
RBAC Administration in Distributed Systems

M.A.C. Dekker
∗

DIES, Twente University
The Netherlands

J. Crampton
ISG, Royal Holloway
University of London

United Kingdom

S. Etalle
DIES, Twente University and
SEC, Technical University of

Eindhoven
The Netherlands

ABSTRACT
Large and distributed access control systems are increasingly
common, for example in health care. In such settings, access
control policies may become very complex, thus complicat-
ing correct and efficient adminstration of the access control
system. Despite being one of the most widely used access
control standards, RBAC does not include an administra-
tion model for distributed systems. In this paper we fill this
gap. We present a model for the administration of RBAC in
a distributed system and propose an administration proce-
dure supporting the principle that different systems protect
different sets of objects. We demonstrate that our proce-
dure fulfills the formal requirements deriving from safety
and availability, and we show how it can be translated to a
practical implementation. Finally, we show how our model
can be extended with multiple decentralized administrative
systems.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls; K.6.5
[Management of Computing and Information Sys-
tems]: Security and Protection

General Terms
Security, Theory

Keywords
Access control, Distributed System, RBAC, Administration

1. INTRODUCTION
Large and distributed information systems employing ac-

cess control to protect data are increasingly common. For
example, most large hospitals run a variety of systems that
process medical data, which (by law) must be protected from

∗Research performed at the Security group of TNO ICT.
Currently consultant for KPMG CT, The Hague.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’08, June 11–13, 2008, Estes Park, Colorado, USA.
Copyright 2008 ACM 978-1-60558-129-3/08/06 ...$5.00.

unauthorized access. Role-based access control (RBAC) [1,
15] is one of the most prominent access control standards,
simplifying the specification of access control policies, by
grouping users in a number of roles, which are ordered in a
role-hierarchy. However, practice has pointed out that – in
organizations – RBAC policies can become very large, in-
volving hundreds of roles [7], and this makes administration
of an RBAC-based system a difficult task. Particularly in
large and distributed systems.

Consider for example a hospital with a distributed system
composed of various subsystems that store and process con-
fidential medical data. Both safety, and availability are key
in this setting. Let us suppose that the hospital’s security of-
ficer, to fulfill data-protection requirements, has deployed a
set of different RBAC policies at different subsystems in the
hospital. Over time some of these policies need to change.
For example, a nurse may need to be assigned to a new
role because of a changed hospital shift, or a database role
may need to get access to additional tables, because some
database application changed. Now who can make the pol-
icy changes? Which subsystems need to update their access
control policies following policy changes? How can the up-
date of the various subsystems take place efficiently? How
can multiple administrative systems be used concurrently?

Although administration of RBAC has received much at-
tention recently, and numerous researchers have proposed
different ways of choosing administrative RBAC policies [2,
4, 5, 6, 7, 11, 14, 16, 17, 18, 19], there is no literature on
the more practical issue of administration of a distributed
RBAC system. The RBAC standard does not address this
either. In this paper we present a model for the administra-
tion of a distributed RBAC system and we show how it can
be translated to a practical implementation.

• We present a distributed system model with a central
administrative system. A key component of our model
is a mapping based on the fact that different subsys-
tems protect different subsets of data, and that there-
fore only some policy changes are relevant to certain
subsystems. We use this in Section 3 to define precise
safety and availability requirements for the administra-
tion of an RBAC policy across the subsystems.

• We present an administration procedure, which is ef-
ficient in the sense that subsystems are only updated
about relevant policy changes, and correct in the sense
that it preserves the formal safety and availability re-
quirements (Section 4).

• We translate the administration procedure to practi-

93

cal pseudo-code to demonstrate how it can be imple-
mented (Section 5).

• We show how our model can be extended with multiple
administrative subsystems (Section 6) and we sketch
the additional steps that are required here. This ad-
dresses advanced settings with for example a human
resources system for assigning users to roles, and a
database management system (DBMS) for assigning
database privileges to database roles.

