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Abstract

The study of extremal problems on triangle areas was iadian a series of papers by Erdds and
Purdy in the early 1970s. In this paper we present new resnlssich problems, concerning the number
of triangles of the same area that are spanned by finite peistiis the plane and in 3-space, and the
number of distinct areas determined by the triangles.

In the plane, our main result is @(n**/?) = O(n*315%) upper bound on the number of unit-area
triangles spanned by points, which is the first breakthrough improving the cleasbound ofO(n"/3)
from 1992. We also make progress in a number of importantiapeses: We show that (i) For points
in convex position, there exist-element point sets that sp&{n logn) triangles of unit area. (ii) The
number of triangles of minimum (nonzero) area determined pwints is at mosg(n2 —n); there exist
n-element point sets (for arbitrarily large that span(6/7% — o(1))n? minimum-area triangles. (iii)
The number of acute triangles of minimum area determined pygints isO(n); this is asymptotically
tight. (iv) Forn points in convex position, the number of triangles of minimarea isO(n); this is
asymptotically tight. (v) If no three points are allowed te tollinear, there ara-element point sets
that spart2(n log n) minimum-area triangles (in contrast to (ii), where colaniges are allowed and a
quadratic lower bound holds).

In 3-space we prove af(n'"/73(n)) = O(n*42%6) upper bound on the number of unit-area tri-
angles spanned by points, wherg3(n) is an extremely slowly growing function related to the irseer
Ackermann function. The best previous bou@dn®/3), is an old result of Erdés and Purdy from 1971.
We further show, for point sets in 3-space: (i) The number miimmum nonzero area triangles is at most
n? + O(n), and this is worst-case optimal, up to a constant factor.Tfiere aren-element point sets
that spar2(n?/3) triangles of maximum area, all incident to a common pointary n-element point
set, the maximum number of maximum-area triangles incittieatcommon point i€)(n*/3+), for any
e > 0. (iii) Every set ofn points, not all on a line, determines at le@u>/% /3(n)) triangles of distinct
areas, which share a common side.
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1 Introduction

Givenn points in the plane, consider the following equivalencatieh defined on the set of (nondegenerate)
triangles spanned by the points: two trianglesexgaivalentf they have the same area. Extremal problems
typically ask for the maximum cardinality of an equivalemtass, and for the minimum number of distinct
equivalence classes, in a variety of cases. A classical geaism when we call two segments spanned by
the given points equivalent if they have the same length. nBimg the maximum size of an equivalence
class is the famourepeated distanceproblem [10, 20| 39, 40], and bounding the minimum number of
distinct classes is the equally famodistinct distancegproblem [10] 20| 28, 38, 40, 42]. In this paper,
we make progress on several old extremal problems on teaarglas in two and in three dimensions. We
also study some new and interesting variants never comesidexfore. Our proof technigues draw from a
broad range of combinatorial tools such as the Szemern@diet theorem on point-line incidencés [41], the
Crossing Lemmad_ |5, 30], incidences between curves andgaimd tangencies between curves and lines,
extremal graph theory [29], quasi-planar graphs [3], Mimkki-type constructions, repeated distances on
the sphere [33], the partition technique of Clarksbml. [15], various charging schemes, etc.

In 1967, A. Oppenheim (sele [23]) asked the following quest®ivenn points in the plane and > 0,
how many triangles spanned by the points can have 4PeBy applying an affine transformation, one may
assumed = 1 and count the triangles ohit area. Erdés and Purdy [21] showed thatlag n x (n/+/log n)
section of the integer lattice determin@én? log logn) triangles of the same area. They also showed that
the maximum number of such triangles is at mO$k°/2). In 1992, Pach and Sharlr [34] improved the
exponent and obtained a?(n7/3) upper bound using the Szemerédi-Trotter theorer [41] emtimber of
point-line incidences. We further improve the upper boup@$timating the number of incidences between
the points and a 4-parameter family of quadratic curves. Naé&vghatn points in the plane determine at
mostO(n**/19) = O(n?31%%) unit-area triangles. We also consider the case of pointsiinex position,
for which we construch-element point sets that sp&in log n) triangles of unit area.

BraR, Rote, and Swanepogl [11] showed thaints in the plane determine at ma@stn?) minimum-
area triangles, and they pointed out that this bound is asytioglly tight. We introduce a simple charging
scheme to first bring the upper bound dowmfo- » and then further t(%(n2 —n). Our charging scheme is
also instrumental in showing that4r x 1/ section of the integer lattice spaféy/7> —o(1))n? triangles of
minimum area. In the lower bound constructions, there amyroallinear triples and most of the minimum-
area triangles are obtuse. We show that there are at@estacutetriangles of minimum (nonzero) area,
for anyn-element point set. Also, we show thapoints in (strictly) convex position determine at moxt:)
minimum-area triangles—these bounds are best possibtefeqra the constant factors. If no three points
are allowed to be collinear, we constructelement point sets that sp&{n log n) triangles of minimum
area.

Next we address analogous questions for triangles in 3espdfie number of triangles with some
extremal property might go up (significantly) when one mawe®ne dimension. For instance, Brafl3, Rote,
and Swanepoel [11] have shown that the number of maximumntidgaegles in the plane is at mast(which
is tight). In 3-space we show that this number is at Ié)a(m4/3) in the worst case. In contrast, for minimum-
area triangles, we prove that the quadratic upper bound fin@enplanar case remains in effect for 3-space,
with a different constant of proportionality.

As mentioned earlier, Erdés and Purdy|[21] showed that talsiein-element section of the integer
lattice determine$)(n?log log n) triangles of the same area. Clearly, this bound is also Waldspace. In
the same paper, via a forbidden graph argument applied indhience graph between points and cylinders
whose axes pass through the origin, Erdés and Purdy dedamél:(n5/3) upper bound on the number
of unit-area triangles incident to a common point, and tieran O(n8/3) upper bound on the number
of unit-area triangles determined bypoints in 3-space. Here, applying a careful (and somewkahied)
analysis of the structure of point-cylinder incidence®Rihwe prove a new upper bound@{n'7/73(n)) =



O(n24286) for B(n) = exp(a(n)°M), wherea(n) is the extremely slowly growing inverse Ackermann
function.

It is conjectured[10, 12, 24] that points inR3, not all on a line, determine at ledgt, — 1) /2] distinct
triangle areas. This bound has recently been establishtbé planel[35], but the question is still wide open
in R3. It is attained byn equally spaced points distributed evenly on two paralteddi(which is in fact a
planar construction). We obtain a first result on this qoestind show that points inR?3, not all on a line,
determine at least?/? exp(—a(n)°™M) = Q(n-9%) triangles of distinct areas. Moreover, all these triangles
share a common side.

2 Unit-areatrianglesin the plane

The general case. We establish a new upper bound on the maximum number of tgst{@iangles deter-
mined byn points the plane.

Theorem 1 The number of unit-area triangles spannediqyoints in the plane i© (n2+6/19) = O(n?31%8),

Proof. Let .S be a set of: points in the plane. Consider a triangleibc spanned bys. We call the three
lines containing the three sides Alubc, base linesof A, and the three lines parallel to the base lines and
incident to the third vertexpp linesof A.

For a parametek, 1 < k < /n, to be optimized later, we partition the set of unit-areartgles as
follows.

e /1 denotes the set of unit-area triangles where one of therep Is incident to fewer thanpoints of S.

¢ U, denotes the set of unit-area triangles where all three tgs larg:-rich (i.e., each contains at ledst
points ofS).

We derive different upper bounds for each of these types ibfanea triangles.

Bound for |U;|. For any two distinct points;, b € R?, let/,;, denote the line througandb. The points:
for which the triangleAabe has unit area lie on two line, , ¢, parallel to¢,, at distanceg/|ab| on either
side of¢,;. The(’,) segments determined ISygenerate at mog(;) such lines (counted with multiplicity).
If Aabe € Uy and its top line incident to the fewest points®fs ¢/, € {¢,, ¢4}, then’, is incident to at
mostk points, so the segmenb is the base of at mogttrianglesAabc € U; (with ¢ € ¢/,). This gives the
upper bound

Uh] < 2(2‘) k= O(n%k).

Bound for |Us|. Let L be the set ok-rich lines, and lein = |L|. By the Szemerédi-Trotter theorem [41],
we havem = O(n?/k3) for anyk < /n. Furthermore, the cardinality of the sBtS, L) of point-line
incidences betweefl and L is |I(S, L)| = O(n?/k?).

For any pair of nonparallel line&, /> € L, lety(¢1, ¢5) denote the locus of poinis< R?, p & £, U /3,
such that the parallelogram that has a vertexatd two sides along; and/,, respectively, has area 2. The
sety(¢1, ¢2) consists of two hyperbolas with and/, as asymptotes. See Figlie 1. For instancg, ify =
0and/s : y = ax, theny(fy,4s) = {(z,y) € R? : 2y = y*/a + 2} U {(z,y) € R?: 2y = y%/a — 2}. Any
two nonparallel lines uniquely determine two such hypabolLetl’ denote the set of these hyperbolas.
Note that|T'| = O(m?). The family of such hyperbolas for all pairs of nonparalieek form a 4-parameter
family of quadratic curves (where the parameters are thfficieats of the defining lines).



For any triangleAabc € U, any pair of its top lines, say;, and/, ., determine a hyperbola passing
througha, which is incident to the third top lin€ _; furthermore/; _ is tangelﬂ to the hyperbola at. See
Figure[l. Any hyperbola in this 4-parameter family is unigugetermined by two incident points and the

two respective tangent lines at those points.

) \\ébc
/ b gl

ac

Figure 1:0ne of the hyperbolas defined by the trianglebc.

