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Abstract

A non-crossing geometric graph is a graph embedded on a given set of points in the plane
with non-crossing straight line segments. In this paper we present a new general framework for
enumerating non-crossing geometric graphs for a given point set. By applying our idea to specific
enumeration problems, we obtain faster algorithms for enumerating plane straight-line graphs,
non-crossing spanning connected graphs, non-crossing spanning trees and non-crossing minimally
rigid frameworks. Furthermore, we also obtain efficient enumeration algorithms for non-crossing
geometric graph classes, for which no enumeration algorithm has been reported so far, such as
non-crossing matchings, non-crossing blue-and-red matchings, non-crossing k-vertex or k-edge
connected graphs or non-crossing directed spanning trees. The proposed idea is relatively simple,
and can be potentially applied to various other enumeration problems of non-crossing geometric
graphs.

1 Introduction

Given a graph G = (V,E) with n vertices and m edges where V = {1, . . . , n}, an embedding of
the graph on a set of points P = {p1, · · · , pn} ⊂ R2 is a mapping of the vertices to the points in
the Euclidean plane i 7→ pi. A geometric graph (on P ) is a graph embedded on P such that each
edge (i, j) of G is mapped to a straight line segment (pi, pj). A set of embedded segments is called
non-crossing if any pair of elements does not have a point in common except possibly their endpoints,
and so a geometric graph is non-crossing if its corresponding straight line segments is non-crossing.

In this paper we assume that a given point set P is fixed in R2, and an embedding V ← P is
given. This means that the property whether G = (V,E) is non-crossing or not is combinatorially
determined. A graph class is a collection of graphs that is defined by a property that all its members
share. By imposing to a graph class the additional requirement that embedded segments are non-
crossing, we can define a non-crossing geometric graph class, such as non-crossing spanning trees or
non-crossing perfect matchings. Let us denote by NGG a specific non-crossing geometric graph class.
In this paper we extensively study the following enumeration problem:

Input: A fixed point set P in the plane with n points.
Output: The list of all the non-crossing geometric graphs belonging to NGG on P .

Since the output of the problem may consist of exponentially many graphs in terms of the input
size, the efficiency of the enumeration algorithm is measured customarily in both the input and
output sizes. In particular, if the computational time can be bounded by a polynomial in the input
size and by a linear function in the output, the algorithm is said to work in polynomial time (on
average).

In this paper we will present a new general framework for enumerating non-crossing geometric
graphs. Our new framework provides faster algorithms for various enumeration problems compared
with existing ones, such as those for plane straight-line graphs, non-crossing spanning connected
graphs, non-crossing spanning trees and non-crossing minimally rigid frameworks. Moreover the
idea is quite simple. So the technique could be easily applied to many enumeration problems, for
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Table 1: Time complexities of new algorithms and previous ones.
New results Previous best results

plane graphs O(pg(P )) O(n log n · pg(P )) [2]
non-crossing spanning connected graphs O(cg(P )) O(n log n · cg(P )) [2]
non-crossing spanning trees O(n · tri(P ) + st(P )) O(n log n · st(P )) [2]
non-crossing minimally rigid frameworks O(n2 · mrf(P )) O(n3 · mrf(P )) [7, 8]
non-crossing perfect matchings O(n3/2 · tri(P ) + n5/2pm(P )) —

which enumeration algorithms were not known to the best of our knowledge, such as non-crossing
matchings, non-crossing red-and-blue matchings, non-crossing k-vertex or k-edge connected graphs,
or non-crossing directed geometric graphs. In Table 1 we list the time complexities of (a part of) new
algorithms obtained in this paper, where we use the following notations to denote the numbers of
graphs on a given point set P ; pg(P ): plane straight-line graphs, cg(P ): non-crossing spanning con-
nected graphs, st(P ): non-crossing spanning trees, mrf(P ): non-crossing minimally rigid frameworks,
tri(P ): triangulations and pm(P ): non-crossing perfect matchings.

The key idea is to use triangulations because every non-crossing geometric graph is a subgraph of
some triangulation. Let us consider enumerating all non-crossing spanning trees for example. Enu-
merating all non-crossing spanning trees in a triangulation is easily done by applying the existing
algorithm such as [18, 31] for enumerating spanning trees in a given (abstract) graph since every
subgraph of a triangulation is non-crossing. Moreover, efficient enumeration algorithms for triangu-
lations are already known [6, 11]. Therefore, by enumerating spanning trees in every triangulation,
we will obtain all non-crossing spanning trees. However, some non-crossing spanning tree might be
produced more than once since it could be a subgraph of more than one triangulation. In order to
avoid duplicate generation, we will do as follows.

A geometric graph containing a specified set of segments F is called F -constrained. We first
apply the algorithm for enumerating all triangulations [6, 11]. Then each triangulation T generated
by the algorithm can be viewed as the F -constrained lexicographically largest triangulation for some
F ⊂ T (that is a triangulation of the lexicographically largest edge list among all F -constrained
triangulations). Our algorithm determines such F so that F is a minimal set that produces T as
F -constrained lexicographically largest triangulation and enumerates only spanning trees that are
containing F as their subsets and contained in T . We will show that this slightly modified algorithm
correctly enumerate all non-crossing spanning trees without repetitions.

The overall idea of our techniques will be described in two algorithms, Algorithm 1 and Algo-
rithm 2, in Sections 3 and 4, respectively. Let ngg(P ) be the total number of graphs of NGG to
be enumerated. Then, Algorithm 1 enumerates all the non-crossing geometric graphs belonging to
NGG without repetitions in O(f(n) · tri(P ) + g(n) · ngg(P )) time, where f(·) and g(·) are polyno-
mial functions. By applying Algorithm 1, we obtain algorithms for enumerating plane straight-line
graphs, non-crossing spanning connected graphs, non-crossing spanning trees and non-crossing per-
fect matchings (see Table 1). We remark that, for plane straight-line graphs or non-crossing spanning
connected graphs, since we could show that pg(P ) and cg(P ) are exponentially larger than tri(P ) for
every point set P , the term of f(n) · tri(P ) is dominated by pg(P ) or cg(P ). Therefore, we can say
that Algorithm 1 enumerates all plane straight-line graphs in O(pg(P )) or all non-crossing spanning
connected graphs in O(cg(P )) time (details are discussed in Section 3.3). These results improve the
running time of the previous best ones by Aichholzer et al. [2]. For the set of non-crossing span-
ning trees, we strongly believe that our algorithm also enumerates all non-crossing spanning trees in
O(st(P)) time.

Although Algorithm 1 enumerates all graphs of NGG efficiently in terms of tri(P ) and ngg(P ),
its time complexity cannot be bounded by O(f(n) · ngg(P )) in general. In fact, its complexity is
dominated by tri(P ) when tri(P ) is exponentially larger than ngg(P ). The next proposed algorithm
Algorithm 2 overcomes this drawback by enumerating only the triangulations satisfying some spec-
ified property, and the number of triangulations to be enumerated is reduced appropriately. By

2



applying Algorithm 2, we obtain an enumeration algorithm that works in O(n2 · mrf(P )) time for
non-crossing minimally rigid frameworks. This result improves the previous one by Avis et al. [7] by
an O(n) factor.

Enumerating combinatorial objects is a fundamental problem, and several algorithms have been
developed for non-crossing geometric graphs, e.g. triangulations [6, 11], non-crossing spanning trees [2,
6, 20], pseudo-triangulations [9, 12] and non-crossing minimally rigid frameworks [7, 8]. However, all
the previous algorithms make use of an property of each graph class, and there exists no general
framework for enumerating non-crossing geometric graphs efficiently.

Two objects of NGG are connected if they can be transformed to each other by a transformation,
which generates one graph from the other by a certain specified operation. In particular, it is
sometimes called (k-)flip if they have all but k edges in common. Define a graph GNGG on NGG with a
set of edges connecting between objects that can be transformed to each other by one transformation.
Then the natural question is how we can design the transformation so that GNGG is connected.
Moreover, from the viewpoint of the applications to enumeration problems, the transformation should
be defined locally, i.e., the symmetric difference between two connected objects should be as small
as possible. The design of the transformation for a set of non-crossing graphs might be interesting
in its own right, and there are many known results not only for the local transformations [2, 5, 6,
20, 22, 23, 25] but also for the large transformations [1, 3, 24]. In fact, almost all previous works for
the enumeration discussed above are based on the local transformations. On the other hand, the
proposed technique in this paper reveals that efficient enumeration of NGG is possible not relying
on the local transformation of NGG directly but with only the well investigated transformation for
a set of triangulations. Our enumeration technique does not rely on the property of each graph class
deeply.