2. PRELIMINARIES
While there are many different RBAC models, in this

paper we restrict our attention to General Hierarchical
RBAC [1], as it is the most common RBAC model of the
standard. The standard assumes the existence of a set names
for users, U (ranged over by u, u′,. . .), for roles R (ranged
over by r, r′, . . .), a set of actions A and a set of objects O.
Privileges in RBAC are permissions to perform actions on
objects (being data or other resources). They form a set
P ⊆ A×O (ranged over by p, p′), and we refer to these
as user privileges (as opposed to the administrative privi-
leges to be introduced below). A standard RBAC policy is
a triple (UA,RH ,PA), where UA ⊆ U ×R, RH ⊆ R×R,
and PA ⊆ R× P . The set of policies is denoted Φ. For the
sake of brevity we treat φ ∈ Φ as a single directed graph (a
single set of edges UA ∪ RH ∪ PA).

Contrary to the RBAC standard, we do not require that
the RH relation is transitive, or that the graph of the RH re-
lation is acyclic. We believe that transitivity complicates ad-
ministration unnecessarily, in agreement with Li et al. [10].
Cycles in RBAC policies are sometimes considered to be re-
dundant. On the other hand, there are no strong reasons
for explicitly excluding such policies.

A standard RBAC reference monitor is a system that de-
cides whether or not a user is allowed to perform a certain
action. Basically, user u ∈ U can perform an action a ∈ A
on an object o ∈ O if and only if u →φ (a, o), where →φ de-
notes the transitive closure of φ. For a detailed description
of the reference monitor (e.g. sessions, role-activation) we
refer to the RBAC standard [1]. In the following we focus
on administrative reference monitors.

The RBAC standard includes administrative functions
and controls but it does not mention how to specify admin-
istrative policies about who can use these functions (which
is addressed by existing literature [5, 7, 17]), nor how to
practically implement administrative policy in a distributed
system (which is not addressed in existing literature). We
define the following administrative commands for changes to
UA, RH or PA, ignoring (for the sake of clarity) changes to
the sets U , R, and P , as we can assume these name spaces
to be sufficiently large and fixed.

Definition 1 (Administrative Commands). Let U ,
R, P , be sets of users, roles, and privileges. Then the set of
administrative commands is defined to be

{!u(u′, r′), "u(u′, r′), !u(r, r′), "u(r, r′), !u(r, p), "u(r, p)}.
The commands ! and " change φ by adding and remov-
ing edges, respectively. For example, given a policy φ, the
command !u(r, r′) corresponds to a user u that changes φ
to φ ∪ (r, r′). The corresponding administrative privileges
form a set P ◦. We give an example of our notation at the
end of this section.

Figure 1: An administrative policy and an adminis-
trative action.

Definition 2 (Administrative Privileges). The
administrative privileges form a set

P ◦ = {#(u, r), ♦(u, r), #(r, r′), ♦(r, r′), #(r, p), ♦(r, p)}.

The privileges #(., .) and ♦(., .) are read as mayAssign and
mayRevoke, respectively. We assign administrative privi-
leges to roles in the role-hierarchy, just like the ordinary
privileges, which yields the following policy set.

Definition 3 (Administrative Policies). An ad-
ministrative policy φ is a tuple

(UA, RH , PA ∪ PA◦),

where PA◦ ⊆ R× P ◦ are assignments to administrative
privileges.

The set of administrative policies is denoted by Φ◦, which
is a superset of the standard RBAC policies. There are
several lines of research concerned with defining ‘suitable’
subsets of Φ◦ [5, 7, 17], but for the sake of generality, we do
not make choices in this regard.

Example 1 (Administrative policy and action).
As a simple example of administrative policies, and adminis-
trative actions, consider a policy containing the edges (u, r)
and (r, #(r, r′)), as depicted in Figure 1. This policy allows
user u to add an edge from role r to role r′, i.e. it allows the
command !u(r, r′).

3. DISTRIBUTED SYSTEM MODEL
In this section we present the basic distributed system

model of this paper. The model consists of a central ad-
ministrative subsystem and a number of non-administrative
subsystems. In section 6 we show how it can be generalized
to a system with multiple administrative subsystems.

Consider a heterogeneous distributed system composed of
databases, file systems etc, like one may find in an organiza-
tion such as a hospital. In such a system it is inconvenient to
use a central reference monitor to decide all user access re-
quests, as each request would involve contacting the central
reference monitor creating a bottleneck and a single point
of failure. On the other hand, when each subsystem has
its own reference monitor, and a separate policy, then one
needs to manage those policies consistently. For example, if
a user is assigned to the role of employee, all subsystems in
the organization should allow the user to use the privileges
of the employee role and vice versa when a user is revoked
from a role. Inconsistencies in the definition of roles across
the distributed system cause confusion and may affect safety
and availability of data across the system.