We define a topological grapi as follows. For each point € S, which is incident tai, lines of L, we
create2d,, vertices inG, as follows (refer to Figurel 2). Draw a cirofé (p) centered ap with a sufficiently
small radiug > 0, and place a vertex at every intersection point of the cittlg) with thed, lines incident
to p. The number of vertices ig; = 2|1(S, L)| = O(n?/k?). Next, we define the edges 6f. For each
connected branch of every hyperbola ii’, consider the sef () of pointsp € S that are (i) incident toy
and (ii) some line of is tangent toy atp. For any two consecutive pointsq € S(v), draw an edge along
v between the two vertices 6f that (i) correspond to the incidencgs ¢,,) and(q, £,), where¢,, and/, are
the tangents of atp andgq, respectively, and (ii) are closest to each other alpn&pecifically, the edge
follows ~ between the circle€’s. (p) andCs.(¢) and follows straight line segments in the interiors of those
circles. Choose > 0 sufficiently small so that the circleS,. (p) have disjoint interiors and the portions of
the hyperbolas in the interiors of the circlés-(p), for everyp € S, meet ap only. This guarantees that the
edges of7 cross only at intersection points of the hyperbolas. Thplg€ais simplebecause two points and
two tangent lines uniquely determine a hyperbol& irThe number of edges is at le&t/;| — 2m?, since
every triangle inUs corresponds to three point-hyperbola incidenceg(is I') (satisfying the additional
condition of tangency with the respective top lines); arahgleach of th&m? hyperbola branches, each
of its incidences with the points &f (of the special kind under consideration), except for onatridbutes
one edge taG. ThusG is a simple topological graph withg = 2I(S,L) = O(n?/k?) vertices and
eq > 3|Us| — 2m? edges. Since in this drawing 6f, every crossing is an intersection of two hyperbolas,
the crossing number @f is upper bounded byt (G) = O(|T'|?) = O(m*). We can also bound the crossing
number ofGG from below via the Crossing Lemma of Ajtat al. [5] and Leighton[[30]. It follows that

3

Q <6—§> — 4vg < cr(G) < O(mh).
vG

Rearranging this chain of inequalities, we obtaji = O(m™2, + v3), or e = O(M*30* + vg).

Comparing this bound with our lower boung > 3|Us| — 2m?, we haveUs| = O(m4/3vé/3 + vg +m?).
Hence, fork < /n, we have

n2 4/3 n2 2/3 n2 n2\ 2 nA n2 nA

For a quick proof, lets (resp.,v) be a unit vector along,.. (resp. ¢.;). The pointa can be parametrized as= tu+ Zv, where
x = 2/sin 0, andd is the angle betweef},. and/;,,. Hence the tangent to the hyperbola.as given byx = u— 5v [ tu—fv =

cb.




Figure 2:On the left: a poinp € S incident to three lines of (dashed) and 8 hyperbolas, each tangent to one of
those lines. On the right: the 6 vertices@fcorresponding to the 3 point-line incidence® aand the drawings of the
edges along the hyperbolas.

The total number of unit-area triangles|ig | + |Uz| = O(n?k + n*/k'%/3). This expression is minimized
for k = n%/19, and we getU; | + |Us| = O(n¥/19). O

2.1 Convex position

The construction of Erdés and Purdy [21] with many triasghé the same area, thglogn x (n//logn)
section of the integer lattice, also contains many collingples. Here we consider the unit-area triangle
problem in the special case of point sets in strictly convasitpon, so no three points are collinear. We show
thatn points in convex position in the plane can determine a simgenl number of unit-area triangles. On
the other hand, we do not know of any subquadratic upper bound

Theorem 2 For all n > 3, there existn-element point sets in convex position in the plane that span
Q(nlogn) unit-area triangles.

Proof. We recursively construct a séf of n; = 3¢ points on the unit circle that determing= i3*~! unit-
area triangles, fof = 1,2,.... Take a circleC' of unit radius centered at the origin We start with a set
S1 of 3 points along the circle forming a unit-area trianglemsohaven; = 3 points andt; = 1 unit-area
triangles. In each step, we triple the number of points, ig.; = 3n;, and create new unit-area triangles,
so thatt;, | = 3t; + n,;. This impliesn; = 3!, andt; = i3'~!, yielding the desired lower bound. Tligh
step,i > 2, goes as follows. Choose a generic angle valyelose tor /2, say, and let; be the angle such
that the three unit vectors at directifno;, andg; from the origin determine a unit-area triangle, which we
denote byD; (note thatg; lies in the third quadrant). Rotafe; around the origin to each position where its
0 vertex coincides with one of the; points ofS;, and add the other two vertices b% in these positions to
the point set. (With appropriate choices$f and the angles;, 3;, one can guarantee that no two points
of any S; coincide.) For each point df;, we added two new points, 39,1 = 3n,. Also, we haver; new
unit-area triangles from rotated copiesiof; and each of the; previous triangles have now two new copies
rotated byw; andg;. This givest;+1 = 3t; + n;. O



3 Minimum-areatrianglesin the plane

The general case. We first present a simple but effective charging scheme tlvasgan upper bound of
n? — n on the number of minimum (nonzero) area triangles spanned fyints in the plane (Lemnig 1).
This technique yields a very short proof of the minimum ae=alt from [11], with a much better constant
of proportionality. Moreover, its higher-dimensional ints lead to asymptotically tight bounds on the
maximum number of minimum-volumi-dimensional simplices ifR?, for anyl < k < d (see Sectiohl5
for the cas& = 2,d = 3, and [18] for the casé = 3, d = 3; the generalization to arbitraty < k < d will

be presented in the journal version [of[[18]).

Lemmal The number of triangles of minimum (nonzero) area spanned fmints in the plane is at most
2

n- —mn.

Proof. Consider a sef of n points in the plane. Assign every triangle of minimum arearte of its longest
sides. For a segmenb, with a,b € S, let R}, andR_, denote the two rectangles of extefts| and2/|ab|

with ab as a common side. If a minimum-area triangebc is assigned tab, thenc must lie in the relative
interior of the side parallel tab in either R}, or R_,. If there were two points;; andc;, on one of these
sides, then the area &fac;co would be smaller than that dtabc, a contradiction. Therefore, at most two
triangles are assigned to each of (I’jé segments (at most one on each side of the segments), ande&o the
are at mosi? — n minimum-area triangles. O

We now refine our analysis and establis{%u(a2 — n) upper bound, which leaves only a small gap from
our lower bouno(% — o(1))n?; both bounds are presented in Theofém 3 below. Let us poirggain that
here we allow collinear triples of points. The maximum numtifecollinear triples is clearlx(g) = 0(n%).
The bounds below, however, consider only nondegeneraiggtes ofpositiveareas.

Theorem 3 The number of triangles of minimum (nonzero) area spannedpmnints in the plane is at most
2(n® — n). The points in the\/n| x |/n] integer grid span(-% — o(1))n? Z .6079n> minimum-area
triangles.

Proof. We start with the upper bound. Consider a Seatf n points in the plane, and lgt be the set of
connecting lines determined B¢ Assume, without loss of generality, that none of the limek is vertical.
Let T be the set of minimum (nonzero) area triangles spannef,land putt = |T'|. There are3t pairs
(ab, c) whereAabc € T, and we may assume, without loss of generality, that foretlbalf of these pairs
(i.e., for at Ieast%t pairs) Aabc lies above the line spanned hyandb.

For each line¢ € L, let/' denote the line parallel t§ lying abovel, passing through some point(s) of
S, and closest td among these lines. Clearly, df € S generates witla,b € ¢ a minimum-area triangle
which lies above:b then (i)a andb are a closest pair among the pairs of pointénS, and (ii)c € ¢, (the
converse does not necessarily hold).

Now fix a linel € L; setk; = |[¢N S| > 2, andky = [¢' N S| > 1, where!' is as defined above.
The number of minimum-area triangles determined by a papoifits in/¢ and lying abovel is at most

(k1 — 1)ko. We have
(’;1> + (";2> > (ki — 1)ky. 1)

Indeed, multiplying by2 and subtracting the right-hand side from the left-hand gides
k2 — k1 + k3 — ko — 2k1kg + 2kg = (k1 — ko) — (k1 — ko) > 0,

which holds for anyky, ks € Z.



We now sum{lL) over all lineé € L. The sum of the term§%) is (%), and the sum of the term(&?) is
at most(’,), because a lina € L spanned by at least two points $fcan arise as the liné for at most one
line ¢ € L. Hence we obtain

S <Y - D < 2(2‘) —n(n—1),

LeL

thust < 2(n? — n), as asserted.

We now prove the lower bound. Consider the Seif points in the| \/n| x |y/n| section of the integer
lattice. Clearly|S| < n. The minimum nonzero area of trianglesSnis 1/2 (by Pick’s theorem). Recall
that the charging scheme used in the proof of Lerhina 1 assapistdangle of minimum area to one of
its longest sides, which is necessarilyiaibility segmen{a segment not containing any point $fin its
relative interior). We show that every visibility segmeibdtwhich is not axis-parallel is assigned to exactly
two triangles of minimum area.

Draw parallel lines tab through all points of the integer lattice. Every line paghtb ab and incident to
a point of.S contains equally spaced points of the (infinite) integdrdat The distance between consecutive
points along each line is exactlyb|. This implies that each of the two lines paralleldb and closest to
it contains a lattice point on the side of the respectivearegie 2, or R:[b, opposite tazb, and this lattice
point is in.S. Finally, observe that there are no empty acute trianglésdrinteger lattice. It follows that
our charging scheme uniquely assigns empty triangles toilifig segments. An illustration is provided in

Figure[3.

Figure 3:In an integer lattice section, every visibility segment gvhis not axis-parallel is the longest side of two
triangles of minimum area.

A non-axis-parallel segmermt is a visibility segment if and only if the coordinates of thectorc%
are relatively prime. It is well known that/72 is the limit of the probability that a pair of intege(s ;)
with 1 < i, < m are relatively prime, as: tends to infinity [43]. Hence, a fraction of abofitr? of
the ('g‘) < (5) segments spanned Isyare visibility segments which are not axis-parallel. Eatthese
(% — o(1))(}) segments corresponds to two unique triangles of minimura, &@S determines at least

T2

(5 — o(1))n? minimum-area triangles. O

T2



3.1 Special cases

In this subsection we consider some new variants of the nuimirarea triangle problem for the two special
cases (i) where no three points are collinear, and (ii) whHezgoints are in convex position. We also show
that the maximum number afcutetriangles of minimum area, for any point set, is only linear.