Let us explain why an enumeration of non-crossing geometric graphs is more difficult than those
of non-geometric (abstract) graphs. A binary partition (or branch-and-bound technique) is a well
known framework for designing enumeration algorithms. Consider, for example, the problem for
enumerating all spanning trees in a graph G. Then, according to the framework of the binary
partition, we can easily design an algorithm that enumerates all the spanning trees in O(n3) time
per output graph as follows. The algorithm repeatedly divides the problem into two subproblems:
one enumerates the spanning trees containing an edge e of G, and the other enumerates those not
containing e. In the first subproblem e is contracted (and the resulting loop is removed if there exists
any), while in the second subproblem e is removed. Then, the problem size is surely reduced in each
subproblem. Moreover, since it can be checked in O(n) time whether the resulting graph contains
at least one spanning tree, the algorithm can decide correctly whether it should continue the search
or not. Therefore, by going down this branch-and-bound tree in O(n2) steps, the algorithm surely
detects a new spanning tree.

A binary partition could provide us with polynomial time delay enumeration algorithms for
many graph classes because it just needs the polynomial time oracle that checks whether a given
graph contains at least one subgraph belonging to a specified graph class or not. However, the
problem of detecting a non-crossing subgraph satisfying a certain property in a given geometrically
embedded graph is known to be NP-hard for most graph classes (even in the case of non-crossing
spanning trees or non-crossing perfect matchings [26]). For this reason, most of the enumeration
problems for non-crossing geometric graphs become non-trivial, and we need to introduce some new
technique. In fact all previous works are not based on a binary partition but on the sophisticated local
transformations. On the other hand, the techniques proposed in this paper are potentially capable of
reducing a problem to that of an abstract graph. Once the problem is reduced to the non-geometric
one, it becomes rather easier as discussed above and the efficient algorithms for enumerating abstract
graphs could be applied.
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2 Edge Constrained Lexicographically Largest Triangulation

Recall that a geometric graph containing a set of non-crossing segments F as its subset is called
F -constrained. In this section, we will first introduce some notations used throughout the paper,
and then provide a number of preliminary results on the F -constrained lexicographically largest
triangulation (F -CLLT) which plays a crucial role in the development of our framework. Although
most of the results presented in this section are already described in [21], we will provide the proof
of them in order to make the paper self-contained and share the unified pictures of the F -CLLT.

2.1 Notations

Let P be a set of n points in R2, and for simplicity we label the points P = {p1, . . . , pn} in the
increasing order of x-coordinates. We assume that the x-coordinates of all points are distinct and
that no three points of P are collinear. For two vertices pi, pj ∈ P , we use the notation pi < pj if
i < j holds, and pi = pj if they coincide. Considering pi ∈ P , we often pay attention only to the
point set to its right, {pi+1, . . . , pn} ⊆ P , which is denoted by Pi+1.

Let Kn be the complete graph embedded on P (with straight line segments). A line segment
between pi and pj with pi < pj is called an edge, denoted by (pi, pj). We often consider a geometric
graph G as an edge set, and use the notation G to denote the edge set of G for simplicity when it is
clear from the context.

For three points pi, pj and pk the signed area ∆(pi, pj , pk) of a triangle pipjpk tells us that pk is
on the left or right side of a line passing through pi and pj when moving along the line from pi to pj

by ∆(pi, pj , pk) > 0 or ∆(pi, pj , pk) < 0, respectively. We define a (total) ordering ≺ on a set of edges
as follows: for e = (pi, pj) and e′ = (pk, pl), e ≺ e′ holds if pi < pk, or pi = pk and ∆(pi, pj , pl) < 0.
Let E = {e1 ≺ · · · ≺ em} and E′ = {e′1 ≺ · · · ≺ e′m} be sorted edge lists in increasing ordering.
Then, E′ is lexicographically larger than E if ei ≺ e′i for the smallest i such that ei ̸= e′i.

We say that two edge (pi, pj) and (pk, pl) properly intersect if (pi, pj) and (pk, pl) have a point
in common except for their endpoints. For two points pi, pj ∈ P , pj is visible from pi with respect
to a given non-crossing edge set F when the edge (pi, pj) and no edge of F properly intersect. We
assume that pj is visible from pi if (pi, pj) ∈ F .

Upper and lower tangents, (pi, p
up
i ) and (pi, p

low
i ), of pi with respect to F are defined as edges from

pi to the convex hull of the points of Pi+1 that are visible from pi with respect to F (see Fig. 1).
Notice that each of the upper and lower tangents defines an empty region in which no point of P
exists as described below. Let l be a line perpendicular to the x-axis passing through pi, and let
e1 and e2 be the edges of F first encountered when walking from pi along the line l upwards and
downwards, respectively (if such edges exist). Then, there exists no point of P inside the region
bounded by l, e1 (resp. e2) and the line passing through pi and pup

i (resp. plow
i ). When e1 (resp. e2)

does not exist, the empty region is defined by the one bounded by l and the line through pi and pup
i

(resp. plow
i ). Thus, we have the following fact:

Observation 2.1. Let P be a point set in the plane and F be a non-crossing edge set on P . Let e be
an edge of Kn that properly intersects either upper or lower tangent of pi with respect to F . Then, at
least one of the following two facts holds: (1) the left endpoint of e is less than pi and (2) e properly
intersects some edge of F .

2.2 Edge-constrained Lexicographically Largest Triangulations

For a non-crossing edge set F on P and a point pi ∈ P , let us denote by δF (pi) a set of edges of F
whose left endpoints are pi. Let us consider the following construction of an F -constrained geometric
graph on P :

Construction 1.

0. Repeat the following process for all pi ∈ P in an arbitrary order.
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Figure 3: Construction 1 around pi where bold edges represent F . (a)Step 1, (b)Step 2 and (c)Step 3.

1. Let (pi, p
up
i ) and (pi, p

low
i ) be the upper and lower tangents of pi ∈ P with respect to F , and denote

the right endpoints of δF (pi) ∪ {(pi, p
up
i ), (pi, p

low
i )} by pi0 , pi1 , . . . , pim arranged in clockwise

order around pi, (where pi0 = pup
i and pim = plow

i hold) (Fig.3(a)).
2. Consider the cone Ck with an apex at pi bounded by two consecutive edges (pi, pik) and (pi, pik+1

)
for each k with 0 ≤ k ≤ m− 1, where Ck contains both pik and pik+1

, and construct the convex
hull Hk of Pi+1 ∩ Ck inside each Ck (Fig.3(b)).

3. Draw an edge from pi to every point pj ∈ Pi+1 ∩ Ck such that pj = (pi, pj) ∩ Hk for each k
(Fig.3(c)).

As will be proved in Lemma 2.3, the above algorithm never produce edge crossings, but in fact
produces a triangulation. We give an example of the graph obtained by the above construction
in Fig. 2. Notice that the graph obtained by Construction 1 always has the edges of δF (pi) ∪
{(pi, p

up
i ), (pi, p

low
i )} for all pi ∈ P . The following property of the graph obtained by Construction 1

could be easily observed.

Lemma 2.2. Let G be the graph obtained by Construction 1 and let (pi, pj) be an edge of G.
Then, any edge of Kn properly intersecting (pi, pj) properly intersects at least one edge of δF (pi) ∪
{(pi, p

up
i ), (pi, p

low
i )}.

Proof. Let us consider Construction 1 around pi. Then, since (pi, pj) ∈ G, there exists a convex hull
Hk for which pj = (pi, pj) ∩ Hk. Notice that the two consecutive edges, (pi, pik) and (pi, pik+1

) of
δF (pi) ∪ {(pi, p

up
i ), (pi, p

low
i )} bounding Ck in Step 2 of Construction 1, and a part of the boundary

of Hk from pik to pik+1
(that is a convex chain) forms a simple polygon with exactly three convex

vertices, pi, pik and pik+1
, which is so-called a pseudo-triangle. Since pj is a vertex of such a pseudo-

triangle and there exists no point of P inside of the pseudo-triangle, any edge intersecting (pi, pj)
must intersect at least one of (pi, pik) and (pi, pik+1

).

The following lemmas describe the fundamental properties of the above defined construction.

Lemma 2.3. The graph G obtained by Construction 1 is an F -constrained triangulation on P .
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Proof. We will prove, by induction on i from i = n to 1, that (1) the subgraph of G induced by Pi,
denoted by Gi, is non-crossing, and (2) all faces of Gi are triangles except for an outer face fout.
This implies that G is a triangulation since G clearly contains the boundary edges of the convex hull
of P from the definition of Construction 1.

For the basis, Gn has no edge, and hence the statement holds. Assume that (1) and (2) hold for
Gi+1. We first show that (1) holds for Gi. Suppose there exists an edge (pa, pb) ∈ Gi+1 with pa < pb

that properly intersects some edge of Gi \ Gi+1. Then, from Lemma 2.2, (pa, pb) properly intersects
some edge of δF (pi) ∪ {(pi, p

up
i ), (pi, p

low
i )}. By Construction 1 it is obvious that (pa, pb) does not

properly intersect any edge of F . Hence (pa, pb) intersects either (pi, p
up
i ) or (pi, p

low
i ). However, this

implies, by Observation 2.1, that pa lies on the left side of pi, which contradicts pa ∈ Pi+1. Hence
(1) holds for Gi.