So one could argue that a procedure is needed that main-
tains exact copies of a single system-wide policy at the dif-
ferent subsystems, and that updates all the subsystems after
each policy change. At the same time, it is unnecessary to

94

Figure 2: A hospital’s distributed system.

send updates to, say, a printer about changed database table
privileges, particularly given the fact that in practice RBAC
policies can be large and policy changes frequent [7]. Addi-
tionally, for example in health care, policy definitions may
even be sensitive. In this section we define a distributed sys-
tem model, and basic safety and availability requirements,
allowing us to derive a more efficient administration proce-
dure (in Section 4).

The privilege mapping pm is a key component of our
model, allowing us to capitalize on the fact that different
subsystems offer access to different (largely disjoint) subsets
of the resources, and avoid excessive updates about irrele-
vant policy changes. Formally it is defined as follows.

Definition 4 (Privilege Mapping). The privilege
mapping, denoted pm, is a mapping pm : S → P(P). We
say that subsystem s protects object o, if (a, o) ∈ pm(s).

The privileges in pm(s) are referred to as the relevant user
privileges for subsystem s. We do not require that pm(s)
and pm(s′) are disjoint for different subsystems s and s′

(see also remark 1). The privilege mapping can be used as a
tool for the security officer to evaluate and implement policy
changes. Let us give a practical example.

Example 2 (A hospital’s distributed system). A
hospital has a network consisting of a database named Sqil ,
a medical system Sqan, a printer Inq, and an administra-
tive system HSO for administrative tasks, such as policy
changes. The system is depicted in Figure 2, where the blue
dots denote ordinary users of the system.

The hospital’s security officer enforces a number of RBAC
policies across the different subsystems that protect resources
such as an electronic health record table of Sqil denoted
ehrtable, and a scan job of Sqan called job. The hospital’s
security officer has defined the following privilege mapping:

pm(Sqil) = {(ehrtable, view), (ehrtable, insert)}
pm(Sqan) = {(job, halt), (job, start)}
pm(Inq) = {(black , print), (color , print)}

Remark 1. One could argue that implementing the priv-
ilege mapping introduces overhead, but we believe that in
many practical situations the object mapping follows largely
from the names of the objects. Like in the next exam-
ple, ehrtable1, ehrtable2, and so on, would all map to the
database system Sqil , while job1, job2, and so on, would all
map to the medical system Sqan.

The privilege mapping could map some of the objects to
multiple subsystems. For instance when the same resource is

present at multiple subsystems. For example, an emergency
procedure that is present on all subsystems, or the same au-
thorization table that is present one a cluster of databases.

There may exist practical settings where it is difficult to
keep track of which objects or resources reside on which sub-
systems, for instance because users can move them freely
from one subsystem to another. In such settings it may be
more convenient, but in principle less precise, to map the
resources to all the subsystems they may be moved to.

Our model of a distributed system comprises a set of sys-
tems (each with a reference monitor), denoted S and ranged
over by s0, s1, . . . , and a single administrative system, de-
noted sa , from which (administrative) users can make policy
changes. The policy of the administrative system is denoted
φ, while the policy of subsystem s is denoted ψ(s), where
ψ : S → Φ defines the distribution of policies across the
subsystems.

Definition 5 (Distributed System). A distributed
system is a tuple

(S, pm, φ, ψ),

where S is a set of systems, pm : S → P(P) is the distributed
system’s privilege mapping, φ ∈ Φ◦ is an administrative pol-
icy, and ψ : S → Φ is a function that maps each subsystem
to a non-administrative policy.

Using the privilege mapping we can define two formal re-
quirements for the distribution of policies across the subsys-
tems.

The first is the basic requirement that each subsystem’s
policy is included in the policy of the administrative system.
This is in the interest of safety and administration, so that
the security officer, or some other user of HSO, in Exam-
ple 2, can correctly asess the impact of policy changes. The
second captures that the relevant parts of the administrative
system’s policy should be present at the subsystems. This
is in the interest of availability of resources, so that, as in
Example 2, if the security officer has given to users the priv-
ilege to access a resources, then they are also granted access
by the subsystem.

Definition 6 (Soundness and Completeness).
Given a distributed system (S, pm, φ, ψ), we say that ψ is
sound with respect to the central policy φ, if

[

s∈S

ψ(s) ⊆ φ.

