
25/04/2024 09:19

Models and framework for supporting run-time decisions in Web-based systems / Andreolini, Mauro;
Casolari, Sara; Colajanni, Michele. - In: ACM TRANSACTIONS ON THE WEB. - ISSN 1559-1131. - STAMPA. -
2:(2008), pp. 1-43. [10.1145/1377488.1377491]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:

Models and framework for supporting run-time
decisions in Web-based systems

MAURO ANDREOLINI, SARA CASOLARI
and
MICHELE COLAJANNI
University of Modena and Reggio Emilia

Efficient management of distributed Web-based systems requires several mechanisms that de-

cide on request dispatching, load balance, admission control, request redirection. The algorithms

behind these mechanisms typically take fast decisions on the basis of the load conditions of the

system resources. The architecture complexity and workloads characterizing most Web-based ser-

vices make it extremely difficult to deduce a representative view of a resource load from collected

measures that show extreme variability even at different time scales. Hence, any decision based

on instantaneous or average views of the system load may lead to useless or even wrong actions.

As an alternative, we propose a two-phase strategy that first aims to obtain a representative view

of the load trend from measured system values, and then applies this representation to support

run-time decision systems. We consider two classical problems behind decisions: how to detect

significant and non-transient load changes of a system resource and how to predict its future load

behavior. The two-phase strategy is based on stochastic functions that are characterized by a

computational complexity that is compatible with run-time decisions. We describe, test and tune

the two-phase strategy by considering, as a first example, a multi-tier Web-based system that is

subject to different classes of realistic and synthetic workloads. Also, we integrate the proposed

strategy into a framework that we validate by applying it to support run-time decision in a cluster

Web system and in a locally distributed Network Intrusion Detection System.

Categories and Subject Descriptors: C.2.4 [Computer Communication Networks]: Distributed Systems; C.2.5
[Computer Communication Networks]: Local and Wide-Area Networks—Internet; C.4 [Performance of Sys-
tems]: Design studies,Measurement techniques,Performance attributes,Modeling techniques

General Terms: Algorithms, Design, Measurement, Performance

Additional Key Words and Phrases: World Wide Web, Load prediction, Load change detection,

Distributed systems, Load representation

1. INTRODUCTION

The majority of critical Web-based services are supported by distributed infrastructures that
are expected to satisfy scalability and availability requirements, and to avoid performance
degradation and system overload. Managing these systems requires several run-time deci-

Author’s address: M. Andreolini, S. Casolari and M. Colajanni, Dept. of Information Engineering, University of
Modena and Reggio Emilia, Via Vignolese 905, Modena, I-41100, Italy, e-mail:{mauro.andreolini, sara.casolari,
colajanni}@unimo.it
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · Mauro Andreolini et al.

sions that are oriented towards load balancing and load sharing [Cardellini et al. 2002, Pai
et al. 1998,Andreolini et al. 2003], overload and admissioncontrol [Cherkasova and Phaal
2002, Mitzenmacher 2000, Ferrari and Zhou 1987, Menascé and Kephart 2007, Chen and
Mohapatra 2002], job dispatching and redirection even at a geographical scale [Cardellini
et al. 2003]. The introduction of self-adaptive systems andautonomic computing [Kephart
and Chess 2003, Ganek and Corbi 2003, Wildstrom et al. 2005, Pradhan et al. 2002] will
further increase the necessity for management algorithms that take important actions on
the basis of present and future load conditions of the systemresources.

Most available algorithms and mechanisms for run-time decisions evaluate the load con-
ditions through the periodic sampling ofresource load measuresobtained from monitors.
In different contexts [Baryshnikov et al. 2005,Chen and Heidemann 2005,Abdelzaher et al.
2002], these measures are sufficient to decide about presentand future system conditions,
whether a system resource is offloading, overloading or stabilizing, and whether it is nec-
essary to activate a management process. On the other hand, these measures are of little
value for the systems and workloads that characterize the modern Web and that we con-
sider in this paper. We can confirm that the resource measuresobtained from load monitors
of Internet-based servers are extremely variable even at different time scales, and tend to
become obsolete rather quickly [Dahlin 2000]. Hence, in thetypical heavy-tailed context
characterizing the Web workload, a decision system workingdirectly on measures is of
little value, because they give only a limited and instantaneous view of the resource status
and do not capture the behavioral trend.

As an alternative, we propose that the decision systems operate on a continuous “rep-
resentation” of the load behavior of the system resources. This idea leads to atwo-phase
strategywhere we separate the problem of achieving a representativeview of the resource
load conditions from that of using this representation for decision purposes. In this paper,
we address the main issues related to both phases.

—We first propose and compare different linear and non-linear functions, calledload track-
ers, for the generation of a representative resource load. A load tracker obtains continu-
ous resource measures from the system monitors, evaluates aload representation of one
or multiple resources, and passes this representation on tothe functions in the second
phase.

—In the second phase, we utilize the generated load representation for addressing two im-
portant issues that are at the basis of several run-time management decisions: detecting
non-transient changes of the load conditions of a system resource (load change detec-
tion) and predicting future load conditions of a resource (load prediction). An initial
evaluation of the two-phase approach for load prediction was presented by the authors
in [Andreolini and Casolari 2006]. In this paper, we extend that idea and propose a
general two-phase methodology to support run-time decisions in Web-based contexts.

Unlike the majority of papers focusing on user behavior and characterization, we exam-
ine the effects of a heavy-tailed workload from a system point of view. This decision allows
us to propose an innovative two-phase strategy that has a general validity because it is inde-
pendent of the user behavior and can be extended to many different contexts. For example,
previous results [Dinda and O’Hallaron 2000, Chen and Heidemann 2005, Baryshnikov
et al. 2005, Tran and Reed 2004] suggest the application of linear prediction models di-
rectly to resource measures, but this is unsuitable for the workload and system contexts we
are considering in this paper. However, we show that thanks to the two-phase strategy and

ACM Journal Name, Vol. V, No. N, Month 20YY.

Models and framework for supporting run-time decisions in Web-based systems · 3

the use of adequate load trackers, even a simple linear-based prediction model is able to
achieve good predictions.

We compare different linear and non-linear models for load trackers that are capable of
supporting different decision systems and are characterized by a computational complexity
that is compatible with the temporal constraints of run-time decisions. All of our results
show that the choice of an “adequate” load tracker is a compromise between the rapidity in
signaling a change in the load conditions and the accuracy needed to follow non-transient
load changes, but the choice of the “best” load tracker depends on the objectives and con-
straints of the application in the second phase.

We validate the proposed two-phase strategy through different real systems. We initially
test and tune the models in the context of a multi-tier Web-based architecture. Then, in
order to show that the proposed methodology is not tied to a specific context, we validate
the proposed framework with other applications and systemsoperating in realistic contexts:
an admission control and request dispatching mechanism fora cluster supporting Web-
based applications and a dynamic load balancer for a locallydistributed Network Intrusion
Detection System.

The paper is structured as follows. Section 2 motivates our work by showing the extreme
variability of resource measures at different time scales and for different Web-related work-
load scenarios; in this section we also present the two-phase strategy. Section 3 defines the
linear and non-linear models that we use as bases for the loadtrackers in the first step of
the two-phase strategy. Section 4 evaluates the computational costs, the accuracy and the
responsiveness of the considered load trackers. Sections 5and 6 describe and evaluate two
applications of the second phase that is, the load change detection and the load prediction
problems. Section 7 applies the main results of this paper toa cluster Web-based system
and to a locally distributed Network Intrusion Detection System. Section 8 compares the
contribution of this paper with respect to the state of the art. Section 9 concludes the paper
with some final remarks.

2. MOTIVATION AND PROPOSAL

We have carried out a very large set of experiments for analyzing the typical behavior
of commonly measured resources. We report on a subset of the results that refer to a
specific architecture for eight classes of workload. The reader should be aware that the
main observations and conclusions about these results are representative of the typical
behavior of the resources of a Web-based system that is subject to realistic workload.

2.1 Workload models

As a test-bed example, we consider a dynamic Web-based system referring to a multi-tier
logical architecture (Figure 1) that follows the implementation presented in [Cain et al.
2001].

The first node of the architecture executes the HTTP server and the application server,
deployed through the Tomcat [Tomcat 2005] servlet container; the second node runs the
MySQL [MySQL 2005] database server. We consider TPC-W as theworkload model
[TPC-W 2004] because it is becoming thede factostandard for the performance evalua-
tion of Web-based systems providing dynamically generatedcontents (e.g., [Dodge et al.
2001,Cecchet et al. 2003,Cain et al. 2001)]. Client requests are generated through a set of
emulated browsers, where each browser is implemented as a Java thread reproducing an
entire user session with the Web site. We instrument the TPC-W workload generator to em-

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Mauro Andreolini et al.

Fig. 1. Architecture of the considered multi-tier Web-based system

ulate alight and aheavyservice demand that, for the same number of emulated browsers,
have low and high impact on system resources, respectively.Table I shows the parameters
of the access frequencies of the TPC-W services for these workload models.

Table I. Service access frequencies (TPC-W workload) for light and heavy service demand models.
Home New Best Prod. Search Shop. Cust. Buy Order Admin.

Prod. Sellers Det. Cart Reg.

Light 55% 14% 14% 9% 7% 0.15% 0.05% 0.41% 0.2% 0.19%
Heavy 29% 11% 11% 21% 23% 2% 0.82% 1.44% 0.55% 0.19%

For both service demand models, we implement fouruser scenariosby varying the
number of emulated browsers over time. The representative user scenarios for the heavy
workload model are shown in Figure 2. (Analogous patterns with different numbers of
emulated browsers are created for the light service demand model.)

—Step scenario. The scenario in Figure 2(a) describes a sudden load increment from
a relatively unloaded to a more loaded system[Satyanarayanan et al. 1997]. For the
heavy(light) service demand, the population is kept at 120 (300) emulated browsers
for 5 minutes, then it is suddenly increased to 200 (700) emulated browsers for other 5
minutes.

—Staircase scenario.The scenario in Figure 2(b) represents a gradual increment of the
population up to 180 (600) emulated browsers for theheavy(light) service demand. The
increase is followed by a similar gradual decrease.

—Alternating scenario. The scenario in Figure 2(c) describes an alternating increase and
decrease of the load between 140 (400) and 180 (600) emulatedbrowsers forheavy
(light) service demand every two minutes.

—Realistic scenario.The scenario in Figure 2(d) reproduces a realistic user pattern (e.g.,
derived from a subset of data in [Baryshnikov et al. 2005]) where load changes are char-
acterized by a continuous and gradual increase or decrease of the number of emulated
browsers.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Models and framework for supporting run-time decisions in Web-based systems · 5

The eight workload models are representative of aggressiveWeb workloads character-
ized by heavy-tailed distributions [Barford and Crovella 1998, Crovella et al. 1998, Chal-
lenger et al. 2004,Arlitt et al. 2001] and by flash crowds [Jung et al. 2002]. The motivation
behind this choice of models is to demonstrate that the two-phase methodology works even
in critical scenarios, although the toughest goal of predicting hot spot events remains an
open issue beyond the scope of this paper.

(a) Step scenario (b) Staircase scenario

(c) Alternating scenario (d) Realistic scenario

Fig. 2. User scenarios (the number of emulated browsers refers to the heavy service de-
mand)

2.2 Measures and analysis of Web system resources

There are many critical resources in any system supporting Web-based services. The
resource load or status can be measured through several system monitors (e.g. sysstat,
procps, rrdtool) that typically yield instantaneous or average values over short intervals at
regular time intervals. We have analyzed the behavior of commonly measured resources
that refer by default to the last interval of one second: CPU utilization, disk and network
throughput (MB/sec), number of open sockets, number of openfiles, process load, percent-
age of utilized memory, each of them considered for different sample periods, workload
classes and scenarios. Understanding what is the most critical resource in a complex sys-
tem is itself a problem that is orthogonal to the issues addressed in this paper. We can easily
conclude that all our experiments confirm literature results by indicating that the back-end

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Mauro Andreolini et al.

node of the multi-tier architecture in Figure 1 is the most critical system component [El-
nikety et al. 2004]. For this reason, we focus on the CPU utilization and disk throughput
of the back-end node. To give a first qualitative motivation of the difficulties of capturing
any clear message from a sequence of resource measures, in Figures 3 and 4 we report the
results related to the light and heavy scenario, respectively. In these figures, we consider
as examples different intervals, metrics and scenarios:

—two resource measurement intervals: 1 second (Figures 3(a) and 4(a)), and 5 seconds
(Figures 3(b) and 4(b));

—two resource metrics: CPU utilization (Figures 3(c) and 4(c)), and disk throughput as
blocks/second (Figures 3(d) and 4(d));

—four user scenarios: step (Figures 3(c), 3(d), 4(c) and 4(d))), staircase (Figures 3(e)
and 4(e)), realistic (Figures 3(a), 3(b), 4(a) and 4(b))), alternating (Figures 3(f) and 4(f)).

There are many qualitative messages shown by the Figures 3 and 4. The measurement
interval does not change the variability impact. Not every resource measure is equally
representative of the system load: in general, the CPU follows the input load closer than
the disk throughput. On the other hand, all the figures share the common trait that the view
of a resource that is obtained from system monitors is extremely variable, to the extent that
any run-time decision based on these values may be risky whennot completely wrong.

