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Models and framework for supporting run-time
decisions in Web-based systems

MAURO ANDREOLINI, SARA CASOLARI
and

MICHELE COLAJANNI

University of Modena and Reggio Emilia

Efficient management of distributed Web-based systems requires several mechanisms that de-
cide on request dispatching, load balance, admission control, request redirection. The algorithms
behind these mechanisms typically take fast decisions on the basis of the load conditions of the
system resources. The architecture complexity and workloads characterizing most Web-based ser-
vices make it extremely difficult to deduce a representative view of a resource load from collected
measures that show extreme variability even at different time scales. Hence, any decision based
on instantaneous or average views of the system load may lead to useless or even wrong actions.
As an alternative, we propose a two-phase strategy that first aims to obtain a representative view
of the load trend from measured system values, and then applies this representation to support
run-time decision systems. We consider two classical problems behind decisions: how to detect
significant and non-transient load changes of a system resource and how to predict its future load
behavior. The two-phase strategy is based on stochastic functions that are characterized by a
computational complexity that is compatible with run-time decisions. We describe, test and tune
the two-phase strategy by considering, as a first example, a multi-tier Web-based system that is
subject to different classes of realistic and synthetic workloads. Also, we integrate the proposed
strategy into a framework that we validate by applying it to support run-time decision in a cluster
Web system and in a locally distributed Network Intrusion Detection System.

Categories and Subject Descriptors: C.Zéfputer Communication Networks]: Distributed Systems; C.2.5

[Computer Communication Networks]: Local and Wide-Area Networks+rternet C.4 [Performance of Sys-
temg: Design studies,Measurement techniques,Performatriieutés,Modeling techniques

General Terms: Algorithms, Design, Measurement, Performance
Additional Key Words and Phrases: World Wide Web, Load prediction, Load change detection,
Distributed systems, Load representation

1. INTRODUCTION

The majority of critical Web-based services are suppornyedigtributed infrastructures that
are expected to satisfy scalability and availability regoients, and to avoid performance
degradation and system overload. Managing these systeuises several run-time deci-
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2 . Mauro Andreolini et al.

sions that are oriented towards load balancing and loadngh@@ardellini et al. 2002, Pai
et al. 1998, Andreolini et al. 2003], overload and admissiontrol [Cherkasova and Phaal
2002, Mitzenmacher 2000, Ferrari and Zhou 1987, Menasd&aphart 2007, Chen and
Mohapatra 2002], job dispatching and redirection even aagyraphical scale [Cardellini
et al. 2003]. The introduction of self-adaptive systemsamdnomic computing [Kephart
and Chess 2003, Ganek and Corbi 2003, Wildstrom et al. 2088h&n et al. 2002] will
further increase the necessity for management algorithatstéke important actions on
the basis of present and future load conditions of the systsurces.

Most available algorithms and mechanisms for run-timesiens evaluate the load con-
ditions through the periodic sampling @fsource load measuredtained from monitors.
In different contexts [Baryshnikov et al. 2005, Chen anddgeiann 2005, Abdelzaher et al.
2002], these measures are sufficient to decide about praseétititure system conditions,
whether a system resource is offloading, overloading oil&tiziy, and whether it is nec-
essary to activate a management process. On the other hasd,measures are of little
value for the systems and workloads that characterize thdemadNeb and that we con-
sider in this paper. We can confirm that the resource meashtamed from load monitors
of Internet-based servers are extremely variable everffateht time scales, and tend to
become obsolete rather quickly [Dahlin 2000]. Hence, intyipécal heavy-tailed context
characterizing the Web workload, a decision system workiingctly on measures is of
little value, because they give only a limited and instaatars view of the resource status
and do not capture the behavioral trend.

As an alternative, we propose that the decision systemsatgen a continuous “rep-
resentation” of the load behavior of the system resourcéss iflea leads to awo-phase
strategywhere we separate the problem of achieving a representégmeof the resource
load conditions from that of using this representation fecidion purposes. In this paper,
we address the main issues related to both phases.

—We first propose and compare different linear and non-fiheections, calledoad track-
ers for the generation of a representative resource load. éti@cker obtains continu-
ous resource measures from the system monitors, evalulmiad eepresentation of one
or multiple resources, and passes this representation the tiunctions in the second
phase.

—In the second phase, we utilize the generated load repeggenfor addressing two im-
portant issues that are at the basis of several run-time geament decisions: detecting
non-transient changes of the load conditions of a systeoures (0ad change detec-
tion) and predicting future load conditions of a resouroad predictior). An initial
evaluation of the two-phase approach for load predictios pr@sented by the authors
in [Andreolini and Casolari 2006]. In this paper, we extehdttidea and propose a
general two-phase methodology to support run-time datssio Web-based contexts.

Unlike the majority of papers focusing on user behavior dmaracterization, we exam-
ine the effects of a heavy-tailed workload from a systempafimiew. This decision allows
us to propose an innovative two-phase strategy that hassaaemalidity because it is inde-
pendent of the user behavior and can be extended to mansedifieontexts. For example,
previous results [Dinda and O’Hallaron 2000, Chen and Hamlen 2005, Baryshnikov
et al. 2005, Tran and Reed 2004] suggest the applicatiomeétiprediction models di-
rectly to resource measures, but this is unsuitable for tirlead and system contexts we
are considering in this paper. However, we show that thamkset two-phase strategy and
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the use of adequate load trackers, even a simple lineadtpmediction model is able to
achieve good predictions.

We compare different linear and non-linear models for loadkers that are capable of
supporting different decision systems and are charaethy a computational complexity
that is compatible with the temporal constraints of runetidecisions. All of our results
show that the choice of an “adequate” load tracker is a com@®between the rapidity in
signaling a change in the load conditions and the accuraegiatkto follow non-transient
load changes, but the choice of the “best” load tracker dépen the objectives and con-
straints of the application in the second phase.

We validate the proposed two-phase strategy through difteeal systems. We initially
test and tune the models in the context of a multi-tier Wesebdaarchitecture. Then, in
order to show that the proposed methodology is not tied tceaiip context, we validate
the proposed framework with other applications and systgyesating in realistic contexts:
an admission control and request dispatching mechanisra uster supporting Web-
based applications and a dynamic load balancer for a lodastsibuted Network Intrusion
Detection System.

The paper is structured as follows. Section 2 motivates @uk Wy showing the extreme
variability of resource measures at different time scatesfar different Web-related work-
load scenarios; in this section we also present the twoeptaategy. Section 3 defines the
linear and non-linear models that we use as bases for thetfaekkrs in the first step of
the two-phase strategy. Section 4 evaluates the compughtiosts, the accuracy and the
responsiveness of the considered load trackers. Sectiang 6 describe and evaluate two
applications of the second phase that is, the load changetitet and the load prediction
problems. Section 7 applies the main results of this papardioster Web-based system
and to a locally distributed Network Intrusion Detectiorsigm. Section 8 compares the
contribution of this paper with respect to the state of theSection 9 concludes the paper
with some final remarks.

2. MOTIVATION AND PROPOSAL

We have carried out a very large set of experiments for airaythe typical behavior

of commonly measured resources. We report on a subset otsudts that refer to a

specific architecture for eight classes of workload. Theleeahould be aware that the
main observations and conclusions about these resultsepresentative of the typical
behavior of the resources of a Web-based system that iscsubjesalistic workload.

2.1 Workload models

As a test-bed example, we consider a dynamic Web-basedrsysterring to a multi-tier
logical architecture (Figure 1) that follows the implensign presented in [Cain et al.
2001].

The first node of the architecture executes the HTTP sencthanapplication server,
deployed through the Tomcat [Tomcat 2005] servlet contaite second node runs the
MySQL [MySQL 2005] database server. We consider TPC-W asnibikload model
[TPC-W 2004] because it is becoming ttle factostandard for the performance evalua-
tion of Web-based systems providing dynamically generatedents (e.g., [Dodge et al.
2001, Cecchet et al. 2003, Cain et al. 2001)]. Client regua®t generated through a set of
emulated browsersvhere each browser is implemented as a Java thread rejmgadarc
entire user session with the Web site. We instrument the WRA@arkload generator to em-
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Fig. 1. Architecture of the considered multi-tier Web-tzhsgstem

ulate alight and aheavyservice demand that, for the same number of emulated brswser
have low and high impact on system resources, respectiabfe | shows the parameters
of the access frequencies of the TPC-W services for thesideaa models.

Table I. Service access frequencies (TPC-W workload) @it land heavy service demand models.
Home | New Best Prod. | Search | Shop. | Cust. Buy Order | Admin.
Prod. | Sellers | Det. Cart Reg.

Light 55% 14% 14% 9% 7% 0.15% | 0.05% | 0.41% | 0.2% 0.19%
Heavy | 29% 11% 11% 21% 23% 2% 0.82% | 1.44% | 0.55% | 0.19%

For both service demand models, we implement foser scenariody varying the
number of emulated browsers over time. The representasigescenarios for the heavy
workload model are shown in Figure 2. (Analogous patterrth different numbers of
emulated browsers are created for the light service demauii)

—Step scenario. The scenario in Figure 2(a) describes a sudden load incrtefrten
a relatively unloaded to a more loaded system[ Satyanasasyanal. 1997]. For the
heavy(light) service demand, the population is kept at 120 (300) endilatewsers
for 5 minutes, then it is suddenly increased to 200 (700) atedlbrowsers for other 5
minutes.