On the other, we say that the distribution ψ is complete
with respect to the central policy φ if and only if for any
subsystem s ∈ S, and any privilege p ∈ pm(s)

u →φ p implies u →ψ(s) p.

Soundness is important from the viewpoint of safety: it
ensures that subsystems grant access only when it is allowed
by the administrative policy φ. It may seem that a weaker
requirement suffices: For any s ∈ S, and any privilege p ∈
pm(s), u →ψ(s) p implies u →φ p. However, such a weak
requirement would complicate the implementation of policy
changes, as will become clear in the next section.

Completeness, on the other hand, is important from the
viewpoint of availability: it ensures that the subsystem pro-
tecting object o grants access to the object o, whenever it is

95

Figure 3: Sound and complete policy distribution.

allowed by the administrative policy. Before defining an ad-
ministration procedure that implements policy changes, pre-
serving soundness and completeness (in the next section) let
us introduce the running example of our paper, and demon-
strate the practical usefulness of the definitions above.

Example 3 (RBAC policies in the hospital).
Let us build on the Example 2. The hospital’s security of-
ficer has defined a number of roles for staff and nurses of
the operation room (OR) (orstaff , ornurse), and staff and
nurses of the emergency room (ER) (erstaff , ernurse). For
the sake of brevity we do not elaborate on which users are
assigned to these roles.

The hospital’s security officer has prepared the distributed
system as shown in Figure 3. The policy φ is the (admin-
istrative) policy of system HSO, and the policies ψ(Sqil),
ψ(Sqan), and ψ(Inq) are the (non-administrative) policies of
the database Sqil , the medical system Sqan, and the printer
Inq.

The distribution ψ is sound with respect to to the central
policy φ, because each subsystem policy is a subset of the ad-
ministrative policy φ. It is also clear that the distribution ψ
is complete. So although the subsystems in the hospital do
not enforce the hospital’s policy in its entirety, this does not
affect availability nor safety of the resources. Indeed, most
parts of the hospital policy are in practice irrelevant for the
printer Inq, as Inq does not protect database tables of Sqil ,
nor the resources of Sqan. Also the administrative privi-
leges #(., .), and ♦(., .) are irrelevant for the subsystems,
because they can not be used for administrative actions any-
way. These subsystems implement standard RBAC policies
from Φ.

Soundness and completeness are, so to speak, the minimal
requirements that must be fulfilled. The largest distribution
ψ, that is both complete and sound, is the distribution where
ψ(s) = φ for all s ∈ S, where all subsystems have the same
policy. We can also define the smallest policy distribution
that satisfies soundness and completeness.

Definition 7 (Upper and Lower Closure). The
upper closure of a vertex v in φ, denoted, (↑φ v), is
{(v′, v′′) ∈ φ | v′′ →φ v}, and the lower closure of a vertex
v in φ, denoted, (↓φ v), is {(v′, v′′) ∈ φ | v →φ v′}.

The smallest distribution ψ that is sound and complete is
such that for every subsystem s ∈ S, the following holds,

ψ(s) =
[

p∈pm(s)

(↑φ p).

We call this the lean distribution. The lean policy distribu-
tion has the advantage that components of the distributed
system have the parts of the policy that are strictly neces-
sary to decide about allowing or denying user actions.

4. ADMINISTRATION PROCEDURE
Having specified the formal requirements in Definition 6

for the distribution of RBAC policies across a distributed
system, we take a more practical approach in this section, by
defining an administration procedure for the administrative
reference monitor sa that preserves these requirements.

We model the system sa by defining a command queue,
containing administrative commands (!, or ") for policy
changes, and message commands. The message commands
are needed to model the propagation of policy changes across
the subsystems. They form a set {⊕s(δ),*s(δ)}, where
s ∈ S denotes the recipient subsystem and δ ∈ Φ is a pol-
icy, and ⊕ denotes addition and * denotes removal. Let us
first sketch the procedure by giving an example: a user u of
the administrative system sa places the administrative com-
mand !u(r, r′) in the queue. The administrative subsystem
processes it by (1) checking that φ allows u to make this
policy change, (2) changing its policy φ to φ ∪ (r, r′), (3)
replacing the administrative command with message com-
mands ⊕s

`
(r, r′) ∪ (↑φ r)

´
for each subsystem s ∈ S that

has relevant privileges in the lower closure of r′ in φ, and
(4) processing the message commands. In the sequel we
will show that sending

`
(r, r′) ∪ (↑φ r)

´
suffices to preserve

96

completeness. Moreover we will show that the procedure
preserves soundness. Let CQ denote the set of all command
queues. We define the administration procedure by a formal
transition function.