Acutetriangles. We have seen thatpoints in an integer grid may sp&r(n?) triangles of minimum area.
However, in that construction, all these triangles are sbt{or right-angled). Here we prove that for any
n-element point set in the plane, the numberofitetriangles of minimum area is only linear. This bound
is attained in the following simple example. Take two groopsboutn /2 equally spaced points on two
parallel lines: the first group consist of the poits0), fori = 0,...,[n/2] — 1, and the second group of
the points(i 4+ 1/2,/3/2), fori = 0,...,|n/2] — 1. This point set determines — 2 acute triangles of
minimum area.

Theorem 4 The maximum number of acute triangles of minimum area détethbyn points in the plane
is O(n). This bound is asymptotically tight.

Proof. Let S be a set ofr points in the plane, and |&t denote the set of acute minimum-area triangles
determined byS. Define a geometric grapf = (V, E) onV = S, whereuv € FE if and only if uv is

a shortest side of a triangle ii. We first argue that every segmant is a shortest edge of at most two
triangles inT’, and then we complete the proof by showing tfat planar and so it has onty(n) edges.

Let Aaibic; € T and assume thaf ¢, is a shortest side ahab,c;. Let Aasbaco be the triangle such
that the midpoints of its sides atg, b1, c1; and letAasbscs be the triangle such that the midpoints of its
sides areus, by, co. Refer to Figuré 4(a). SincAaib;c; has minimum area, then, in the notation of the
figure, each point of \ {a1, b1, 1} lies in one of the (closed) regiorf®, throughRg or on one of the lines
0y, Ly Or l5; also, no point ofS' \ {a1, b1, 1} lies in the interior ofAagbscs. Similarly, any pointa € S of
a triangleAab;c; € T must lie oné; or £3. Thusa = a1 anda = ay are the only possible positions of
This follows from the fact that the triangles dfare acute: any point on, sa, N 9Rs or {1 N R forms
anobtusetriangle withb; c;.

Consider two acute triangleAaibic1, Azyz € T of minimum area with shortest sidésc; € F
andxzy € FE, respectively. Assume that edgles:; andxy cross each other. We have the following four
possibilities: (i)x andy lie in two opposite region&; R, 3, for somei € {1,2,3}; (ii) = = a; andy € Ry;

(i) z € 44 andy € Ry, (iv) x € 5 andy € R4. Sincexy is a shortest side akxyz, the distance from to
the line throughe andy is at least/3/2|zy|. But then, in all four caseAzyz cannot be an acute triangle of
minimum area, since it contains one of the verticedafb; ¢ in its interior, a contradiction. (For instance
if x € Ry andy € R4, Axyc; would be obtuse and\xyz containse; in its interior, or if x = a; and

y € Ry, Axyz contains eitheb; or ¢ in its interior.) O

Convex position. For points in strictly convex position we prove a tight{n) bound on the maximum
possible number of minimum-area triangles. Note that alaegugon has: such triangles, so it remains
to show anO(n) upper bound. Alsop points equally distributed on two parallel lines (at equatahces)
give a well-known quadratic lower bound, so the requirentieat the points be in strictly convex position is
essential for the bound to hold.

Theorem 5 The maximum number of minimum-area triangles determined jpgints in (strictly) convex
position in the plane i$)(n). This bound is asymptotically tight.

Proof. The argument below is similar to that in the proof of TheofdmSince there can be onl§(n)
acute triangles of minimum area, it is sufficient to consiigint-angled and obtuse triangles (for simplicity,
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Figure 4:(a) Acute triangles: the gragH is planar. (b) Convex position: the graphis quasi-planar.

we refer to both types as obtuse), even though the argumsmtvadrks for acute triangles. We use a
similar notation: nowl’ denotes the set of obtuse triangles of minimum area. We dafgemmetric graph
G = (V,E)onV = S, whereuv € E if and only if uv is a shortest side of a triangle’n See Figurél4(b).

Let Aay1bic1 € T with by ¢y a shortest side. By convexity, at most four triangle®’ican have a common
shortest sidé; c;: at most two such triangles have a third vertex’pand at most another two of them have
a third vertex or/s. A graph drawn in the plane is said to Qeasi-planarif it has no three edges which are
pairwise crossing; it is known [3] (see al$o [2]) that anysiydanar graph wit vertices has at mog(n)
edges. We now show thét is quasi-planar, which will complete the proof of the theore

Consider the trianglea\asboco and Aagbscs, defined as in the proof of Theordmh 4. Each point of
S\ {a1,b1,c1} lies in one of the (closed) region?; through Rg; in particular no such point lies in the
interior of Aasbscs. (Here, unlike the previous analysis, strict convexityesubut points on any of the three
middle lines, such a&,.) In addition, by convexity, the regiorf®;, R3 and R5 are empty of points. Assume
now thatbc1, xy, uv form a triplet of pairwise crossing edges, whereanduv are distinct shortest sides
of two trianglesAzyz € T andAuvw € T. It follows that each of the two edgeg anduv must have one
endpoint atz; and the other iRy (since each crossésc;). Thus two edges in this triplet have a common
endpoint, and so they do not cross, which is a contradiction. O

No three collinear points. We conjecture that if no three points are collinear, themtlagimum number
of triangles of minimum area is close to linear. It is not inghough: It has been proved recently|[16] that
there exist:.-element point sets in the plane that sp&m log n) empty congruent triangles. Here, we show
that one can repeat this construction such that there is lfinear triples of points and that the(n log n)
empty congruent triangles have minimum (nonzero) area. édew we do not know of any sub-quadratic
upper bound.

Theorem 6 For all n > 3, there exist-element point sets in the plane that have no three collipeants
and sparf2(n log n) triangles of minimum (nonzero) area.

Proof. The construction is essentially the one given_ in [16], andowevide here only a brief description.
We then specify the additional modifications needed for omppses. First, a point sétis constructed with
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many, i.e.2(n logn), pairwise congruent triples of collinear points, which t&ralso viewed as degenerate
empty congruent triangles. Then this construction is sijgberturbed to obtain a set of pointswith no
collinear triples, so that these degenerate trianglesrbeamon-degenerate empty congruent triangles of
minimum (nonzero) area. The details are as follows (s€g.[16]

Let n = 3* for somek € N. Considerk unit vectorsby, ..., b, and forl < i < k, let §; be the
counterclockwise angle from theaxis tob;. Let A € (0, 1) be fixed and let;; = \b;. Consider now alB*
possible sums of thesd: vectors,a; andb;, 1 < i < k, with coefficientsO or 1, satisfying the condition
that for eachi, at least one ofi; or b; has coefficiend. Let S be the set o8* points determined by these
vectors. Clearly, each triple of the form, (v + a;, v + b;), wherev is a subset sum that does not involve
a; or b;, consists of collinear points. For such a triple, denote}fy) the segment whose endpoints are
andv + b;. We say that the collinear tripley, v + a;,v + b;) is of typei, i = 1,..., k. For eachi there
are exactly3*~! triples of typei, therefore a total 0k3*~! = (nlogn)/(3log3) = Q(nlogn) triples of
collinear points. Clearly, all these triples form degete@ngruent triangles if. Denote by/;(v) the line
supporting the segmenj(v), and byL the set of lines corresponding to these triples.

We need the following slightly stronger version of Lemma Jlii]. The proof is very similar to the
proof of Proposition 1 in[16], and we omit the detalils.

Lemma2 There exist anglegy, ..., 5k, and A € (0, 1), such thaf(i) S consists of. distinct points;(ii) if
u,v,w € S are collinear (in this order), them = v + a; andw = u + b;.

Let ¢ be the minimum distance between poiptg S \ {v,v + a;,v + b;} and lines¢;(v) € L, over
all pairs(v,i). By Lemmd2, we have > 0. Now instead of choosing; to be collinear withb;, slightly
rotate \b; counterclockwise frond; through a sufficiently small angl&about their common origin, so the
collinearity disappears. This modification is carried outhe same time for all vectors;, i = 1,...,k,
that participate in the construction. By continuity, therésts a sufficiently smali = () > 0, so that (i)
each of the triangled (v, v + a;, v + b;) remains empty throughout this small perturbation, (ii) proént
setS is in general position after the perturbation, and (iii) teagruent trianglea\ (v, v + a;, v + b;) have
minimum area. This completes the proof. O

4 Unit-areatrianglesin 3-space

Erd6s and Purdy[[21] showed that\d@logn x (n/\/logn) section of the integer lattice determines
Q(n%loglogn) triangles of the same area. Clearly, this bound is also vali8-space. They have also
derived an upper bound @ (n®?) on the number of unit-area triangles R¥. Here we improve this
bound toO(n'"/73(n)) = O(n**?%6). We useB(n) to denote any function of the formxp(a(n)°M),
wherea(n) is the extremely slowly growing inverse Ackermann functidmy such functions(n) is also
extremely slowly growing.

Theorem 7 The number of unit-area triangles spannedrbgoints inR? is O(n'"/73(n)) = O(n>423%),

The proof of the theorem is quite long, and involves sevesetnical steps. Lef be a set of points
in R3. For each pair, b of distinct points inS, let ¢,;, denote the line passing throughtandb, and letC,;
denote the cylinder whose axisfg, and whose radius /|ab|. Clearly, any point € S that forms with
ab a unit-area triangle, must lie afi,,. The problem is thus to bound the number of incidences betwee
(Z) cylinders and points, but it is complicated for two reasons: (i) The cyBmrslneed not be distinct. (ii)
Many distinct cylinders can share a common generator litglwmay contain many points 6f.

Cylinderswith large multiplicity. LetC denote the multiset of th(é;) cylindersC,y, fora,b € S. Since
the cylinders inC may appear with multiplicity, we fix a parametgr= 27, j = 0,1,..., and consider



separately incidences with each of the sgts of all the cylinders whose multiplicity is betwegnand
21— 1. Write ¢, = |C,,|. We regardC,, as a set (of distinct cylinders), and will multiply the boutint
we get for the cylinders i€, by 2., to get an upper bound on the number of incidences that weteeek
estimate. We will then sum up the resulting bounds @vtr get an overall bound.