—Staircase scenario.The scenario in Figure 2(b) represents a gradual increnfehto
population up to 180 (600) emulated browsers fortthavy(light) service demand. The
increase is followed by a similar gradual decrease.

—Alternating scenario. The scenario in Figure 2(c) describes an alternating iseraad
decrease of the load between 140 (400) and 180 (600) ematedsers forheavy
(light) service demand every two minutes.

—Realistic scenario.The scenario in Figure 2(d) reproduces a realistic useempate.g.,
derived from a subset of data in [Baryshnikov et al. 2005]¢meHoad changes are char-
acterized by a continuous and gradual increase or decrédse number of emulated
browsers.
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Models and framework for supporting run-time decisions in Web-based systems . 5

The eight workload models are representative of aggre¥gele workloads character-
ized by heavy-tailed distributions [Barford and Crovel@98, Crovella et al. 1998, Chal-
lenger et al. 2004, Arlitt et al. 2001] and by flash crowds flahal. 2002]. The motivation
behind this choice of models is to demonstrate that the thase methodology works even
in critical scenarios, although the toughest goal of pr#atichot spot events remains an
open issue beyond the scope of this paper.

Emulated Emulated
browsers browsers
250 250
200 — 200
150 150
100 100
50 50
100 200 300 400 500 800 700 800 Time (5) 100 200 300 400 500 800 700 800 Time (5)
(a) Step scenario (b) Staircase scenario
Emulated Emulated
browsers browsers
250 250
200 200
150 150 ik
100 100 k&
50 50
100 200 300 400 500 800 700 800 Time (S) 500 1000 1500 2000 2500 3000 3500 4000 TimB(S)
(c) Alternating scenario (d) Realistic scenario

Fig. 2. User scenarios (the number of emulated browserssredghe heavy service de-
mand)

2.2 Measures and analysis of Web system resources

There are many critical resources in any system supportieQ-Bésed services. The
resource load or status can be measured through severainsysbnitors (e.g. sysstat,
procps, rrdtool) that typically yield instantaneous orragge values over short intervals at
regular time intervals. We have analyzed the behavior ofrnonly measured resources
that refer by default to the last interval of one second: CHlization, disk and network

throughput (MB/sec), number of open sockets, number of &ifgen process load, percent-
age of utilized memory, each of them considered for diffesample periods, workload

classes and scenarios. Understanding what is the mosatriéisource in a complex sys-
tem s itself a problem that is orthogonal to the issues adhein this paper. We can easily
conclude that all our experiments confirm literature ressjtindicating that the back-end
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node of the multi-tier architecture in Figure 1 is the modical system component [El-
nikety et al. 2004]. For this reason, we focus on the CPUzatiibn and disk throughput
of the back-end node. To give a first qualitative motivatiéthe difficulties of capturing
any clear message from a sequence of resource measuragiad=8 and 4 we report the
results related to the light and heavy scenario, respégtiie these figures, we consider
as examples different intervals, metrics and scenarios:

—two resource measurement intervals: 1 second (FigurgsaB¢h4(a)), and 5 seconds
(Figures 3(b) and 4(b));

—two resource metrics: CPU utilization (Figures 3(c) and)$}(and disk throughput as
blocks/second (Figures 3(d) and 4(d));

—four user scenarios: step (Figures 3(c), 3(d), 4(c) and)¥(dtaircase (Figures 3(e)
and 4(e)), realistic (Figures 3(a), 3(b), 4(a) and 4(bJ}raating (Figures 3(f) and 4(f)).

There are many qualitative messages shown by the Figured 3anThe measurement
interval does not change the variability impact. Not evergaurce measure is equally
representative of the system load: in general, the CPUVllihe input load closer than

the disk throughput. On the other hand, all the figures st@edmmon trait that the view

of a resource that is obtained from system monitors is exd¢hgrariable, to the extent that

any run-time decision based on these values may be risky ndtscompletely wrong.
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Fig. 3. Resource measurements - light service demand.

If we compare the two workload classes, Figures 3 and 4 shatwhiravy service de-
mand causes much higher variability in the resource meashaa light service demand.
We give a mathematical confirmation of this result by evahgathe mean and the standard
deviation of the CPU utilization of the back-end node forthebrkload classes. We con-
sider six stable user scenarios where the number of emlab@gsers is kept fixed during
the experiment running for one hour. The initial and final teinutes are considered as
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Fig. 4. Resource measurements - heavy service demand.
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Fig. 5. Statistical analysis of the workloads.

warm-up and cool-down periods, hence they are omitted flerevaluation of the statis-
tics. The average CPU utilization and its standard dewidto light and heavy workload
are shown in Figures 5(a) and 5(b).

In Table II, we report the results of the same statisticalyamia for the four unstable
scenarios: step, staircase, alternating and realistitho&bh in these cases the arithmetic
mean is not a good representation of the load behavior, tesséis confirm the high vari-
ability of the resource measures for both workloads. Inipaler, the standard deviation
highlights a twofold dispersion of the resource measurdbercase of heavy service de-
mand.

As a final observation, we note that the highly variable reatfrthe measures occurs
for any workload, even when the average load is well belowntla&imum capacity of
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Table Il.  Statistical characterization of the workloadseén and standard deviation).

Light service demand | Heavy service demand
Mean Sd Mean Sd
Step scenario 0.31 0.18 0.32 0.38
Staircase scenario 0.21 0.13 0.23 0.30
Alternating scenario 0.26 0.15 0.28 0.31
Realistic scenario 0.38 0.15 0.40 0.37

a resource. Variability is high to the extent that using cliresource measures for load
change detection or load prediction analyses is of littlaeaFor example, let us consider
a system expected to take different decisions dependingRis I6ad. When the CPU
utilization measures are similar to those in Figures 3 atahytJoad change detector would
alternate frequent on-off alarms, thus making it impogsibr a run-time decision system
to judge whether a node is really off-loaded or not. On theeottand, a simple average
of the resource measures would mitigate the on-off effadtabthe same time it would
affect the efficacy of the load change detection algorithm.short, these preliminary
results suggest that a run-time management system shoalld® operate on a different
representation of the resource load, such as that proposkd following section.

2.3 Two-phase strategy

Direct measures have a limited value because they just iofféantaneous views of the
load conditions of a resource. Moreover, these measurdsadre useless when they are
highly variable, as in typical Web workloads. In practidegere is no way to estimate or
predict load, to analyze load trend, to forecast overloadnderstand where the system is
and where the system is going, to decide whether it is negetsactivate some control
mechanism and, if it is, to choose the right course of action.

For these reasons, we propose that run-time managemesrsystipporting Web-based
services should operate not on resource measures but otilruoars “representation” of
the load behavior of the system resources. This proposds lEaatwo-phase strategy
where we separate the two main phases behind a run-timeatecis

(1) Generation of representative resource load.During this phase we obtain a repre-
sentative view of the resource load.

(2) Resource state interpretation.In this phase, we utilize the previous representation
as a basis for evaluating the present (e.g., load changetideieor future (e.g., load
prediction) resource conditions; these evaluations ae gassed on to the run-time
decision system.

The two-phase strategy is outlined in Figure 6. In the firstgeh doad trackermodule
continuously gets measures from the system monitors aridagga one load representa-
tion of the resource behavior or a different representdtorach class of application as
shown by the figure. Multiple views from different resourceanures may be used to get
a global representation of a system component. This isshevgver, out of the scope of
this paper.

In the second phase, each representation obtained thioeiggad tracker is passed on to
an evaluation module that computes the present or futurgittom of a resource, possibly
with respect to its maximum capacity. The final goal is to eatd the information that is
necessary for thein-time decision systetu fulfill its goals, such as improving the system
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Fig. 6. The proposed two-phase framework for supportingtime decisions.

throughput, avoiding bad request assignments, or reflaidiifional requests because of
overload risks. The idea of a two-phase strategy seemsrrstifagghtforward. However,
it has never been proposed before in a Web system contextedMer, it opens several
interesting issues that we address in the next sections.

The choice of an adequate load tracker is of utmost impoetéame¢he entire run-time
management system and it must be pointed out that no singleecls better than all the
others. We implement load trackers based on linear andineaflmodels for different
parameters. For the second phase, we consider the probleetexfting non-transient
changes of the load conditions of a system resource, andedlighing future resource
behavior.

Different decision systems may require different représtéons that can be generated
by the underlying load tracker. For example, a valid loadngeadetector should signal
to the run-time decision system only significant load chartat require some immediate
actions, such as redirecting requests and filtering aceesSa the other hand, a load
predictor should provide the run-time decision system exipected future load conditions
that are at the basis of different algorithms, such as lotahbang and request dispatching.

The proposed methodology and framework are modular, héregedan be easily en-
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riched with other models and supports for decision systefsrucial requirement for
all the models in both phases is the capacity to satisfy ime-tonstraints; in many Web
systems are in the order of seconds.

3. LOAD TRACKERS DEFINITIONS

In this section, we describe the first phase which aims toimlastaepresentative view of
the load trend from resource measures. Roughly speakingsowsider doad tracker
function that filters out the noises characterizing a sege@fi low correlated and highly
variable measures, and then offers a more regular view ofothe trend of a resource
to the models of the second phase. This problem is not rejagtdo smooth resource
measures before using them because an arithmetic mearaityg®moothed, but it may
not be representative of the real load conditions. Differan-time decision systems need
different representations and the right compromise betvaeeuracyandresponsiveness
of a load tracker should be sought.