Definition 8 (Distributed Administration).
Given a distributed system (S, pm, φ, ψ), let
cq ∈ CQ be a command queue, and N be the
number of systems in S. The transition function
⇒: CQ × Φ◦ × (Φ)N → CQ × Φ◦ × (Φ)N , is defined
as follows.

〈cq , φ, ψ〉 ⇒ 〈cq ′, φ′, ψ′〉 holds when:

if cq = [!u(v, v′) : cq ′′] and u →φ #(v, v′), then
cq ′ = [⊕s1

`
(v, v′) ∪ (↑φ v)

´
: · · · : ⊕sk

`
(v, v′) ∪ (↑φ v)

´
:

cq ′′],
where {s1, . . . , sk} are all the subsystems with relevant
privileges in the lower closure of v′, that is
{s1, . . . , sk} = {s ∈ S | if ∃p ∈ pm(s).v′ →φ p)}.
φ′ = φ ∪ (v, v′), and ψ′ = ψ.

if cq = ["u(v, v′) : cq ′′] and u →φ ♦(v, v′), then
cq ′ = [*s1

`
(v, v′)

´
: · · · : *sk

`
(v, v′)

´
: cq ′′],

where {s1, . . . , sk} are all the subsystems.
φ′ = φ \ (v, v′), and ψ′ = ψ.

if cq = [⊕s(δ) : cq ′′], then cq ′ = cq ′′,
φ′ = φ, ψ′(s) = ψ(s) ∪ δ and ψ′(s′) = ψ(s′) for s′ /= s.

if cq = [*s(δ) : cq ′′], then cq ′ = cq ′′,
φ′ = φ and ψ′(s) = ψ(s) \ δ and ψ′(s′) = ψ(s′) for s′ /= s.

Notice that the messages are the smallest when the com-
mand is a user assignment, since the upper closure of a user
is always empty. This is also the most frequently used ad-
ministrative command [7]. Message commands following an
assignment (!) only involve those subsystems that are ‘af-
fected’ by it. Revocations (") on the other hand are broad-
cast to all subsystems to ensure soundness of ψ.

One could make this procedure even more efficient by
keeping a history of sent policy definitions per subsystem, to
avoid sending revocations of definitions to subsystems that
never received them (or to avoid sending the same policy
definitions twice). We do not go into details about this, for
the sake of brevity. Although it is common in literature
on distributed systems to use an expiration mechanism to
reduce the number of revocations [13], we refrain from go-
ing into details about time or expiration here, because we
believe they are out of the scope of the RBAC standard.
We would like to mention however that, because soundness
and completeness are preserved when edges expire, it seems
straightforward to add expiration to our model. The proce-
dure preserves soundness and completeness, but it does not
preserve leanness, for example. To preserve leanness subsys-
tems could remove irrelevant parts of the subsystem’s policy,
independently of the administrative reference monitor. Sys-
tem s can check for each edge (v, v′) in ψ(s) whether or not
v′ →ψ(s) p for a relevant privilege p ∈ pm(s).

Let us return to our running example to demonstrate a
practical instance of the administration procedure.

Example 4 (Administration in the Hospital).
Suppose Bob, a member of orstaff, wants to grant all mem-
bers of ornurse the right to use the medical system Sqan, say
for a new type of operation. To do so, Bob puts an admin-
istrative command in the queue of the administrative system

Figure 4: Update for subsystem Sqan.

HSO. He is allowed to do so, by the administrative policy φ
in Figure 3.

The administrative system HSO now takes the following
steps: The command in the queue is

!Bob(ornurse, sqanusr).

After executing this command, the new policy φ′ contains
the new edge (ornurse, sqanusr) and the command on the
queue is replaced by the message command

⊕Sqan

`
(ornurse, sqanusr) ∪ (↑φ ornurse)

´
.

The message command is executed, updating also the policy
of Sqan. The new policy for Sqan includes the upper clo-
sure of ornurse, i.e. the new edge (ornurse, sqanusr), as
well as the ‘members’ of ornurse. So Bob’s administrative
command changes the policies φ and ψ(Sqan), but not the
policies of Inq or Sqil . The policy changes corresponding to
Bob’s action are depicted in Figure 4 by dashed edges.