Next, we prove (2). Let (pi, pa) and (pi, pb) be two consecutive edges of Gi \ Gi+1 in clockwise
order around pi. We will show that there is an edge between pa and pb in Gi+1. From the definition
of Construction 1, there exists a convex hull Hk such that pa and pb are consecutive vertices on the
boundary of Hk. Hence, an edge between pa and pb is one of a upper or lower tangents of pa or pb,
and so it is contained in Gi+1 by Construction 1.

Lemma 2.4. The F -constrained triangulation T ∗(F ) obtained by Construction 1 has the lexicograph-
ically largest edge list among all F -constrained triangulations on P .

Proof. Let T ∗(F ) be the F -constrained triangulation obtained by Construction 1 with edge list {e∗1 ≺
· · · ≺ e∗m}. Suppose there exists an F -constrained triangulation T whose edge list {e1 ≺ · · · ≺ em} is
lexicographically larger than that of T ∗(F ). Then, there exists the smallest subscript s with e∗s ̸= es

for which e∗s /∈ T and e∗s ≺ es hold.
Let e∗s = (pi, pj). Since s is the smallest subscript of edges for which e∗s ̸= es, a set of edges of

T ∗(F ) incident to p coincides with that of T for every p ∈ {p1, . . . , pi−1}. Since T is a triangulation
but does not contain e∗s, T must contain at least one edge e /∈ T ∗(F ) that properly intersects e∗s.
By Lemma 2.2, e properly intersects some edge of δF (pi) ∪ {(pi, p

up
i ), (pi, p

low
i )}. In addition, since

T is an F -constrained triangulation, e does not properly intersect any edge of δF (pi), and hence e
properly intersects at least (pi, p

up
i ) or (pi, p

low
i ). However, by Observation 2.1, we found that the

left endpoint of e is on the left side of pi, which contradicts that the set of edges of T ∗(F ) and T
incident to p ∈ {p1, . . . , pi−1} coincide.

Hence, we call the F -constrained triangulation obtained by the above construction F -constrained
lexicographically largest triangulation (F -CLLT). In fact we can show that F -CLLT can be con-
structed by greedily adding the edges into F in the lexicographically descending order without
violating the non-crossing property.

An edge e in a triangulation T is called flippable when two triangles incident to e in T form a
convex quadrilateral Q. Flipping e in T generates a new triangulation by replacing e with the other
diagonal of Q. It is known that every F -constrained triangulation can be transformed into F -CLLT
by flipping O(n2) edges e /∈ F , each of which increases the lexicographical order of the edge list [21].

2.3 Maintaining F -constrained Lexicographically Largest Triangulation

Let us discuss how to maintain the F -CLLT, denoted by T ∗(F ), when we newly insert one constraint
edge e into F . Developing the following efficient way to construct T ∗(F ∪ {e}) from T ∗(F ) will be
helpful for constructing the fast enumeration algorithm discussed in Section 4.1.

Lemma 2.5. Let T ∗(F ) be the F -CLLT on a given set of n points, and let e be an edge that does
not properly intersect any edge of F . Then, it takes O(n) time to construct T ∗(F ∪{e}) from T ∗(F ).

Proof. Let e = (pi, pj), and let I be the set of edges of T ∗(F ) that intersect e. First we show that
every edge of T ∗(F ) \ I, say (pk, pl) ∈ T ∗(F ) \ I, is still contained in T ∗(F ∪ {e}). Consider how
T ∗(F ) is constructed by performing Construction 1 around pk. Let (pk, p

up
k ) and (pk, p

low
k ) be the
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Figure 4: (a)Insertion of a new constrained edge, (b)two empty simple polygons obtained by removing
the edges intersecting the inserted edge, (c)reconstruction inside the simple polygon in the upper
side, where dashed and dotted edges represent the green and yellow edges, and (d)the green dashed
edges.

upper and lower tangents of pk with respect to F . Then, (pk, p
up
k ) ≼ e ≼ (pk, p

low
k ) holds, since

otherwise e properly intersects some edge of F from the definition of the upper and lower tangents,
which contradicts the assumption. Therefore, there exists a cone with an apex pk considered in Step
2 of Construction 1, which contains pl. Let HF denote the convex hull (containing pl) inside this
cone. Similarly let HF+e be the one containing pl inside the cone with an apex pk considered in Step
2 when constructing T ∗(F ∪ {e}). When inserting e, the vertices that are not visible from pk with
respect to F remain non-visible from pk with respect to F ∪{e} although some of the vertices visible
from pk with respect to F may become non-visible from pk with respect to F ∪ {e}. This implies
HF+e ⊆ HF . Moreover, from (pk, pl) ∈ T ∗(F ), pl = (pk, pl) ∩ HF holds now. Hence, we obtain
pl = (pk, pl) ∩ HF+e, and (pk, pl) remains in T ∗(F ∪ {e}).

Therefore, the update occurs only inside the two simple polygons obtained by removing the edges
of I and adding e, (see Fig. 4(a)(b)). Without loss of generality, we assume that e is horizontal, and
let us show an efficient algorithm to triangulate (the inside of) the polygon lying on the upper side
of e = (pi, pj) (the lower side can be treated similarly). Consider the updated triangulation of the
polygon by Construction 1. There exist two types of edges: (1) lower tangent of each vertex of the
polygon with respect to the boundary edges of the polygon, and (2) the others (see Fig. 4(c)). We
call the type (1) and type (2) edges green (dashed) and yellow (dotted) edges, respectively.

Let us consider how to find the green edges. Let v be a vertex of the polygon which misses
the lower tangent in T ∗(F ) \ I ∪ {e}, i.e., the lower tangent (v, vlow) of v with respect to F proper
intersects e (and hence (v, vlow) is removed). Consider a ray emanating from v to vlow (which first hits
e before reaching vlow). By rotating the ray around v in counterclockwise order until it encounters a
vertex of the polygon, we can find the new lower tangent (v, ṽlow) of v, which is a green edge. Note
that a ray emanating from v to ṽlow first hits e among the boundary edges of the polygon (except for
hitting the vertex ṽlow), and hence ṽlow is again a vertex missing the lower tangent in T ∗(F )\I∪{e},
or coincides with pj . This implies that the set of all green edges is a subset of the convex chain
connecting between pj and each vertex of the polygon as shown in Fig. 4(d). Besides, these convex
chains indicate the shortest paths inside the polygon from pj to the vertices of the polygon. It is
known [17] that the shortest paths from a single source to all vertices inside simple polygon can be
computed in O(n) time although it requires an involved linear time algorithm for triangulation a
simple polygon [13]. Thus, we could obtain the desired time complexity through the shortest path
algorithm.

Our problem, however, can be solved easily by performing Graham scan (see e.g. [14]) only once.
Let us try to construct the lower part of the convex hull of the vertices of the polygon by performing
Graham scan algorithm from pj to pi. We remark that the algorithm scans all vertices not in the
order of the coordinates as usual but in the vertex sequence order of the polygon from pj to pi. Then,
the process of Graham scan will trace the green edges. When we encounter the new vertex p during
scan, we examine the top two vertices q and r on the stack. If the angle of three points around q
inside the polygon is convex, then we pop q and draw the yellow edge between p and q (if (p, q) is
not the boundary edge of the polygon). Continue this process until we obtain three vertices p, q′ and
r′ whose angle around q′ inside the polygon is reflex. Then, we draw a green edge between p and q′
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(if (p, q) is not the boundary edge of the polygon). Thus, repeating this process until p = pi and the
stack contains only pi and pj , we can draw all of the green and yellow edges in linear time.

3 Enumerating Non-crossing Geometric Graphs

3.1 General Idea

Let F be the collection of all non-crossing edge sets on a given point set P , and let T be the set
of all triangulations on P . We will often treat a triangulation as an edge set in the subsequent
discussion. We make use of the construction of the F -CLLT defined in the previous section as a
function T ∗ : F → T that maps a non-crossing edge set F to the corresponding F -CLLT T ∗(F ).
Then, we define an equivalence relation ∼ on F such that, for two non-crossing edge sets F and
F ′, F ∼ F ′ holds if and only if T ∗(F ) = T ∗(F ′) holds. The equivalence classes over F , denoted by
[T ] = {F ∈ F | F ∼ T} for all T ∈ T , are defined accordingly. Note that the set of all equivalence
classes forms a partition of F .

We have the following properties of the function T ∗(·) which will be used to define a nice repre-
sentative of each equivalence class.