At time t;, the load tracker can consider the last measyrend a set of previously
collectedn — 1 measures, that i§_>,n(ti) = [Si—(n—1),---,Si—1, 5;]. We defindoad tracker

a functionLT(sT)n(ti)) : R* — R that, at timet;, takes as its inpuﬁ(ti) and gives a
“representation” of the resource load conditions, namglyA continuous application of
the load tracker produces a sequence of load values thds\ddlend of the resource load
conditions by excluding out-of-scale resource measumsthie purposes of this paper, we
consider and compare some linear and non-linear load tr&aketions.

3.1 Linear load trackers

We first consider the class ofioving averagepecause they smooth out resource mea-
sures, reduce the effect of out-of-scale values, are faaly to compute at run-time, and
are commonly used as trend indicators [Lilja 2000]. We foaugwo classes of moving
average: th&imple Moving AveragéSMA) and theExponential Moving Averag&MA),
one using uniform and the other non-uniform weighted distions of the past measures,
respectively. We also consider other popular linear aagyessive models [Dinda and
O’Hallaron 2000, Tran and Reed 2004uto RegressiveAR) andAuto Regressive Inte-
grated Mooving AveragéARIMA).

Simple Mcming Average(SMA). It is the unweighted mean of theresource measures

of the vectorS,, (¢;), that is evaluated at time (i > n), that is,

> s
i~ (n-1)<j<i

SMA(S,(t:)) = (1)

n

An SMA-based load tracker evaluates a n@MA(bT)n(ti)) for each measurs; during
the observation period. The number of considered resouecsunes is a parameter of the
SMA model, hence hereafter we use SM# denote an SMA load tracker based on
measures. As SMA models assign an equal weight to everynesmeasure, they tend to
introduce a significant delay in the trend representatispeeially when the size of the set
?n(ti) increases. The EMA models are often considered with thegserpf limiting this
delay effect.

Exponential Moving Average (EMA). This is the weighted mean of the resource

measures of the vect@ (t;), where the weights decrease exponentially. An EMA-based
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—

load tracketL.T'(S,(t;)), at timet;, is equal to:

EMA(Sn(t:) = a*s; + (1 — a) « EMA(S, (ti_1)) )
where the parameter = 2/(n + 1) is thesmoothing factar The initial EMA(SZ’,(tn))
value is initialized to the arithmetic mean of the firsineasures:

D S
_ 0<j<n

EMA(S,(t,)) = = (3)

Similarly to the SMA model, the number of considered reseuneasures is a parameter
of the EMA model, hence by EMAwe denote an EMA load tracker basedromeasures.

Auto-Regressive Model(AR). This is a weighted linear combination of the pase-
source measures of the vecﬁ_f{(ti). An AR-based load tracker at tintg can be written

as:
—

AR(Sn(tl)) = ¢1 * Sty + -+ (bp * Sti,I,p + et (4)
wheree; ~ WN(0,0?) is an independent and identically distributed sequendée(ta
residuals sequenggs;, , ..., s, ,_, are the resources weighted pyinear coefficients;
and ¢1,...,¢, are the firstp values of the auto-correlation function computed on the

?n(ti) vector. Thep order of the AR process is determined by the lag at which thigba
auto-correlation function becomes negligible [Brockveeltl Davis 1987, Kendall and Ord
1990]. The numbep of considered resource measures is a parameter of the ARImode
hence by AR(p) we denote an AR load tracker base¢ aalues. Higher-order auto-
regressive models include more lagggd terms, where coefficients are computed on a
temporal window of the, resource measures.

Auto-Regressive Integrated Moving Average Mode(ARIMA). An ARIMA model
is obtained by differentiating times a non stationary sequence and by fitting an ARMA
model that is composed by the auto-regressive model (AR(m))the moving average
model (MA(Q)). The moving average part is a linear combimatf the pasg noise terms,
et;,---»et,_,_, [Brockwell and Davis 1987, Kendall and Ord 1990]. An ARIMA ohel
can be written as:

ARIMA(ST)n(tl)) = ¢1 * Sttt ¢p+d * Sty _pq T b * €, +o+ 911 * €ty (5)
wheredy, ..., 0, are linear coefficients. An ARIMA model is characterized hyee pa-
rameters, that is, ARIMA(p,d,q), whegeis the number of the considered resource mea-
sures,g of the residuals values antof the differentiating values. As an ARIMA model
requires frequent updates of their parameters, its imphatien takes a non-deterministic
amount of time to fit the load tracker values [Dinda and O’HEladh 2000]. Hence, an
ARIMA load tracker seems rather inadequate to support aime-management system
when the underlying infrastructure is subject to variabtekioads.

3.2 Non-linear load trackers

Linear models tend to introduce a delay in load trend desoripwhen the size of the
considered resource measures increases, while theyatsditlo much when the set of
resource measures is small. The need for a non-linear trackeotivated by the goal of
addressing in an alternative way the trade-off charadtgrinear models. We consider
two non-linear models.
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Two sided quartile-weighted median(QWM). In descriptive statistics, the quartile is a
common way of estimating the proportions of the data thaukhfall above and below a
given value. The two sided quartile-weighted median is wred a robust statistic that is
independent of any assumption on the distribution of theues measures [Duffield and
Lo Presti 2000]. The idea is to estimate the center of theilbligton of a set of measures
through the two sided quartile-weighted median:

_ Qurs(Sutn) + 2 Q5(Su(tn)) + Q25(Sn (tn)

QW M (S, (1)) 7

(6)

whereQ,, denotes the'" quantile of theS_)n(tn).

Cubic Spline (CS). A preliminary analysis leads us to considerdhbic splinefunction
[Poirier 1973], in the Forsythet al. version [Forsythe et al. 1977], as another interesting
example of non-linear load tracker. This decision is alsdivated by the observation that
lower order curves (that is, with a degree lower than 3) doeatt quickly enough to load
changes, while curves with a degree higher than 3 are cassidmnecessarily complex,
introduce undesired ripples and are computationally tqeeegive to be applied in a run-
time context. For the definition of the cubic spline functitet us choose someontrol
points(¢;, s;) in the set of measured load values, whigres the measurement time of the
measures;. A cubic spline functiorC'S” (), based onJ control points, is a set of — 1
piecewise third-order polynomiajs (t), where;j € [1,.J — 1], that satisfy the following
properties.

Property 1.The control points are connected through third-order payials:

{CSJ(tj):sj j=1,...,J

7
CSI(t)=p;(t) tj<t<tjp1,j=1,....,J—1 "

Property 2. To guarantee &2 behavior at each control point, the first and second order
derivatives ofp; (t) andp;41(t) are set equal at timg, Vj € {1,...,J — 2}:

dp;(tit1) _ dpjt1(tjvr)
d dt )

t
d’p; (f2j+1) _ d’pjna gfj+1) (8)
dt - dt

If we combine Properties 1 and 2, we obtain the following defin for C.S”(t):

Zi(t—5)° + 2i(tj1 — t)°
6h;

S h; s; h; 9
+ () — 1) + G - L)t - ) ©
i J

vie{l,...,J—1}

whereh; = t;11 — t;, ands; are the measured values. Thecoefficients are solved by
the following system of equations:

CS’(t) =

zZ0 = 0
hj—12j—1 +2(hj—1 + hy)zj + hjzj = 6(35 = — 2=2=t) (10)
zn =0

The spline-based load trackéﬂ’(&i(u)), at timet;, is defined as the cubic spline
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functionCS/ (t;), obtained through a subset fcontrol points from the vector of load
measures.

Although the cubic spline load tracker has two parametedsssnomputationally more
expensive than the SMA and EMA load trackers, it is commomsigduin approximation
and smoothing contexts [Eubank and Eubank 1999, Wolber dfiydL899, Poirier 1973].
The cubic spline has the advantage of being reactive to Ibadges and is independent of
resource metrics and workload characteristics. Its coatjmutal complexity is compatible
with run-time decision systems, especially if we choose allsnumber of control points
J. This reason leads us to prefer the lowest number, thdt4is 3.

4. LOAD TRACKER EVALUATION

Load trackers should be evaluated in terms of feasibilityGumality. Only the load trackers
that have a computational complexity which is compatibléawin-time requirements can
be considered acceptable. Moreover, it is important touatalload trackeaccuracyand
responsivenes$Ve will see that these two properties are in conflict, hehegerfect load
tracker characterized by optimal accuracy and responssgahoes not exist. We anticipate
that this trade-off can be solved by considering the goath@foad tracker application.
For example, a run-time decision system epxected to takestliate action may prefer a
highly reactive load tracker at the price of some inaccur&y the other hand, when an
action has to be carefully evaluated, a decision system medgman accurate load tracker
even if less reactive.

4.1 Computational cost of load trackers

In this section, we estimate the computational cost of tlael lvacker functions in order
to assess their feasibility to run-time requirements. Wauate the CPU time required
by each load tracker to compute a new value of the load reptatsen. This time does
not include the system and communication times that aressacg to fill the resource
measure vector. The results for different measured vahjesré evaluated on an average
PC machine and reported in Table Ill. They refer to the réalisser scenario and heavy
service demand, but their costs are representative of arileenl. From the table we can
conclude that the computational cost of all considered tomzker functions is compatible
with run-time constraints. The majority of load trackersda CPU time well below 10
msec. The main difference is represented by ARIMA modelk @itomputational cost
that is higher by one order of magnitude. Although a costwdloOms seems compatible
with many run-time decision systems, we should considertiehind the choice of the
parameters of the AR and ARIMA models there is a complex etadn. This phase
required the computation of the auto-correlation and aghkatiito-correlation functions as
in [Brockwell and Davis 1987, Kendall and Ord 1990] and cadeld that the AR(32) and
ARIMA(1,0,1) models are the best for the considered woritlodhe complexity of this
phase more than the CPU time for generating a load trackee Wa@hds us to consider that
the AR and ARIMA models are inadequate to support run-tingésiten systems in highly
variable workload scenarios.