It is important noticing that the administration procedure
preserves soundness and completeness. It does so without
sending irrelevant parts of φ to subsystems. We denote a
sequential execution of administrative commands (a run)
by ⇒∗ and an empty queue by ε.

Theorem 1. Let (S, pm, φ, ψ) be a distributed system.
For any command queue cq ∈ CQ that contains only admin-
istrative commands (of the form !.(., .), or ".(., .)), the run
to an empty queue

〈cq , φ, ψ 〉 ⇒∗ 〈ε, φ′, ψ′ 〉,

yields a policy φ′ and a distribution ψ′ for which the follow-
ing statements hold:

1. If ψ is sound with respect to φ, then also ψ′ is sound
with respect to φ′.

2. If ψ is complete with respect to φ, then also ψ′ is com-
plete with respect to φ′.

Proof. We have to show that an arbitrary queue of ad-
ministrative commands preserves soundness and complete-
ness. We prove the result by induction on the number of
commands in the queue. Let us sketch the proof briefly. We
assume that the distribution ψ is initially sound and com-
plete with respect to φ.

The base case (the empty queue) is trivial. The induction
hypothesis is that soundness and completeness are preserved
by queues with n commands, and we show that this holds for
queues with n + 1 commands. Consider a queue containing
n + 1 commands. We enumerate the different possibilities
for the first command in the queue.

97

• If the first command is of the form !u(v, v′), and it is
replaced by the message commands ⊕s1

`
(v, v′) ∪ (↑φ

v)
´
:. . . :⊕sk

`
(v, v′) ∪ (↑φ v)

´
on the queue, where

{s1, . . . , sk} = {s ∈ S | if ∃p ∈ pm(s).v′ →φ p)}. The
administrative policy is changed to φ′′ = φ ∪ (v, v′) (cf.
the first item in Definition 8), and after processing the
message commands, the distribution changes to ψ′′.

Soundness follows since the difference between ψ(s)
and ψ′(s) is at most (v, v′) ∪ (↑φ v), which is a subset
of φ′. The remaining queue is shorter and preserves
soundness by induction hypothesis.

Completeness follows trivially for subsystems outside
{s1, . . . , sk}, as the policy change does not affect the
upper closure of their privileges. The other subsystems
are complete before the change, so they already have
the upper closure up till v2. The update message adds
to this also the rest of the upper closure (v1, v2), the
new edge, and (↑φ v1).

The rest of the queue preserves completeness by induc-
tion hypothesis.

• If the first command is of the form "u(v, v′), and it
is replaced by the message commands that remove the
edge (v, v′) from all systems in S.

Soundness is straightforward, since the distribution
was sound before processing this command, and the
edge (v, v′) is removed from all the policies of the sub-
systems.

For completeness observe that ψ is initially complete
with respect to φ, and that by removing an edge the
upper closure only shrinks.

By the induction hypothesis, both soundness and com-
pleteness are also preserved by the commands on the
remaining (shorter) queue.

This completes the proof.

5. IMPLEMENTATION
The formal procedure of Definition 8 can be translated

into an actual implementation. Here we report procedures,
by using pseudo code, both for the administrative reference
monitor and for the non-administrative reference monitors
of the subsystems.

Let us introduce the syntax of the code. Vertices v1,
v2,... (users, roles, and privileges) are assumed to be
unique strings, and edges are pairs of such strings (v1,
v2). Policies are represented as lists of edges. Below the
expression a in b checks whether a is in the list b or
not. The functions add, remove, and join denote adding,
and removing elements from lists, and joining two lists,
respectively, and [] denotes the empty list. We use
sub-procedures for finding the upper and lower closure (see
Definition 7) of a vertex in a policy, for later use. The
function lower(a, b) returns a list of elements from the
policy a which are in the lower closure of b, i.e. (↓a b).
Both lower and upper, its converse, are implemented by a
basic depth-first search.

procedure dfs(policy, v1, visited)

visited := add(visited, v1).

list l1 := [].

for (v1,v2) in policy and v2 not in visited

list l2 := dfs(policy, v2, visited).

l1 := join(l1, l2).

return with l1.

procedure lower(policy, v)

return with dfs(policy, v, []).