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600

D
is

k
th

ro
ug

hp
ut

Time [s]

(a) Scenario: staircase

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
P

U
 u

til
iz

at
io

n

Time [s]

(c) Scenario: step

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
P

U
 u

til
iz

at
io

n

Time [s]

(e) Scenario: staircase

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600

D
is

k
th

ro
ug

hp
ut

Time [s]

(b) Scenario: staircase

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600

D
is

k
th

ro
ug

hp
ut

Time [s]

(d) Scenario: step

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
P

U
 u

til
iz

at
io

n

Time [s]

(f) Scenario: alternating

Fig. 3. Resource measurements - light service demand.

If we compare the two workload classes, Figures 3 and 4 show that heavy service de-
mand causes much higher variability in the resource measures than light service demand.
We give a mathematical confirmation of this result by evaluating the mean and the standard
deviation of the CPU utilization of the back-end node for both workload classes. We con-
sider six stable user scenarios where the number of emulatedbrowsers is kept fixed during
the experiment running for one hour. The initial and final tenminutes are considered as

ACM Journal Name, Vol. V, No. N, Month 20YY.

Models and framework for supporting run-time decisions in Web-based systems · 7

 0

 200

 400

 600

 800

 1000

 200 300 400 500 600 700 800 900

D
is

k
th

ro
ug

hp
ut

Time [s]

(a) Scenario: staircase

 0

 0.2

 0.4

 0.6

 0.8

 1

 1500 1600 1700 1800 1900 2000

C
P

U
 U

til
iz

at
io

n

Time [s]

(c) Scenario: step

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
P

U
 U

til
iz

at
io

n

Time [s]

(e) Scenario: staircase

 0

 200

 400

 600

 800

 1000

 200 300 400 500 600 700 800 900

D
is

k
th

ro
ug

hp
ut

Time [s]

(b) Scenario: staircase

 0

 200

 400

 600

 800

 1000

 1500 1600 1700 1800 1900 2000

D
is

k
th

ro
ug

hp
ut

Time [s]

(d) Scenario: step

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
P

U
 U

til
iz

at
io

n

Time [s]

(f) Scenario: alternating

Fig. 4. Resource measurements - heavy service demand.

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 300 400 500 600 700

C
P

U
-u

til
iz

at
io

n

Emulated Browsers

Standard deviation
Mean

(a) Light service demand (stable
scenario)

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 120 140 160 180 200

C
P

U
 u

til
iz

at
io

n

Emulated Browsers

Standard deviation
Mean

(b) Heavy service demand (stable
scenario)

Fig. 5. Statistical analysis of the workloads.

warm-up and cool-down periods, hence they are omitted from the evaluation of the statis-
tics. The average CPU utilization and its standard deviation for light and heavy workload
are shown in Figures 5(a) and 5(b).

In Table II, we report the results of the same statistical analysis for the four unstable
scenarios: step, staircase, alternating and realistic. Although in these cases the arithmetic
mean is not a good representation of the load behavior, theseresults confirm the high vari-
ability of the resource measures for both workloads. In particular, the standard deviation
highlights a twofold dispersion of the resource measures inthe case of heavy service de-
mand.

As a final observation, we note that the highly variable nature of the measures occurs
for any workload, even when the average load is well below themaximum capacity of

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Mauro Andreolini et al.

Table II. Statistical characterization of the workloads (mean and standard deviation).
Light service demand Heavy service demand
Mean Sd Mean Sd

Step scenario 0.31 0.18 0.32 0.38
Staircase scenario 0.21 0.13 0.23 0.30

Alternating scenario 0.26 0.15 0.28 0.31
Realistic scenario 0.38 0.15 0.40 0.37

a resource. Variability is high to the extent that using direct resource measures for load
change detection or load prediction analyses is of little value. For example, let us consider
a system expected to take different decisions depending on CPU load. When the CPU
utilization measures are similar to those in Figures 3 and 4,any load change detector would
alternate frequent on-off alarms, thus making it impossible for a run-time decision system
to judge whether a node is really off-loaded or not. On the other hand, a simple average
of the resource measures would mitigate the on-off effect, but at the same time it would
affect the efficacy of the load change detection algorithm. In short, these preliminary
results suggest that a run-time management system should beable to operate on a different
representation of the resource load, such as that proposed in the following section.

2.3 Two-phase strategy

Direct measures have a limited value because they just offerinstantaneous views of the
load conditions of a resource. Moreover, these measures tend to be useless when they are
highly variable, as in typical Web workloads. In practice, there is no way to estimate or
predict load, to analyze load trend, to forecast overload, to understand where the system is
and where the system is going, to decide whether it is necessary to activate some control
mechanism and, if it is, to choose the right course of action.

For these reasons, we propose that run-time management systems supporting Web-based
services should operate not on resource measures but on a continuous “representation” of
the load behavior of the system resources. This proposal leads to atwo-phase strategy
where we separate the two main phases behind a run-time decision:

(1) Generation of representative resource load.During this phase we obtain a repre-
sentative view of the resource load.

(2) Resource state interpretation. In this phase, we utilize the previous representation
as a basis for evaluating the present (e.g., load change detection) or future (e.g., load
prediction) resource conditions; these evaluations are then passed on to the run-time
decision system.

The two-phase strategy is outlined in Figure 6. In the first phase, aload trackermodule
continuously gets measures from the system monitors and evaluates one load representa-
tion of the resource behavior or a different representationfor each class of application as
shown by the figure. Multiple views from different resource measures may be used to get
a global representation of a system component. This issue is, however, out of the scope of
this paper.

In the second phase, each representation obtained through the load tracker is passed on to
an evaluation module that computes the present or future condition of a resource, possibly
with respect to its maximum capacity. The final goal is to evaluate the information that is
necessary for therun-time decision systemto fulfill its goals, such as improving the system

ACM Journal Name, Vol. V, No. N, Month 20YY.

Models and framework for supporting run-time decisions in Web-based systems · 9

Fig. 6. The proposed two-phase framework for supporting run-time decisions.

throughput, avoiding bad request assignments, or refusingadditional requests because of
overload risks. The idea of a two-phase strategy seems rather straightforward. However,
it has never been proposed before in a Web system context. Moreover, it opens several
interesting issues that we address in the next sections.

The choice of an adequate load tracker is of utmost importance to the entire run-time
management system and it must be pointed out that no single choice is better than all the
others. We implement load trackers based on linear and non-linear models for different
parameters. For the second phase, we consider the problem ofdetecting non-transient
changes of the load conditions of a system resource, and of predicting future resource
behavior.

Different decision systems may require different representations that can be generated
by the underlying load tracker. For example, a valid load change detector should signal
to the run-time decision system only significant load changes that require some immediate
actions, such as redirecting requests and filtering accesses. On the other hand, a load
predictor should provide the run-time decision system withexpected future load conditions
that are at the basis of different algorithms, such as load balancing and request dispatching.

The proposed methodology and framework are modular, hence they can be easily en-

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Mauro Andreolini et al.

riched with other models and supports for decision systems.A crucial requirement for
all the models in both phases is the capacity to satisfy run-time constraints; in many Web
systems are in the order of seconds.

3. LOAD TRACKERS DEFINITIONS

In this section, we describe the first phase which aims to obtain a representative view of
the load trend from resource measures. Roughly speaking, weconsider aload tracker
function that filters out the noises characterizing a sequence of low correlated and highly
variable measures, and then offers a more regular view of theload trend of a resource
to the models of the second phase. This problem is not relatedjust to smooth resource
measures before using them because an arithmetic mean is greatly smoothed, but it may
not be representative of the real load conditions. Different run-time decision systems need
different representations and the right compromise between accuracyandresponsiveness
of a load tracker should be sought.

At time ti, the load tracker can consider the last measuresi, and a set of previously
collectedn−1 measures, that is,

−→
Sn(ti) = [si−(n−1), . . . , si−1, si]. We defineload tracker

a functionLT (
−→
Sn(ti)) : R

n → R that, at timeti, takes as its input
−→
Sn(ti) and gives a

“representation” of the resource load conditions, namelyli. A continuous application of
the load tracker produces a sequence of load values that yields a trend of the resource load
conditions by excluding out-of-scale resource measures. For the purposes of this paper, we
consider and compare some linear and non-linear load tracker functions.

3.1 Linear load trackers

We first consider the class ofmoving averagesbecause they smooth out resource mea-
sures, reduce the effect of out-of-scale values, are fairlyeasy to compute at run-time, and
are commonly used as trend indicators [Lilja 2000]. We focuson two classes of moving
average: theSimple Moving Average(SMA) and theExponential Moving Average(EMA),
one using uniform and the other non-uniform weighted distributions of the past measures,
respectively. We also consider other popular linear auto-regressive models [Dinda and
O’Hallaron 2000, Tran and Reed 2004]:Auto Regressive(AR) andAuto Regressive Inte-
grated Mooving Average(ARIMA).

Simple Moving Average(SMA). It is the unweighted mean of then resource measures
of the vector

−→
Sn(ti), that is evaluated at timeti (i > n), that is,

SMA(
−→
Sn(ti)) =

∑

i−(n−1)≤j≤i

sj

n
(1)

An SMA-based load tracker evaluates a newSMA(
−→
Sn(ti)) for each measuresi during

the observation period. The number of considered resource measures is a parameter of the
SMA model, hence hereafter we use SMAn to denote an SMA load tracker based onn
measures. As SMA models assign an equal weight to every resource measure, they tend to
introduce a significant delay in the trend representation, especially when the size of the set
−→
Sn(ti) increases. The EMA models are often considered with the purpose of limiting this
delay effect.

Exponential Moving Average (EMA). This is the weighted mean of then resource
measures of the vector

−→
Sn(ti), where the weights decrease exponentially. An EMA-based

ACM Journal Name, Vol. V, No. N, Month 20YY.

Models and framework for supporting run-time decisions in Web-based systems · 11

load trackerLT (
−→
Sn(ti)), at timeti, is equal to:

EMA(
−→
Sn(ti)) = α ∗ si + (1 − α) ∗ EMA(

−→
Sn(ti−1)) (2)

where the parameterα = 2/(n + 1) is thesmoothing factor. The initialEMA(
−→
Sn(tn))

value is initialized to the arithmetic mean of the firstn measures:

EMA(
−→
Sn(tn)) =

∑

0≤j≤n

sj

n
(3)

Similarly to the SMA model, the number of considered resource measures is a parameter
of the EMA model, hence by EMAn we denote an EMA load tracker based onn measures.

Auto-Regressive Model(AR). This is a weighted linear combination of the pastp re-
source measures of the vector

−→
Sn(ti). An AR-based load tracker at timeti, can be written

as:

AR(
−→
Sn(ti)) = φ1 ∗ sti

+ · · · + φp ∗ sti−1−p
+ et (4)

whereet ∼ WN(0, σ2) is an independent and identically distributed sequence (called
residuals sequence); stn

, . . . , stn−1−p
are the resources weighted byp linear coefficients;

and φ1, . . . , φp are the firstp values of the auto-correlation function computed on the
−→
Sn(ti) vector. Thep order of the AR process is determined by the lag at which the partial
auto-correlation function becomes negligible [Brockwelland Davis 1987,Kendall and Ord
1990]. The numberp of considered resource measures is a parameter of the AR model,
hence by AR(p) we denote an AR load tracker based onp values. Higher-order auto-
regressive models include more laggedsti

terms, where coefficients are computed on a
temporal window of then resource measures.

Auto-Regressive Integrated Moving Average Model(ARIMA). An ARIMA model
is obtained by differentiatingd times a non stationary sequence and by fitting an ARMA
model that is composed by the auto-regressive model (AR(p))and the moving average
model (MA(q)). The moving average part is a linear combination of the pastq noise terms,
eti

, . . . , eti−1−q
[Brockwell and Davis 1987, Kendall and Ord 1990]. An ARIMA model

can be written as:

ARIMA(
−→
Sn(ti)) = φ1 ∗ sti

+ · · · + φp+d ∗ sti−1−p−d
+ θ0 ∗ eti

+ · · · + θq ∗ eti−q
(5)

whereθ1, . . . , θq are linear coefficients. An ARIMA model is characterized by three pa-
rameters, that is, ARIMA(p,d,q), wherep is the number of the considered resource mea-
sures,q of the residuals values andd of the differentiating values. As an ARIMA model
requires frequent updates of their parameters, its implementation takes a non-deterministic
amount of time to fit the load tracker values [Dinda and O’Hallaron 2000]. Hence, an
ARIMA load tracker seems rather inadequate to support a run-time management system
when the underlying infrastructure is subject to variable workloads.

3.2 Non-linear load trackers

Linear models tend to introduce a delay in load trend description, when the size of the
considered resource measures increases, while they oscillate too much when the set of
resource measures is small. The need for a non-linear tracker is motivated by the goal of
addressing in an alternative way the trade-off characterizing linear models. We consider
two non-linear models.

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Mauro Andreolini et al.

Two sided quartile-weighted median(QWM). In descriptive statistics, the quartile is a
common way of estimating the proportions of the data that should fall above and below a
given value. The two sided quartile-weighted median is considered a robust statistic that is
independent of any assumption on the distribution of the resource measures [Duffield and
Lo Presti 2000]. The idea is to estimate the center of the distribution of a set of measures
through the two sided quartile-weighted median:

QWM(
−→
Sn(tn)) =

Q.75(
−→
Sn(tn)) + 2 ∗ Q.5(

−→
Sn(tn)) + Q.25(

−→
Sn(tn))

4
(6)

whereQp denotes thepth quantile of the
−→
Sn(tn).