4.2 Load tracker accuracy and responsiveness

All the considered load trackers share the common goal oEsemting at run-time the
trend of a set of resource measures obtained from some loatlandn order to evaluate
the accuracy and responsiveness of the load tracker, weaneégrence curve that we call
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Table lll. CPU time (nseg¢ for the computation of a load tracker value
n=30 n=60 n=90 n=120 | n=240
EMA 0.059 | 0.059 | 0.059 | 0.059 | 0.059
SMA 0.560 | 1.039 | 1.461 | 1.990 | 3.785
CS 2.100 | 3.426 4.242 6.231 | 12.215
QWM 0.462 | 0.448 | 0.456 | 0.461 | 0.494
AR(32) 5.752 | 5978 | 5.998 | 6.070 | 6.417
ARIMA (1,0,1) X 67.536 | 67.765 | 67.228 | 72.141

representative load intervalThis is the indicator of the central tendency of the reseurc
measures in specific intervals of the experiment where thergéed load is rather stable,
although the resource monitors may recognize no stabilitynfthe measured values. In
real systems, when the control is limited to the server sidin® Internet and does not
include the client side, it is practically impossible to quute the representative load inter-
val. In our experimental setting, we have the additionabatiage of controlling the load
generators and we can compute the representative loathefffience, we consider as a
reference interval the period of time during which we getesttae same number of user re-
guests, that is, we have the same number of active emulategérs. For example, in the
step scenario and light service demand, we have two refeiatervals:7; = [0, 300] and
T, = [301,600]. In the staircase and alternating scenarios, there areeffeeence inter-
vals: [0, 120], [121, 240], [241, 360], [361, 480] and [48D0%. In the realistic scenario,
we consider four intervals: [341, 460], [500, 640], [7010Band [821, 1000].

As the skew of the resource measures is severe, the simpleiseat a good indicator
of the central tendency of a set of data [Lilja 2000]. Hence, prefer to evaluate the
representative load as th@proximate confidence intervi@onett 2006] in each interval.
In Figures 7 and 8, we report, for six workloads, the resoamneasuresdoty referring
to the CPU utilization of the database server and the ughey énd lower {'}) bounds
of the representative load intervalsofizontal line§. Even from these figures we can
appreciate the higher variability of the workload based eavy service demand with
respect to that based on light service demand: in the fornweklead, dots are more
spread and confidence intervals are larger. For exampleittdie interval of the staircase
scenario hag¥ = 0.39 and7y = 0.42 for the light service demand, afd" = 0.42 and
TY = 0.55 for the high service demand.

We now evaluate thaccuracyandresponsivenessf the six load tracker functions that
is, SMA,,, EMA,,, AR(32), ARIMA(1,0,1), CS, QWM,, in representing the load trend of
a set ofn resource measures. From a qualitative point of view, resigeness and accuracy
correspond to the capacity of reaching the representatactihterval as soon as possible,
and of having small oscillations around the representdbiad interval. We now propose
a quantitative evaluation for these two parameters.

The accuracy errorof a load tracker is the sum of the distances between each load
tracker valuel; computed at the instarite I,VI representative load intervals, and the
corresponding value of the upper boufifl or lower boundl'F of the same interval, that
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Fig. 7. Representative load intervals for different usenscios andight service demand.
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Fig. 8. Representative load intervals for different usenseios antheavyservice demand.

is, > > d;, where:
VI>0iel
0 if TF <1, <TY

The accuracy error corresponds to the sum of the verticmties between each load
tracker point that is out of the representative load inteama the representative load inter-
val bounds, for each interval.

For the sake of comparing of different load tracker modeéspvefer to use a normalized
value, such as theelative accuracy errar As a normalization factor, we consider the
accuracy error of the resource measures. The relative ancerror for any acceptable
load tracker lies between 0 and 1; with other values a loazkérawould be considered
completely inaccurate and discarded.

Responsiveness a temporal requirement that aims to represent the alfity load
tracker to quickly adapt itself to significant load variat®o Let¢;, denote the time at
which the representative load exhibits a new stable loadlition that is associated to a
significant change in the number of users. (For example, enrdlalistic scenario with
heavy service demand shown in Figure 8(a), we hHave 3 instants: 500, 680, 820.) A
load tracker is more responsive when its curve touches tee@resentative load interval
as soon as possible. Lgt denote the instant in which the load tracker value reaches fo
the first time one of the borders of the representative lotahial that is associated with a
new load condition. Theesponsiveness erraf a load tracker is measured as the sum of
the horizontal differences between the initial instantcharacterizing the representative
load I and the corresponding timeg, that is necessary for the load tracker to touch this
new interval. For comparison reasons, we normalize the guhedime delays by the total
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observation period’, thus obtaining a&elative responsiveness ertor
Z|t1k - tlk|
k
T
In Figures 9 and 10, we report the normalized values of theracy and responsiveness
errors of some representative load trackers for the wodkldearacterized by a realistic

user scenario and heavy service demand. We consider diffests of resource measures
wheren goes from 30 to 240.
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Fig. 9. Accuracyof the load trackers for the realistic user scenario and yheawice
demand 4§ denotes the number of measured values used by a load tracker)
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Fig. 10. Responsiveness the load trackers for the realistic scenario and heawyicer
demand.

There are some clear results coming from the observatidmedfistograms in Figure 9
and from all other results of which we report a small subset.

The SMA, EMA and QWM load trackers are characterized by aer@sting trade-off:
working on a small«{ < 30) and large ¢ > 200) amount of resource measures causes
higher accuracy error than that achieved by intermediategctors. The reasons for this
result are different: for small values of the error is caused by excessive oscillations; for
large values of: it is caused by excessive delays. Figures 11(a-c) give alisterpreta-
tion of the quantitative results. For example, the SMAurve touches the representative
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Fig. 11. Load tracker curves with respect to representtiad intervals (realistic user
scenario and heavy service demand).

load intervals quite soon, but its accuracy is low becaus@@fimany oscillations. On
the other hand, the SMAy curve is highly smoothed, but it follows the real load with
too much delay and even in this case its accuracy is poor. |&8imgsults are obtained
for the EMAx4o and QWMo load trackers. The best results for= 90 measures are
confirmed by the EMA, and QWM curves that follow more regularly the representative
load intervals.

The AR and ARIMA models are characterized by a high accura@y eaused by their
extremely jittery nature. Figure 11(d) offers a clear visnterpretation of the quantitative
result. The cubic spline model is interesting because targis of resource measures lead
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Fig. 13. Responsivenesd the load trackers for three user scenarios and heavyceervi
demand.

to a monotonic improvement of the load tracker accuracyuréig 11(e) and 11(f) show
how the curve fom = 240 follows the representative load interval much better then t
cubic spline fom = 30, that is extremely jittery.

A comparison of all results shows that the AR and ARIMA modielge largest accuracy
errors. The best results of EMA, SMA and QWM models are comiparand all are
obtained for a vector af = 90 resource measures. Their accuracy is even higher than that
of the best cubic spline model that is, £§ although we will see that this function may
further improve in accuracy for higher

Itis interesting to observe that quite similar results dsamed for completely different
and stressful workloads, such as the step, the staircastharadternating user scenarios
for both light and heavy service demand. Some results shoviigure 12 refer to the
light scenario. They confirm the conclusions about loadkeamodels, although they are
obtained for different values of. In particular, the SMA, EMA and QWM load trackers
yield their best accuracy for = 30 instead of the previous = 90 case.

Let us now move on to evaluate thesponsivenes®sults that are reported in the his-
tograms of Figures 10 and 13 for the realistic user scenamid the step, the staircase and
the alternating scenarios, respectively. The results simthese figures and by all other
results is a clear confirmation of the intuition: for any Ideatker, working on a larger set
of resource measures augments the responsiveness emeanobhresponsive load trackers
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are the AR and ARIMA models that are characterized by a nudiretf we exclude these
models that are useless for load tracker purposes, the spli® functions are the most
responsive. Even the stability of their results is remald&alvith an error below 0.1 for
anyn < 120. The load trackers based on EMA and SMA models seem moretiserisi
the choice ofz; acceptable results are obtainedfo 90 and forn < 30 in the light and
heavy service demand case, respectively. The QWM modeliisaly the least responsive
and even the range of validity afis narrower than that of the other load trackers.

4.3 Load tracker precision

The choice of the most appropriate load tracker is a commemeétween accuracy and
responsiveness. Depending on the kind of run-time decisiercan choose a more accu-
rate or a more responsiveness load tracker. However, wentaipate that no application
can prefer one attribute without considering the others.tlis reason, we introduce the
precisionof a load tracker as a combination of accuracy and respamssge

The majority of considered load trackers have many parasdiat we have seen that
it is possible to relate the solution of the trade-off to tieice of the right number of
measured values. For each model, it is necessary to find @ @&luthat represents a good
trade-off between reduced horizontal delays and limitetioad oscillations. For example,
the cubic spline load trackers have the advantage of acitgewonotonic and relatively
stable results: their accuracy increases rapidly and thsponsiveness decreases slowly
for higher values of.. The results of the EMA, SMA and QWM are characterized by a U
effect as a function of.