The depth-first search dfs picks an edge from v1 to
another vertex v2, and continuous the search. To avoid
cycles we mark which vertices where visited already. The
same algorithm dfs can be used for the upper closure
upper by inverting the direction of the edges in policy.
Administrative commands are denoted as (user, action,
(v1, v2)), where the second parameter is either ! or
", and (v1, v2) is the edge being assigned or revoked.
Queues are lists of administrative commands, and shift
returns and removes the first element of the queue. The
main procedure for the administrative system is as follows.

procedure admin (policy, queue)

if queue= []

return with policy.

endif

shift(queue) := (user, action, (v1, v2)).

list lowu := lower(policy, user).

if action = ! and "(v1,v2) in second(lowu)

list uppv1 := upper(policy, v1).

list lowv2 := lower(policy, v2).

list dest := [].

for priv in second(lowv2)

for s in systems

if pm(s, priv) and s not in dest

dest := add(dest, s).

endif

for s in dest

send(s, ⊕, add(uppv1, (v1, v2))).

return with admin(add(policy, (v1,v2)), queue).

endif

if action = # and ♦(v1,v2) in second(lowu)

for s in systems

send(s, ", [(v1,v2)])

return with admin(remove(policy, (v1,v2)),queue).

endif

return with admin(policy, queue).

Let us explain the procedure in detail. In case the action
is ! it is checked whether or not the user is allowed to per-
form that command. This is only true when the correspond-
ing privilege #(v1,v2) is in the lower closure of user. The
function second, used here, takes a list of pairs, and returns
a list of the second element of every pair. The next step
takes care of sending the proper update messages. The list
of subsystems is denoted systems, and the privilege map-
ping is a function pm that takes a privilege and a system
name as input and returns true if the privilege is a relevant
privilege for the system. The lower closure of v2 is used to
select which list of subsystems dest will receive a message
(denoted by send). The upper closure of v1, on the other
hand, constitutes the contents of the update message (cf.
Definition 8). The steps for " can be explained in the same
way. The procedure recurs through the queue, untill it re-

98

turns the new administrative policy, or if no command was
allowed the same administrative policy.

The procedure for the non-administrative system is more
simple. There are two types of commands: A message com-
mand by an administrative system, denoted by receive,
and a basic user command by a user who wants to perform
an action on an object, denoted by do.

procedure subsystem(policy, queue)

if queue= []

return with policy.

endif

shift(queue) := cmd.

if cmd = receive(⊕, delta)

return with subsystem(add(policy, delta),queue).

endif

if cmd = receive(", delta)

return with subsystem(remove(policy, delta), queue).

endif

if cmd = (user, action, object)

list lowu := lower(policy,user).

if (action,object) in second(lowu)

do(action, object).

endif

endif

return with subsystem(policy,queue).

Note that in this procedure the lower closure of user in
policy is calculated at every user access request. This may
be time-consuming (each search involves O(E) steps, where
E is the number of edges in ψ(s)). One could instead calcu-
late the full transitive closure for the policy once, and update
it only when update messages arrive.

6. DECENTRALIZED ADMINISTRATION
In the previous sections we have modeled systems with a

single administrative reference monitor. In this section we
show how our model can be extended to deal with systems
with multiple administrative reference monitors.

In practice, administrative actions (e.g. assigning a user
to a role) are relatively rare; for instance, they are much
less frequent than ordinary user actions (e.g. accessing a
database table). This suggests that for many practical dis-
tributed systems a single administrative reference monitor
should be sufficient. Still, there may be scenarios where
multiple administrative monitors are needed. For example
when two different organizations share a common infrastruc-
ture, and at the same time prefer to use their own separate
administrative systems. In this setting, one could use iden-
tical administrative subsystems augmented with standard
mutual exclusion techniques to coordinate policy changes.
More challenging are the settings in which the administra-
tive reference monitors are not identical (i.e. with different
administrative policies), for instance because they are not
equally trustworthy.

In this section we briefly describe the additional steps
needed to extend our distributed model to these settings,
and we define an additional requirement for the distribution
of policies across the administrative systems. The extension,
although not entirely straightforward, makes use of the same
formal structure of the previous section.