Let C be a cylinder inC,. Then its axis’ must contairu pairs of points ofP at a fixed distance apart
(equal to2/r, wherer is the radius of”). That is,¢ containst > u points of S. Let us now fixt to be a
power of2, and consider the subsgt; C C,, of those cylinders i€, that have at leagtand at mosgt — 1
points on their axis. By the Szemerédi-Trotter Theoren] {44, rather, its obvious extension to 3-space),
the number of lines containing at leagpoints of S is O(n?/t3 + n/t). Any such linel can be the axis of
many cylinders irC,, (of different radii). Any such cylinder “charge®) () pairs of points out of thé(¢?)
pairs along/, and no pair is charged more than once. Hence, for a giver limgdent to at least > ;. and
at most2t — 1 points of S, the number of distinct cylinders i), that have/ as axis isO(t? /). Summing
over all axes incident to at leastind at mosRt — 1 points yields that the number of distinct cylinders in

Cu,t is
n? n\ t2 n? nt
w=o((5+8)5) -0 (G ) “

We next sum this over, a power of 2 betweep andv, and conclude that the number of distinct cylinders
in C,, having at most points on their axis is

n2 nv
Cu,gy == O (P + 7) . (3)

Restricted incidences between points and cylinders. We distinguish twatypes of incidences, which
we count separately. An incidence between a ppiahd a cylinderC' is of type 1if the generator of”
passing throug contains at least one additional point$f otherwise it is oftype 2 We begin with the
following subproblem, in which we bound the number of incides between the cylinders 6f counted
with multiplicity, and multiple points that lie on their generator lines, as well as inciégsnwith cylinders
with “rich” axes. Specifically, we have the following lemma.

Lemma3 LetS be a set of» points andC be the multiset of thég) cylindersCly, for a,b € S (counted
with multiplicity). The total number of all incidences opgyl and all incidences involving cylinders having
at leastn'4/4> points on their axis is bounded I6y(n'°"/**polylog(n)) = O(n*378).

Proof. Let L denote the set of lines spanned by the points oFix a parametek = 2,7 = 1,..., and
consider the sek;, of all lines that contain at leagtand at mos2k — 1 points ofS. We bound the number
of incidences between cylindersdnthat contain lines i, as generators and points that lie on those lines.
Formally, we bound the number of tripl¢s, ¢, C'), wherep € S, ¢ € Ly, andC € C, such thap € ¢ and

¢ C C. Summing these bounds ovemill give us a bound for the number of incidences of type 1. o
the way, we will also dispose of incidences with cylindersogad axes contain many points.

2
As already noted, the Szemerédi-Trotter Theorlem [41]iesghat\;, := |Ly| = O (% + %)

Line-cylinder incidences. Consider the subproblem of bounding the number of incidebetween lines

in L; and cylinders irC, where a line/ is said to be incident to cylinde?' if ¢ is a generator of®. We
will then multiply the resulting bound bgk to get an upper bound on the number of point-line-cylinder
incidences involving’,, and then sum the resulting bounds oker
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Generator lineswith many points. Let us first dispose of the cage> n'/3. Any line ¢ € L, can be a
generator of at most cylinders (counted with multiplicity), because, havingefiba. € .S, the pointb € S
such thatC,, contains/ is determined (up to multiplicit®). Hence the number of incidences between the
points that lie or? and the cylinders of is O(nk). Summing ovek = 2° > n'/3 yields the overall bound

0) (zk: nk)\k> =0 (Z (Z—i + n2>> =0(n"?).

k

Hence, in what follows, we may assume that n!/3. In this range of: we have
n2
Ao = O <ﬁ> . (4)

Axes with many points. Let us also fix the multiplicityu of the cylinders under consideration (up to a
factor of2, as above). The number of distinct cylindergCinhaving betweert > 1 and2t — 1 points on
their axes, i90(n?/(tu) + nt/u); see [(2). While the first term is sufficiently small for our pase, the
second term may be too large wheis large. To avoid this difficulty, we fix another thresholdperent
z < 1/2 that we will optimize later, and handle separately the cases:”* andt < n*. That s, in the first
case, fort > n* a power of 2, we seek an upper bound on the overall number mfeinces between the
points ofS and the cylinders i€ whose axis contains betweémand2t — 1 points ofS. (For this case, we
combine all the multiplicitieg: < t together.) By the Szemerédi-Trotter theoreml [41], the lpeinof such
axes isO(n?/t3 + n/t).

Fix such an axisy. It defines©(¢?) cylinders, and the multiplicity of any of these cylindersatsmost
O(t). Since no two distinct cylinders in this collection can p#s®ugh the same point &, it follows
that the total number of incidences between the points aifid these cylinders i9(nt). Hence the overall
number of incidences under consideratio®ig:? /3 + n/t) - O(nt) = O(n?/t?> + n?). Summing over all
t > n*, a power of2, we get the overall boun@(n3-2?).

Note that this bound takes careaif the incidences between the points%énd the cylinders having at
leastt > n” points along their axes, not just those of type 1 (involvingjtiple points on generator lines).

Cylinders with low multiplicity. We now confine the analysis to cylinders having fewer thampoints
on their axis, and go back to fixing the multiplicity, which we may assume to be at mast We thus
want to bound the number of incidences betwagrlistinct lines and:;, <,,- distinct cylinders inC,,, for
givenk < n'/3, i < nZ. Note that a cylinder can contain a line if and only if it is éel to the axis of
the cylinder, so we can split the problem into subproblerashessociated with some directiénso that in
the#-subproblem we have a set of sonﬁ@ cylinders and a set of som)éf) lines, so that the lines and the

cylinder axes are all parallel (and have directijnwe have), c,(f) = ¢y <n=, andy_, )\Ef) = A\

For a fixedd, we project the cylinders and lines in thesubproblem onto a plane with normal direction
6, and obtain a set fof) circles and a set oi,(f) points, so that the number of line-cylinder incidences is
equal to the number of point-circle incidences. By [4, Ei,l%ﬁ]e number of point-circle incidences between
N points andM circles in the plane i©) (N2/3M?/3 4 NS/11 pp9/11 16g2/1 (N3 /M) + N + M). It follows
that the number of such line-cylinder incidences is

O ((/\129))2/3(6,@)2/3 + ()\](Ce))6/11(c}(f))9/11 10g2/11((A£0))3/CL9)) + /\lge) + C;(f)) . (5)

The bound that we use, from [31], is slightly better than tfevjpus ones.
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Note that, for any fixed, we have/\,(f) < n/k andcff)) < n'*#/u. The former inequality is trivial. To
see the latter inequality, note that an axis with n?* points defines{g) cylinders. Since we only consider
cylinders with multiplicity ©(x), the number of distinct such cylinders@¢? /), and the number of lines
(of direction®) with aboutt points on them is at most/¢, for a total of at mosO(nt /) distinct cylinders.
Partitioning the range. < ¢ < n? by powers of2, as above, and summing up the resulting bounds, the
boundc,(f) < n!*+# /y follows.

Summing ove#, and using Holder’s inequality, we have (heres a parameter betwe@j11 and6/11
that we will fix shortly)

O\6/11, (0)\9/11 _ (T)8/11=2 (n't? A O)\a [ (0)\1—x
SO < (T) > <

0 p 0

n(4—22)/ 11422 r ©) 1-z n(4—22)/ 11422 .
|6/ 11—z o —2/11 Z/\ Zcu k6/11 o= 2/11)‘kcu <n®
0

We need to multiply this bound b® (k). Substituting the bounds;, = O(n?/k?) from (@), ande,, <= =
O(n?/p? 4+ n'*#/u) from (3), we get the bound

(4—22) /11422 1.5/114x , 13/11—x n?\* (n?  nlta\1T 2/11
O(n k I 3 F—F p log“/** n

- 0 <k5/11—2x (n2+(4—2z)/11+xz#x—9/11 i n(15+92)/11+xlu2/11) log?/1! n) '

Choosingr = 5/22 (the smallest value for which the exponentkab non-positive), the first term becomes
O(n¥+4/11+2/221092/11 ) "which we need to balance with(n3~2%); for this, we choose = 14/45 and
obtain the bound)(n!97/45 10g?/M 1) = O(n?378); for this choice ofz, recalling that: < »?, the second
term is dominated by the first. Summing overu only adds logarithmic factors, for a resulting overall
boundO(n?378),

Similarly, we have (with a different choice af soon to be made)

2\ z—1/3
O o < (MY (PN T e e oyiee
SO < (3 SOy () <

P K

T -z

(1 z)/34xz n(l—z)/3+mz

L 0 — z l—x

k2/3— e 1/3 <ZA ) (ch(i)> - k2/3_;plum_1/3)‘k 1, <n?*
[%

Multiplying by ku and arguing as above, we get

(1—2)/3+xz1.1/34x , 4/3—x n?\* (n? ot 2/11
Oln k 7 - — + log~ ™ n
k J Jz

-0 (k1/3—2m <n2+(1—z)/3+:vzlum—2/3 + n1+(1+2z)/3+x#1/3> 10g2/11 n) '

We choose here = 1/6 and note that, for = 14/45 andu < n?, the bound is smaller tha@(n"/?),
which is dominated by the preceding boufdn?378).
Finally, the linear terms ir.{5), multiplied byu, add up to

2 Qk
kn Y20 (W) 4 e?)) = O (ks (he + €0)) = O <72_2ﬂ Pk n1+zk> |
[4
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which, by our assumptions o 1, andz is also dominated by (n237®). Summing overk, ;. only add
logarithmic factors, for a resulting overall boutitin?-37®). This completes the proof of Lemrhh 3. O

It therefore remains to count point-cylinder incidencedypie 2, involving cylinders having at most
n'4/45 points on their axes.

The intersection pattern of three cylinders. We need the following technical lemma, whose proof is
borrowed from a yet unpublished woik [25], and is presentetié appendix.