Cubic Spline (CS). A preliminary analysis leads us to consider thecubic splinefunction
[Poirier 1973], in the Forsytheet al. version [Forsythe et al. 1977], as another interesting
example of non-linear load tracker. This decision is also motivated by the observation that
lower order curves (that is, with a degree lower than 3) do notreact quickly enough to load
changes, while curves with a degree higher than 3 are considered unnecessarily complex,
introduce undesired ripples and are computationally too expensive to be applied in a run-
time context. For the definition of the cubic spline function, let us choose somecontrol
points(tj , sj) in the set of measured load values, wheretj is the measurement time of the
measuresj . A cubic spline functionCSJ(t), based onJ control points, is a set ofJ − 1
piecewise third-order polynomialspj(t), wherej ∈ [1, J − 1], that satisfy the following
properties.
Property 1.The control points are connected through third-order polynomials:

{

CSJ(tj) = sj j = 1, . . . , J

CSJ(t) = pj(t) tj < t < tj+1, j = 1, . . . , J − 1
(7)

Property 2. To guarantee aC2 behavior at each control point, the first and second order
derivatives ofpj(t) andpj+1(t) are set equal at timetj , ∀j ∈ {1, . . . , J − 2}:

{

dpj(tj+1)
dt

=
dpj+1(tj+1)

dt
,

d2pj(tj+1)
dt2

=
d2pj+1(tj+1)

dt2

(8)

If we combine Properties 1 and 2, we obtain the following definition for CSJ(t):

CSJ (t) =
zj+1(t − tj)

3 + zj(tj+1 − t)3

6hi

+ (
sj+1

hi

−
hj

6
zj+1)(t − tj) + (

sj

hj

−
hj

6
zj)(tj+1 − t)

∀j ∈ {1, . . . , J − 1}

(9)

wherehi = ti+1 − ti, andsj are the measured values. Thezj coefficients are solved by
the following system of equations:











z0 = 0

hj−1zj−1 + 2(hj−1 + hj)zj + hjzj+1 = 6(
sj+1−sj

hj
−

sj−sj−1

hj−1
)

zn = 0

(10)

The spline-based load trackerLT (
−→
Sn(ti)), at time ti, is defined as the cubic spline

ACM Journal Name, Vol. V, No. N, Month 20YY.

Models and framework for supporting run-time decisions in Web-based systems · 13

functionCSJ
n (ti), obtained through a subset ofJ control points from the vector ofn load

measures.
Although the cubic spline load tracker has two parameters and is computationally more

expensive than the SMA and EMA load trackers, it is commonly used in approximation
and smoothing contexts [Eubank and Eubank 1999, Wolber and Alfy 1999, Poirier 1973].
The cubic spline has the advantage of being reactive to load changes and is independent of
resource metrics and workload characteristics. Its computational complexity is compatible
with run-time decision systems, especially if we choose a small number of control points
J . This reason leads us to prefer the lowest number, that is,J = 3.

4. LOAD TRACKER EVALUATION

Load trackers should be evaluated in terms of feasibility and quality. Only the load trackers
that have a computational complexity which is compatible with run-time requirements can
be considered acceptable. Moreover, it is important to evaluate load trackeraccuracyand
responsiveness. We will see that these two properties are in conflict, hence the perfect load
tracker characterized by optimal accuracy and responsiveness does not exist. We anticipate
that this trade-off can be solved by considering the goals ofthe load tracker application.
For example, a run-time decision system epxected to take immediate action may prefer a
highly reactive load tracker at the price of some inaccuracy. On the other hand, when an
action has to be carefully evaluated, a decision system may prefer an accurate load tracker
even if less reactive.

4.1 Computational cost of load trackers

In this section, we estimate the computational cost of the load tracker functions in order
to assess their feasibility to run-time requirements. We evaluate the CPU time required
by each load tracker to compute a new value of the load representation. This time does
not include the system and communication times that are necessary to fill the resource
measure vector. The results for different measured values (n) are evaluated on an average
PC machine and reported in Table III. They refer to the realistic user scenario and heavy
service demand, but their costs are representative of any workload. From the table we can
conclude that the computational cost of all considered loadtracker functions is compatible
with run-time constraints. The majority of load trackers have a CPU time well below 10
msec. The main difference is represented by ARIMA models with a computational cost
that is higher by one order of magnitude. Although a cost below 100ms seems compatible
with many run-time decision systems, we should consider that behind the choice of the
parameters of the AR and ARIMA models there is a complex evaluation. This phase
required the computation of the auto-correlation and partial auto-correlation functions as
in [Brockwell and Davis 1987,Kendall and Ord 1990] and concluded that the AR(32) and
ARIMA(1,0,1) models are the best for the considered workload. The complexity of this
phase more than the CPU time for generating a load tracker value leads us to consider that
the AR and ARIMA models are inadequate to support run-time decision systems in highly
variable workload scenarios.

4.2 Load tracker accuracy and responsiveness

All the considered load trackers share the common goal of representing at run-time the
trend of a set of resource measures obtained from some load monitor. In order to evaluate
the accuracy and responsiveness of the load tracker, we needa reference curve that we call

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Mauro Andreolini et al.

Table III. CPU time (msec) for the computation of a load tracker value
n=30 n=60 n=90 n=120 n=240

EMA 0.059 0.059 0.059 0.059 0.059
SMA 0.560 1.039 1.461 1.990 3.785
CS 2.100 3.426 4.242 6.231 12.215

QWM 0.462 0.448 0.456 0.461 0.494
AR(32) 5.752 5.978 5.998 6.070 6.417

ARIMA (1,0,1) X 67.536 67.765 67.228 72.141

representative load interval. This is the indicator of the central tendency of the resource
measures in specific intervals of the experiment where the generated load is rather stable,
although the resource monitors may recognize no stability from the measured values. In
real systems, when the control is limited to the server side of the Internet and does not
include the client side, it is practically impossible to compute the representative load inter-
val. In our experimental setting, we have the additional advantage of controlling the load
generators and we can compute the representative load off-line. Hence, we consider as a
reference interval the period of time during which we generate the same number of user re-
quests, that is, we have the same number of active emulated browsers. For example, in the
step scenario and light service demand, we have two reference intervals:T1 = [0, 300] and
T2 = [301, 600]. In the staircase and alternating scenarios, there are five reference inter-
vals: [0, 120], [121, 240], [241, 360], [361, 480] and [481, 600]. In the realistic scenario,
we consider four intervals: [341, 460], [500, 640], [701, 820] and [821, 1000].

As the skew of the resource measures is severe, the simple mean is not a good indicator
of the central tendency of a set of data [Lilja 2000]. Hence, we prefer to evaluate the
representative load as theapproximate confidence interval[Bonett 2006] in each interval.
In Figures 7 and 8, we report, for six workloads, the resourcemeasures (dots) referring
to the CPU utilization of the database server and the upper (T U

I) and lower (T L
I) bounds

of the representative load intervals (horizontal lines). Even from these figures we can
appreciate the higher variability of the workload based on heavy service demand with
respect to that based on light service demand: in the former workload, dots are more
spread and confidence intervals are larger. For example, themiddle interval of the staircase
scenario hasT L

3 = 0.39 andT U
3 = 0.42 for the light service demand, andT L

3 = 0.42 and
T U

3 = 0.55 for the high service demand.

We now evaluate theaccuracyandresponsivenessof the six load tracker functions that
is, SMAn, EMAn, AR(32), ARIMA(1,0,1), CSn, QWMn, in representing the load trend of
a set ofn resource measures. From a qualitative point of view, responsiveness and accuracy
correspond to the capacity of reaching the representative load interval as soon as possible,
and of having small oscillations around the representativeload interval. We now propose
a quantitative evaluation for these two parameters.

The accuracy errorof a load tracker is the sum of the distances between each load
tracker valueli computed at the instanti ∈ I, ∀I representative load intervals, and the
corresponding value of the upper boundT U

I or lower boundT L
I of the same interval, that

ACM Journal Name, Vol. V, No. N, Month 20YY.

Models and framework for supporting run-time decisions in Web-based systems · 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
P

U
 u

til
iz

at
io

n

Time [s]

Representative load interval
CPU utilization

(a) Step scenario

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
P

U
 u

til
iz

at
io

n

Time [s]

Representative load interval
CPU utilization

(b) Staircase scenario

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
P

U
 u

til
iz

at
io

n

Time [s]

Representative load interval
CPU utilization

(c) Alternating scenario

Fig. 7. Representative load intervals for different user scenarios andlight service demand.

 0

 0.2

 0.4

 0.6

 0.8

 1

 400 500 600 700 800 900

C
P

U
 U

til
iz

at
io

n

Time [s]

Representative load interval
CPU utilization

(a) Realistic scenario

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
P

U
 U

til
iz

at
io

n

Time [s]

Representative load interval
CPU utilization

(b) Staircase scenario

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
P

U
 U

til
iz

at
io

n

Time [s]

Rapresentative load interval
CPU utilization

(c) Alternating scenario

Fig. 8. Representative load intervals for different user scenarios andheavyservice demand.

is,
∑

∀I>0

∑

i∈I

di, where:

di =











0 if T L
I ≤ li ≤ T U

I

li − T U
I if li > T U

I

T L
I − li if li < T L

I

(11)

The accuracy error corresponds to the sum of the vertical distances between each load
tracker point that is out of the representative load interval and the representative load inter-
val bounds, for each interval.

For the sake of comparing of different load tracker models, we prefer to use a normalized
value, such as therelative accuracy error. As a normalization factor, we consider the
accuracy error of the resource measures. The relative accuracy error for any acceptable
load tracker lies between 0 and 1; with other values a load tracker would be considered
completely inaccurate and discarded.

Responsivenessis a temporal requirement that aims to represent the abilityof a load
tracker to quickly adapt itself to significant load variations. Let tIk

denote the time at
which the representative load exhibits a new stable load condition that is associated to a
significant change in the number of users. (For example, in the realistic scenario with
heavy service demand shown in Figure 8(a), we havek = 3 instants: 500, 680, 820.) A
load tracker is more responsive when its curve touches the new representative load interval
as soon as possible. Lettlk denote the instant in which the load tracker value reaches for
the first time one of the borders of the representative load interval that is associated with a
new load condition. Theresponsiveness errorof a load tracker is measured as the sum of
the horizontal differences between the initial instanttIk

characterizing the representative
load I and the corresponding timetlk that is necessary for the load tracker to touch this
new interval. For comparison reasons, we normalize the sum of the time delays by the total

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Mauro Andreolini et al.

observation periodT , thus obtaining arelative responsiveness error,
∑

k

|tIk
− tlk |

T
(12)

In Figures 9 and 10, we report the normalized values of the accuracy and responsiveness
errors of some representative load trackers for the workload characterized by a realistic
user scenario and heavy service demand. We consider different sets of resource measures
wheren goes from 30 to 240.

 0

 0.2

 0.4

 0.6

 0.8

 1

Realistic scenario

A
cc

ur
ac

y
er

ro
r

EMA (n=30)
EMA (n=60)
EMA (n=90)
EMA (n=120)
EMA (n=240)
SMA (n=30)
SMA (n=60)
SMA (n=90)
SMA (n=120)
SMA (n=240)
ARIMA (1,0,1)
AR (32)

(a) Linear load trackers

 0

 0.2

 0.4

 0.6

 0.8

 1

Realistic scenario

A
cc

ur
ac

y
er

ro
r

QWM (n=30)
QWM (n=60)
QWM (n=90)
QWM (n=120)
QWM (n=240)
CS (n=30)
CS (n=60)
CS (n=90)
CS (n=120)
CS (n=240)

(b) Non-linear load trackers

Fig. 9. Accuracyof the load trackers for the realistic user scenario and heavy service
demand (n denotes the number of measured values used by a load tracker).

 0

 0.2

 0.4

 0.6

 0.8

 1

Realistic scenario

R
es

po
ns

iv
en

es
s

er
ro

r

EMA (n=30)
EMA (n=60)
EMA (n=90)
EMA (n=120)
EMA (n=240)
SMA (n=30)
SMA (n=60)
SMA (n=90)
SMA (n=120)
SMA (n=240)
ARIMA (1,0,1)
AR(32)

(a) Linear load trackers

 0

 0.2

 0.4

 0.6

 0.8

 1

Realistic scenario

R
es

po
ns

iv
en

es
s

er
ro

r

QWM (n=30)
QWM (n=60)
QWM (n=90)
QWM (n=120)
QWM (n=240)
CS (n=30)
CS (n=60)
CS (n=90)
CS (n=120)
CS (n=240)

(b) Non-linear load trackers

Fig. 10. Responsivenessof the load trackers for the realistic scenario and heavy service
demand.

There are some clear results coming from the observation of the histograms in Figure 9
and from all other results of which we report a small subset.

The SMA, EMA and QWM load trackers are characterized by an interesting trade-off:
working on a small (n ≤ 30) and large (n ≥ 200) amount of resource measures causes
higher accuracy error than that achieved by intermediate size vectors. The reasons for this
result are different: for small values ofn, the error is caused by excessive oscillations; for
large values ofn it is caused by excessive delays. Figures 11(a-c) give a visual interpreta-
tion of the quantitative results. For example, the SMA30 curve touches the representative

ACM Journal Name, Vol. V, No. N, Month 20YY.