To evaluate the precision attribute as a trade-off betwbkeratcuracy and the respon-
siveness, we utilize acatter plot diagranfUtts 2004]. In Figures 14 and 15, the x-axis
reports the accuracy error and the y-axis the responsigsenes. Each point denotes the
precision error of a load tracker.

We define th@recision distancéy, of aload tracker. as the Euclidean distance between
each point and the point with null accuracy error and nulpoesiveness error (that is, the
origin) of the plot diagram. Moreover, we consider the areadequate precisiothat
delimits the space containing the load trackers that yatmine precision requirements. In
our example, we arbitrarily set treequate precisionange to 0.4; however, we should
consider that this limit is typically imposed by the systesménistrator on the basis of the
application and constraints of the run-time decision syst@ Figures 14 and 15, the load
trackers having; < 0.4 are considered acceptable to solve the trade-off betweremaxy
and responsiveness.

The SMA, EMA and QWM load trackers in Figures 14(a) and 15f@rs a similar
behavior: for higher values of they tend to reduce their accuracy error and increase their
responsiveness error; at a certain instant, both accuratyesponsiveness degrade, and
their points exit from thadequate precisioarea. We can confirm that the AR and ARIMA
models are not valid supports for load trackers becausegbdiect responsive is achieved
at the price of an excessive accuracy error. The cubic spimgel confirms its monotonic
behavior that can be appreciated by following the ideal ¢tireated by the small triangles
in Figure 14(b).

Let us summarize the overall significance of this study tloates from the results dis-
cussed here and many other not reported experiments thiincaur main conclusions.

—The load tracker models based on EMA, SMA, CS and QWM havergatational cost
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that is compatible with run-time constraints.

—TFor all workloads, the load trackers are characterized trade-off between accuracy
and responsiveness. This issue can be converted into imab&em of chosing the right
size of the resource measure vector.

—There exists a clear relationship between the dispersit (s, standard deviation) of
the observed resource measures and the choice of the bmstoeseasure vector size.
A high dispersion of the resource measures, such as thae dfeavy service demand,
requires load trackers working on a larger number of resoareasures. On the other
hand, the number of needed resource measures to obtainsefdoen tracker decreases
when the workload causes a minor dispersion of the resoueesunes.
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The proposal of a theoretic methodology to find the “besfor any load tracker, any
workload and any application is out of the scope of this paptowever, a large set of
experimental results points to some interesting empigealences.

—There exists a set of feasible valuesnofhat guarantee an acceptable precision of the
load tracker.

—The range of feasible values fardepends on the standard deviation of the resource
measures. For example, in the heavy workload case, EMA epaable fromn = 30 to
n = 120; in the light workload case EMA is acceptable frem= 10 ton = 30.

—The QWM-based load tracker has a limited range of feagibili

—The EMA-based and the SMA-based load trackers have a largestill limited range
of feasibility.

—The CS-based load trackers have a sufficgatisiononly for high values of.. How-
ever, when this load tracker reaches fitiequate precisioarea, it is feasible for a large
range ofn values thanks to its monotonic behavior. Although its higdeeuracy comes
at the price of an increased computational complexity,dbiss not prevent the applica-
tion of CS to run-time contexts.

—Once we are in thadequate precisioarea, all load trackers are feasible. Among them,
we can choose the best load tracker on the basis of the rewgrite of the second phase.
In other words, we can give more importance either to theaiesipeness or to the
accuracy depending on the nature and constraints of théapph of the load tracker
model.

5. LOAD CHANGE DETECTION

In this section, we consider th@ad change detectioproblem as an application of the sec-
ond step of the proposed two-phase strategy. Many run-tieme&gement decisions related
to Web-based services are activated after a notificatidratkmnificant load variation has
occurred in some system resource(s). Request re-direptiocess migration, access con-
trol and limitation are some examples of processes thatcdirated after the detection of a
significant and non-transient load change. Two propertiasacterize a good load change
detector: the rapidity in signaling a significant load changnd the ability to discern a
steady load change from a transient change. These two piexpare conflicting, because
a detector that is able to quickly signal load changes, rsmshagjher chances of mistaking
a transient load spike for a steady load change.

The typical load change detection strategy defines a thige$bioa resource load and
signals a load variation when the last observed value oweesdhat threshold. This model
has been widely adopted (just to cite few examples in [Rathanal 999, Pai et al. 1998,
Pandey and Barnes 1998]), and its oscillatory risks are kredlvn especially in highly
variable environments (e.g., vicious cycles in requedtibigion and replica placement
[Canali et al. 2004]). The risks of false alarms can be redibbgeusing multiple thresholds,
by signaling an alarm only when multiple observed values@wae the threshold, by
augmenting the observation period, and so on.

In the context of Web-based systems, the use of direct resoneasures is quite inap-
propriate because a load change detector would signalntanis variations between two
different states. Let us consider, as example, the stepsgseario and the light service
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demand in Figure 16(a) where the CPU utilization is measdugithg an observation pe-
riod of 500 seconds. Let us assume to use a threshold valaéget 0.4 to detect when

a change of state occurs. Any time the load change detectenads that the utilization
passes over or under the threshold, it signals this eveheton-time decision system that
activates or stops some process. This figure evidencesabéeprs that are related to the
load change detection when the load is described by resmegasures. The representative
load interval shows that there is only one significant loaahgfe at 300 seconds, but a load
change detector based on resource measures signals mengmthious changes of state.
For this reason, we think that it is preferable to consideraa Irepresentation such as that
obtained through a load tracker model. Figures 16(b-f) icanghe same example when
load trackers are based on EMA, SMA, QWM and CS models. A coispabetween
Figure 16(a) and any other figure where load change deteistioased on a load tracker
gives a qualitative motivation of the two-phase strateglie problem is to find the best
load tracker model for this second phase. As it correspanttgtioad tracker which lim-
its the number of false detections, we observe that therenar@ossible sources of false
detections.

—Reactivity error. The excess of oscillations of a load tracker around thestioiel
valuey causes many false alarms. This type of error is extremetleatiin the case of
resource measures (Figure 16(a)), but also in the case ghlymesponsive load change
detector such as G&(Figure 16(e)).

—Delay error. The excess of smoothing of a load tracker may cause a detigrialing a
variation of load conditions. This kind of errors is evidénthe case of smoothed load
change detectors, such as EpAFigure 16(b)), SMA, (Figure 16(c)) and QW
(Figure 16(d)). In our example, a load change detector baseithese load trackers
signals the load change occurring at 300 with a delay of about 40 seconds.

The load change detection is a typical problem where we paded tracker that solves
the trade-off between too much reactivity causing falsenadaand excessive smoothness
causing delays. In other terms, we do not want a too accur&e cesponsive load tracker,
but one having “adequate” precision. If there are multiplequate load trackers, the best
choice depends on a preference given to responsivenesswsaag.

For a quantitative evaluation of the delay and reactivitpes; let us consider the set of
observationsﬂ) = [Jn,Jn,,...] at which the representative load interval overcomes the
threshold valuey. For example, ify = 0.4, in the step user scenario and light service
demand (Figures 16) we have just one change, hﬁﬁqe: 1 andJ;, = 300. We
have two changesﬁ = [240, 360]) and four changesf&> = [120, 240, 360, 480]) in the
staircase and alternating user scenarios, respectivelg fArther example, if we consider
a thresholdy = 0.6 in the realistic user scenario and heavy service demandawe tvo

changesﬂ = [640,820]). The ability of a load change detector is to detect as soon as
possible a change of representative load over or under teshbldy. Errors are caused
when the detector signals an opposite load stateat is, when

(Tf <xAli>x)V(TE>x Al <X) (13)

A delay erroris the sum of wrong observations occurring between a chaihgepooxi-
mate confidence interval and the first right observationgaing the load change. This
value corresponds to the number of observations that aessauy to the load tracker to
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Load change detection based on different load érack

touch the threshold valug after a change of load over or under the threshold.

Once a detector has evidenced a load change, an error duactivity occurs every
time that an observation signals a change of state that hasally occurred. To compare
different detectors, we evaluate ttegative delay erroras the sum of all delay errors nor-
malized by the number of observatiohs We also evaluate thelative reactivity erroras
the sum of all relative errors normalized By. Tables IV and V report the relative delay
and reactivity errors for the step, staircase and altergatser scenarios and light service
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demand, and for the realistic user scenario and heavy setddmand, respectively. We
consider just the load trackers that in Section 4.3 have slfadequate” precision. Note
that QWM is inadequate for the alternating and staircase user soenar

Table IV. False detections (Light service demand)

Step user scenario | Staircase user scenario| Alternating user scenario
Delay | Reactivity | Delay Reactivity Delay Reactivity
Error Error Error Error Error Error
Measures 0 17.8% 0 13.8% 0 18.4%
EMA 10 0.2% 2.4% 2.0% 0.6% 3.6% 0.7%
EMA 39 2.2% 0.2% 3.3% 0 3.9% 0
[ SMA3 [ 35% | 0 | 58% | 0 | 68% 0
QWM 39 2.7% 0 4.2% 0 4.7% 0
QWMo 8.2% 0 X X X X
CSzo 0 0.3% 0.5% 1.9% 0.7% 3.8%
CSs0 0 0.2% 0.8% 1.5% 0.9% 3.3%

Table V. False detections (Heavy service demand)

Realistic user scenario
Delay Reactivity
Error Error
Measures 0 22.1%
EMA 60 2.0% 3.9%
EMA 99 3.6% 1.0%
EMA 129 9.0% 0
SMAs3g 1.3% 5.5%
SMAgo 4.4% 0.1%
SMAgg 8.2% 0
QWM go 6.8% 0
QWM 9g 9.2% 0
[ CSu0 [ 16% ] 18% |

When the load change detector is based on resource meatheesis a significant
number of oscillations around the threshold. In this casactivity errors are the only
contributions to false detections, because there are Byslel

The detectors based on EMA and SMA and QWM load trackers @éxhitbelay error
that increases as a function of the number of measuréshis error represents the main
contribution to false detections, because these linearti@akers seem smoothed enough
to avoid reactivity errors unless for too small setofalues. The opposite is true for load
change detectors based on CS load trackers: they are dffactery low delay errors, but
by high reactivity errors especially for femvalues. As shown by Figures 16(e) and 16(f),
these load trackers are characterized by a number of dsmikathat decrease for higher
values ofn. These oscillations are the main reason of false detections

An overall evaluation of the results in Table IV shows thatddight service demand the
best detectors are based on the non-lineay@8d on the linear EM4y functions. Both
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them are characterized by low percentages of false detsctibat are always lower than
5% even in the most severe alternating user scenario.