Lemma4 LetC, Cq,Cs be three cylinders with no pair of parallel axes. Theém Cy; N Cs consists of at
most 8 points.

Point-cylinder incidences. Using the partition techniqué [18,135] for disjoint cylinden R3, we show
the following:

Lemma5 For any parameter, 1 < r < min{m,n!/?}, the maximum number of incidences of type 2
betweem points andm cylinders in 3-space satisfies the following recurrence:

I(n,m) = O(n +mr?B(r)) + O(*(r)) - I (=5, ) (6)

r3
for some slowly growing functiofi(n), as above.

Proof. LetC be a set ofn cylinders, ands be a set ofi points. Construct &l /r)-cutting of the arrangement
A(C). The cutting hagD(r®3(r)) relatively open pairwise disjoint cells, each crossed bynastm /r
cylinders and containing at most/r® points of S [14] (see also[[37, p. 271]); the first property is by
definition of (1/r)-cuttings, and the second is enforced by subdividing ceith oo many points. The
number of incidences between points and cylindeossingtheir cells is thus
3 n o m

008 -1 (5. 7).
(Note that any incidence of type 2 remains an incidence & &/ the subproblem it is passed to.)

It remains to bound the number of incidences between thegoinS and the cylinders thatontain
their cells. Letr be a (relatively open) lower-dimensional cell of the cugtinf dim(7) = 2 then we can
assign any poinp in 7 to one of the two neighboring full-dimensional cells, andimoall but at most one
of the incidences witlp within that cell. Hence, this increases the count by at most

If dim(7) = 0, i.e.,7 is a vertex of the cutting, then any cylinder containingust cross or define one
of the full-dimensional cells adjacent to Since each cell has at mast1) vertices, it follows that the total
number of such incidences@(r33(r)) - (m/r) = O(mr2B(r)).

Suppose then thatim(7) = 1, i.e., 7 is an edge of the cutting. An immediate implication of Lenitha 4
is that onlyO(1) cylinders can contaim, unlessr is a line, which can then be a generator of arbitrarily
many cylinders.

Since we are only counting incidences of type 2, this implieg any straight-edge 1-dimensional cell
7 of the cutting generates at most one such incidence with @imder that fully contains-. Non-straight
edges of the cutting are contained in odly1) cylinders, as just argued, and thus the points on such edges
generate a total of onl®(n) incidences with the cylinders. Thus the overall number ofdences in this
subcase is onlY(n + r33(r)). Sincer < m, this completes the proof of the lemma. O

Lemma 6 The number of incidences of type 2 betweewints andn cylinders inR? is

0] ((m6/7n5/7 +m+ n) ﬁ(n)) . (7)
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Proof. LetC be a set ofn cylinders, ands be a set of, points. We first derive an upper bound@fn’ +m)

on the number of incidences of type 2 betwé&eand S. We represent the cylinders as points in a dual 5-
space, so that each cylind€ris mapped to a point’™, whose coordinates are the five degrees of freedom
of C (four specifying its axis and the fifth specifying its radiug point ¢ € R? is mapped to a surfacg

in R?, which is the locus of all points dual to cylinders that areident tog. With an appropriate choice of
parameters, each surfageis semi-algebraic of constant description complexity. Bfirdtion, this duality
preserves incidences.

After dualization, we have an incidence problem involvingpoints and. surfaces irR®. We construct
the arrangementl of then dual surfaces, and bound the number of their incidencesthath, dual points
as follows. The arrangemept consists ofD(n°) relatively open cells of dimensioris 1, ... ,5. LetT be a
cell of A. We may assume thdim(7) < 4, because no point in a full-dimensional cell can be incident
any surface.

If 7is a vertex, consider any surfagethat passes through Thenrt is a vertex of the arrangement
restricted tap, which is a4-dimensional arrangement with(n*) vertices. This implies that the number of
incidences at vertices of is at mostn - O(n*) = O(n).

Let thent be a cell ofA of dimension> 1, and letu denote the number of surfaces that contairf
u < 8 then each point inr (dual to a cylinder) has at mosék(1) incidences of this kind, for a total @¥(m).

Otherwiseu > 9. Sincedim(7) > 1, it contains infinitely many points dual to cylinders (notassarily
in C). By Lemmd 4, back in the primal 3-space, if three cylindenstain the same nine points, then the axes
of at least two of them are parallel. Hence alpoints lie on one line or on two parallel lines, which are
common generators of these pair of cylinders. In this cdbeylanders whose dual points lie in contain
these generator(s). But then, by definition, the incidebetween these points and the cylinder€ @fhose
dual points lie onr are of type 1, and are therefore not counted at all by the cuamalysis. Since is a
face of A, no other point lies on any of these cylinders, so we may igtioem completely.

Hence, the overall number of incidences under consideraio (n® + m).

If m > n®, this bound isO(m). If m < n'/3, we apply Lemm&l5 with = m, which then yields
that each recursive subproblem has at most one cylindegdomoint in a subproblem generates at most
one incidence, for a total @(n) incidences. Hence, in this cage (6) implies that the numbiec@ences
betweerC andS is O(n + m38(m)) = O(nB(n)).

Otherwise we have!/? < m < n°, so we can apply Lemnid 5 with parameter= (n°/m)'/14;
observe that < r < min{m, n1/3} in this case. Using the above bound for each of the subprabietie
recurrence, we obtaif(n/r3,m/r) = O((n/r*)> +m/r), and thus the total number of incidences of type
2 in this case is

O + mr2(r) + 0(3B(r)) - O ((%)5 T %) 0 (:—152 T mr2> B(r).

The choicer = (n°/m)'/'* yields the bound[{7). Combining this with the other cases,ttbund in the
lemma follows. O

We are now in position to complete the proof of Theofém 7.

Proof of Theorem[7t We now return to our original setup, where the cylinder§ may have multiplicities.
We fix some parametgr and consider, as above, all cylinders(p, and recall our choice of = 14/45.
The case: > n” is taken care of by Lemnig 3, accounting for at mo$h'07/45polylog(n)) incidences.

In fact, Lemmad_B takes care of all cylinders that contain aste* points on their axes. Assume then that
p < n?, and consider only those cylinders @) containing fewer tham* points on their axes. By [3),
we havec, <> = O(n?/u?). Consequently, the number of incidences with the remaiayfigders inC,,,
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counted with multiplicity, but excluding multiple pointsidhe same generator line, is

n2\ %7 ; n2 a7 2
. o /T - il
0 (wn) ((lﬂ) W ) ) =0 (L + k) s )
Summing over ali: < n* (powers of 2), and adding the bout{n'°"/*polylog(n)) = O(n?*78) from

Lemma3 on the other kinds of incidences, we get the desiredathbound of0(n7/75(n)) = O(n?4285),
O

Remark. In a nutshell, the “bottleneck” in the analysis is the casenely is small (say, a constant) and
we count incidences of type 2. The rest of the analysis, wagbhs it is, just shows that all the other cases
contribute fewer (in fact, much fewer) incidences. One dgubbably simplify some parts of the analysis,
at the cost of weakening the other bounds, but we leave tleetegs they are, in the hope that the bottleneck
case could be improved, in which case these bounds mighbiettte dominant ones.

5 Minimum-areatrianglesin 3-space

Placen equally spaced points on the three parallel edges of a rigbtnpwhose base is an equilateral
triangle, such that inter-point distances are small alcagheedge. This construction yieh%m? — O(n)
minimume-area triangles, a slight improvement over the logind construction in the plane. Here is yet
another construction with the same constft in the leading term: Form a rhombus in thg-plane from
two equilateral triangles with a common side, extend it toisnp in 3-space, and place/3 equally spaced
points on each of the lines passing through the verticeseothtiorter diagonal of the rhombus, angs
equally spaced points on each of the two other lines, wheamdlge inter-point distances along these lines
are all equal and small. The number of minimum-area trianigle

1o A N2 oy =22
2<3'3+3'6>n O(n)—gn O(n).

The following theorem shows that this bound is optimal up tmastant factor. No quadratic upper bound
has previously been known for minimum-area triangleRn

Theorem 8 The number of triangles of minimum (nonzero) area spanned pgints inRR3 is at most
n? + O(n).

Proof. Consider a sef of n points inR3, and letT" be the set of triangles of minimum (nonzero) area
spanned byS. Without loss of generality, assume the minimum area td beSimilarly to the planar
case, we assign each triangleTirnto one of its longest sides, and argue that at most a constamper of
triangles are assigned to each segment spannet Bnis immediately implies an upper bound©@fn?)

on the cardinality off’. To improve the main coefficient in this bound, we distinguigtweerfat andthin
triangles. A triangle is called fat (resp., thin) if the léin@f the height corresponding to its longest side is at
least (resp., less than) half of the length of the longest &ide show that the numbé¥, of thin triangles of
minimum area is at moX(;;) = n? — n, and that the numbey, of fat triangles of minimum area is only
O(n).

Consider a segmenb, with a,b € S, and leth = |ab|. Every pointc € S\ {a, b} for which the triangle
Aabc has minimum (unit) area must lie on a bounded cylin@ewith axis ab, radiusr = 2/h, and bases
that lie on the planes, andm,, incident toa andb, respectively, and orthogonal t@. In fact, if Aabc is
assigned tab (that is,ab is the longest side), thenrmust lie on a smaller portio6” of C', bounded by bases
that intersectb at points at distanck — v/ h? — 2 from a andb, respectively. Assume for convenience that
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ab is vertical,a is the origin and = (0,0, k). Sinceab is the longest side ahabc, the side of the isosceles
triangle with base:b and height- must be no larger thah, i.e., 1% + r? < h?, orr? < 2. Notice that
the triangle formed by any two points §flying on C’ with eithera or b is non-degenerate.