Models and framework for supporting run-time decisions in Web-based systems · 17

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 300 400 500 600 700 800 900 1000

C
P

U
 U

til
iz

at
io

n

Time [s]

Representative load interval
EMA (n=90)
EMA (n=240)

(a) EMA90 and EMA 240 load trackers

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 300 400 500 600 700 800 900 1000

C
P

U
 U

til
iz

at
io

n

Time [s]

Representative load interval
SMA (n=30)
SMA (n=240)

(b) SMA30 and SMA 240 load trackers

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 300 400 500 600 700 800 900 1000

C
P

U
 U

til
iz

at
io

n

Time [s]

Representative load interval
QWM (n=90)
QWM (n=240)

(c) QWM90 and QWM240 load trackers

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 300 400 500 600 700 800 900 1000
C

P
U

 U
til

iz
at

io
n

Time [s]

Representative load interval
ARIMA (1,0,1)

(d) ARIMA(1,0,1) load tracker

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 300 400 500 600 700 800 900 1000

C
P

U
 U

til
iz

at
io

n

Time [s]

Representative load interval
CS (n=30)

(e) CS30 load tracker

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 300 400 500 600 700 800 900 1000

C
P

U
 U

til
iz

at
io

n

Time [s]

Representative load interval
CS (n=240)

(f) CS240 load tracker

Fig. 11. Load tracker curves with respect to representativeload intervals (realistic user
scenario and heavy service demand).

load intervals quite soon, but its accuracy is low because oftoo many oscillations. On
the other hand, the SMA240 curve is highly smoothed, but it follows the real load with
too much delay and even in this case its accuracy is poor. Similar results are obtained
for the EMA240 and QWM240 load trackers. The best results forn = 90 measures are
confirmed by the EMA90 and QWM90 curves that follow more regularly the representative
load intervals.

The AR and ARIMA models are characterized by a high accuracy error caused by their
extremely jittery nature. Figure 11(d) offers a clear visual interpretation of the quantitative
result. The cubic spline model is interesting because larger sets of resource measures lead

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Mauro Andreolini et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

AlternatingStaircaseStep

A
cc

ur
ac

y
er

ro
r

EMA (n=10)
EMA (n=30)
EMA (n=60)
SMA (n=10)
SMA (n=30)
SMA (n=60)

(a) Linear load trackers

 0

 0.2

 0.4

 0.6

 0.8

 1

AlternatingStaircaseStep

A
cc

ur
ac

y
er

ro
r

QWM (n = 10)
QWM (n = 30)
QWM (n = 60)
CS (n=10)
CS (n=30)
CS (n=60)

(b) Non linear load trackers

Fig. 12. Accuracyof the load trackers for three user scenarios and light service demand.

 0

 0.2

 0.4

 0.6

 0.8

 1

AlternatingStaircaseStep

R
es

po
ns

iv
en

es
s

er
ro

r

EMA (n=10)
EMA (n=30)
EMA (n=60)
SMA (n=10)
SMA (n=30)
SMA (n=60)

(a) Linear load trackers

 0

 0.2

 0.4

 0.6

 0.8

 1

AlternatingStaircaseStep

R
es

po
ns

iv
en

es
s

er
ro

r

QWM (n = 10)
QWM (n = 30)
QWM (n = 60)
CS (n=10)
CS (n=30)
CS (n=60)

(b) Non linear load trackers

Fig. 13. Responsivenessof the load trackers for three user scenarios and heavy service
demand.

to a monotonic improvement of the load tracker accuracy. Figures 11(e) and 11(f) show
how the curve forn = 240 follows the representative load interval much better than the
cubic spline forn = 30, that is extremely jittery.

A comparison of all results shows that the AR and ARIMA modelshave largest accuracy
errors. The best results of EMA, SMA and QWM models are comparable and all are
obtained for a vector ofn = 90 resource measures. Their accuracy is even higher than that
of the best cubic spline model that is, CS240, although we will see that this function may
further improve in accuracy for highern.

It is interesting to observe that quite similar results are obtained for completely different
and stressful workloads, such as the step, the staircase andthe alternating user scenarios
for both light and heavy service demand. Some results shown in Figure 12 refer to the
light scenario. They confirm the conclusions about load tracker models, although they are
obtained for different values ofn. In particular, the SMA, EMA and QWM load trackers
yield their best accuracy forn = 30 instead of the previousn = 90 case.

Let us now move on to evaluate theresponsivenessresults that are reported in the his-
tograms of Figures 10 and 13 for the realistic user scenario,and the step, the staircase and
the alternating scenarios, respectively. The results shown by these figures and by all other
results is a clear confirmation of the intuition: for any loadtracker, working on a larger set
of resource measures augments the responsiveness error. The most responsive load trackers

ACM Journal Name, Vol. V, No. N, Month 20YY.

Models and framework for supporting run-time decisions in Web-based systems · 19

are the AR and ARIMA models that are characterized by a null error. If we exclude these
models that are useless for load tracker purposes, the cubicspline functions are the most
responsive. Even the stability of their results is remarkable, with an error below 0.1 for
anyn < 120. The load trackers based on EMA and SMA models seem more sensitive to
the choice ofn; acceptable results are obtained forn ≤ 90 and forn ≤ 30 in the light and
heavy service demand case, respectively. The QWM model is typically the least responsive
and even the range of validity ofn is narrower than that of the other load trackers.

4.3 Load tracker precision

The choice of the most appropriate load tracker is a compromise between accuracy and
responsiveness. Depending on the kind of run-time decision, we can choose a more accu-
rate or a more responsiveness load tracker. However, we can anticipate that no application
can prefer one attribute without considering the others. For this reason, we introduce the
precisionof a load tracker as a combination of accuracy and responsiveness.

The majority of considered load trackers have many parameters, but we have seen that
it is possible to relate the solution of the trade-off to the choice of the right number of
measured values. For each model, it is necessary to find a value ofn that represents a good
trade-off between reduced horizontal delays and limited vertical oscillations. For example,
the cubic spline load trackers have the advantage of achieving monotonic and relatively
stable results: their accuracy increases rapidly and theirresponsiveness decreases slowly
for higher values ofn. The results of the EMA, SMA and QWM are characterized by a U
effect as a function ofn.

To evaluate the precision attribute as a trade-off between the accuracy and the respon-
siveness, we utilize ascatter plot diagram[Utts 2004]. In Figures 14 and 15, the x-axis
reports the accuracy error and the y-axis the responsiveness error. Each point denotes the
precision error of a load tracker.

We define theprecision distanceδL of a load trackerL as the Euclidean distance between
each point and the point with null accuracy error and null responsiveness error (that is, the
origin) of the plot diagram. Moreover, we consider the area of adequate precisionthat
delimits the space containing the load trackers that satisfy some precision requirements. In
our example, we arbitrarily set theadequate precisionrange to 0.4; however, we should
consider that this limit is typically imposed by the system administrator on the basis of the
application and constraints of the run-time decision system. In Figures 14 and 15, the load
trackers havingδL ≤ 0.4 are considered acceptable to solve the trade-off between accuracy
and responsiveness.

The SMA, EMA and QWM load trackers in Figures 14(a) and 15(a) share a similar
behavior: for higher values ofn they tend to reduce their accuracy error and increase their
responsiveness error; at a certain instant, both accuracy and responsiveness degrade, and
their points exit from theadequate precisionarea. We can confirm that the AR and ARIMA
models are not valid supports for load trackers because their perfect responsive is achieved
at the price of an excessive accuracy error. The cubic splinemodel confirms its monotonic
behavior that can be appreciated by following the ideal linecreated by the small triangles
in Figure 14(b).

Let us summarize the overall significance of this study that comes from the results dis-
cussed here and many other not reported experiments that confirm our main conclusions.

—The load tracker models based on EMA, SMA, CS and QWM have a computational cost

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Mauro Andreolini et al.

(a) Linear load trackers (b) Non-linear load trackers

Fig. 14. Scatter plot of the load trackers for the realistic scenario and heavy service demand.

(a) Linear load trackers (b) Non-linear load trackers

Fig. 15. Scatter plot of the load trackers for the step scenario and light service demand

that is compatible with run-time constraints.

—For all workloads, the load trackers are characterized by atrade-off between accuracy
and responsiveness. This issue can be converted into in the problem of chosing the right
size of the resource measure vector.

—There exists a clear relationship between the dispersion (that is, standard deviation) of
the observed resource measures and the choice of the best resource measure vector size.
A high dispersion of the resource measures, such as that of the heavy service demand,
requires load trackers working on a larger number of resource measures. On the other
hand, the number of needed resource measures to obtain a precise load tracker decreases
when the workload causes a minor dispersion of the resource measures.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Models and framework for supporting run-time decisions in Web-based systems · 21

The proposal of a theoretic methodology to find the “best”n for any load tracker, any
workload and any application is out of the scope of this paper. However, a large set of
experimental results points to some interesting empiricalevidences.

—There exists a set of feasible values ofn that guarantee an acceptable precision of the
load tracker.

—The range of feasible values forn depends on the standard deviation of the resource
measures. For example, in the heavy workload case, EMA is acceptable fromn = 30 to
n = 120; in the light workload case EMA is acceptable fromn = 10 to n = 30.

—The QWM-based load tracker has a limited range of feasibility.

—The EMA-based and the SMA-based load trackers have a largerbut still limited range
of feasibility.

—The CS-based load trackers have a sufficientprecisiononly for high values ofn. How-
ever, when this load tracker reaches theadequate precisionarea, it is feasible for a large
range ofn values thanks to its monotonic behavior. Although its higher accuracy comes
at the price of an increased computational complexity, thisdoes not prevent the applica-
tion of CS to run-time contexts.

—Once we are in theadequate precisionarea, all load trackers are feasible. Among them,
we can choose the best load tracker on the basis of the requirements of the second phase.
In other words, we can give more importance either to the responsiveness or to the
accuracy depending on the nature and constraints of the application of the load tracker
model.

5. LOAD CHANGE DETECTION

In this section, we consider theload change detectionproblem as an application of the sec-
ond step of the proposed two-phase strategy. Many run-time management decisions related
to Web-based services are activated after a notification that a significant load variation has
occurred in some system resource(s). Request re-direction, process migration, access con-
trol and limitation are some examples of processes that are activated after the detection of a
significant and non-transient load change. Two properties characterize a good load change
detector: the rapidity in signaling a significant load change, and the ability to discern a
steady load change from a transient change. These two properties are conflicting, because
a detector that is able to quickly signal load changes, has also higher chances of mistaking
a transient load spike for a steady load change.

The typical load change detection strategy defines a threshold for a resource load and
signals a load variation when the last observed value overcomes that threshold. This model
has been widely adopted (just to cite few examples in [Ramanathan 1999, Pai et al. 1998,
Pandey and Barnes 1998]), and its oscillatory risks are wellknown especially in highly
variable environments (e.g., vicious cycles in request distribution and replica placement
[Canali et al. 2004]). The risks of false alarms can be reduced by using multiple thresholds,
by signaling an alarm only when multiple observed values overcome the threshold, by
augmenting the observation period, and so on.

In the context of Web-based systems, the use of direct resource measures is quite inap-
propriate because a load change detector would signal continuous variations between two
different states. Let us consider, as example, the step userscenario and the light service

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Mauro Andreolini et al.

demand in Figure 16(a) where the CPU utilization is measuredduring an observation pe-
riod of 500 seconds. Let us assume to use a threshold value setatχ = 0.4 to detect when
a change of state occurs. Any time the load change detector observes that the utilization
passes over or under the threshold, it signals this event to the run-time decision system that
activates or stops some process. This figure evidences the problems that are related to the
load change detection when the load is described by resourcemeasures. The representative
load interval shows that there is only one significant load change at 300 seconds, but a load
change detector based on resource measures signals many other spurious changes of state.
For this reason, we think that it is preferable to consider a load representation such as that
obtained through a load tracker model. Figures 16(b-f) consider the same example when
load trackers are based on EMA, SMA, QWM and CS models. A comparison between
Figure 16(a) and any other figure where load change detectionis based on a load tracker
gives a qualitative motivation of the two-phase strategy. The problem is to find the best
load tracker model for this second phase. As it corresponds to the load tracker which lim-
its the number of false detections, we observe that there aretwo possible sources of false
detections.

—Reactivity error . The excess of oscillations of a load tracker around the threshold
valueχ causes many false alarms. This type of error is extremely evident in the case of
resource measures (Figure 16(a)), but also in the case of a highly responsive load change
detector such as CS10 (Figure 16(e)).

—Delay error. The excess of smoothing of a load tracker may cause a delay insignaling a
variation of load conditions. This kind of errors is evidentin the case of smoothed load
change detectors, such as EMA60 (Figure 16(b)), SMA60 (Figure 16(c)) and QWM60
(Figure 16(d)). In our example, a load change detector basedon these load trackers
signals the load change occurring att = 300 with a delay of about 40 seconds.

The load change detection is a typical problem where we prefer a load tracker that solves
the trade-off between too much reactivity causing false alarms and excessive smoothness
causing delays. In other terms, we do not want a too accurate or too responsive load tracker,
but one having “adequate” precision. If there are multiple adequate load trackers, the best
choice depends on a preference given to responsiveness or accuracy.