Lemma 3.1. Let F ∈ F . Then, for every e ∈ T ∗(F ), T ∗(F ∪ {e}) = T ∗(F ) holds.

Proof. Notice that the set of all (F ∪{e})-constrained triangulations is a subset of all F -constrained
triangulations. Moreover, from e ∈ T ∗(F ), T ∗(F ) can be regarded as an (F ∪ {e})-constrained tri-
angulation as well as an F -constrained triangulation. Since T ∗(F ) has the lexicographically largest
edge list among all of the F -constrained triangulations from Lemma 2.4, T ∗(F ) also has the lexi-
cographically largest edge list among all of the (F ∪ {e})-constrained triangulations, which implies
T ∗(F ∪ {e}) = T ∗(F ).

Lemma 3.2. Let F ∈ F . Then, for e = (pi, pj) ∈ F , T ∗(F \ {e}) = T ∗(F ) holds if either (i) e is
either upper or lower tangent of pi with respect to F , or (ii) e is non-flippable in T ∗(F ).

Proof. First let us consider the case when e = (pi, pj) is either upper or lower tangent of pi with
respect to F . Then, e is also either upper or lower tangent of pi with respect to F \{e} since removing
e = (pi, pj) does not affect the visibility of pi. Since CLLT contains upper and lower tangents for
every p ∈ P by the definition of Construction 1, it follows that e ∈ T ∗(F \ {e}), which implies
T ∗(F \ {e}) = T ∗(F ) from Lemma 3.1.

Next let us consider the case when e is non-flippable in T ∗(F ). Suppose e is either upper or lower
tangent of pi with respect to F . Then the statement follows from (i). So let us assume that e is
neither upper nor lower tangent. We show that e is still contained in T ∗(F \ {e}).

Following Construction 1 for T ∗(F ), let us denote a set of the right endpoints of δF (pi) ∪
{(pi, p

up
i ), (pi, p

low
i )} by pi0 , pi1 , . . . , pim in clockwise ordering around pi, where (pi, p

up
i ) and (pi, p

low
i )

are the upper and lower tangent of pi with respect to F , and consider m convex hulls Hk of Pi+1∩Ck,
for k = 0, . . . ,m−1, bounded by the consecutive edges, (pi, pik) and (pi, pik+1

), and m convex chains
as the boundary of the convex hulls Hk which consist of the sequence of the vertices p satisfying
p = (pi, p) ∩ Hk.

Since e is in F (and more precisely e ∈ δF (pi)) and e is neither upper nor lower tangent, there
exists a subscript k′ with k′ ̸= 0,m for which e = (pi, pik′ ) holds. Therefore, since e is non-flippable
in T ∗(F ), by combining two convex chains, one from pik′−1

to pik′ and the other from pik′ to pik′+1
,

we obtain a single convex chain from pik′−1
to pik′+1

. This implies that we obtain the convex hull
H of the point set Pi+1 inside the cone bounded by two consecutive edges (pi, pik′−1

) and (pi, pik′+1
)

of δF (pi) \ {e} ∪ {(pi, p
up
i ), (pi, p

low
i )}, (implying that H will be constructed in Construction 1 for

T ∗(F \ {e})), in which pik′ = (pi, pik′ ) ∩ H holds. Therefore, the edge e = (pi, pik′ ) is chosen as the
edge of T ∗(F \ {e}) in Step 3 of Construction 1.
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Lemma 3.3. Let F ∈ F . Then, for E ⊆ F , T ∗(F \ E) ̸= T ∗(F ) holds if there exists an edge
e = (pi, pj) ∈ E that is (i) flippable in T ∗(F ) and (ii) neither upper nor lower tangent of pi with
respect to F .

Proof. Suppose T ∗(F \E) = T ∗(F ) holds. Note that T ∗(F \E) = T ∗(F ) implies that T ∗(F ) is the (F \
E)-constrained lexicographically largest triangulation as well as the F -constrained lexicographically
largest triangulation.

Consider two triangles of T ∗(F \ E) incident to e = (pi, pj), and denote the two vertices for
these triangles other than pi and pj by v and w. Since e is flippable in T ∗(F \ E)(= T ∗(F )), the
quadrilateral pivpjw is convex. In addition, since e is neither upper nor lower tangent of pi, both v
and w lie on the right side of pi, and hence e ≺ (v, w) holds. Therefore, flipping e to (v, w) produces
an (F \ E)-constrained triangulation that is lexicographically larger than T ∗(F ) from e ≺ (v, w),
which contradicts that T ∗(F ) is the (F \ E)-constrained lexicographically largest triangulation.

We remark that, for any non-crossing edge set F , the upper and lower tangents of pi with respect
to F are the smallest and largest ones of {(pi, q) ∈ T ∗(F ) | q ∈ {pi+1, . . . , pn} = Pi+1}, respectively,
from the definition of Construction 1. This implies that, for any F ∈ [T ] of a triangulation T ,
the upper and lower tangents with respect to F are equivalent to the smallest and largest ones of
{(pi, q) ∈ T | q ∈ Pi+1}. Using Lemmas 3.2 and 3.3, a unique minimal representative for each [T ] is
defined as follows.

Lemma 3.4. For a triangulation T , let F ∗ be the set of all flippable edges in T except for the smallest
and largest edges of {(pi, q) ∈ T | q ∈ Pi+1} for every pi ∈ P . Then,

(i) F ∗ ∈ [T ] (i.e., T ∗(F ∗) = T ), and

(ii) for any F ∈ F , F ∈ [T ] holds if and only if F ∗ ⊆ F ⊆ T holds.

Proof. Let us show (i). It is obvious that T ∗(T ) = T holds. Note that, from the definition of F ∗,
every edge e = (pi, pj) ∈ T \ F ∗ is either (i) non-flippable in T , or (ii) the smallest or largest edge
among {(pi, q) ∈ T | q ∈ Pi+1} (implying that e is the upper or lower tangent of pi with respect
to T ). Hence, from Lemma 3.2, removing any edge e ∈ T \ F ∗ does not change the triangulation,
i.e., T = T ∗(T ) = T ∗(T \ {e}) holds. We thus eventually obtain T = T ∗(T ) = T ∗(T \ (T \ F ∗)) =
T ∗(F ∗).

Next let us show (ii). The “if-part” can be proved in the same way as in the first part. In
fact, removing the edges of F \ F ∗ one by one from the constraint edge set of T ∗(F ), we obtain
T ∗(F ) = T ∗(F \(F \F ∗)) = T ∗(F ∗) = T . Let us consider the “only-if” part. It is obvious that F ⊆ T
holds if F ∈ [T ]. Suppose F (with F ⊆ T ) is a counterexample, that is T ∗(F ) = T but F ∗ \ F ̸= ∅.
If F \ F ∗ ̸= ∅ holds, the removal of any edge of F \ F ∗ from F does not change the triangulation for
the same reason as in the first part, and hence we may assume that F \ F ∗ = ∅ holds, i.e. F ( F ∗.
However, since an edge e = (pi, pj) ∈ F ∗ \ F is flippable in T and neither the smallest nor largest
edge of {(pi, q) ∈ T | q ∈ Pi+1} from the definition of F ∗, T = T ∗(F ) = T ∗(F ∗ \ (F ∗ \ F )) ̸= T ∗(F ∗)
holds from Lemma 3.3, which contradicts T = T ∗(F ∗).

Thus, we call F ∗ defined in Lemma 3.4 the minimal representative set of T , denoted by R(T ).
Our enumeration algorithm can be easily described, which consists of two phases as follows.

Algorithm 1: Enumeration of NGG.

Phase1: Enumerate all triangulations for a given point set P based on the fast enumeration algo-
rithm by Bespamyatnikh [11].

Phase2: Every time a new triangulation T is found, enumerate all graphs G contained in T such
that G ∈ NGG and G contains the minimal representative set R(T ) as its subset, i.e., G is an
R(T )-constrained graph in T .

9



Figure 5: Search tree on the set of triangulations obtained by the algorithm by Bespamyatnikh,
where each minimal representative set is drawn in bold.

Let C be a graph class obtained by relaxing the non-crossing constraints from a non-crossing
geometric graph class NGG (i.e. the set of geometric graphs whose edge sets are not necessarily non-
crossing but satisfy the other combinatorial property of NGG). Notice that in Phase 2 the problem
for enumerating all graphs of NGG is reduced to that of enumerating all elements of C containing
R(T ) in a triangulation T because T is non-crossing. Then, in Phase 2, we may utilize an oracle for
enumerating all the graphs of C containing a specified edge set F in a given (abstract) graph without
repetitions. Namely, we can ignore “geometric” and “non-crossing”.