We first derive a simple formula that relates the area of alan{ad) triangle to the area of itsy-
projection. Consider a trianglA that is spanned by two vectots v, and letAq, ug, andvy denote the
xy-projections ofA, u, andv, respectively. Write (wherk denotes, as usual, the vectér0, 1))

u=ug+zk and v=uvy+ yk,
and putA = area(A), Ag = area(4Ay). Then

(luo x vol|* + [lyuo — zvo|?) ,

e

1 1
A? = Zlluxvl]* = Zl(uo + 2k) x (vo + yk)l| =

or
1
A? = A+ leyuo—xvo\lz. (8

An initial weaker bound. We claim that at most 10 triangles are assigneabtoAssume, to the contrary,
that this number is at least 11. Dividéinto two equal slices by a horizontal plane orthogonalitthrough
its midpoint. Since more than 10 points ®fie on C, at least 6 of them must lie on the same sligg say
the bottom slice. It follows that two points,andd, lie in some sectoi of Cy making a dihedral angle at
ab of at most360° /6 = 60°. An illustration is provided in Figurgl5.

d/

(b)

Figure 5: Charging scheme for minimum-area triangles in 3-spaceth@gylinderC; (b) the projection onr,; ¢’
andd’ are the respective projectionsoandd.

We may assume, without loss of generality, that
c=(r,0,z) =cp+xk and d= (rcosa,rsina,y) = dy + yk,

where0 < a < 60° and0 < z,y < h/2. Write A = area(Aacd). Using [8), we have

1 1 rtsin?a 2
A% = leo x do|* + = |lyco — wdo||* = ——— + = (2” +y* — 2zy cos a) .
4 4 4 4
The expression:? 4 y? — 2y cos « is the squared length of the third side of the triangle wittesir, v,
with the anglea: < 60° between them. Since,y < h/2, we clearly haver? + y? — 2zycosa < h%/4.

Thus, recalling that? < 342 and thath?r? = 4, we have

- 4 4 4 4 4 )= 4 \16 4) 16
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which contradicts the minimality of the area &fabc. Hence, at most 10 triangles are assigned to each
segment spanned I8 This already implies that there are at m&&t? — n) minimum-area triangles.

A better bound. We now improve the constant of proportionality, using a meaeeful analysis, which
distinguishes between the cases in which the minimum-aigagtes charged to the segmemtare thin or
fat.

@r< %h (thin triangles). We claim that in this case at most two tgias can be assigned &. Indeed,
suppose to the contrary that at least three triangles aignasistoad, so their third verticesg, d, e € S lie
onC’ c C. Write thez-coordinates of;, d, e asz h, 22h, z3h, respectively, and assume, without loss of
generality, that < z; < 29 < 23 < 1, andze < 1/2. Consider the triangl&acd, and letA denote its area.
As before, write, without loss of generality,

¢=(r,0,z1h) and d= (rcosa,rsina, zoh),

for some0 < o < 180°. Using [8), we get
2 L 4. o L oo, 2 2
A® = 7" sinfator h*(2{ + 25 — 22122 cos ).

Thus, recalling that < £h and thath?r? = 4, we get

1

1 1
A? < Zr2h2 <Z sin? a + 22 + 25 — 22129 cos a> =1 sin?a + 22 + 22 — 22125 cos . 9)

Let us fixz1, zo and vary onlyc. Write
L. o 2, .2 / L. -
o) = — 81" « z 2o — 421292 COS (v, Q) = — SN COS Z1%29 Sl (.
f()4 + 27+ 25 —2 andf()2 +2
/ attains its maximum at the zero of its derivative, namely@athat satisfies
cos ag = —4z129.

(Note that sincer; < zp < % we always havdz;z, < 1. Also, at the other zera. = 0, f attains its
minimum (z; — 29)2.)
Substitutingay into (3), and using; < z, < 1, we get

1— 162223

A2
< 4

1 1 1
T AL T R FUE S <§+2zf> <§+zz§) <1,

which contradicts the minimality of the area &tibc (recall thatAacd is non-degenerate).
We have thus shown that at most two thin triangles of minimuea @an be assigned to any segmaent
SoON; < 2(3) =n? —n.

(b)r > %h (fat triangles). Recall that we always havec @h. Multiplying these two inequalities by/2,
we get
h? h%V/3 2
-Iglg T o iﬂghgz
Let F denote the set of all segments such that the minimum-area triangles chargedit@re fat. Note
that the length of each edge His in the intervall2/3'/4,2].
We next claim that, for any pair of poinis ¢ € S with |pg| < 1, neitherp nor ¢ can be an endpoint

of an edge inE. Indeed, suppose to the contrary thaf is such a pair and thata is an edge oft, for

17



somea € S; by constructiona # ¢. Let Apab be a fat minimum-area triangle chargedpi@ If ¢ is
collinear withpa, then Apgb is a nondegenerate triangle of area strictly smaller thahdhApab (recall
that|pq| < 1 < |pal), a contradiction. I is not collinear withpa, Apag is a nondegenerate triangle of area
< M < 1 =1, again a contradiction.

Let S’ C S be the set obtained by repeatedly removing the point$ whose nearest neighbor is
at distance smaller than Clearly, the minimum inter-point distance 1 is at leastl, and the endpoints
of each edge irF lie in S’. This implies, via an easy packing argument, that the nurobedges ofE
incident to any fixed point ir$” (all of length at mosg) is only O(1). Hence|E| = O(n). Since each edge
in E determines at mos0 minimum-area triangles, as shown in the first part of our rnwe conclude that
Ny = O(n), as claimed.

Hence there are at maf;,) + O(n) = n? + O(n) minimum-area triangles in total. O

6 Maximum-areatrianglesin 3-space

Abrego and Fernandez-Merchant [1] showed that one car plamints on the unit sphere R? so that
they determiné)(n4/3) pairwise distances of/2 (see also[33, p. 191] and [10, p. 261]). This implies the
following result:

Theorem 9 For any integern, there exists am-element point set ifiR3 that spans(n*/?) triangles of
maximum area, all incident to a common point.

Proof. Denote the origin by, and consider a unit sphere centered.affhe construction in_[1] consists
of a setS = {o} U S; U Sy of n points, whereS; U S lies on the unit sphergS;| = [(n — 1)/2],
|Sa| = [(n —1)/2], and there ar€(n*/3) pairs of orthogonal segments of the fofns;, os;) with s; € S;
ands; € So.

Moreover, this construction can be realized in such a way¥hbes in a small neighborhood 6f, 0, 0),
ands; lies in a small neighborhood 00, 1,0), say. The area of every right-angled isosceles triafgle; s ;
with s; € Sy ands; € Sy is 1/2. All other triangles have smaller area: this is clear if aisketwo vertices
of a triangle are front; or from S,; otherwise the area is given t%ysin «, Wherea is the angle of the two
sides incident to the origin, so the area is less thanif these sides are not orthogonal. O

We next show that the construction in Theoriem 9 is almost tighthe sense that at mo&k(n*/3+<)
maximum-area triangles can be incident to any point of-@lement point set ilR3, for anye > 0.

Theorem 10 The number of triangles of maximum area spanned by & sét» points inR? and incident
to a fixed point € S is O(n*/3+¢), for anye > 0.

Assume, without loss of generality, that the maximum arda &milarly to the proof of Theoreim 7, we
map maximume-area triangles to point-cylinder inciden&secifically, if Aabc is a maximum-area triangle
spanned by a point sé&, then every point of5 lies on, or in the interior of, the cylinder with axi®$ and
radius2/|ab| (c itself lies on the cylinder). The following two lemmas givpper bounds on the number
of point-cylinder incidences in this setting. First we peoy weaker bound (Lemnhd 7) which, combined
with the partition technique, gives an almost tight boundrfimd 8). Our proof is somewhat reminiscent of
an argument of Edelsbrunner and Sharir [19], where it is shibvt the number of point-sphere incidences
betweem: points andn spheres iR? is O(n?/*m?/® + n + m), provided that no point lies in the exterior
of any sphere.
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Lemma7 LetS be a set of points, andC a set ofm cylinders inR3, such that the axis of each cylinder
passes through the origin, and no point lies in the exterfany cylinder. Then the number of point-cylinder

incidences i@(nm% + m), for anye > 0.

Proof. Assume, without loss of generality, that the horizontahplaincident to the origin does not contain
any point of S, and that the points above participate in at least half of the point-cylinder incidesc
For simplicity, continue to denote h¥ the subset of the at mostpoints lying above:. Consider the 3-
dimensional dual arrangeme(t*, C*), where the dual of a point € R3 \ {0} is the cylinderp* with axis

op and radiug/|op|; and the dual of a cylindey whose axis passes through the origin is a pginhboveh

that lies on the axis of at distance2/radius(+y) from the origin. Note that incidences between points and
cylinders are preserved, and that no poinfdfies in the exterior of any cylinder &f*. It therefore suffices

to prove that the number of incidences betw&érandC* is I(C*, S*) = O(nm% +m).

Consider the intersectioB of the interiors of all cylinders ir5*. Since the interior of each cylinder is
convex, B is a convex body homeomorphic to a ball, whose boundary igposed of patches of cylinders.
Faces, edges, and vertices®fcan be defined as connected components of the intersecfiame otwo,
and three cylinders, respectively. Each of the point§*ahat lie on faces ofl B contributes one incidence.
Since all the cylinder axes pass through the origin, no efigaBocan be straight, so it cannot be contained
in any cylinder ofS* other than the two defining it (recall Lemrhh 4). Hence the {soaf C* that lie on
faces or edges @l B contribute at mos2m incidences.

We are left with the task of bounding the number of pointtagér incidences involving points at vertices
of B. Note that there may exist cylinders incident to a vepi@f B and not containing any other points of
0B in the vicinity of p. To account for such cylinders too, perturb the radii of eedmder in .S*, so that
each radiug is decreased to the radigs — dr)r, for a sufficiently smalb > 0 (that is, the radii of larger
cylinders decrease by a larger factor). As a result, eveligasr incident to a vertey € 9B is replaced
by a cylinder that defines a face in a sufficiently small neaghbod ofp (even though it is not incident to
p after this perturbation). The number of point-cylinderidences betwee@* and the vertices od B is
proportional to the number of vertices of the resultihg’ after the perturbation. By a result of Halperin
and Sharir[[26], the complexity of a single cell in the arramgnt ofn constant degree algebraic surfaces in
R? is O(n?*¢), for anye > 0. Hence, we obtain an upper boundi¢f, C) = O(m +n?*¢), for anye > 0.