For a quantitative evaluation of the delay and reactivity errors, let us consider the set of
observations

−→
JI = [JI1 , JI2 , . . .] at which the representative load interval overcomes the

threshold valueχ. For example, ifχ = 0.4, in the step user scenario and light service
demand (Figures 16) we have just one change, hence|

−→
JI | = 1 and JI1 = 300. We

have two changes (
−→
JI = [240, 360]) and four changes (

−→
JI = [120, 240, 360, 480]) in the

staircase and alternating user scenarios, respectively. As a further example, if we consider
a thresholdχ = 0.6 in the realistic user scenario and heavy service demand, we have two
changes (

−→
JI = [640, 820]). The ability of a load change detector is to detect as soon as

possible a change of representative load over or under the thresholdχ. Errors are caused
when the detector signals an opposite load stateli that is, when

(T U
I < χ ∧ li > χ) ∨ (T L

I > χ ∧ li < χ) (13)

A delay erroris the sum of wrong observations occurring between a change of approxi-
mate confidence interval and the first right observation recognizing the load change. This
value corresponds to the number of observations that are necessary to the load tracker to

ACM Journal Name, Vol. V, No. N, Month 20YY.

Models and framework for supporting run-time decisions in Web-based systems · 23

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300 350 400 450 500

C
P

U
 u

til
iz

at
io

n

Time [s]

χ = 0.40
Representative load interval
Resource measures

(a) Load change detector based on
resource measures

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300 350 400 450 500

C
P

U
 u

til
iz

at
io

n

Time [s]

χ = 0.40
Representative load interval
EMA (n=10)
EMA (n=30)
EMA (n=60)

(b) Load change detector based on the
EMA load trackers

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300 350 400 450 500

C
P

U
 u

til
iz

at
io

n

Time [s]

χ = 0.40
Representative load interval
SMA (n=10)
SMA (n=30)
SMA (n=60)

(c) Load change detector based on the
SMA load trackers

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300 350 400 450 500

C
P

U
 u

til
iz

at
io

n

Time [s]

χ = 0.40
Representative load interval
QWM (n=10)
QWM (n=30)
QWM (n=60)

(d) Load change detector based on the
QWM load trackers

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300 350 400 450 500

C
P

U
 u

til
iz

at
io

n

Time [s]

χ = 0.40
Representative load interval
CS (n=10)

(e) Load change detector based on the
CS10 load tracker

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300 350 400 450 500

C
P

U
 u

til
iz

at
io

n

Time [s]

χ = 0.40
Representative load interval
CS (n=60)

(f) Load change detector based on the
CS60 load tracker

Fig. 16. Load change detection based on different load trackers.

touch the threshold valueχ after a change of load over or under the threshold.
Once a detector has evidenced a load change, an error due to reactivity occurs every

time that an observation signals a change of state that has not really occurred. To compare
different detectors, we evaluate therelative delay erroras the sum of all delay errors nor-
malized by the number of observationsM . We also evaluate therelative reactivity erroras
the sum of all relative errors normalized byM . Tables IV and V report the relative delay
and reactivity errors for the step, staircase and alternating user scenarios and light service

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Mauro Andreolini et al.

demand, and for the realistic user scenario and heavy service demand, respectively. We
consider just the load trackers that in Section 4.3 have shown “adequate” precision. Note
that QWM60 is inadequate for the alternating and staircase user scenario.

Table IV. False detections (Light service demand)
Step user scenario Staircase user scenario Alternating user scenario
Delay Reactivity Delay Reactivity Delay Reactivity
Error Error Error Error Error Error

Measures 0 17.8% 0 13.8% 0 18.4%

EMA 10 0.2% 2.4% 2.0% 0.6% 3.6% 0.7%
EMA 30 2.2% 0.2% 3.3% 0 3.9% 0

SMA30 3.5% 0 5.8% 0 6.8% 0

QWM 30 2.7% 0 4.2% 0 4.7% 0
QWM 60 8.2% 0 X X X X

CS30 0 0.3% 0.5% 1.9% 0.7% 3.8%
CS60 0 0.2% 0.8% 1.5% 0.9% 3.3%

Table V. False detections (Heavy service demand)
Realistic user scenario
Delay Reactivity
Error Error

Measures 0 22.1%

EMA 60 2.0% 3.9%
EMA 90 3.6% 1.0%
EMA 120 9.0% 0

SMA30 1.3% 5.5%
SMA60 4.4% 0.1%
SMA90 8.2% 0

QWM 60 6.8% 0
QWM 90 9.2% 0

CS240 1.6% 1.8%

When the load change detector is based on resource measures,there is a significant
number of oscillations around the threshold. In this case, reactivity errors are the only
contributions to false detections, because there are no delays.

The detectors based on EMA and SMA and QWM load trackers exhibit a delay error
that increases as a function of the number of measuresn. This error represents the main
contribution to false detections, because these linear load trackers seem smoothed enough
to avoid reactivity errors unless for too small set ofn values. The opposite is true for load
change detectors based on CS load trackers: they are affected by very low delay errors, but
by high reactivity errors especially for fewn values. As shown by Figures 16(e) and 16(f),
these load trackers are characterized by a number of oscillations that decrease for higher
values ofn. These oscillations are the main reason of false detections.

An overall evaluation of the results in Table IV shows that for a light service demand the
best detectors are based on the non-linear CS60 and on the linear EMA30 functions. Both

ACM Journal Name, Vol. V, No. N, Month 20YY.

Models and framework for supporting run-time decisions in Web-based systems · 25

them are characterized by low percentages of false detections, that are always lower than
5% even in the most severe alternating user scenario.

Similar considerations hold true also when we consider the more jittery heavy service
demand shown in Table V. This table reports only the load trackers with “adequate” preci-
sion, as determined in Section 4.3. The main differences with respect to the user scenarios
with a light service demand is the augmented number of errorscaused by the higher disper-
sion of the resource measures. As a consequence, the best load trackers (EMA60, QWM60

and CS240) for supporting load change detection need a larger amount of measured values
than that required for the user scenarios with a light service demand.

6. LOAD PREDICTION

6.1 Motivations

The possibility of forecasting the future load from a set of past values is another key func-
tion for many run-time decision systems that manage Web-based services. We defineload
predictor a functionLPk(

−→
Lq(ti)) : R

q → R that takes as its input the set ofq values
−→
Lq(ti) = (li−q, . . . , li) at timeti, and returns a real number corresponding to the predicted
load value at timeti+k, wherek > 0.

There is an important difference between our load predictorproposal and the state of
the art. In previous models, the vector

−→
Lq(ti) consists of resource measures, and the load

predictors aim to forecast a future resource measure at timeti+k. Following the two-phase
strategy, we propose a load predictor that takes as its inputa set of load tracker values and
returns a future load tracker value. In a context where the resource measures obtained from
the load monitors of the Web-based servers are extremely variable, there are two reasons
that justify our choice.

—The behavior of monitored resource loads appears extremely variable, to the extent that
a prediction of a future resource measure value is useless for taking accurate decisions.

—Many proposed load predictors working on real measures maybe unsuitable to support
a run-time decision system because of their excessive computational complexity.

We confirm the first motivation through a study of the auto-correlation function of the
CPU utilization measures. The accuracy of a prediction algorithm depends on the corre-
lation between consecutive resource measures. When the auto-correlation functions of the
set of analyzed data fall rapidly, it is difficult or impossible to have an accurate predic-
tion [Tran and Reed 2004, Baryshnikov et al. 2005]. In these scenarios, even an attractive
approach for statistical modeling and forecasting of complex temporal series, such as the
Box-Jenkins’s Auto-regressive Integrated Moving Average(ARIMA) [Box et al. 1994],
tends to provide models that do not adapt well to highly variable changes in the workloads.

For example, in Figure 17(a) we show the auto-correlation function (ACF) of the CPU
utilization for the three stressful user scenarios and light service demand for an observation
period of 600 seconds, while in Figure 17(b) we report the ACFfor the realistic user
scenario and heavy service demand for an observation periodof 3500 seconds. A point
(k, y) in this graph represents the correlation valuey between the resource measuresi

at time ti and the measuresi+k at time ti+k. A positive auto-correlation value denotes
a correlation between the two resource measures; consequently, the resource measure at
time ti may be used to predict the load value at timeti+k. On the other hand, a low value
of the auto-correlation function indicates the impossibility of an accurate prediction. A

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Mauro Andreolini et al.

visual inspection of these figures leads us to conclude that the resource measures have low
or null correlation for any workload, and in particular for the realistic user scenario and
heavy service demand shown in Figure 17(b).

We now move on to evaluate the auto-correlation functions when a load tracker model is
used as the basis for prediction. For each workload, we evaluate the ACF of some of load
trackers that in Section 4.3 have shown “adequate” precision: EMA30 and CS60 for light
service demand (Figure 18); EMA90 and CS240 for heavy service demand (Figure 19).
In these cases, the auto-correlation seems higher than thatshown by resource measures.
However, for a more precise analysis, in Table VI we report some significant results as a
function of the prediction windowk. From this table, we can see that the auto-correlation
decreases for higher values ofk. However, the degree of the decrease differs for different
workloads and considered values. Resource measures are poorly correlated for any value
of k when we consider the workload characterized by a realistic user scenario and heavy
service demand, and even for the other workload the ACF tendsto decrease below 0.5 soon
afterk = 10. On the other hand, we can appreciate that the ACFs of the two considered
load trackers decreases much less rapidly. For any workload, their ACF is around or well
above 0.7 untilk = 30. This result is important because, when consecutive valuesshow a
high correlation degree, it is more likely to achieve an accurate load prediction. We limit
the prediction window of interest for our studies to an interval of 30 seconds because, for
an extremely dynamic system, larger prediction windows could lead to a wrong view of
the load conditions.

Table VI. Auto-correlation values
Staircase user scenario and light service demand

k=10 k=30 k=60 k=100
Measures 0.59 0.45 0.32 0.22
EMA 30 0.94 0.76 0.51 0.18
CS60 0.90 0.68 0.47 0.21

Realistic user scenario and heavy service demand
k=10 k=30 k=60 k=100

Measures 0.30 0.25 0.18 0.18
EMA 90 0.96 0.85 0.71 0.61
CS240 0.96 0.83 0.63 0.48

6.2 Load prediction function

Thanks to the two-phase strategy, we can expect that even simple linear predictors may be
sufficient to forecast the future load of a resource. Indeed,previous studies [Lingyun et al.
2003, Sang and Li 2000, Baryshnikov et al. 2005] demonstratethat simple linear models,
such as the auto-regressive model or the linear interpolation, are adequate for prediction
when the correlation of consecutive resource measures is high. For example, in [Dinda and
O’Hallaron 2000] it is shown that the UNIX load average can beaccurately predicted with
low computational cost through an auto-regressive model that takes into account the last
16 measures (AR(16)). In this paper, we consider a set of load predictorsLPk(

−→
Lq(ti))

that are based on the linear regression of two load tracker values. Each predictor in this
class is characterized by two values:

—the predicted windowk, that represents the size of the prediction interval;

ACM Journal Name, Vol. V, No. N, Month 20YY.

Models and framework for supporting run-time decisions in Web-based systems · 27

-1

-0.5

 0

 0.5

 1

 0 100 200 300 400 500 600

A
C

F

Lag

Step scenario
Staircase scenario

Alternating scenario

(a) ACF of resource measures (light
service demand)

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000 3500

A
cf

Lag

Realistic scenario

(b) ACF of resource measures (heavy
service demand)

Fig. 17. Auto-correlation functions of the resource measures.

-1

-0.5

 0

 0.5

 1

 0 100 200 300 400 500 600

A
C

F

Lag

CS(n=60) - Step scenario
CS(n=60) - Staircase scenario

CS(n=60) - Alternating scenario

(a) ACF of CS 60 values

-1

-0.5

 0

 0.5

 1

 0 100 200 300 400 500 600

A
C

F

Lag

EMA(n=30) - Step scenario
EMA(n=30) - Staircase scenario

EMA(n=30) - Alternating scenario

(b) ACF of EMA 30 values

Fig. 18. Auto-correlation functions for two load trackers with “adequate” precision (light
service demand).

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000 3500

A
cf

Lag

CS(n=240) - Realistic scenario

(a) ACF of CS 240 values

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000 3500

A
cf

Lag

EMA(n=90) - Realistic scenario

(b) ACF of EMA 90 values

Fig. 19. Auto-correlation functions for two load trackers with “adequate” precision (heavy
service demand).

—the past time windowq, whereq is the size of the load tracker vector
−→
Lq(ti), that is the

distance between the first and the last considered load tracker value.

This linear load predictor is actually a class of load predictors that are based on the
linear regression of two load tracker values. Each predictor in this class is characterized
by the values of the past windowq and of the prediction windowk. Let us take two load

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · Mauro Andreolini et al.

tracker valuesli−q andli. The load predictorLPk(
−→
Lq(ti)) of the load tracker is the line

that intersects the two points(ti−q, li−q) and(ti, li) and returnŝli+k, that is the predicted
value of the load trackerli+k at timeti+k:

LPk(
−→
Lq(ti)) = m ∗ (ti+k) + li−q − m ∗ (ti−q) (14)

wherem =
li−li−q

q
. We should point out that this class of functions is just an example

of application of the two-phase strategy. Indeed, any otherlinear and non-linear predictor
could be integrated into the proposed framework.