The algorithm needs R(T ) explicitly for every T in Phase 2, and hence it will be better to
maintain and update R(T ) during the enumeration of triangulations rather than compute it from
scratch because the algorithm by Bespamyatnikh [11] creates a new triangulation by flipping one
edge, and hence two triangulations generated in succession only differ in one edge. So the task of
Phase 1 is in fact not only the enumeration of T but also the generation of R(T ). This additional
task can be performed by slightly modifying the triangulation enumeration which will be discussed
more formally in Section 3.2. We show an example of the enumeration of triangulations and the
minimal representative sets in Fig. 5.

Theorem 3.5. Algorithm 1 enumerates all graphs of NGG without repetitions.

Proof. We just need to verify that the algorithm enumerates all graphs of NGG belonging to [T ] but
not graphs belonging to the other equivalence class in Phase 2 for a triangulation T .

From Lemma 3.4 we have R(T ) ⊆ G ⊆ T for every G ∈ NGG belonging to [T ]. G is hence
an R(T )-constrained graph contained in T , and must be enumerated by the (assumed) oracle. On
the other hand, suppose G′ is a graph belonging to an equivalence class other than [T ]. If G′ ̸⊂ T ,
clearly G′ is not generated in Phase 2 for T . On the other hand, if G′ ⊆ T , then G′ does not contain
R(T ) since otherwise R(T ) ⊆ G′ ⊆ T holds, which implies G′ ∈ [T ] from Lemma 3.4. This is a
contradiction.
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3.2 Time Complexity of Algorithm 1

In order to analyze the time complexity of Algorithm 1, let us briefly review the enumeration algo-
rithm of triangulations by Bespamyatnikh [11], which is based on the reverse search technique [6].
The reverse search is a well known technique to generate all the elements of the combinatorial objects
by tracing the nodes in the search graph, in which each node corresponds to each object to be enu-
merated and each edge corresponds to a transformation (discussed in Section 1) between two objects.
To trace the search graph efficiently, the algorithm defines a root node and a unique parent for each
node except for the root such that the subgraph of the search graph induced by the parent-child
relation forms a rooted spanning tree. Such a spanning tree is called search tree, and the algorithm
traces it by depth-first manner. The search graph of the algorithm by Bespamyatnikh is defined in
such a way that two triangulations are connected if and only if they can be transformed to each other
by a diagonal flip (see Fig. 5 or [11] for more details). The following lemma states how to efficiently
maintain the minimal representative set during enumeration of triangulations.

Lemma 3.6. Let T1 and T2 be two triangulations for which T2 is a child of T1 in the search tree
of the triangulation enumeration by Algorithm 1. Then the size of the symmetric difference between
R(T1) and R(T2) is constant. More specifically, only the four edges of two triangle faces incident to
a flipped edge are involved in the symmetric difference.

Proof. Recall that the minimal representative set R(T ) of a triangulation T was defined in Lemma 3.4
to be the edge set of all flippable edges in T except for the smallest and largest edges of (pi, q) ∈ T | q ∈ Pi+1.
Suppose T2 is obtained from T1 by replacing an edge e1 ∈ T1 by an edge e2 ∈ T2 during the enumer-
ation. There are two cases; (Case 1:) e = (pi, pj) ∈ R(T1) becomes non-flippable in T2, and (Case 2:)
e = (pi, pj) becomes either the smallest or largest edge among {(pi, q) ∈ T2 | q ∈ Pi+1}. Notice that
a diagonal flip switches at most four flippable edges in T1 into non-flippable edges in T2, and an edge
of Case 1 is clearly one of the four edges of the triangles incident to the flipped edge. Let us consider
Case 2 where e ∈ R(T1) becomes the smallest (or largest) one of {(pi, q) ∈ T2 | q ∈ Pi+1}. Since e is
not the smallest (or largest) one in {(pi, q) ∈ T1 | q ∈ Pi+1}, there exists an edge e′ = (pi, q

′) in T1

with e′ ≺ e (or e ≺ e′, respectively) such that e′ and e are incident to a common triangle face of T1.
We notice that e′ disappears in T2 because e becomes the smallest (or largest) one, and hence e′ is
exactly e1. So, e1 and e are incident to the same triangle face in T1.

The rest of the argument for e ∈ R(T2) \ R(T1) is similar from the locality of diagonal flips.

By Lemma 3.6, the symmetric difference of the minimal representative sets can be output in O(1)
time if the triangulation is maintained in a proper data structure and a flag indicating whether in
the minimal representative set or not is attached to each edge. The algorithm by Bespamyatnikh
[11] enumerates all triangulations in O(log log n) time per output. Thus, we obtain the following
theorem:

Theorem 3.7. Suppose there exists an algorithm for enumerating all elements of C in a given graph,
each of which contains a prespecified edge set, without repetitions in time tC per output graph with
preprocessing time tC,pre. Then all elements of NGG on a given point set P of n points can be
enumerated without repetitions in O((log log n + tC,pre) · tri(P ) + tC · ngg(P )) time, where tri(P ) and
ngg(P ) are the total number of triangulations and NGG on P , respectively.

3.3 Applications of Algorithm 1

3.3.1 Enumerating Non-crossing Spanning Trees

We will show how to apply Algorithm 1 to the enumeration of non-crossing spanning trees on a
given point set. What we have to show here is how to enumerate all the spanning trees in a given
triangulation T , each of which contains the minimal representative set R(T ). We notice again that,
in the above process, we do not have to care about whether an output spanning tree is non-crossing
because T is non-crossing. In Phase 2 of Algorithm 1, we will use the algorithm for enumerating
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spanning trees on a given undirected graph developed by Kapoor and Ramesh [18] or Shioura et
al. [30, 31]. These algorithms can enumerate all the spanning trees of a given graph in O(1) time
per output graph1 with O(n + m) preprocessing time, where n and m denote the number of vertices
and edges. Since the edge-constraints can be handled easily by contracting the specified edges before
calling these oracles, all the R(T )-constrained spanning trees in T can be enumerated in tC = O(1)
time per output graph with tC,pre = O(n) preprocessing time. Thus, from Theorem 3.7, we obtain
the following result:

Theorem 3.8. Let P be a set of n points in the plane. Then the set of non-crossing spanning trees
on P can be enumerated in O(n · tri(P ) + st(P )) time.

Remark. Provided that there exists a constant c (> 1) for which cn ·tri(P ) < st(P ) holds for every P
of n points, the above running time is dominated by st(P ). It is known that st(P ) becomes minimum
when P is in a convex position when n is fixed. On the other hand there exists a configuration that
can admit smaller number of triangulations than that of convex position (see [4]). Furthermore,
the number of st(P ) in the convex position is known to be Θ(6.75n) [15] relative to the number of
triangulations that is Θ(4n), where we ignore polynomial factors. Hence, we strongly conjecture that
there exists such a constant c with c > 1.

3.3.2 Enumerating Non-crossing Spanning Connected Graphs

We show here how Algorithm 1 can be applied to the enumeration of non-crossing spanning connected
graphs. All the spanning connected subgraphs of a given graph can be enumerated in O(1) time
per output by the binary partition technique with the sophisticated amortized analysis proposed by
Uno [33] for enumerating all bases of matroids (see [33, 34] for more details) with O(n) preprocessing
time. Let us briefly explain how to apply this algorithm to the enumeration of spanning connected
subgraphs.

Consider enumerating all spanning trees (bases of graphic matroid) in a given graph by the
binary partition technique discribed in Introduction. The algorithm by Uno outputs each spanning
tree when it reaches a leaf of the binary partition tree (branch-and-bound tree), keeping a spanning
connected subgraphs during tracing this tree. Hence, by outputting graphs not only at leafs but also
at some internal nodes, we can enumerate all spanning connected subgraphs without repetitions.
(More precisely, we output a spanning connected graph when the corresponding node of the binary-
partition tree is obtained by removing an edge (not contracting an edge) when partitioning the
problem into two subproblems, see Introduction.) The time complexity is not increased since the
additional task is only output of the (symmetric difference of) graph in the internal nodes.

Since the edge-constraints can be treated easily by edge contraction as in the case of the spanning
trees discussed in Section 3.3.1, all the R(T )-constrained spanning connected graphs of T can be
enumerated in tC = O(1) time per output with tC,pre = O(n). Thus, from Theorem 3.7, Algorithm 1
enumerates all non-crossing spanning connected graphs in O(n · tri(P ) + cg(P )) time. Moreover, we
could show the next lemma.

Lemma 3.9. For every point set P in the plane with n points, 2n/2−1 · tri(P ) ≤ cg(P ) holds.

Proof. Let T be a triangulation on P with the minimal representative set R(T ). We show that, for
every T , there exist at least 2n/2−1 non-crossing spanning connected subgraphs in T that are not
contained in the other triangulations.