Similar considerations hold true also when we consider tbheerjittery heavy service
demand shown in Table V. This table reports only the loadk#ecwith “adequate” preci-
sion, as determined in Section 4.3. The main differencds mepect to the user scenarios
with a light service demand is the augmented number of ecaarsed by the higher disper-
sion of the resource measures. As a consequence, the letttdokers (EMAg, QWMgg
and CS4o) for supporting load change detection need a larger amduneasured values
than that required for the user scenarios with a light serdemand.

6. LOAD PREDICTION
6.1 Motivations

The possibility of forecasting the future load from a set asfpvalues is another key func-
tion for many run-time decision systems that manage Wekéssrvices. We defirlead

predictor a functionLPk(Z(ti)) : R? — R that takes as its input the set @fvalues

L_;(ti) = (l;—q, - .., ;) attimet;, and returns a real number corresponding to the predicted
load value at time; , ., wherek > 0.

There is an important difference between our load predijgtoposal and the state of
the art. In previous models, the vectﬁ;(ti) consists of resource measures, and the load
predictors aim to forecast a future resource measure attime Following the two-phase
strategy, we propose a load predictor that takes as its mpet of load tracker values and
returns a future load tracker value. In a context where theurce measures obtained from
the load monitors of the Web-based servers are extremeilgblay there are two reasons
that justify our choice.

—The behavior of monitored resource loads appears extyeraehble, to the extent that
a prediction of a future resource measure value is uselesaliimg accurate decisions.

—Many proposed load predictors working on real measureshmaynsuitable to support
a run-time decision system because of their excessive ctatiqmal complexity.

We confirm the first motivation through a study of the autorelation function of the
CPU utilization measures. The accuracy of a predictionréttyo depends on the corre-
lation between consecutive resource measures. When thearrelation functions of the
set of analyzed data fall rapidly, it is difficult or imposkitio have an accurate predic-
tion [Tran and Reed 2004, Baryshnikov et al. 2005]. In thesmarios, even an attractive
approach for statistical modeling and forecasting of caxpémporal series, such as the
Box-Jenkins's Auto-regressive Integrated Moving AverégRIMA) [Box et al. 1994],
tends to provide models that do not adapt well to highly \d#ei@hanges in the workloads.

For example, in Figure 17(a) we show the auto-correlatioction (ACF) of the CPU
utilization for the three stressful user scenarios and bghvice demand for an observation
period of 600 seconds, while in Figure 17(b) we report the AGFthe realistic user
scenario and heavy service demand for an observation pefid8800 seconds. A point
(k,y) in this graph represents the correlation valubetween the resource measute
at timet¢; and the measure;,;, at timet;;,. A positive auto-correlation value denotes
a correlation between the two resource measures; congquka resource measure at
time¢; may be used to predict the load value at tithg,. On the other hand, a low value
of the auto-correlation function indicates the imposgipibf an accurate prediction. A
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visual inspection of these figures leads us to conclude lleatetsource measures have low
or null correlation for any workload, and in particular féretrealistic user scenario and
heavy service demand shown in Figure 17(b).

We now move on to evaluate the auto-correlation functionsmwénload tracker model is
used as the basis for prediction. For each workload, we at@athe ACF of some of load
trackers that in Section 4.3 have shown “adequate” pratidid/1A;, and C3, for light
service demand (Figure 18); EMAand CSy for heavy service demand (Figure 19).
In these cases, the auto-correlation seems higher thaghbeain by resource measures.
However, for a more precise analysis, in Table VI we repomeaignificant results as a
function of the prediction windowk. From this table, we can see that the auto-correlation
decreases for higher valuesiaf However, the degree of the decrease differs for different
workloads and considered values. Resource measures atg pooelated for any value
of k when we consider the workload characterized by a realistit scenario and heavy
service demand, and even for the other workload the ACF teendiscrease below 0.5 soon
afterk = 10. On the other hand, we can appreciate that the ACFs of the twsidered
load trackers decreases much less rapidly. For any worktbad ACF is around or well
above 0.7 untik = 30. This result is important because, when consecutive vales a
high correlation degree, it is more likely to achieve an aatiload prediction. We limit
the prediction window of interest for our studies to an imé¢iof 30 seconds because, for
an extremely dynamic system, larger prediction windowddatead to a wrong view of
the load conditions.

Table VI. _Auto-correlation values
Staircase user scenario and light service demand

k=10 | k=30 | k=60 | k=100
Measures | 0.59 | 0.45 | 0.32 0.22
EMA 39 094 | 0.76 | 0.51 0.18
CSso 0.90 | 0.68 | 0.47 0.21

Realistic user scenario and heavy service demand

k=10 | k=30 | k=60 | k=100
Measures | 0.30 | 0.25 | 0.18 0.18
EMA 9o 096 | 085 | 0.71 0.61
CSz40 0.96 | 0.83 | 0.63 0.48

6.2 Load prediction function

Thanks to the two-phase strategy, we can expect that everesiimear predictors may be
sufficient to forecast the future load of a resource. Indpesljious studies [Lingyun et al.
2003, Sang and Li 2000, Baryshnikov et al. 2005] demonsthatesimple linear models,
such as the auto-regressive model or the linear interpolatire adequate for prediction
when the correlation of consecutive resource measureglis Ror example, in [Dinda and
O’Hallaron 2000] it is shown that the UNIX load average carabeurately predicted with
low computational cost through an auto-regressive moggltdkes into account the last
16 measures4AR(16)). In this paper, we consider a set of load predictb}?k(L_;(ti))
that are based on the linear regression of two load trackaesa Each predictor in this
class is characterized by two values:

—the predicted windowk, that represents the size of the prediction interval;
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—the past time window, whereq is the size of the load tracker vectﬁ;(ti), that is the
distance between the first and the last considered loadaraekue.

This linear load predictor is actually a class of load praatic that are based on the
linear regression of two load tracker values. Each prediotthis class is characterized
by the values of the past windoyvand of the prediction window. Let us take two load
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—

tracker values,_, andl;. The load predictol Py (L,(t;)) of the load tracker is the line
that intersects the two points;_,,1;_,) and(t;, ;) and returng; ;, that is the predicted
value of the load trackes, . attimet,, :

LP(Lg(t:)) = m* (tisr) + licg —m# (fig) (14)

liflifq

wherem = =——=2. We should point out that this class of functions is just annggie
of application o% the two-phase strategy. Indeed, any dthear and non-linear predictor
could be integrated into the proposed framework.

6.3 Evaluation of the load predictors

In the context of the two-phase framework, the strength afealiptor depends on its ac-
curacy to evaluate the future values of the load tracker.cbmemon measure of the accu-
racy of a predictor is based on the evaluation of the relagiver between a load tracker
value and the corresponding predicted vajuek. A load predictor characterized by a
low prediction error is able to evaluate future load track&ues accurately. Let us con-
sider a load trackeET(ST,;(ti)) and a load predict@Pk(f{,(ti)) that, at timet;, forecasts
LT(ST,;,(tiH,)) wherek > 0. We define thgrediction errore; ., attimet, as the relative
error between the actual load tracker valug and the predicted valug, :

Livk — 1
i = |+’¢17+k| (15)
itk

Small values of;_;, indicate a good accordance between, andi, . We evaluate
the accuracy of the load predictors defined in Equation 14fas@ion of & (prediction
window) andq (past window, when they are applied to some of the load trackers proposed
in Section 3.

In Tables VIl and VIII we report the sum of the relative preiia errors normalized by
the number of predictions carried out during the experinf@nthe staircase user scenario
and light service demand, and for the realistic user scersard heavy service demand,
respectively.