6.3 Evaluation of the load predictors

In the context of the two-phase framework, the strength of a predictor depends on its ac-
curacy to evaluate the future values of the load tracker. Thecommon measure of the accu-
racy of a predictor is based on the evaluation of the relativeerror between a load tracker
value and the corresponding predicted valuel̂i+k. A load predictor characterized by a
low prediction error is able to evaluate future load trackervalues accurately. Let us con-
sider a load trackerLT (

−→
Sn(ti)) and a load predictorLPk(

−→
Lq(ti)) that, at timeti, forecasts

LT (
−→
Sn(ti+k)) wherek > 0. We define theprediction errorǫi+k at timeti+k as the relative

error between the actual load tracker valueli+k and the predicted valuêli+k:

ǫi+k =
|li+k − l̂i+k|

li+k

(15)

Small values ofǫi+k indicate a good accordance betweenli+k and l̂i+k. We evaluate
the accuracy of the load predictors defined in Equation 14 as afunction ofk (prediction
window) andq (past window), when they are applied to some of the load trackers proposed
in Section 3.

In Tables VII and VIII we report the sum of the relative prediction errors normalized by
the number of predictions carried out during the experimentfor the staircase user scenario
and light service demand, and for the realistic user scenario and heavy service demand,
respectively.

Table VII. Prediction errors as a function of the past windowvalue (staircase user scenario and light service
demand)

Prediction window k = 10

q=5 q=10 q=20
EMA 30 0.12 0.14 0.18
CS60 0.14 0.15 0.21

Prediction window k = 30

q=10 q=15 q=20
EMA 30 0.25 0.15 0.18
CS60 0.46 0.36 0.38

The first important result coming from all our experiments isthat the load predictors
based on a linear load tracker such as EMA performs always better than the load predictors
based on a non-linear load tracker, such as CS. This result ischaracterized by a total relative
error always higher than 0.3 whenk = 30. This depends on two factors: a linear load
tracker is characterized by a reduced number of oscillations; we are using a linear function

ACM Journal Name, Vol. V, No. N, Month 20YY.

Models and framework for supporting run-time decisions in Web-based systems · 29

Table VIII. Prediction errors as a function of the past window value (realistic user scenario and heavy service
demand)

Predicition window k = 10

q=5 q=10 q=20
EMA 90 0.11 0.14 0.18
CS240 0.19 0.23 0.26

Prediction window k = 30

q=10 q=15 q=20
EMA 90 0.22 0.19 0.25
CS240 0.35 0.32 0.40

as a load predictor. Analyses for different load predictionfunctions are out of the scope of
this paper.

Another important result is that for short prediction windows, such ask = 10 seconds,
the results are rather stable for any set ofq past values. On the other hand, for further
predictions (e.g.,k = 30), the choice of the right values forq is more important. An
empirical observation coming from Table VII and from all other results about different
scenarios is that for adequate predictions it is convenientto use a set of past values in the
intervalk/2 ≤ q < k. The reason for this is that with too fewq values, the prediction line
takes into account only the very recent trend of the load tracker. Hence, if the load tracker
is not smoothed enough, the prediction error tends to augment. On the other hand, too
manyq values tend to give excessive importance to the past trends,and this causes another
type of prediction error.

In the graphs in Figure 20 we give a visual interpretation of the load prediction behavior
achieved by EMA90 and CS240. The parameter of these figures areq = 5 for the prediction
window of k = 10, andq = 15 for a prediction window ofk = 30 seconds. We show
the load tracker values and the predicted values for the realistic user scenario and heavy
service demand. All predicted curves follow the load trackers fairly well even fork = 30
seconds. Moreover, these figures confirm the better results of a predictor based on an EMA
load tracker with respect to that based on a CS load tracker.

7. CASE STUDIES

In this section we validate the proposed two-phase strategyby applying it to support run-
time management decisions in two distributed environments. The considered systems share
the common characteristics that their resource measures obtained by monitors present large
oscillations. In Section 7.1, we support a threshold-basedadmission controller and a re-
quest dispatcher applied to a Web cluster system. In Section7.2, we consider a completely
different system to demonstrate the flexibility of the proposed framework and we support a
dynamic load balancer applied to a locally distributed Network Intrusion Detection System
(NIDS).

7.1 Admission control and dispatching for a Web cluster system

Two main problems affect the performance of an e-commerce infrastructure [Elnikety et al.
2004]: overload risks when the volume of requests temporarily exceed the capacity of the
system, and slow response time leading to lowered usage of a site and consequent reduced
revenues. To mitigate these two problems, the software infrastructure can be enriched
with an admission controller that accepts new client requests only if the system is able to

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · Mauro Andreolini et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 300 400 500 600 700 800 900 1000

C
P

U
 U

til
iz

at
io

n

Time [s]

EMA (n=90)
Load Predictor (k=10, q=5)
PREDICTION ERROR = 0.11

(a) Prediction based on EMA 90 (10s in
the future)

 0

 0.2

 0.4

 0.6

 0.8

 1

 300 400 500 600 700 800 900 1000

C
P

U
 U

til
iz

at
io

n

Time [s]

CS (n=240)
Load Predictor (k=10, q=5)
PREDICTION ERROR = 0.19

(b) Prediction based on CS 240 (10s in
the future)

 0

 0.2

 0.4

 0.6

 0.8

 1

 300 400 500 600 700 800 900 1000

C
P

U
 U

til
iz

at
io

n

Time [s]

EMA (n=90)
Load Predictor (k=30, q=15)
PREDICTION ERROR = 0.19

(c) Prediction based on EMA 90 (30s in
the future)

 0

 0.2

 0.4

 0.6

 0.8

 1

 300 400 500 600 700 800 900 1000

C
P

U
 U

til
iz

at
io

n

Time [s]

CS (n=240)
Load Predictor (k=30, q=15)
PREDICTION ERROR = 0.32

(d) Prediction based on CS 240 (30s in
the future)

Fig. 20. Load predictors for a workload characterized by realistic user scenario and heavy
service demand.

process them with some guaranteed performance level [Elnikety et al. 2004, Cherkasova
and Phaal 1999, Chen and Heidemann 2005]. Many decisions about accepting or not a
client request are based on punctual load information of some critical component of the
infrastructure: if the observed resource measure lies below a predefined threshold, the
system accepts the request; otherwise, the request is dropped. This approach may lead to
frequent and unnecessary activations of the admission control mechanism. Even worse,
highly variable and burst Web patterns may make it very difficult to activate the admission
control mechanism on time.

In this section, we show how the use of the proposed two-phasestrategy with a load
tracker and a load prediction can mitigate the aforementioned problems and improve the
overall performance of the system.

We refer to a locally distributed, multi-tier system whose architecture is described in
Figure 21. The system is based on the implementation presented in [Cain et al. 2001].
The application servers are deployed through the Tomcat [Tomcat 2005] servlet container,
and are connected to MySQL [MySQL 2005] database servers. Inour experiments, we
exercise the system through real traces; each experiment has a duration of 30 minutes. The
Web switch node, running a modified version of the Apache Web server [Apache 1999], is
enriched with a threshold-based admission control mechanism and a weighted round-robin

ACM Journal Name, Vol. V, No. N, Month 20YY.

Models and framework for supporting run-time decisions in Web-based systems · 31

Fig. 21. Architecture of the multi-tier Web cluster

dispatcher, where weights are based on resource measures orload predicted values. At the
arrival of an HTTP request, the admission controller decides whether to serve or to refuse
it, by using direct or filtered load monitoring information coming from each server of the
cluster. The admission threshold is set to 95% of the maximumprocessing capacity of
the back-end nodes which are the most critical components ofthe system. If a request is
admitted into the system, the dispatcher forwards it to the Apache-based HTTP server if
it is for a static object, otherwise through the weighted round-robin algorithm it chooses a
suitable application server if the request is for a dynamically generated resource.

We consider three instances of the admission controller andof the dispatcher: one is
based on resource measures, the others are based on the two-phase framework where the
load tracker uses the EMA90 or the CS240 models, and the load prediction is based on
the model of Section 6 forq = 5 andk = 10. The activities of these three instances
of the admission control mechanism in terms of refused requests are shown in Figure 22.
From this figure, we can observe that the use of the two-phase strategy tends to reduce
the number of unnecessary activations of the admission control mechanism, which are due
to transient load spikes, and consequently allows the system to reject a minor number of
requests. However, there is a visual evidence that the EMA and CS load trackers have
different effects that we motivate below. Table IX summarizes the quantitative results
of this case study. The first important result is that the two-phase framework does not
penalize the overall performance of the system. Even if it accepts a much larger quantity
of requests, the impact on the 90-percentile of the responsetime is not perceived by a user.
Moreover, the use of the two-phase strategy reduces some (unnecessary) activations of the
refusal mechanism, and limits the number of refusals. Thesepositive effects are due to the
combined benefits of the dispatching algorithm and of the admission control mechanism
based on predicted values.

From Figure 22 and Table IX, we can also conclude that the prediction based on an
EMA load tracker supports admission control algorithms more efficiently than the CS-
based alternative. This is in complete accordance with the results shown in Section 6,
where the prediction errors affecting the CS240 predictor were significantly higher than
those characterizing the EMA90 predictor.

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · Mauro Andreolini et al.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 200 400 600 800 1000 1200 1400 1600 1800

R
ef

us
al

s

Time [s]

Resource measures

(a) Admission control
based on resource

measures

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 200 400 600 800 1000 1200 1400 1600 1800

R
ef

us
al

s

Time [s]

Prediction (k=10, q=5) based on EMA (n=60)

(b) Admission control
based on the two-phase

framework (EMA 90)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 200 400 600 800 1000 1200 1400 1600 1800

R
ef

us
al

s

Time [s]

Prediction (k=10, q=5) based on CS (n=240)

(c) Admission control
based on the two-phase

framework (CS 240)

Fig. 22. Number of refused requests during the entire experiment.

Table IX. Evaluation of the two admission control mechanisms
90-percentile of the Percentage of Activations of the

Web page response time refused requests admission refusal
Resource measures 3.08s 31% 140

Two-phase framework (EMA90 and prediction) 3.71s 10% 35
Two-phase framework (CS240 and prediction) 3.26s 17.34% 72

7.2 Locally distributed Network Intrusion Detection System

In an Internet scenario characterized by a continuous growth of network bandwidth and
traffic, the network appliances that have to monitor and analyze all flowing packets are
reaching their limits. These issues are critical especially for aNetwork Intrusion Detection
System(NIDS) that looks for evidences of illicit activities by tracing all connections and
examining every packet flowing through the monitored links.

Here, we consider a locally distributed NIDS (Figure 23) with multiple sensors that re-
ceive traffic slices by a centralized dispatcher as in [Colajanni and Marchetti 2006]. The
overall NIDS performance is improved if the number of packets reaching each traffic an-
alyzer does not overcome its capacity and the load among the traffic analyzers is well
balanced. To this purpose, the considered locally distributed NIDS is enriched by a load
balancer that dynamically re-distributes traffic slices among the traffic analyzers. This bal-
ancer is activated when the load of a traffic analyzer reachesa given threshold. In such
a case, the load balancer re-distributes traffic slices to other less loaded traffic analyzers
in a round-robin way, until the load on the alarmed analyzer falls below the threshold.
The distributed NIDS are exercised through the IDEVAL traffic dumps that are considered
standard workloads for attacks [Lippmann et al. 2000].

The considered system shares an important characteristic of Internet-based servers, that
is, a marked oscillatory behavior of the samples measured ineach component that com-
plicates load balancing decisions. As examples, we report in Figure 24 the load on a
distributed NIDS consisting of three traffic analyzers. Theload is measured as a network
throughput (in Mbps) that is shown to be the best load indicator. The horizontal line at
12 Mbps denotes the threshold for the activation of the dynamic load balancer. The small
vertical lines on top of each figure indicate the activation of a load re-distribution process
on that traffic analyzer. The consequences of taking balancing decisions on the basis of
periodic samples of the traffic throughput are clear: the mechanism for load re-distribution
is activated too frequently (63 times during the experimentlasting for 1200 seconds), but

ACM Journal Name, Vol. V, No. N, Month 20YY.

Models and framework for supporting run-time decisions in Web-based systems · 33

Slicer m

Slicer 2

Slicer 1 Sensor 1

Sensor n

Sensor 2

COORDINATOR

Slicer Level NIDS Level

Protected
Network

Switch

Fig. 23. Architecture of the distributed NIDS

the load on the traffic analyzers is not balanced at all.
We apply the two-phase framework to the same NIDS system. In particular, we integrate

the load balancer with a load change detection model based onSMA and EMA of the last
measures of the network throughput. Figure 25 and Figure 26 show the load balancing
activities on the three traffic analyzers when the load change detector is based on SMA10

and EMA30, respectively. A cross comparison among the Figures 24, 25 and 26 gives a
first immediate result. Thanks to the two-phase framework, the mechanism for load re-
distribution is activated few times and especially in the first part of the experiment. After
an initial transient phase, where the load balancer has to re-distribute traffic among the
traffic analyzers, then the load remains more evenly distributed below the threshold and
the number of load balancer activations decreases significantly.

The reduction of unnecessary activations of the load re-distributor is an important result,
but we are also interested to know which mechanism improves load balancing of the three
traffic analyzers. To this purpose, we evaluate the Coefficient of Variation of the load on
each traffic analyzer for the load change detector models based on EMA30, SMA10, and
also resource samples for further comparison.

Table X summarizes the results of this case study: the load balancing systems that use
the two-phase framework both reduce re-distribution activities and improve the quality
of load balancing: the 90-percentile of the Coefficient of Variation of the load change
detector based on EMA30 is almost six time smaller than that based on resource measures.
These results give a further confirmation that most of the re-distributions carried out during
the experiment based on resource measures were not only useless but had also a negative
impact on load balancing.