Let us first show that, for every (triangle) face pipjpk of T , |{(pi, pj), (pi, pk), (pj , pk)}∩R(T )| ≤ 2
holds. Without loss of generality, assume that pi < pj < pk. Then, the edge (pj , pk) is either the
lexicographically largest or smallest edge among {(pj , q) ∈ T | q ∈ Pj+1}. Hence, (pj , pk) is not
contained in the minimal representative set R(T ) from the definition of the minimal representative
set described in Lemma 3.4.

1The algorithm outputs each enumerated graph by the compact form, i.e., the symmetric difference between the last
found object and the current one otherwise it takes O(n) time to output each graph.
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Thus consider a subset S of T such that (i) S forms a spanning connected graph on P , (ii) S
contains R(T ) as its subset and (iii) S has the minimum edge cardinality among the subsets of T
satisfying (i) and (ii). Then, from the above discussion, S contains at most two edges for each face of
T . Since S is R(T )-constrained non-crossing spanning connected graph on P , S ∪E forms a distinct
R(T )-constrained non-crossing spanning connected graphs on P for every E ⊆ T \ S with E ̸= ∅.
Since the number of faces of a triangulation is known to be 2n − h − 2, where h is the number of
vertices of the convex hull of P , |T \ S| is at least (2n − h − 2)/2 ≥ n/2 − 1. Therefore, there exist
Ω(2n/2) subsets of T \ S, and T contains Ω(2n/2) non-crossing spanning connected graphs each of
which contains R(T ) as its subset.

We remark that every two non-crossing spanning connected graphs G1 and G2 with R(T1) ⊆ G1 ⊆
T1 and R(T2) ⊆ G2 ⊆ T2 are distinct for every distinct triangulations T1 and T2. This is because
that R(T1) ⊆ G1 ⊆ T1 and R(T2) ⊆ G2 ⊆ T2 imply G1 ∈ [T1] and G2 ∈ [T2] from Lemma 3.4.
Since [T1] ∩ [T2] = ∅ from the definition of the equivalence class [T ], G1 ̸= G2 holds. Thus, every
triangulation contains at least 2n/2−1 non-crossing spanning connected graphs on P that are not
contained in the other triangulations.

Lemma 3.9 is of independent interest because it shows that cg(P ) is exponentianlly larger than
tri(P ). From Lemma 3.9, the running time of Algorithm 1, which is O(n · tri(P ) + cg(P )) time, is
dominated by cg(P ).

Theorem 3.10. Let P be a set of n points in the plane. Then the set of non-crossing spanning
connected graphs on P can be enumerated in O(cg(P )) time.

3.3.3 Enumerating Plane Straight-line Graph

For any E ⊆ T\R(T ), E∪R(T ) is a plane straight-line graph containing R(T ). Hence, by enumerating
(the symmetric differences of) all subsets of T \R(T ), we obtain all R(T )-constrained plane straight-
line graphs in T . Enumerating all subsets of T \ R(T ) is equivalent to generating all |R \ R(T )|-bit
binary numbers with O(n) preprocessing time, which can be done in constant time per output (see
e.g. [29]). Algorithm 1 thus enumerates all plane straight-line graphs in O(n · tri(P ) + pg(P )) time.

Since a non-crossing spanning connected graph is also a plane straight-line graph, 2n/2−1tri(P ) ≤
cg(P ) ≤ pg(P ) holds from Lemma 3.9. Thus, we obtain the following result.

Theorem 3.11. Let P be a set of n points in the plane. Then the set of plane straigh-line graphs
on P can be enumerated in O(pg(P )) time.

3.3.4 Enumerating Non-crossing Perfect Matchings

Given a point set P of 2n points, a non-crossing perfect matching is a non-crossing geometric graph
on P such that every point of P is incident to exactly one edge of the graph.

Let us consider how to design Phase 2 of Algorithm 1. Suppose we have an algorithm for finding
a perfect matching in a given (non-geometric) graph in tPM time if it exists. Then, using this
algorithm as an oracle, the naively implemented binary partition algorithm (discussed in Section 1)
can enumerate all the perfect matchings in a given graph (if exists) in O(ntPM) time per output
graph (see [28]). The edge constraints can be treated easily. If T has a vertex that is incident to
more than one edge of R(T ), we report that there is no perfect matching in T . Otherwise we first
remove all of R(T ) together with the vertices incindent to R(T ) and then apply the above algorithm
for enumerating perfect matchings to the resulting graph. By putting R(T ) back to each solution,
we obtain all the perfect matchings in T that contain R(T ). Algorithm 1 hence enumerates all the
non-crossing perfect matchings on P in O(tPM · tri(P ) + ntPM · pm(P )) time.
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4 Independent Minimal Representative Set

We know that the algorithm by Bespamyatnikh [11] enumerates all triangulations efficiently, but
its search tree is not nicely structured when we focus on minimal representative sets (see Fig. 5).
Namely, for two triangulations T1 and T2 for which T1 is a parent of T2 in the search tree, T2 may
miss some representative edge that appears in T1. Consider, for example, the enumeration of non-
crossing matchings. Then, in Phase 2 of Algorithm 1 for a triangulation T1, the algorithm outputs
no non-crossing matching if there is a vertex incident to more than one edge of R(T1). However,
since some descendant triangulation T2 of T1 may output non-crossing matchings, we cannot skip
the enumeration of T1 and its descendants. The next proposed algorithm avoids this inefficiecy.

We will first propose a new algorithm for enumerating triangulations whose search tree has a
monotone structure with respect to the minimal representative sets such that R(T1) ⊂ R(T2) holds for
any triangulation T1 and its descendant T2 in the search tree (see Fig. 7). By using this monotonicity,
we can efficiently enumerate only the minimal representative sets satisfying the specified property.
Let us explain this idea more formally. Recall that F denotes the collection of all non-crossing edge
sets on P . Let I be a subset of F satisfying the following independent system:

(I1) ∅ ∈ I,

(I2) if F2 ∈ I and F1 ⊆ F2, then F1 ∈ I.

A non-crossing edge set F ∈ F is called independent edge set or independent (with respect to I) if
F ∈ I. Similarly, the minimal representative set is called independent minimal representative set
if it is independent. Using the monotonicity of the minimal representative sets, the proposed algo-
rithm enumerates all independent minimal representative sets efficiently. If I satisfies the following
condition:

(I3) for every G ∈ NGG, G ∈ I holds, (where G is considered as an edge set),

then we can ensure that the minimal representative set of T ∗(G) is independent for every G ∈ NGG.
This implies that it is sufficient to enumerate only the independent minimal representative sets to
enumerate all graphs of NGG.

4.1 Enumerating Triangulations Based on Edge Insertion

Our new enumeration algorithm for triangulations is also based on the reverse search [6] whose search
tree can be characterized by the root triangulation and parent-child relation (see Section 3.2 for the
brief explanation of the reverse search). Here we define T ∗(∅) as the root triangulation. So the
minimal representative set of the root triangulation is empty. For each non-root triangulation T , the
parent of T is defined as T ∗(R(T ) \ {e}) with the smallest edge e among R(T ). The correctness of
our parent-child relation follows from the next lemma.

Lemma 4.1. Let T be the triangulation of the minimal representative set R(T ) ̸= ∅. Then, for any
e ∈ R(T ), the minimal representative set of T ∗(R(T ) \ {e}) is R(T ) \ {e}.

Proof. Let T ′ = T ∗(R(T )\{e}). It is sufficient to show R(T )\{e} ⊆ R(T ′) because R(T ′) ⊆ R(T )\{e}
holds from Lemma 3.4.

Consider (pi, pj) ∈ R(T ) \ {e}. Let pipjv and pipjw be two triangles incident to (pi, pj) in T ,
and similarly let pipjv

′ and pipjw
′ be those in T ′. Without loss of generality, we assume that v and

v′, (and w and w′), lie on the lower (and the upper) side of (pi, pj). If v = v′ and w = w′, then
the triangle faces incident to (pi, pj) do not differ between T and T ′. Hence (pi, pj) ∈ R(T ) implies
(pi, pj) ∈ R(T ′).