Table VII. Prediction errors as a function of the past windeslue (staircase user scenario and light service
demand)

Prediction window k£ = 10
g=5 | g=10 g=20

EMA 3¢ 0.12 | 0.14 0.18
CSs0 0.14 | 0.15 0.21

Prediction window k£ = 30

g=10 | g=15 g=20

EMA 3¢ 0.25 | 0.15 0.18
CSs0 0.46 | 0.36 0.38

The first important result coming from all our experimentshiat the load predictors
based on a linear load tracker such as EMA performs alwaysrtiean the load predictors
based on a non-linear load tracker, such as CS. This reshiaracterized by a total relative
error always higher than 0.3 whén= 30. This depends on two factors: a linear load
tracker is characterized by a reduced number of oscillative are using a linear function
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Table VIII. Prediction errors as a function of the past wiwdealue (realistic user scenario and heavy service
demand)

Predicition window k£ = 10
q=5 | g=10 q=20
EMA 9o 0.11 | 0.14 0.18
CSz40 0.19 | 0.23 0.26

Prediction window k£ = 30
g=10 | g=15 =20
EMA 9o 0.22 | 0.19 0.25
CSz40 0.35 | 0.32 0.40

as a load predictor. Analyses for different load predicfiomctions are out of the scope of
this paper.

Another important result is that for short prediction wimdg such ag = 10 seconds,
the results are rather stable for any seygdast values. On the other hand, for further
predictions (e.g.k = 30), the choice of the right values faris more important. An
empirical observation coming from Table VII and from all ethresults about different
scenarios is that for adequate predictions it is convengense a set of past values in the
intervalk /2 < q < k. The reason for this is that with too feywalues, the prediction line
takes into account only the very recent trend of the loackeradience, if the load tracker
is not smoothed enough, the prediction error tends to augn@n the other hand, too
manygq values tend to give excessive importance to the past trandghis causes another
type of prediction error.

In the graphs in Figure 20 we give a visual interpretatiorheflbad prediction behavior
achieved by EMA, and CS4o. The parameter of these figures are 5 for the prediction
window of £k = 10, andq = 15 for a prediction window o = 30 seconds. We show
the load tracker values and the predicted values for théstiealiser scenario and heavy
service demand. All predicted curves follow the load trasKairly well even fork = 30
seconds. Moreover, these figures confirm the better reddtpredictor based on an EMA
load tracker with respect to that based on a CS load tracker.

7. CASE STUDIES

In this section we validate the proposed two-phase straig@pplying it to support run-
time managementdecisions in two distributed environm@iite considered systems share
the common characteristics that their resource measutaset by monitors present large
oscillations. In Section 7.1, we support a threshold-bagbdission controller and a re-
guest dispatcher applied to a Web cluster system. In Setiywe consider a completely
different system to demonstrate the flexibility of the pregd framework and we support a
dynamic load balancer applied to a locally distributed Netaintrusion Detection System
(NIDS).

7.1 Admission control and dispatching for a Web cluster system

Two main problems affect the performance of an e-commefcasimucture [Elnikety et al.
2004]: overload risks when the volume of requests tempgraxceed the capacity of the
system, and slow response time leading to lowered usageitefas consequent reduced
revenues. To mitigate these two problems, the softwareastrincture can be enriched
with an admission controller that accepts new client retsuesly if the system is able to
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Fig. 20. Load predictors for a workload characterized byisgauser scenario and heavy
service demand.

process them with some guaranteed performance level gEinit al. 2004, Cherkasova
and Phaal 1999, Chen and Heidemann 2005]. Many decisiong aboepting or not a

client request are based on punctual load information ofesoritical component of the

infrastructure: if the observed resource measure lieswbal@redefined threshold, the
system accepts the request; otherwise, the request iseltopihis approach may lead to
frequent and unnecessary activations of the admissiorralanechanism. Even worse,
highly variable and burst Web patterns may make it very diffito activate the admission
control mechanism on time.

In this section, we show how the use of the proposed two-pbtaategy with a load
tracker and a load prediction can mitigate the aforemeatiggroblems and improve the
overall performance of the system.

We refer to a locally distributed, multi-tier system whosehgtecture is described in
Figure 21. The system is based on the implementation pexsémtCain et al. 2001].
The application servers are deployed through the Tomcan§ab 2005] servlet container,
and are connected to MySQL [MySQL 2005] database serversuidrexperiments, we
exercise the system through real traces; each experimgatdharation of 30 minutes. The
Web switch node, running a modified version of the Apache Viéebes [Apache 1999], is
enriched with a threshold-based admission control meshaand a weighted round-robin
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Fig. 21. Architecture of the multi-tier Web cluster

dispatcher, where weights are based on resource measuoesl @redicted values. At the
arrival of an HTTP request, the admission controller dexigbether to serve or to refuse
it, by using direct or filtered load monitoring informatiooraing from each server of the
cluster. The admission threshold is set to 95% of the maxirpumeessing capacity of
the back-end nodes which are the most critical componentseasystem. If a request is
admitted into the system, the dispatcher forwards it to thadhe-based HTTP server if
it is for a static object, otherwise through the weightednawuobin algorithm it chooses a
suitable application server if the request is for a dynatlyiggenerated resource.

We consider three instances of the admission controllercdiide dispatcher: one is
based on resource measures, the others are based on thhasefmmework where the
load tracker uses the EM# or the CS49 models, and the load prediction is based on
the model of Section 6 fo = 5 andk = 10. The activities of these three instances
of the admission control mechanism in terms of refused retgure shown in Figure 22.
From this figure, we can observe that the use of the two-phasegy tends to reduce
the number of unnecessary activations of the admissiomaanechanism, which are due
to transient load spikes, and consequently allows the sy&taeject a minor number of
requests. However, there is a visual evidence that the EMAGH load trackers have
different effects that we motivate below. Table IX summesizhe quantitative results
of this case study. The first important result is that the phase framework does not
penalize the overall performance of the system. Even iféepts a much larger quantity
of requests, the impact on the 90-percentile of the resptimsss not perceived by a user.
Moreover, the use of the two-phase strategy reduces somedgassary) activations of the
refusal mechanism, and limits the number of refusals. Thestive effects are due to the
combined benefits of the dispatching algorithm and of theission control mechanism
based on predicted values.

From Figure 22 and Table 1X, we can also conclude that theigtied based on an
EMA load tracker supports admission control algorithms enefficiently than the CS-
based alternative. This is in complete accordance with ¢éselts shown in Section 6,
where the prediction errors affecting the £Spredictor were significantly higher than
those characterizing the EMA predictor.
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Fig. 22. Number of refused requests during the entire exye.

Table IX. Evaluation of the two admission control mecharsism

90-percentile of the Percentage of | Activations of the

Web page response time| refused requests | admission refusal
Resource measures 3.08s 31% 140
Two-phase framework (EMAgo and prediction) 3.71s 10% 35
Two-phase framework (CS40 and prediction) 3.26s 17.34% 72

7.2 Locally distributed Network Intrusion Detection System

In an Internet scenario characterized by a continuous grefvhetwork bandwidth and
traffic, the network appliances that have to monitor andyameahbll flowing packets are
reaching their limits. These issues are critical espgcfat a Network Intrusion Detection
Systen(NIDS) that looks for evidences of illicit activities by timg all connections and
examining every packet flowing through the monitored links.

Here, we consider a locally distributed NIDS (Figure 23)haritultiple sensors that re-
ceive traffic slices by a centralized dispatcher as in [@olaj and Marchetti 2006]. The
overall NIDS performance is improved if the number of pasketching each traffic an-
alyzer does not overcome its capacity and the load amongdfffec tanalyzers is well
balanced. To this purpose, the considered locally digigbNIDS is enriched by a load
balancer that dynamically re-distributes traffic sliceamthe traffic analyzers. This bal-
ancer is activated when the load of a traffic analyzer reaahgigen threshold. In such
a case, the load balancer re-distributes traffic slicesherdess loaded traffic analyzers
in a round-robin way, until the load on the alarmed analya#ls foelow the threshold.
The distributed NIDS are exercised through the IDEVAL taffumps that are considered
standard workloads for attacks [Lippmann et al. 2000].

The considered system shares an important charactetfistiteonet-based servers, that
is, a marked oscillatory behavior of the samples measureédh component that com-
plicates load balancing decisions. As examples, we repoRigure 24 the load on a
distributed NIDS consisting of three traffic analyzers. Tded is measured as a network
throughput (in Mbps) that is shown to be the best load indicathe horizontal line at
12 Mbps denotes the threshold for the activation of the dyodmad balancer. The small
vertical lines on top of each figure indicate the activatiba tbad re-distribution process
on that traffic analyzer. The consequences of taking baigndéecisions on the basis of
periodic samples of the traffic throughput are clear: thelhraaism for load re-distribution
is activated too frequently (63 times during the experintasting for 1200 seconds), but
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Fig. 23. Architecture of the distributed NIDS

the load on the traffic analyzers is not balanced at all.

We apply the two-phase framework to the same NIDS systemarticplar, we integrate
the load balancer with a load change detection model bas&#/#nhand EMA of the last
measures of the network throughput. Figure 25 and Figuren@® she load balancing
activities on the three traffic analyzers when the load ckateector is based on SMA
and EMAy, respectively. A cross comparison among the Figures 24n8328 gives a
first immediate result. Thanks to the two-phase framewdrl,mechanism for load re-
distribution is activated few times and especially in thstfpart of the experiment. After
an initial transient phase, where the load balancer has-tbistebute traffic among the
traffic analyzers, then the load remains more evenly digith below the threshold and
the number of load balancer activations decreases sigmifjca

The reduction of unnecessary activations of the load reHoligor is an important result,
but we are also interested to know which mechanism impraass balancing of the three
traffic analyzers. To this purpose, we evaluate the Coefilicé Variation of the load on
each traffic analyzer for the load change detector modeksdoas EMAyy, SMA;(, and
also resource samples for further comparison.