8. RELATED WORK

Detecting significant and permanent load changes of a systemresource, and predicting its
future load behavior are at the basis of most run-time decisions for the management of
Web distributed systems. Some examples of applications include load balancers [Pai et al.
1998, Castro et al. 1999, Bryhni 2000, Andreolini et al. 2003, Mitzenmacher 2000, Ferrari
and Zhou 1987, Gautama and van Gemund 2006, Bahi et al. 2006],overload and admis-

ACM Journal Name, Vol. V, No. N, Month 20YY.

34 · Mauro Andreolini et al.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000 1200
N

et
w

or
k

T
hr

ou
gh

pu
t (

M
B

ps
)

Time [s]

rs1 Threshold balancing

(a) Traffic analyzer 1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000 1200

N
et

w
or

k
T

hr
ou

gh
pu

t (
M

B
ps

)

Time [s]

rs2 Threshold balancing

(b) Traffic analyzer 2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000 1200

N
et

w
or

k
T

hr
ou

gh
pu

t (
M

B
ps

)

Time [s]

rs3 Threshold balancing

(c) Traffic analyzer 3

Fig. 24. Load on NIDS traffic analyzers when load balancing isbased on resource measures

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000 1200

N
et

w
or

k
T

hr
ou

gh
pu

t (
M

B
ps

)

Time [s]

rs1 Threshold balancing

(a) Analyzer 1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000 1200
N

et
w

or
k

T
hr

ou
gh

pu
t (

M
B

ps
)

Time [s]

rs2 Threshold balancing

(b) Analyzer 2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000 1200

N
et

w
or

k
T

hr
ou

gh
pu

t (
M

B
ps

)

Time [s]

rs3 Threshold balancing

(c) Analyzer 3

Fig. 25. Load on NIDS traffic analyzers when load balancing isbased on a two-phase
framework (SMA10 load tracker)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000 1200

N
et

w
or

k
T

hr
ou

gh
pu

t (
M

B
ps

)

Time [s]

rs1 Threshold balancing

(a) Analyzer 1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000 1200

N
et

w
or

k
T

hr
ou

gh
pu

t (
M

B
ps

)

Time [s]

rs2 Threshold balancing

(b) Analyzer 2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000 1200

N
et

w
or

k
T

hr
ou

gh
pu

t (
M

B
ps

)

Time [s]

rs3 Threshold

(c) Analyzer 3

Fig. 26. Load on NIDS traffic analyzers when load balancing isbased on a two-phase
framework (EMA30 load tracker)

Table X. Evaluation of load balancing mechanisms
90-percentile of the Total number of

Coefficient of Variation load re-distributions
Activation based on samples 0.58 63
Activation based on SMA10 0.20 12
Activation based on EMA30 0.10 13

sion controllers [Pai et al. 1998, Pandey and Barnes 1998, Kamra et al. 2004,Abdelzaher
et al. 2002,Chen and Mohapatra 2003], request routing mechanisms and replica placement
algorithms [Rabinovich et al. 2003, Karbhari et al. 2002, Pierre and Van Steen 2001, Siva-
subramanian et al. 2004], distributed resource monitors [Rabinovich et al. 2006, Wolski
et al. 1999]. The common method to represent resource load values for run-time man-
agement systems is based on the periodic collection of samples from server monitors and
on the direct use of these values. Some low-pass filtering of network throughput samples

ACM Journal Name, Vol. V, No. N, Month 20YY.

Models and framework for supporting run-time decisions in Web-based systems · 35

has been proposed in [Sang and Li 2000], but the large majority of proposals detect load
changes and predict future values on the basis of some functions that work directly on
resource measures. Even the studies that are based on a control theoretical approach to
prevent overload or to provide guaranteed levels of performance in Web systems [Kamra
et al. 2004,Abdelzaher et al. 2002] refer to direct resourcemeasures (e.g., CPU utilization,
average Web object response time) as feedback signals.

The problem with these approaches is that most modern Web-based systems are charac-
terized by complex hardware/software architectures and byhighly variable workloads that
cause instability of system resource measures. Hence, real-time management decisions
based on the direct use of these measures may lead to risky when not completely wrong
actions. Our preliminary experimental results motivate the proposal for a two-phase strat-
egy that first aims to represent the load trend of a resource (namely,load tracker), and then
uses this load representation as the input forload change detectorsand load predictors
that are at the basis of many run-time decision systems. An initial idea of the two-phase
approach applied to the load prediction problem has been proposed by the authors in [An-
dreolini and Casolari 2006]. However, this is the first paperthat proposes a thorough study
and a general two-phase methodology to support run-time decisions in the context of com-
plex architectures and heavy-tailed workloads characterizing modern Web-based services.
Moreover, in this paper we implement and integrate the overall methodology into a frame-
work that has been demonstrated to work well for quite different distributed contexts. The
architecture of many sophisticated load monitoring strategies and management tasks, and
the characteristics of heavy-tailed workloads are often too complex for an analytical rep-
resentation [Luo and Marin 2005, Fishman and Adan 2006]. Unlike our paper based on
a view of real systems, many previous studies have been oriented to simulation models
of simplified Web-based architectures [Abdelzaher et al. 2002,Pai et al. 1998,Cherkasova
and Phaal 2002,Stankovic 1984,Cardellini et al. 2000]. Although the simulation of a Web-
based system is a challenging task by itself [Floyd and Paxson 2001] that has characterized
many research efforts of the same authors, we have to admit that real systems open novel
interesting and challenging issues.

There are many studies on the characterization of resource loads, albeit related to sys-
tems that are subject to quite different workload models with respect to those considered in
this paper. Hence, many of the previous results cannot be applied directly to the Web-based
systems considered here. For example, the authors in [Mitzenmacher 2000] evaluate the
effects of different load representations on job load balancing through a simulation model
that assumes a Poisson job inter-arrival process. A similaranalysis concerning UNIX sys-
tem is carried out in [Ferrari and Zhou 1987]. Dinda et al. [Dinda and O’Hallaron 2000]
investigate the predictability of the CPU load average in a UNIX machine subject to CPU
bound jobs. The adaptive disk I/O prefetcher proposed in [Tran and Reed 2004] is vali-
dated through realistic disk I/O inter-arrival patterns referring to scientific applications. On
the other hand, the workload features considered in all these pioneer papers differ substan-
tially from the load models characterizing Web-based servers that show high variability,
bursty patterns and heavy tails even at different time scales.

Some more recent studies refer to Web-based workloads, but in the context of specific
applications or tasks, that are mainly oriented to admission control mechanisms. For ex-
ample, Cherkasova et al. [Cherkasova and Phaal 2002] validate their session-based admis-
sion controller for Web servers through the SPECWeb96 workload [SpecWEB96 1996],

ACM Journal Name, Vol. V, No. N, Month 20YY.

36 · Mauro Andreolini et al.

that nowadays is considered fairly obsolete [Iyer 2001,SpecWEB05 2005] with respect to
the TPC-W workload [TPC-W 2004] that is becoming the de-facto standard benchmark
for the analysis of Web-based systems for dynamic services.An interesting example of
application is in [Kamra et al. 2004], where the authors propose a self-tuning admission
controller for multi-tier Web sites. However, no previous study is oriented to propose a
general methodology for load tracking, load change detection and load prediction.

The focus on run-time operations and consequent constraints is another key difference
of this paper with respect to previous literature. The most common method for investigat-
ing the efficacy of load representation for run-time management tasks is off-line analysis
of samples collected from access or resource usage logs [Sang and Li 2000, Dinda and
O’Hallaron 2000, Baryshnikov et al. 2005, Lingyun et al. 2003, Choi et al. 2003, Kelly
2005]. In this paper, the need for run-time decision supports in a highly variable Web
context has led to evaluate the feasibility of simple yet effective load models and predic-
tors, and the possibility of integrating them in an on-line framework. All the considered
models must be characterized by low computational complexity. In our paper, we con-
sider linear and non-linear models, that may be used as a trend indicator in other contexts
(see for example the cubic spline function in [Eubank and Eubank 1999, Wolber and Alfy
1999, Poirier 1973]). The distributed resource monitor called Network Weather Service
(NWS) [Wolski et al. 1999] collects resource measures periodically, and forecasts future
sample values by means of linear averages, median estimates, or auto-regressions. How-
ever, the NWS predictions are just one-step-ahead and are related to measured values; on
the other hand, the proposed framework is able to generate k-step-ahead predictions of the
load trend values.

Other linear models are widely adopted for load representation and prediction. For ex-
ample, in [Baryshnikov et al. 2005] the authors demonstratehow a simple linear extrapo-
lation can predict an hot spot with good approximation. The simulation results presented
in [Cherkasova and Phaal 2002] show that the exponential moving average of the CPU
utilization can be used as a valid indicator for the Web server load. This hypothesis is in
accordance with some of the results of this paper, we can confirm through real experiments
applied to different distributed contexts. On the other hand, we can conclude that linear
time series models, that are often adopted to predict futureload values [Tran and Reed
2004, Lingyun et al. 2003, Sang and Li 2000], are not really suitable to support run-time
decisions for Web-based systems. The problem is that, in highly variable contexts, an auto-
regressive model such as ARIMA requires a continuous updating of the parameters that is
unsuitable to support most run-time management decisions.

9. CONCLUSIONS

In this paper, we address two important issues that are at thebasis of several run-time
decisions management in Web-based systems: detecting non-transient changes of the load
conditions of a system resource, and predicting future loadvalues of a resource.

Existing run-time management systems evaluate load conditions of system resources
and, on this basis, decide whether and which action(s) it is important to carry out. We have
shown that in the context of Web-based systems characterized by highly variable workload
and complex hardware/software architectures, it is inappropriate to take decisions just on
the basis of system resource measures. The values obtained from load monitors of Web-
based servers offer an instantaneous view of the load conditions of a resource and they

ACM Journal Name, Vol. V, No. N, Month 20YY.

Models and framework for supporting run-time decisions in Web-based systems · 37

are of little help for understanding the real load trends andfor anticipating future load
conditions.

For this reason, we propose a two-phase strategy that first aims to get a representative
view of the load trend from resource measures through linearand non-linear models that
are computationally compatible to run-time constraints. Then, it uses the estimated load
trends for solving decision problems, such as the load change detection and the load pre-
diction that are considered in this paper.

We have integrated the two-phase methodology into a framework that is suitable to sup-
port different decision systems in real context. In this paper, we have experimented the
proposed framework in a multi-tier Web system, in a Web cluster and in a distributed
NIDS for job dispatching, load balancing and admission control purposes and for a large
set of representative workload models. In all contexts, theachieved results are quite en-
couraging. For this reason, we think that the proposed two-phase strategy can be extended
to other problems, such as long term prediction and trend analysis, and to many other ap-
plication contests that require precise and run-time decisions, such as load sharing, load
balancing and request redirection even at a geographical scale. Web systems based on au-
tonomic properties and GRID infrastructures are other interesting areas where the proposed
framework and models could find immediate application.

Acknowledgements

We would like to express our gratitude to the many people who offered input on this work.
Special and sincere thanks go to the anonymous reviewers fortheir helpful comments. We
thank Novella Bartolini and Francesco Lo Presti for their valuable hints. We acknowledge
that the two-sided quartile-weighted median was suggestedby Francesco, and the scatter
plot by the first reviewer. We thank Mirco Marchetti for having integrated the two-phase
framework into his distributed NIDS architecture and helped us with the experiments.

REFERENCES

ABDELZAHER, T., SHIN , K. G., AND BHATTI , N. 2002. Performance guarantees for Web server end-systems:
A control-theoretical approach.IEEE Trans. Parallel and Distributed Systems 13,1 (Jan.), 80–96.

ANDREOLINI, M. AND CASOLARI, S. 2006. Load prediction models in Web-based systems. InProc. of 1th
Intl. Performance Evaluation Methodologies and Tools Conference (VALUETOOLS 2006).Pisa, Italy.

ANDREOLINI, M., COLAJANNI , M., AND NUCCIO, M. 2003. Scalability of content-aware server switches for
cluster-based Web information systems. InProc. of 12th Int’l World Wide Web Conf. (WWW2003). Budapest,
Hungary.

APACHE. 1999. Apache HTTP Server Project.http://www.apache.org.

ARLITT, M., KRISHNAMURTHY, D., AND ROLIA , J. 2001. Characterizing the scalability of a large Web-based
shopping system.IEEE Trans. Internet Technology 1,1 (Aug.), 44–69.

BAHI , J., CONTASSOT-V IVIER , S., AND COUTURIER, R. 2006. Dynamic load balancing and efficient load
estimators for asynchronous iterative algorithms.IEEE Trans. Parallel and Distributed Systems 16,4 (Apr.),
289–299.

BARFORD, P. AND CROVELLA , M. E. 1998. Generating representative Web workloads for network and server
performance evaluation. InProc. of 1st the Joint International Conference on Measurement and Modeling of
Computer Systems (ACM SIGMETRICS 1998/Performance 1998). Madison, WI.

BARYSHNIKOV, Y., COFFMAN, E., PIERRE, G., RUBENSTEIN, D., SQUILLANTE , M., AND Y IMWADSANA , T.
2005. Predictability of Web server traffic congestion. InProc. of 10th Int’l Workshop of Web Content Caching
and Distribution (WCW 2005). Sophia Antipolis, France.

BONETT, D. 2006. Approximate confidence interval for standard deviation of nonnormal distributions.Compu-
tational Statistics and Data Analysis 50,3 (Feb.), 775–882.

ACM Journal Name, Vol. V, No. N, Month 20YY.