Let us consider the case in which v ̸= v′ holds. Let δR(T )(pi) be a subset of R(T ) whose left
endpoints are incident to pi, and let (pi, p

up
i ) and (pi, p

low
i ) be the upper and lower tangents of pi

with respect to R(T ). When constructing T = T ∗(R(T )) by Construction 1, there exists a cone C
with apex pi, bounded by (pi, pj) and the other consecutive edge of δR(T )(pi) ∪ {(pi, p

up
i ), (pi, p

low
i )}

which contains both pj and v. Let H be the convex hull of Pi+1 ∩ C. Then, v = (pi, v) ∩ H holds
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Figure 6: Illustration of the proof of Lemma 4.1, where a bold line represents the removed edge e,
dotted and dashed lines represent the boundary of H and H ′, respectively.

since (pi, v) ∈ T ∗(R(T )). Similarly, when constructing T ′ = T ∗(R(T ) \ {e}), there exists a convex
hull H ′ below (pi, pj) ∈ R(T ) \ {e} for which v′ = (pi, v

′)∩H ′ holds. Since every vertex visible from
pi with respect to R(T ) is still visible from pi with respect to R(T ) \ {e}, all the right endpoints of
the edges of δR(T )(pi)∪{(pi, p

up
i ), (pi, p

low
i )} are still visible from pi with respect to R(T )\{e}. Thus,

H ⊆ H ′ holds and H ′ contains v (see Fig. 6).
It is easily observed that, from H ⊆ H ′, (pi, pj) does not become the smallest one of {(pi, q) ∈

T ′ | q ∈ Pi+1} when removing e (and it is not the largest one either). Hence, by the definition
of the minimal representative set, (pi, pj) ∈ R(T ′) holds if (pi, pj) is flippable in T ′. Since there
exists no point of P inside the triangle pipjv, either one of the following two cases occurs depending
on the position of v′:(i) (pi, v

′) intersects (v, pj) or (ii) (v′, pj) intersects (pi, v). When (i) holds,
v′ is properly contained in H. However, since H ⊆ H ′, v′ is also properly contained in H ′, which
contradicts v′ = (pi, v

′) ∩ H ′. Thus, (ii) must hold. When (ii) holds, the inner angles ∠pipjv and
∠pipjv

′ satisfy ∠pipjv
′ ≤ ∠pipjv. Applying a similar argument to the pair of w and w′, we have

∠pipjw
′ ≤ ∠pipjw. (However, it is not difficult to see w = w′ from the fact that e properly intersects

(v′, pj) but not (pi, pj).) Hence the inner angle of the quadrilateral piv
′pjw

′ at pj is less than π
because (pi, pj) is flippable in T , implying the inner angle of pivpjw at pi is less than π.

Let us show that the opposite angle, that is the inner angle of the quadrilateral piv
′pjw

′ at pi,
is also less than π. This can be proved from the fact that both of v′ and w′ are on the right side of
pi since (pi, pj) is neither the smallest nor largest one of {(pi, q) ∈ T ′ | q ∈ Pi+1}. Hence (pi, pj) is
flippable in T ′, and (pi, pj) ∈ R(T ′) holds.

From Lemma 4.1, R(T ) ⊂ R(T ′) holds for any triangulation T and its descendant T ′. Moreover,
since the root triangulation has an empty minimal representative set, our definition of the parent-
child relation correctly induces a rooted search tree on the search graph of the set of triangulations.
The algorithm traces this search tree in depth-first manner. We call this new algorithm edge insertion
algorithm for (enumerating) triangulations. An example of the new search tree is depicted in Fig. 7.

Let us analyze the time complexity of the edge insertion algorithm. In the reverse search the
most time-consuming part is to find all children T ′ of a triangulation T , i.e., to find all edges e ∈ Kn

for which T ′ = T ∗(R(T ) ∪ {e}) is a child of T . Such e can be characterized by the following lemma.

Lemma 4.2. Let T and T ′ be triangulations on P for which T ′ = T ∗(R(T )∪ {e}) holds for e ∈ Kn,
where e does not intersect any of R(T ). Then T ′ is a child of T if and only if all of the following
three conditions are satisfied:

(a) e /∈ T ,

(b) e ≺ e1, where e1 is the lexicographically smallest edge among R(T ), and

(c) R(T ) ⊆ R(T ′).

Proof. (“only if”-part:) When T ′ is a child of T , by the definition of the parent, we have R(T ′) =
R(T )∪{e} and e is the smallest edge among R(T ′), which implies the conditions (b) and (c). Suppose
the condition (a) does not hold. Then we have R(T ) ⊆ R(T ) ∪ {e} ⊆ T since e ∈ T , and hence we
obtain R(T )∪ {e} ∈ [T ] (i.e., T ′ = T ∗(R(T )∪ {e}) = T ) from Lemma 3.4, which contradicts that T ′

is a child of T .
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Figure 7: Search tree on the set of triangulations obtained by the edge insertion algorithm, where
each minimal representative set is drawn in bold.

(“if”-part:) First let us show e ∈ R(T ′). Suppose e /∈ R(T ′). Then, by the definition of R(T ′), e
is either non-flippable in T ′, or the smallest or largest edge among {(pi, q) ∈ T ′ | q ∈ Pi+1} for the
left endpoint pi of e. We hence have, from Lemma 3.2,

e ∈ T ′ = T ∗(R(T ) ∪ {e}) = T ∗((R(T ) ∪ {e}) \ {e}) = T ∗(R(T )) = T,

which contradicts the condition (a).
Combining e ∈ R(T ′) and the condition (c), we obtain R(T ) ∪ {e} ⊆ R(T ′). On the other hand

R(T ′) ⊆ R(T )∪{e} is known from Lemma 3.4. Therefore, R(T ′) = R(T )∪{e} holds. The condition
(b) says that e is the smallest edge among R(T ) ∪ {e}, and hence, according to the definition of the
parent, T ∗(R(T ′) \ {e}) = T ∗(R(T )) = T is a parent of T ′.

From Lemma 4.2, we now concentrate on how to find all edges satisfying all the conditions of
Lemma 4.2 that produce children of a given triangulation T . We assume that the points are stored in
increasing order of their x-coordinates. Let pc be the left endpoint of the lexicographically smallest
edge of R(T ) and let c be its label, which is called critical vertex of T .

We first show that all edges satisfying the conditions of Lemma 4.2 can be found in O(cn2) time
for each T . Note that the number of edges satisfying the condition (b) can be bounded from above
by

∑c
i=1(n − i) < cn. The algorithm checks each of these edges one by one whether it satisfies the

other conditions (a) and (c). This task can be done in O(n) time for each edge e by constructing
T ∗(R(T )∪{e}) based on the method of Lemma 2.5. Thus we can find all edges e that satisfy all the
conditions of Lemma 4.2 in O(cn2) time.

This O(cn2) time is improved to O(n2/c) time by a simple amortized analysis as follows. Consider
the point set P ′ = {p1, . . . , pc}. We claim that, for any edge e ∈ Kn \ T whose both endpoints
are contained in P ′, e satisfies all the conditions of Lemma 4.2. Since such e clearly satisfies the
conditions (a) and (b) from its definition, let us confirm that e also satisfies the condition (c). Notice
that there exists no edge of R(T ) in the left side of pc since pc is defined to be the left endpoint of
the smallest edge among R(T ). Hence, inserting e into R(T ) does not affect the right side of c when
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constructing T ∗(R(T )∪{e}), i.e. every e′ ∈ R(T ) are incident to two triangles in T ∗(R(T )∪{e}) as in
T = T ∗(R(T )), and all of R(T ) are still contained in the minimal representative set of T ∗(R(T )∪{e}).

The number of edges e ∈ Kn \T whose both endpoints are contained in P ′ is at least c(c−1)/2−
(3c − 6). This implies that there exist Ω(c2) children of T . Distributing the time O(cn2) evenly to
Ω(c2) children and T itself, we obtain the result.

Theorem 4.3. Let P be a set of n points. Then the edge insertion algorithm enumerates all the
triangulations on P in O(n2) time per output graph.

4.2 Enumerating Independent Minimal Representative Sets

Owing to the nicely structured search tree of minimal representative sets, we can now perform
the efficient enumeration of independent minimal representative sets (defined at the beginning of
Section 4) and the corresponding triangulations.

Algorithm 2: Enumeration of NGG.

Phase 1: Start to enumerate triangulations based on the edge insertion algorithm from T ∗(∅) as
described in Section 4.1. Every time a new triangulation T is found, it checks whether R(T ) is
independent or dependent. If R(T ) is dependent, skip the enumeration of all the descendants
of T .

Phase 2: Every time a new independent R(T ) is found, enumerate all R(T )-constrained graphs of
NGG in T .

The correctness of Algorithm 2 follows from the next lemma.

Lemma 4.4. Let I be the collection of independent edge sets of F . Then Algorithm 2 correctly
enumerates all graphs of NGG without repetitions if I satisfies (I1), (I2) and (I3).

Proof. We first note that all of independent minimal representative sets are correctly enumerated
in Algorithm 2. To verify this, let us imagine the search tree which is obtained by performing the
edge insertion algorithm for enumerating triangulations. The subgraph of this search tree induced by
every T such that R(T ) ∈ I forms a rooted tree by (I1) and (I2), and hence the algorithm enumerates
every independent R(T ) correctly.

Let us show every G ∈ NGG is actually enumerated. From (I3) we have G ∈ I. Consider the
minimal representative edge set R(T ∗(G)). Notice that R(T ∗(G)) is a subset of G from Lemma 3.4.
Hence, from (I2), R(T ∗(G)) is independent, and thus G is enumerated in Phase 2.

