
emptiness analysis of SWS(PL,PL) (Theorem 4.1 (3)). 2

It should be remarked that SWS composition is quite
different from service composition studied for the Roman
model [6]. In contrast to the Roman model that allows in-
terleaving of executions of component services, SWS compo-
sition requires that component services run to completion
in order to synthesize their actions. The difference in the
semantics leads to different complexity bounds on the syn-
thesis: it is exptime-complete for the Roman model [6, 24],
whereas it is 2expspace-hard for SWS(PL,PL) composition.

6. Conclusion
We have proposed a notion of synthesized Web services to

uniformly characterize FSA and transducer abstractions of
Web services. Moreover, SWS’s decouple unnecessary tem-
poral dependencies imposed by FSA abstractions, and fa-
cilitate deterministic synthesis of service actions. We have
established matching lower and upper bounds on the non-
emptiness, validation and equivalence problems associated
with various classes of SWS’s. We have also provided com-
plexity bounds on their composition synthesis.

The main results are summarized in Tables 1 and 2. Con-
sistent with the findings of [2, 5, 6, 12, 13, 16, 24, 29], the de-
cision and composition synthesis problems are either unde-
cidable or highly intractable for recursively defined services.
In light of these negative results we have identified decidable
cases and special cases with lower complexity bounds. More-
over, our proof techniques, e.g., finding service composition
via query rewriting using views, may help develop practical
heuristic algorithms in certain application domains.

There is naturally much more to be done. First, the
composition synthesis problem is open when goal and com-
ponent services are in SWS(PL, PL) and mediators are in
MDT(PL). This is, however, nontrivial. In fact the proofs

CP(G,M, C) Complexity
G: goal service M: mediator C:component

SWS(FO,FO) MDT(FO) SWS(FO,FO) undecidable
SWSnr(FO,FO) MDTnr(FO) SWSnr(FO,FO) undecidable

SWS(CQ,UCQ) MDT(UCQ) SWS(CQ,UCQ) undecidable
SWS(CQ,UCQ) MDT(UCQ) SWSnr(CQ,UCQ) undecidable
SWS(CQ,UCQ) MDTnr(UCQ) SWS(CQ,UCQ) undecidable
SWSnr(CQ,UCQ) MDTnr(UCQ) SWSnr(CQ,UCQ) 2expspace

SWSnr(PL,PL) MDT(PL) SWS(PL,PL) decidable
SWS(PL,PL) MDTnr(PL) SWSnr(PL,PL) decidable

Special cases

SWS(UC2RPQ) MDT(UC2RPQ) SWSnr(CQr) 2exptime

SWS(PL,PL) MDT(∨) SWS(PL,PL) 3expspace

NFA MDT(∨) SWS(PL, PL) 2expspace

DFA MDT(∨) SWS(PL, PL) expspace

SWS(PL, PL) MDTb(PL) SWS(PL, PL) expspace

SWS(PL, PL) MDTb(PL) SWSnr(PL, PL) pspace

Table 2: Complexity of composition synthesis

for its special cases (Theorem 5.1 (4, 5)) are already non-
elementary. Second, in several decidable composition cases,
we have only provided upper bounds, for which the exact
complexity remains unknown. Third, the undecidability and
highly intractable results suggest that we identify practical
restrictions that allow decidable and better still, tractable
static analyses and composition synthesis. Fourth, a prac-
tical topic for future work is to extend SWS’s by incorpo-
rating aggregation and a cost model into action synthesis to
find, e.g., a travel package with minimum total cost when
airfare, hotel and other components are all taken together.
While aggregation on composed services is certainly needed
in practice, we are not aware of any formal study of this
issue. Finally, we also plan to investigate for SWS’s the veri-
fication problems and restrictions studied in [12, 13], as well
as the impact of lossy channel [13] and global constraints [5,
15] on static analyses and composition synthesis of SWS’s.

Acknowledgments. Wouter Gelade is Research Assistant
of the Fund for Scientific Research - Flanders (Belgium).
Wenfei Fan is supported in part by EPSRC GR/S63205/01,

GR/T27433/01 and EP/E029213/1. Floris Geerts is sup-
ported in part by EPSRC EP/E029213/1.

7. References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
[2] S. Abiteboul, V. Vianu, B. S. Fordham, and Y. Yesha.