38 · Mauro Andreolini et al.

BOX, G., JENKINS, G.,AND REINSEL, G. 1994.Time Series Analysis Forecasting and Control. Prentice Hall.

BROCKWELL, B. L. AND DAVIS , R. A. 1987.Time Series: Theory and Methods. Springer-Verlag.

BRYHNI , H. 2000. A comparison of load balancing techniques for scalable web servers.IEEE Network 14,4
(July), 58–64.

CAIN , H. W., RAJWAR, R., MARDEN, M., AND L IPASTI, M. H. 2001. An architectural evaluation of Java TPC-
W. In Proc. of the 7th Intl. Symposium on High-Performance Computer Architecture (HPCA2001). Nuovo
Leone, Mexico.

CANALI , C., XIAO , Z., AND RABINOVICH , M. 2004. Utility computing for Internet applications. InWeb
Content Delivery, X. Tang, J. Xu, and S. Chanson, Eds. Vol. 2. Springer Verlag,New York, NY, 131–151.

CARDELLINI , V., CASALICCHIO, E., COLAJANNI , M., AND YU, P. 2002. The state of the art in locally
distributed Web-server system.ACM Computing Surveys2 (Jun), 263–311.

CARDELLINI , V., COLAJANNI , M., AND YU, P. 2003. Request redirection algorithms for distributed Web
systems.IEEE Trans. Parallel and Distributed Systems 14,5 (May), 355–368.

CARDELLINI , V., COLAJANNI , M., AND YU, P. S. 2000. Geographic load balancing for scalable distributed
Web systems. InProc. of 8th International Workshop on Modeling, Analysis,and Simulation of Computer
and Telecommunication Systems (MASCOTS 2000). San Francisco, CA.

CASTRO, M., DWYER, M., AND RUMSEWICZ, M. 1999. Load balancing and control for distributed World
Wide Web servers. InProceedings of the Intl. Conference on Control Applications (CCA 1999). Kohala
Coast, HI.

CECCHET, E., CHANDA , A., ELNIKETY, S., MARGUERITE, J., AND ZWAENEPOEL, W. 2003. Performance
comparison of middleware architectures for generating dynamic Web content. InProc. of the 4th Middleware
Conference. Rio de Janeiro, Brasil.

CHALLENGER, J., DANTZIG , P., IYENGAR, A., SQUILLANTE , M., AND ZHANG, L. 2004. Efficiently serving
dynamic data at highly accessed Web sites.IEEE/ACM Trans. on Networking 12,2 (Apr.), 233–246.

CHEN, H. AND MOHAPATRA, P. 2002. Session-based overload control in QoS-aware Web server. InProc. of
the 21th IEEE Intl. Conference on Computer Communications (INFOCOM 2002).

CHEN, H. AND MOHAPATRA, P. 2003. Overload control in QoS-aware Web servers.Computer Networks 42,1
(May), 119–133.

CHEN, X. AND HEIDEMANN , J. 2005. Flash crowd mitigation via an adaptive admission control based on
application-level observations.IEEE Trans. Internet Technology 5,3 (Aug), 532–569.

CHERKASOVA, L. AND PHAAL , P. 1999. Session based admission control: A mechanism for improving perfor-
mance of commercial Web sites. InProc. of 7th Intl. Workshop on Quality of Service (IWQoS 1999). London,
UK, 226–235.

CHERKASOVA, L. AND PHAAL , P. 2002. Session-based admission control: a mechanism forpeak load manage-
ment of commercial Web sites.IEEE Trans. Computers 51,6 (June), 669–685.

CHOI, B., PARK , J.,AND ZHANG, Z. 2003. Adaptive random sampling for traffic load measurement. InProc.
of the 16th IEEE Intl. Conference on Communications (ICC 2003). Anchorage, AL.

COLAJANNI , M. AND MARCHETTI, M. 2006. A parallel architecture for stateful intrusion detection in
high traffic networks. InProc. of the IEEE/IST Workshop on Monitoring, Attack Detection and Mitigation
(MonAM2006). Tuebingen, Germany.

CROVELLA , M. E., TAQQU, M. S., AND BESTAVROS, A. 1998. Heavy-tailed probability distributions in the
World Wide Web. InA Practical Guide To Heavy Tails. Chapman and Hall, New York, 3–26.

DAHLIN , M. 2000. Interpreting stale load information.IEEE Trans. Parallel and Distributed Systems 11,10
(Oct.), 1033–1047.

DINDA , P. AND O’HALLARON , D. 2000. Host load prediction using linear models.Cluster Computing 3,4
(Dec.), 265–280.

DODGE, R. C., MENASCÉ, D. A., AND BARBARÁ , D. 2001. Testing e-commerce site scalability with TPC-W.
In Proc. of the 27th Intl. Computer Measurement Group Conference. Orlando, FL.

DUFFIELD, N. G. AND LO PRESTI, F. 2000. Multicast inference of packet delay variance at interior network
links. In Proc. of the 19th IEEE Intl. Conference on Computer Communications (INFOCOM 2000). Tel Aviv,
Israel.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Models and framework for supporting run-time decisions in Web-based systems · 39

ELNIKETY, S., NAHUM , E., TRACEY, J.,AND ZWAENEPOEL, W. 2004. A method for transparent admission
control and request scheduling in e-commerce Web sites. InProc. of the 13th International World Wide Web
Conference. New York, NY.

EUBANK , R. L. AND EUBANK , E. 1999.Non parametric regression and spline smoothing. CRC Press, USA.

FERRARI, D. AND ZHOU, S. 1987. An empirical investigation of load indices for load balancing applications.
In Proc. of the 12th IFIP WG 7.3 Intl. Symposium on Computer Performance Modeling, Measurement and
Evaluation (PERFORMANCE 1987). Brussels, Belgium.

FISHMAN , G. AND ADAN , I. 2006. How heavy-tailed distributions affect simulation-generated time averages.
ACM Trans. on Modeling and Computer Simulation 16,2 (Apr.), 152–173.

FLOYD , S. AND PAXSON, V. 2001. Difficulties in simulating the Internet.IEEE/ACM Trans. Networking 9,3
(Aug.), 392–403.

FORSYTHE, G. E., MALCOLM , M. A., AND MOLER, C. B. 1977.Computer Methods for Mathematical Com-
putations. Prentice-Hall.

GANEK , A. G. AND CORBI, T. 2003. The dawning of the autonomic computing era.IBM Systems Journal 42,1
(Jan.), 5–18.

GAUTAMA , H. AND VAN GEMUND, A. 2006. Low-cost static performance prediction of parallel stochastic task
compositions.IEEE Trans. Parallel and Distributed Systems 17,1 (Jan.), 78–91.

IYER, R. 2001. Exploring the cache design space for Web servers. In Proc. of the 15th Int’l Parallel and
Distributed Processing Symposium (PDPS 2001). San Francisco, CA.

JUNG, J., KRISHNAMURTHY, B., AND RABINOVICH , M. 2002. Flash crowds and denial of service attacks:
Characterization and implications for CDNs and Web sites. In Proc. of 11th Int’l World Wide Web Conference
(WWW2002). Honolulu, HW.

KAMRA , A., M ISRA, V., AND NAHUM , E. M. 2004. Yaksha: A self-tuning controller for managing the per-
formance of 3-tiered sites. InProc. of Twelfth International Workshop on Quality of Service (IWQOS2004).
Montreal, Canada.

KARBHARI , P., RABINOVICH , M., X IAO , Z., AND DOUGLIS, F. 2002. ACDN: A content delivery network
for applications. InProc. of the 21st ACM Intl. Conference on Management of Data (ACM SIGMOD 2002).
Madison, WI.

KELLY, T. 2005. Detecting performance anomalies in global applications. InProc. of the USENIX Workshop on
Real, Large Distributed Systems (WORLDS 2005). San Francisco, CA.

KENDALL , M. AND ORD, J. 1990.Time Series. Oxford University Press.

KEPHART, J. O.AND CHESS, D. M. 2003. The vision of Autonomic Computing.IEEE Computer 36,1 (Jan.),
41–50.

L ILJA , D. J. 2000.Measuring computer performance. A practitioner’s guide. Cambridge University Press.

L INGYUN , Y., FOSTER, I., AND SCHOPF, J. M. 2003. Homeostatic and tendency-based CPU load predictions.
In Proc. of the 8th Intl. Parallel and Distributed Processing Symposium (IPDPS 2003). Nice, France.

L IPPMANN, R., HAINES, J. W., FRIED, D., AND KORBA, J. DAS, K. 2000. Analysis and results of the 1999
DARPA off-line intrusion detection evaluation. InProceedings of the 3rd Intl. Workshop on Recent Advances
in Intrusion Detection (RAID 2000). London, UK.

LUO, S.AND MARIN , G. 2005. Realistic Internet traffic simulation through mixture modeling and a case study.
In Proc. of the 37th IEEE Winter Simulation Conference (WSC 2005). Orlando, FL.

MENASCÉ, D. AND KEPHART, J. 2007. Autonomic computing.IEEE Internet Computing 11,1 (Jan.), 18–21.

M ITZENMACHER, M. 2000. How useful is old information.IEEE Trans. Parallel and Distributed Systems 11,1
(Jan.), 6–20.

MySQL 2005. MySQL Database server. – http://www.mysql.com/.

PAI , V. S., ARON, M., BANGA , G., SVENDSEN, M., DRUSCHEL, P., ZWAENEPOEL, W., AND NAHUM , E. M.
1998. Locality-aware request distribution in cluster-based network servers. InProc. of the 8th ACM Con-
ference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 1998). San
Jose, CA.

PANDEY, R. AND BARNES, J. F. OLSSON, R. 1998. Supporting quality of service in HTTP servers. InProc. of
the 17th ACM Symposium on Principles of Distributed Computing (PODC 1998). Puerto Vallarta, Mexico.

PIERRE, G. AND VAN STEEN, M. 2001. Globule: a platform for self replicating Web documents. InProc. of
the 6th Conference on Protocols for Multimedia systems (PROMS 2001). Enschede, The Netherlands.

ACM Journal Name, Vol. V, No. N, Month 20YY.

40 · Mauro Andreolini et al.

POIRIER, D. J. 1973. Piecewise regression using cubic spline.Journal of the American Statistical Associa-
tion 68,343 (Sep.), 515–524.

PRADHAN , P., TEWARI, R., SAHU , S., CHANDRA , A., AND SHENOY, P. 2002. An observation-based approach
towards self-managing Web servers. InProc. of the 10th Intl. Workshop on Quality of Service (IWQOS2002).
Monterey, CA.

RABINOVICH , M., TRIUKOSE, S., WEN, Z., AND WANG, L. 2006. DipZoom: The Internet measurement
marketplace. InProc. of the 9th IEEE Global Internet Symposium. Barcelona, Spain.

RABINOVICH , M., ZHEN, X., AND AGGARWAL, A. 2003. Computing on the edge: A platform for replicating
Internet applications. InProc. of the 8th Intl. Workshop of Web Content Caching and Distribution (WCW
2003). Hawthorne, NY.

RAMANATHAN , P. 1999. Overload management in real-time control applications using (m,k)-firm guarantee.
Performance Evaluation Review 10,6 (Jun.), 549–559.

SANG, A. AND L I , S. 2000. A predictability analysis of network traffic. InProc. of the 19th IEEE Intl.
Conference on Computer Communications (INFOCOM 2000). Tel Aviv, Israel.

SATYANARAYANAN , M., NARAYANAN , D., TILTON , J., FLINN , J.,AND WALKER , K. 1997. Agile application-
aware adaptation for mobility. InProceedings of the 16th ACM Intl. Symposium on Operating Systems Prin-
ciples (SOSP 1997). Saint-Malo, France.

SIVASUBRAMANIAN , S., PIERRE, G.,AND VAN STEEN, M. 2004. Replication for Web hosting systems.ACM
Computing surveys 36,3 (Aug.), 291–334.

SpecWEB05 2005. The SPECWeb05 benchmark. – http://www.spec.org/osg/web2005/.
SpecWEB96 1996. The SPECWeb96 benchmark. – http://www.spec.org/osg/web96/.
STANKOVIC , J. A. 1984. Simulations of three adaptive, decentralized controlled, job scheduling algorithms.

Computer Networks 8,3 (June), 199–217.
Tomcat 2005. The Tomcat Servlet Engine. – http://jakarta.apache.org/tomcat/.
TPC-W 2004. TPC-W transactional Web e-commerce benchmark.– http://www.tpc.org/tpcw/.
TRAN, N. AND REED, D. 2004. Automatic ARIMA time series modeling for adaptiveI/O prefetching. IEEE

Trans. Parallel and Distributed Systems 15,4 (Apr.), 362–377.
UTTS, J. M. 2004.Seeing Through Statistics. Thomson Brooks/Cole.
WILDSTROM, J., STONE, P., WITCHEL, E., MOONEY, R., AND DAHLIN , M. 2005. Towards self-configuring

hardware for distributed computer systems. InProc. of the Second International Conference on Autonomic
Computing (ICAC2005). Seattle, WA.

WOLBER, G. AND ALFY, I. 1999. Monotonic cubic spline interpolation. InComputer Graphics International.
Canmore, CA.

WOLSKI, R., SPRING, N. T., AND HAYES, J. 1999. The Network Weather Service: A distributed resource
performance forecasting service for metacomputing.Future Generation Computer Systems 15,5, 757–768.

ACM Journal Name, Vol. V, No. N, Month 20YY.