PartitionS into [n/\/m| subsets, each containing at mgst. points. The preceding argument implies
that each subse8’ C S has at most/(S’,C) = O(m + (v/m)**%) = O(m'*+</?) incidences with the
cylinders ofC. Therefore, altogether there are at most./m| - O(m!*/?) = O(nm% +m) incidences.

O

Lemma8 Let S andC be as in the preceding lemma. Then the number of point-@iimtidences is
O((n*3m?/? 4 n 4+ m)'*e), for anye > 0.

Proof. If m > n?, then Lemmal7 gives an upper bouncaifnm% +m) = O(m!'T¢). We may therefore
assume henceforth that < n2.

For an integer € N, to be specified later, choose a random saniple C of r cylinders, and leiB
denote the intersection of the interiors of the cylinder®irBy [26], the combinatorial complexity dB is
O(r?*¢), for anye > 0. Hence, the convex bod§ can be partitioned int®(2+<) cells, each bounded by
a constant number of constant-degree algebraic surfatlgs ¢an be done, e.g., by first partitioniogs
into pseudo-trapezoidal cells, and then by taking the coiwgl of each cell or9B with the origin.) By
thee-net theory (see, e.gl, [B2, Chap. 10.3]), with constanbaidity, the interior of each cell intersects at
mostO(m“’%) = O(m/r'~¢) cylinders ofC. We may assume then that our sampldas this property.
Similarly to the proof of LemmaAl5, assign each point to a ueigall. Assign every point in the interior of
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a cellg; to o;; assign every point on the boundary of several cells to tHentd# minimum index. Letn;

denote the number of points assigned to egll
1+e

Applying LemmalY in each ceb;, we get the upper boun@® (ni (T1—WL> 2

+ (JL)) on the

number of incidences between points assigned tand cylinders intersecting the interior ®f. Summing
over allO(r?*+¢) cells, we have

14e 14¢

ZZ_:O (nl <r71ﬂ——€)12+6 + (rﬁ€)> =0 (n <7«?ﬁe>7 +mrl+2€> =0 (nﬂ?? +mr1+2€>

r

incidences of this kind. By choosing = min { [n?/?/m!/3|, m}, this is at mosO(n?/3+e'm2/3+'
n”a'), for another, still arbitrarily smalk’ > 0. Finally, the number of incidences between points assigned
to one cell and cylinders that do not intersect the interfahat cell can be bounded similarly to the proof
of Lemmd%: This number is proportional to the number of gells the number of points, which 3(n +
r2t€) = O(n'*¢), as is easily checked. (In this final argument, we use thedlheixes pass through the
origin, so no 1-dimensional edge @B can be contained in more than two cylinders; see also the pfoo
LemmdT.) O

The upper bound of Lemnha 8 is almost tight: For argndm, there are: points andn cylinders with
axes through the origin and containing no points in theiegat, which determin@ (n?/3m?/3 + n + m)
point-cylinder incidences. To construct such a configargtiaken points andn lines on the plang : z =
1in R? with Q(n2/3m2/3 +n + m) point-line incidences [41]. Project these points and licestrally from
the origin onto the unit sphere, to obtain a system pbints andmn great circles with the same number of
incidences. Each great circle of the unit sphere lies in guenicylinder of unit radius whose axis passes
through the origin, and every such cylinder contains allatier points of the unit sphere in its interior. This
givesn points on the unit sphere amd cylinders of unit radius whose axes pass through the orggirti{at
no point lies in the exterior of any cylinder), WiﬂZl(n2/3m2/3 + n + m) point-cylinder incidences.

Proof of Theorem Let A denote the maximum triangle area determined by & s#tn points inR3.
For every point € S, consider the system af — 1 points inS \ {a} andn — 1 cylinders, each defined by
apointb € S\ {a}, and has axiab and radiu2A/|ab|. Every point-cylinder incidence corresponds to a
triangle of aread spanned bys and incident tax. SinceA is the maximum area, no point 6fmay lie in
the exterior of any cylinder. By Lemnfia 8, the number of su@@mtyles isO(n*/3+¢), for anye > 0. m]

Theorem$§ 0 and 10 imply the following bounds on the numberafimum-area triangles iR>:

Theorem 11 The number of triangles of maximum area spanned lppints inR? is O(n7/3+5), for any
e > 0. For all n > 3, there exish-element point sets iR® that spanQ(n*/3) triangles of maximum area.

7 Distinct triangle areasin 3-space

Following earlier work by Erdés and Purdy [22], Burton anar@® [12], and Dumitrescu and Toth [17],
Pinchasil[36] has recently proved thanoncollinear points in the plane always determine at I%Qg&lj
distinct triangle areas, which is attained dyqually spaced points distributed evenly on two paralfeddi
No linear lower bound is known in 3-space, and the best we lcaw §s the following:

Theorem 12 Any setS of n points inR?, not all on a line, determines at lea§(n?/3/3(n)) triangles

of distinct areas, for some extremely slowly growing fuorct#(n). Moreover, all these triangles share a
common side.
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For the proof, we first derive a new upper bound (Lenina 9) omtimeber of point-cylinder incidences
in R3, for the special case where the axes of the cylinders passghithe origin (but without the additional
requirement that no point lies outside any cylinder). Caeisa set of m such cylinders. These cylinders
have only three degrees of freedom, and we can dualize thewirits in 3-space. We use a duality similar
to that used in the proof of Lemrha 7. Specifically, we fix someege halfspace? whose bounding plane
passes through the origin, say, the halfspace 0. We then map each cylinder with a¥isand radius to
the point on¢ N H at distance /o from the origin; and we map each pomE H to the cylinder whose axis
is the line spanned byp and whose radius is/|op|. As argued above, this duality preserves point-cylinder
incidences.

By (a dual version of) Lemmia 4, any three points can be muytuadiident to at most eight cylinders
whose axes pass through the origin. That is, the bipartiiglémce graph (whose two classes of vertices
correspond to the points ¢f and the cylinders of, respectively, and an edge represents a point-cylinder
incidence) isk3 -free. It follows from the theorem of Kévari, S6s and ani[29] (see also [33, p. 121]) that
the number of point-cylinder incid(—:‘ncesdk{nmz/3 + m). We then combine this bound with the partition
technique of Clarksoat al. [15], to prove a sharper upper bound on the number of poilitasr incidences
of this kind. Specifically, we have:

Lemma9 Givenn points andm cylinders, whose axes pass through the origin, in 3-spdeenumber of
point-cylinder incidences i© (n*/*m3/48(n) + n + m).

Proof. Let C be the set of then given cylinders, and' be the set of the: given points. Leth be a plane
containing the origin, but no point ¢, and assume, without loss of generality, that the sulisef points
lying in the positive hafspacg™ contributes at least half of the incidences with If m > n?, then the
K6vari-Sos-Turan Theorem yields an upper bound @' ,C) = O(nm?® + m) = O(m). Similarly, if
m < n'/3, the duality mentioned above leads to the bouit§,C) = O(mn*? + n) = O(n). For these
two cases we have theiiS, C) < 21(S’,C) = O(m + n). Assume henceforth that/? < m < n3,

We apply Lemm@&]5 with parameter= |n3/8 /m!/8], and use the Kévari-Sos-Turan Theorem to bound
the number of incidences between the at mgst® points andn /r cylinders in each subproblem. Note that
1 < r < minthe above range of.. The total number of incidences is thus

1(S,¢) = O(n+mr25(r))+0(r3[3(r))-O(%-(%)2/34_@)

T
2/3

= 0 (n + —ﬂ;/?)nﬁ(n) + mr2ﬁ(r)> =0 <n + n3/4m3/45(n)> .

Putting all three cases together gives the bound in thee¢hgor O

Proof of Theorem[I2: If there aren/100 points in a plane but not all on a line, then the points in tfese
already determiné€(n) triangles of distinct areas [12]. We thus assume, in the irhea of the proof, that
there are at most/100 points on any plane.

According to a result of Beck [9], there is an absolute camtstac N such that if no line is incident to
n/100 points of S, then S spansO(n?) distinct lines, each of which is incident to at mdspoints of S.
Since each point of is incident to at most — 1 of these lines, there is a poiate S incident to©(n) such
lines. Select a point of \ {a} on each of these lines, to obtain a $edf O(n) points.

Let ¢ denote the number of distinct triangle areas determinef,land letaq, as, . .., oy denote these
areas. For each pointe P andi = 1,2,...,t, we define a cylinde€'(ab, o;) with axis (the line spanned
by) ab and radiu«; /|ab|. Every pointc € S for which the area of the trianglAabc is «; must lie on the
cylinder C'(ab, «;). LetC denote the set of th@(nt) cylindersC(ab, «;), forb € P andi = 1,2,...,t.
For each poinb € P, there aren — k = ©(n) points off the line throughub, each of which must lie on
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a cylinderC(ab, «;) for somei = 1,2,...,t. Therefore, the numbel(.S,C) of point-cylinder incidences
betweenS andC is Q(n?). On the other hand, by Lemriia 9, we have

Q(n?) < I(S,C) < O(n* A (nt)>*8(n) + n+ nt) = O(n®?t3/43(n)),

which givest = Q(n?/3/3%3(n)) = Q(n?/3/5'(n)), for another functiors’(n) of the same slowly growing
type, as required. O

8 Conclusion

We have presented many results on the number of trianglgseoffic areas determined bypoints in the
plane or in three dimensions. Our results improve upon teeigus bounds, but, most likely, many of them
are not asymptotically tight. This leaves many open problefrclosing the respective gaps. Even in cases
where the bounds are asymptotically tight, such as thosdvimg minimum-area triangles in two and three
dimensions, determining the correct constants of proguatity still offers challenges.