Let us analyze the time complexity of Algorithm 2 under the assumption that I satisfies (I1),
(I2) and (I3). Assume that there exists an oracle that checks in tcheck time whether I ∪ {e} ∈ I
or not for an independent set I and an edge e. Let Irep ⊆ I be the collection of the independent
minimal representative sets on a given point set P . We can easily observe that the time to be spent
in Phase 1 is O(n2 · tcheck · |Irep|) since there exist O(n2) children for each triangulation on the search
tree of the edge insertion algorithm and from Theorem 4.3. Hence, using the notations C, tC and
tC,pre defined in Theorem 3.7, we obtain the following result:

Theorem 4.5. Algorithm 2 enumerates all the elements of NGG on a given point set P without
repetitions in O((n2 · tcheck + tC,pre) · |Irep| + tC · ngg(P )) time. Moreover, the time complexity is
bounded by O((n2 · tcheck + tC,pre + tC) · ngg(P )) if |Irep| ≤ ngg(P ) holds.

4.3 Application of Algorithm 2

We show here how Algorithm 2 can be applied to the enumeration of non-crossing minimally rigid
frameworks. A graph G = (V,E) is minimally rigid if |E| = 2|V | − 3 and every subgraph of G
induced by V ′ ⊆ V spans at most 2|V ′| − 3 edges. An embedded minimally rigid graph on a planar
point set is called minimally rigid framework. It is known that a set of minimally rigid graphs forms
a rigidity matroid defined on the edge set (see e.g. [16]).

17



We define the independence on F in such a way that F ∈ F is independent if and only if F
is independent in the rigidity matroid on Kn. Then, since the edge set of each minimally rigid
framework is a base of the rigidity matroid, the collection of the independent edge sets of F satisfies
(I1), (I2) and (I3). To bound the number of independent minimal representative sets |Irep|, we
remark the following known fact:

Lemma 4.6. ([8]) Let F be a non-crossing edge set on P that is an independent set in the rigidity
matroid on Kn. Then every F -constrained triangulation on P contains an F -constrained minimally
rigid framework.

Hence, a triangulation T contains at least one R(T )-constrained non-crossing minimally rigid
graph if R(T ) is independent, which implies |Irep| ≤ ngg(P ).

Let us consider the time complexity of Phase 1 of Algorithm 2. For a graph G = (V, I) with n
vertices and an independent set I of the rigidity matroid, a maximal rigid subgraph G′ = (V ′, I ′) of G,
(i.e., a subgraph with the maximal subset I ′ ⊆ I satisfying |I ′| = 2|V ′|−3), is called rigid component.
Then I ∪ {e} is independent if and only if both endpoints of e do not belong to the same rigid
component. It is known that all the rigid components of G can be detected in O(n2) time (e.g. [10]).
Moreover, using the data structure by Lee et al. [27] or Berg and Jordán [10] that maintains rigid
components, it can be checked in O(1) time whether two vertices belong to the same rigid component.
Thus, the algorithm can check in tcheck = O(1) time whether a minimal representative set of a new
child, that is R(T ) ∪ {e}, is independent or not. If R(T ) ∪ {e} is independent, the algorithm enters
Phase 2 while updating the rigid components in tupdate = O(n) time for each edge insertion [10, 27].
Algorithm 2 hence enumerates all independent minimal representative sets R(T ) (and triangulations
T ) in O(n2 · tcheck + tupdate) = O(n2) time per R(T ).

Next let us consider Phase 2. We enumerate all the minimally rigid graphs of a given graph
containing a specified edge set by using the algorithm for enumerating all bases of a matroid. We
use the known algorithm by Uno [33] to enumerate all the minimally rigid graphs of a given graph
containing a specified edge set, which generates all bases of a given matroid M on the ground set E
and rank r in O(tcir/r) time per base with preprocessing time tpre, where tcir is the time to calculate
a circuit of B ∪ {e} of a base B and e ∈ E \ B, and tpre is the time to compute the bridges of
the matroid in E (where e ∈ E is called a bridge if all bases contain e). In the case of the rigidity
matroid2, the algorithm by Berg and Jordán [10] can detect a circuit of B ∪ {e} in tcir = O(r2) time
for a base B and for each e ∈ E \ B. Moreover, the above idea by Berg and Jordán can also be
utilized to detect all the bridges in E in tpre = O(r2) time. It thus enumerates all the minimally rigid
graphs in G that contains a specified edge set in tC = O(n) time per output graph with tC,pre = O(n2)
preprocessing time. Putting these facts and Theorem 4.5 together gives the following result:

Theorem 4.7. Let P be a set of n points in the plane. Then the set of non-crossing minimally rigid
frameworks can be enumerated without repetitions in O(n2 · mrf(P )) time.

This result improves the previous one by [7], which requires O(n3) time per graph. We note that
Algorithm 1 enumerates all the non-crossing minimally rigid frameworks in O(n2 · tri(P )+n ·mrf(P ))
time.

5 Other Applications.

We proposed a new algorithm framework for efficient enumeration of non-crossing geometric graphs,
and we showed improved or new algorithms for several specific graph classes by applying our tech-
nique. We briefly show below the applications of the proposed framework to the other graph classes.

2We remark here that the rigidity matroids are not closed under contraction, i.e. the matroid obtained after con-
traction may not be rigidity matroid. Actually the algorithm by Uno [33] for enumerating the matroid bases heavily
utilizes the contraction. So, instead of performing the contraction during the algorithm, we just attach the flag to the
edge to be contracted to use the algorithm by Berg and Jordán [10]. In fact, similar argument is discussed in [33] when
enumerating bases of transversal matroid.
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Algorithm 1 basically works in time proportional to the number of triangulations and objects to
be enumerated. Meanwhile, in some problems, Algorithm 2 will works practically faster than Algo-
rithm 1 although it seems non-trivial task to estimate its time complexity theoretically.

Non-crossing red-and-blue matchings: For a given point set P , every point is assumed to have
either red or blue color. A non-crossing red-and-blue matching is a non-crossing matching on
P each of whose edges is not allowed to connect points of the same color. The enumeration can
be performed by using the algorithm for enumerating matchings in a (non-geometric) bipartite
graph [35] in Phase 2. Algorithm 2 can enumerate all red-and-blue matchings efficiently if we
define a independent set calI on F as a set of F such that no two edges of F are incident to a
vertex and no edge of F connects points of the same color.

Non-crossing k-vertex or k-edge connected graphs: A Non-crossing k-vertex (or k-edge) con-
nected graph is a non-crossing geometric graph spanning a given point set P that remains con-
nected after removing any k − 1 vertices (k − 1 edges) in the graph. Since it can be checked in
polynomial time whether a given (non-geometric) graph is k-vertex connected (similarly k-edge
connected) or not, according to the binary partition technique discussed in Introduction, we
can enumerate k-vertex connected (or k-edge connected) graphs in a given graph. Thus, the
enumeration can be performed by using this algorithm in Phase 2.

Non-crossing directed spanning trees: Each edge of a given geometric complete graph on P
is assumed to have an orientation. A non-crossing directed spanning tree (or non-crossing r-
arborescence) is a non-crossing spanning tree on P having a unique directed path from a rooted
point r to all points of P \ {p}. The enumeration can be performed by using the algorithm of
[19, 34] in Phase 2. Algorithm 2 can enumerate all non-crossing directed spanning trees if we
define I as a set of F such that the directed graph D induced by F has no (directed) cycle and
no vertex of D has indegree more than 1.

Edge-constrained non-crossing geometric graphs: The technique can be also applied to the
enumeration of S-constrained non-crossing geometric graphs that are those containing a given
specified edge set S as their subsets, e.g. S-constrained non-crossing spanning trees or S-
constrained matchings. It is because that both the algorithm by Bespamyatnikh [11] and the
edge insertion algorithm proposed in this paper for enumerating triangulations can be naturally
extended to those for enumerating only the S-constrained triangulations by restricting the
collection of non-crossing edge sets F to those containing S as their subset. The correctness of
this extension is easily derived from the properties of CLLT shown in [21].
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[8] D. Avis, N. Katoh, M. Ohsaki, I. Streinu and S. Tanigawa. Enumerating constrained non-
crossing minimally rigid frameworks. to appear in Discrete & Computational Geometry.

[9] S. Bereg. Enumerating pseudo-triangulations in the plane. Comput. Geom. Theory Appl.,
30(3):207–222, 2005.

[10] A. Berg and T. Jordán. Algorithms for graph rigidity and scene analysis. In Proc. 11th Annual
European Symposium on Algorithms (ESA), LNCS 2832, pages 78–89. Springer, 2003.

[11] S. Bespamyatnikh. An efficient algorithm for enumeration of triangulations. Comput. Geom.
Theory Appl., 23(3):271–279, 2002.
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