Table X summarizes the results of this case study: the lokshbiag systems that use
the two-phase framework both reduce re-distribution &@ and improve the quality
of load balancing: the 90-percentile of the Coefficient ofidton of the load change
detector based on EM is almost six time smaller than that based on resource messur
These results give a further confirmation that most of théiséributions carried out during
the experiment based on resource measures were not onbssideit had also a negative
impact on load balancing.

8. RELATED WORK

Detecting significant and permanent load changes of a syssource, and predicting its
future load behavior are at the basis of most run-time datssior the management of
Web distributed systems. Some examples of applicatiomsdedoad balancers [Pai et al.
1998, Castro et al. 1999, Bryhni 2000, Andreolini et al. 200Bzenmacher 2000, Ferrari
and Zhou 1987, Gautama and van Gemund 2006, Bahi et al. 20@&]pad and admis-
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Fig. 24. Load on NIDS traffic analyzers when load balancidmised on resource measures
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Fig. 25. Load on NIDS traffic analyzers when load balancingdsed on a two-phase
framework (SMA load tracker)
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Fig. 26. Load on NIDS traffic analyzers when load balancingdsed on a two-phase
framework (EMAy, load tracker)

Table X. Evaluation of load balancing mechanisms

90-percentile of the Total number of
Coefficient of Variation | load re-distributions
Activation based on samples 0.58 63
Activation based on SMA 0.20 12
Activation based on EMA3o 0.10 13

sion controllers [Pai et al. 1998, Pandey and Barnes 1998r&&t al. 2004, Abdelzaher
et al. 2002, Chen and Mohapatra 2003], request routing nmésrina and replica placement
algorithms [Rabinovich et al. 2003, Karbhari et al. 2002rF and Van Steen 2001, Siva-
subramanian et al. 2004], distributed resource monitoabifovich et al. 2006, Wolski

et al. 1999]. The common method to represent resource ldaés/or run-time man-

agement systems is based on the periodic collection of ssnfidm server monitors and
on the direct use of these values. Some low-pass filteringfark throughput samples
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has been proposed in [Sang and Li 2000], but the large majofriproposals detect load
changes and predict future values on the basis of some dmscthat work directly on
resource measures. Even the studies that are based on al teatretical approach to
prevent overload or to provide guaranteed levels of perémrce in Web systems [Kamra
et al. 2004, Abdelzaher et al. 2002] refer to direct resoareasures (e.g., CPU utilization,
average Web object response time) as feedback signals.

The problem with these approaches is that most modern Weddlsystems are charac-
terized by complex hardware/software architectures antudtyly variable workloads that
cause instability of system resource measures. Hencetimealmanagement decisions
based on the direct use of these measures may lead to risky mateompletely wrong
actions. Our preliminary experimental results motivatepghoposal for a two-phase strat-
egy that first aims to represent the load trend of a resousra€ty,load tracke), and then
uses this load representation as the inputldad change detectorandload predictors
that are at the basis of many run-time decision systems. Walildea of the two-phase
approach applied to the load prediction problem has begroged by the authors in [An-
dreolini and Casolari 2006]. However, this is the first papat proposes a thorough study
and a general two-phase methodology to support run-timigidas in the context of com-
plex architectures and heavy-tailed workloads charateyimodern Web-based services.
Moreover, in this paper we implement and integrate the diveiethodology into a frame-
work that has been demonstrated to work well for quite défifedistributed contexts. The
architecture of many sophisticated load monitoring striateand management tasks, and
the characteristics of heavy-tailed workloads are oftencimmplex for an analytical rep-
resentation [Luo and Marin 2005, Fishman and Adan 2006].ikerdur paper based on
a view of real systems, many previous studies have beentedda simulation models
of simplified Web-based architectures [Abdelzaher et 022Pai et al. 1998, Cherkasova
and Phaal 2002, Stankovic 1984, Cardellini et al. 2000héuigh the simulation of a Web-
based system is a challenging task by itself [Floyd and Ra2801] that has characterized
many research efforts of the same authors, we have to admitehl systems open novel
interesting and challenging issues.

There are many studies on the characterization of resooacks) albeit related to sys-
tems that are subject to quite different workload modell waspect to those considered in
this paper. Hence, many of the previous results cannot Heedlirectly to the Web-based
systems considered here. For example, the authors in [Mitaeher 2000] evaluate the
effects of different load representations on job load batemnthrough a simulation model
that assumes a Poisson job inter-arrival process. A similatysis concerning UNIX sys-
tem is carried out in [Ferrari and Zhou 1987]. Dinda et al.nd@a and O’Hallaron 2000]
investigate the predictability of the CPU load average inNiXJmachine subject to CPU
bound jobs. The adaptive disk I/O prefetcher proposed iarfland Reed 2004] is vali-
dated through realistic disk I/O inter-arrival patternfereng to scientific applications. On
the other hand, the workload features considered in alethemeer papers differ substan-
tially from the load models characterizing Web-based gsrileat show high variability,
bursty patterns and heavy tails even at different time scale

Some more recent studies refer to Web-based workloadsn blaeicontext of specific
applications or tasks, that are mainly oriented to admissantrol mechanisms. For ex-
ample, Cherkasova et al. [Cherkasova and Phaal 2002] telideir session-based admis-
sion controller for Web servers through the SPECWeb96 waik[SpecWEB96 1996],
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that nowadays is considered fairly obsolete [lyer 2001¢8eB05 2005] with respect to
the TPC-W workload [TPC-W 2004] that is becoming the dedatandard benchmark
for the analysis of Web-based systems for dynamic serviéesinteresting example of
application is in [Kamra et al. 2004], where the authors pegpa self-tuning admission
controller for multi-tier Web sites. However, no previodady is oriented to propose a
general methodology for load tracking, load change dete@nd load prediction.

The focus on run-time operations and consequent congtrigiminother key difference
of this paper with respect to previous literature. The mostmmon method for investigat-
ing the efficacy of load representation for run-time managetnasks is off-line analysis
of samples collected from access or resource usage logg @ahLi 2000, Dinda and
O’Hallaron 2000, Baryshnikov et al. 2005, Lingyun et al. 30CGhoi et al. 2003, Kelly
2005]. In this paper, the need for run-time decision sugpiorta highly variable Web
context has led to evaluate the feasibility of simple ye¢etif/e load models and predic-
tors, and the possibility of integrating them in an on-lin@nfiework. All the considered
models must be characterized by low computational comiglexin our paper, we con-
sider linear and non-linear models, that may be used as d iinditator in other contexts
(see for example the cubic spline function in [Eubank andabiltl 999, Wolber and Alfy
1999, Poirier 1973]). The distributed resource monitotechNetwork Weather Service
(NWS) [Wolski et al. 1999] collects resource measures pically, and forecasts future
sample values by means of linear averages, median estinoatesto-regressions. How-
ever, the NWS predictions are just one-step-ahead and lated¢o measured values; on
the other hand, the proposed framework is able to generstiegkahead predictions of the
load trend values.

Other linear models are widely adopted for load represiemaind prediction. For ex-
ample, in [Baryshnikov et al. 2005] the authors demonstrate a simple linear extrapo-
lation can predict an hot spot with good approximation. Tiheugation results presented
in [Cherkasova and Phaal 2002] show that the exponentiaimgawverage of the CPU
utilization can be used as a valid indicator for the Web sela@d. This hypothesis is in
accordance with some of the results of this paper, we canrootifrough real experiments
applied to different distributed contexts. On the otherchame can conclude that linear
time series models, that are often adopted to predict fuaae values [Tran and Reed
2004, Lingyun et al. 2003, Sang and Li 2000], are not realltable to support run-time
decisions for Web-based systems. The problem is that, ynigriable contexts, an auto-
regressive model such as ARIMA requires a continuous upglafi the parameters that is
unsuitable to support most run-time management decisions.

9. CONCLUSIONS

In this paper, we address two important issues that are dbahis of several run-time
decisions management in Web-based systems: detectinggarmient changes of the load
conditions of a system resource, and predicting future \@dwaes of a resource.

Existing run-time management systems evaluate load dondibf system resources
and, on this basis, decide whether and which action(s)ritjrtant to carry out. We have
shown that in the context of Web-based systems charaatidsizbighly variable workload
and complex hardware/software architectures, it is ingypate to take decisions just on
the basis of system resource measures. The values obtaimedoad monitors of Web-
based servers offer an instantaneous view of the load ¢ongliof a resource and they
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are of little help for understanding the real load trends fordanticipating future load
conditions.

For this reason, we propose a two-phase strategy that finst @i get a representative
view of the load trend from resource measures through liaedrnon-linear models that
are computationally compatible to run-time constrainthef, it uses the estimated load
trends for solving decision problems, such as the load ahdetection and the load pre-
diction that are considered in this paper.

We have integrated the two-phase methodology into a framiethat is suitable to sup-
port different decision systems in real context. In thisqeragve have experimented the
proposed framework in a multi-tier Web system, in a Web elusind in a distributed
NIDS for job dispatching, load balancing and admission c@gurposes and for a large
set of representative workload models. In all contexts atid@eved results are quite en-
couraging. For this reason, we think that the proposed thase strategy can be extended
to other problems, such as long term prediction and trenlysisaand to many other ap-
plication contests that require precise and run-time éw@tss such as load sharing, load
balancing and request redirection even at a geographiala. 9é/eb systems based on au-
tonomic properties and GRID infrastructures are otherastng areas where the proposed
framework and models could find immediate application.
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