Here is yet another problem on triangle areas, of a slighffgrént kind, with triangles determined by
lines, not points (motivated in fact by the question of bangdUs| in the proof of Theorerhl1). Any three
nonconcurrent, and pairwise non-parallel lines in the @kd@termine a triangle of positive area. What is the
maximum number of unit area triangles determinechbines in the plane?

Theorem 13 The maximum number of unit-area triangles determined tipes in the plane i) (n"/?),
and for anyn > 3, there aren lines that determin€)(n?) unit-area triangles.

Proof. Lower bound Placen /3 equidistant parallel lines at angleésr/3, and2x /3, through the points of
an appropriate section of the triangular lattice, and olestirat there ar€(n?) equilateral triangles of unit
side (i.e., of the same area) in this construction.

Upper bound Let L be a set of: lines in the plane. We define a variant of the hyperbolas usdidei
proof of TheoreniIL: For any pair of non-parallel linés/¢s € L, lety(¢1,¢2) denote the locus of points
p € R%, p & {1 U ¢y, such that the parallelogram that has a vertex ahd two sides along; and /s,
respectively, has arey/2. The sety(¢1, ¢s) is the union of two hyperbolas with and /¢, as asymptotes
(four connected branches in total). Any two non-paralledd uniquely determine two such hyperbolas. Let
I denote the set of the branches of these hyperbolas, andhadtE|t= O(n?). Observe now that, if;, (2,
and/s determine a unit area triangle, thénis tangent to one of the two hyperbolas)if/;, ¢5).

We first derive a weaker bound. Construct two bipartite gsaph G2 C L x I". We put an edgé/, )
in Gy (resp.,G) if ¢ is tangent toy and/ lies below (resp., above). The edges ofs; andG» account for
all line-curve tangencies. Observe that neither graphatositak’s », that is, there cannot be five distinct
lines in L tangent to two branches of hyperbolas from above (or froravibelindeed, this would force the
two branches to intersect at five points, which is impossdibtea pair of distinct quadrics. It thus follows
from the theorem of Kévari, S6s and Turan|[29] (see d&& p. 121]) that the number of line-hyperbola
tangencies between amy lines in L and anymg hyperbolas inl" is O(nomg/E’ + mp). Withng = n
andmg = O(n?), this already gives a bound 6f(n - n%/° + n?) = O(n'3/%) on the number of unit-area
triangles determined by lines in the plane. We next derive an improved bound.

Let L be the given set af lines, and lef" be the corresponding setof = O(n?) hyperbola branches.
We can assume that no line inis vertical, and apply a standard duality which maps ea@lia L to a
point £*. A hyperbolic branchy is then mapped to a curvg’, which is the locus of all points dual to lines
tangent toy; it is easily checked that eaeff is a quadric. Lef.* denote the set of the dual points, and let
I'* denote the set of = O(n?) dual curves. A line-hyperbola tangency in the primal planén mapped
to a point-curve incidence in the dual plane.
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We next construct d1/r)-cutting for I'*, partitioning the plane int@(r?) relatively open cells of
bounded description complexity, each of which contains @tm/r? points and is crossed by at masy/'r
curves. By using the previous bound for each cell, the tatahlver of incidences involving points in the
interior of these cells is

o(* (5 G+ )) =0 (7)o m).

We balance the two terms by setting= n°/9 /m!/9, and observe that < r < m if m < n° andn < m?;
sincem = O(n?), both inequalities do hold in our case. Hence, the total remal incidences under
consideration i©)(m®n5/9) = O(n"/3).

It remains to bound the overall number of incidences invigypoints lying on the boundaries of at least
two cells. A standard argument, which we omit, shows thantimaber of these incidences is al9¢n"/?),
and thereby completes the proof of the theorem. O

Some remarks are in order: The line variant of unit-areangli& problems isot equivalent to the
point variant, under the standard point-line duality. $feadly: Let S be a set of points in the plane
having distinctz-coordinates. Consider the duality transform that mapsiatgo = (a,b) to the line
p* . y = ar — b, and vice versa. It is easy to see that there is no absolutgazdml > 0 such that, for
p,q,r € S, triangle Apgr has unit area if and only if the trianglep*¢*r* formed by the three dual lines
has area&.

Yet, there is a connection between the point- and the limeuwvis of the unit-area problem in the plane.
Go back to the notation in the proof of Theoren 1, where, farametek < n'/3, we hadU, | = O(n?k).
Recall thatU>; denotes the set of unit-area triangles where all three t@s larek-rich, and that there are
|Li| = O(n?/k?) such lines. Observe that the three top lines of each triandle determine a triangle of
area4. We thus face the question of bounding the number of triangfearea 4 determined by tlerich
lines in L. By Theoreni 1B, there are ma8{(n?/k*)7/3) such triangles. Balancing/, | with |U,| yields
k = n'/3, thereby implying thatlU; | + |Us| = O(n"/3).

We note that the bound(n**/?) of TheorentlL could be re-derived with this new approach, &f th
bound of Theoreri 13 could be improved@jn'!/?). Moreover, arv(n'/?) bound for the line-variant
would in turn lead to an improvement in our current bound Fer tlassical point-variant of the unit area
problem in the plane.
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Appendix

Proof of Lemmal4 Let us recall from([25] the structure of the intersectionveubetween two cylinders.
Let C andC’ be two cylinders with nonparallel axes, so each pair of ake®iher skew to each other or
concurrent. Lety denote the curve of their intersection.

To simplify the analysis, we assume, without loss of geiitgrahat the axise of C is the z-axis and
that its radius id. Leta’ andp’ denote respectively the axis and radiug®f Let = be the plane passing
througha’ and through the shortest segmembnnecting the axes, o/. If «, o’ are skew linesg andr are
well defined. Ifa anda’ are concurrent, we taketo be the plane passing throughand orthogonal to the
plane spanned by andc’.

Let o denote the ellips€’' N 7. We use a cylindrical coordinate systéie on C', and write the equation
of 0 asz = acos @ + bsin f + ¢, wherez = ax + by + cis the quation ofr.

As shown in[[25], the equation of is

1
sin 3

whereg is the angle between the axes. Moreowés,(6), o), being the distance, withim, of a point on the
ellipses from the linea/, can also be expressed|asos 6 + ¢ sin 6 + r|, for appropriate parametepsq, .

Let now C, C1, C5 be three cylinders with no pair of parallel axes. Supposééocontrary thaiC' N
Cy Nyl > 9. Let~; denote the intersection curéen C;, fori = 1, 2. Write the equations ofy, v, as

z=0(0) £ V()2 = d*(0(0), o),

1

z=a;cosf + b;sinf + ¢; + —5\/(;),)2 — (picos b + g;sinf + r;)?,
S O;

for i = 1,2, with the appropriate parameters as above. We can re-pwaneethese curves by putting

t = tan(0/2) andw = z(1 + ¢2), to obtain two equations of the form

w = Ql(t)ﬂ: Kl(t)
w = QQ(t)Zl: Kg(t),

where(@):, Q2 are quadratic polynomials arfd; , K> are quartic polynomials. We are given that these two
equations have at leaStcommon roots (it is easy to check that distinct roots of thgimal system are
mapped to distinct roots of the new system).

If Q1(t) = Q2(t) then the common roots must satigky (1) = K»(t). Since there are at leatsuch
roots and this is a quartic equation, we must also Heyg) = K(t).

We will get to this case soon, but let us first consider the @) # Q2(t). After squaring, the
equations become

Hence

_ B0 - Kit) Qi) +Qs(h)
2(Q2(t) — Q1(2)) 2 ’

sot must satisfy the equation

@ ELTTRNCIE Q1<t>>2 — k()

_|_

2(Qa(t) — Q1 (1)) 2 (10)
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which is a polynomial equation of degree at m&sSince it ha®) roots, it must vanish identically.
Since the left-hand side df (1L0) is a squakg, must also be a square. HowevA, (t) is proportional to

2

(ma +t2>)2 ~ (ma-)+ 2t na) -

<p1(1 +12) — (p1 (1 — %) + 2q1t + 1 (1 + t2))> - <p1(1 +12) 4 (p1 (1 — %) + 2q1t + 1 (1 + t2))>.

It follows that either each of these factors is a square, @y #re multiples of each other. In the former case,
we must have

@ = (pr+p—r)(pr—p1—711)=(p —71)* —p?
5 _ 2 9
qi = (pr—p1+7r1)(p1+p1+r)=(p1+71)° —pi,

implying thatp; — r = £(p1 + 1), SO eitherp; = 0 or r; = 0. The first equality is impossible—our
cylinders have positive radii. The second equality imptrest p7 = p? + ¢?. However, as argued in [25],
by shifting#, we may assume that = 0 andp; is half the major axis of,. This implies thatr; is a circle
(since its minor axis is always equal2p, ), which can happen only when, is orthogonal tax. Moreover,
r1 = 0 implies thato anda’ are concurrent.

In the latter case, singa # 0, the two factors are proportional to each other only whghn —t2) +2q; ¢
is a multiple ofl + ¢2, which can only happen when = ¢; = 0, which again is impossible.

Since the only remaining case is that of orthogonal conatges, it follows, using a symmetric ar-
gument, that in the only remaining case, the three axes, a, are concurrent, at a common point, and
mutually orthogonal. It is easily checked that in this cdmedylinders can intersect in at m@gpoints, con-
trary to assumption. (This special case of three intemsgaylinders has been studied a lot; see, €.4., [8].)

Hence,Q1(t) = Q2(t) and K (t) = K»(t). However, the first identity implies that; = o5, so the
plane containing the axis @f, also contains the axis @f;. Since these axes are nonparallel, they must
be concurrent. Since the analysis is fully symmetric witspet to the three cylinders, it follows that all
three axes are either coplanar or concurrent. If they arlagapbut not concurrent, then it is easy to check
that the planes; andmsy (with respect taC' as the “base” cylinder) cannot be equal. If the three axes are
concurrent then again the identity of the plamgsrs implies that bothv; andas must be orthogonal ta,
and the fact that the argument is fully symmetric implieg Hiethree axes must be concurrent and mutually
orthogonal, a case that we have already ruled out. This aiswpthe proof of Lemnid 4. O
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