Relational transducers for electronic commerce. JCSS,
61(2):236–269, 2000.

[3] F. N. Afrati, M. Gergatsoulis, and T. G. Kavalieros.
Answering queries using materialized views with dis-
junctions. In ICDT, 1999.

[4] F. N. Afrati, C. Li, and P. Mitra. Rewriting queries
using views in the presence of arithmetic comparisons.
Theor. Comput. Sci., 368(1-2):88–123, 2006.

[5] D. Berardi, D. Calvanese, G. D. Giacomo, R. Hull, and
M. Mecella. Automatic composition of transition-based
semantic web services with messaging. In VLDB, 2005.

[6] D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenz-
erini, and M. Mecella. Automatic service composition
based on behavioral descriptions. Int. J. Cooperative

Inf. Syst., 14(4):333–376, 2005.
[7] Business Process Execution Language for Web Services

version 1.1 (BEPL4WS), 2004. http://www.ibm.com/

developerworks/library/specification/ws-bpel/.
[8] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y.

Vardi. Rewriting of regular expressions and regular
path queries. JCSS, 64(3):443–465, 2002.

[9] D. Calvanese, G. D. Giacomo, and M. Y. Vardi. Decid-
able containment of recursive queries. TCS, 336(1):33–
56, 2005.

[10] S. Chaudhuri and M. Y. Vardi. On the equivalence
of recursive and nonrecursive datalog programs. JCSS,
54(1):61–78, 1997.

[11] S. S. Cosmadakis and P. C. Kanellakis. Parallel evalu-
ation of recursive rule queries. In PODS, 1986.

[12] A. Deutsch, L. Sui, and V. Vianu. Specification and
verification of data-driven Web applications. JCSS,
73(3):442–474, 2007.

[13] A. Deutsch, L. Sui, V. Vianu, and D. Zhou. Verification
of communicating data-driven Web services. In PODS,
2006.

[14] O. M. Duschka and M. R. Genesereth. Answering re-
cursive queries using views. In PODS, 1997.

[15] X. Fu, T. Bultan, and J. Su. Analysis of interacting
BPEL Web services. In WWW, 2004.

[16] X. Fu, T. Bultan, and J. Su. Conversation protocols: a
formalism for specification and verification of reactive
electronic services. TCS, 328(1-2):19–37, 2004.

[17] M. Garey and D. Johnson. Computers and intractabil-

ity: A guide to the theory of NP-completeness.
W. H. Freeman and Company, 1979.

[18] C. E. Gerede, R. Hull, O. H. Ibarra, and J. Su. Au-
tomated composition of e-services: lookaheads. In IC-

SOC, 2004.
[19] G. Gottlob and C. Papadimitriou. On the complexity

of single rule datalog queries. Inf. Comput., 183(1):104–
122, 2003.

[20] A. Y. Halevy. Theory of answering queries using views.
SIGMOD Record, 29(4), 2001.

[21] R. Hull and J. Su. Tools for composite web services: a
short overview. SIGMOD Record, 34(1):5–12, 2005.

[22] A. Klug. On conjunctive queries containing inequalities.
J. ACM, 35(1):146–160, 1988.

[23] A. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava.
Answering queries using views. In PODS, 1995.

[24] A. Muscholl and I. Walukiewicz. A lower bound on Web
services composition. In FoSSaCS, 2007.

[25] OWL-S: Semantic Markup for Web Services, 2004.
http://www.w3.org/Submission/OWL-S/.

[26] M. Pistore, P. Traverso, P. Bertoli, and A. Marconi.
Automated synthesis of composite BPEL4WS web ser-
vices. In ISWC, 2005.

[27] Semantic Web Services Framework (SWSF) Version
1.1, 2005. http://www.daml.org/services/swsf/1.1/.

[28] M. Spielmann. Abstract State Machines: Verification

Problems and Complexity. PhD thesis, RWTH , 2000.
[29] M. Spielmann. Verification of relational transducers for

electronic commerce. JCSS, 66(1):40–65, 2003.
[30] Web Services Conversation Language (WSCL) 1.0,

2002. http://www.w3.org/TR/wscl10/.
[31] Web Services Description Language (WSDL) 1.1, 2001.

http://www.w3.org/TR/wsdl.
[32] S. Yu. Regular languages. In Handbook of Formal Lan-

guages, volume 1. Springer, 1996.