Let us assume that – in addition to the set of ordinary
subsystems S – there exist a set of administrative reference

Figure 5: Decentralized administration in a hospital.

monitors S◦ (ranged over by sa, sb, . . .), and an administra-
tive privilege mapping

pm◦ : S◦ → P(P ◦)

As before, we say that p ∈ P ◦ is a relevant administra-
tive privilege for system s, if and only if p ∈ pm◦(s). The
mapping pm◦ corresponds to the intuitive idea that certain
administrative reference monitors can only be used for cer-
tain administrative actions. A distributed system is defined
as a tuple

(S◦, S, pm◦, pm, ψ◦, ψ),

where ψ◦ : S◦ → Φ◦ is the distribution function of the
administrative policies across the administrative reference
monitors. Let us see an example (refer to Figure 5): the
system HR is used at the human resources department for
changing user-role assignments, while the system DBMS is
used at the hospital’s data center for changing database priv-
ileges. Here, there are multiple distinct administrative sub-
systems, and multiple distinct non-administrative subsys-
tems, and there is no central administrative system.

Let us define φ by

φ =
[

s∈S◦

ψ◦(s) ∪
[

s∈S

ψ(s).

The policy φ is here no longer the policy of a central admin-
istrative system (as in the previous sections), but only an
abstract notion of the full system-wide policy. Like before,
the subsystems each hold parts of φ.

Let us now define requirements for ψ and ψ◦ concerning
safety and availability of objects, similar to the ones pre-
sented in Section 3.

The safety requirement (soundness) remains the same, but
the availability requirement (completeness) becomes more
complex. The policy of an administrative reference monitor
should be (1) complete for its relevant administrative priv-
ileges, and – in addition – (2) it should contain the parts
of φ needed to produce the message commands described in
Section 5. We call the first standard completeness and the
second administrative completeness. Let us show an example
of standard completeness and administrative completeness.

Example 5. Consider an administrative system sb ∈ S◦,
with #(v, v′) ∈ pm◦(sb), and that (r, #(v, v′)) ∈ φ.

Standard completeness with respect to to the privilege
#(v, v′) requires that ψ contains (↑φ r).

Administrative completeness additionally requires that ψ

99

Figure 6: Policy support for different administrative
privileges.

contains
`
(↑φ v) ∪ (↓φ v′)

´
, i.e. the parts of φ needed to

perform the message commands described in Section 4.

We call
`
(↑φ v) ∪ (↓φ v′)

´
, in the example, the policy support

of the administrative privilege #(v, v′). Basically, the pol-
icy support of an administrative privilege ensures that the
administrative subsystem can perform administrative oper-
ations, and propagate the relevant additional parts of φ to
subsystems. Let us show an example of policy support.

Example 6. Figure 6 shows the policy support of two ad-
ministrative privileges.

The edges in the areas marked with I form the
policy support of the privilege #(ernurse, dbusr), and
those marked with II the policy support of the privilege
#(ornurse, sqanusr).

It is now clear how a ‘correct’ and ‘efficient’ administra-
tion procedure can be defined in this model. It depends
on the administrative privilege mapping pm◦ as follows: an
administrative subsystems sa must send an update to an
administrative subsystem sb every time the policy support
for relevant administrative privileges of sb changes.

7. RELATED WORK
The administration of RBAC policies is an issue that at-

tracts considerable attention from the research community.
In particular, there is a large body of literature on how to
choose administrative policies (informally, about which roles
should get what authority to change the RBAC policy) [2,
4, 5, 6, 7, 11, 14, 16, 18, 19]. The considerations that mo-
tivate the choices in these proposals are diverse. Crampton
and Loizou, for example motivate their choice by consider-
ing responsibility in a organization hierarchy [5], whereas Li
and Mao consider for example flexibility, and psychological
acceptability [11]. None of these proposals address how to
distribute RBAC policies across a distributed system, in a
correct and efficient way (which is the scope of this paper).
We now consider some of these proposals in more detail.

Wang and Osborn [17] introduce administrative domains
for role graphs, a class of RBAC policies with a single lowest
and single highest role, called minrole and maxrole respec-
tively. Each administrative domain is defined by one role,
and contains all the roles below it, except minrole. Adminis-
trative domains may not overlap, unless one domain includes
the other completely. Wang and Osborn justify this restric-
tion by arguing that it should not be allowed for different
domain administrators to make changes to the same roles.
On the other hand they also stress that this is a disadvan-
tage of their model, arguing that in practice one would like

to have overlapping domains, for example when one resource
is shared by different departments (see Figure 3). Implemen-
tation of RBAC in distributed systems is not at the basis of
this choice. For example, the administrative policy depicted
in Figure 3 is not admitted by the administrative domains
model of Wang and Osborn. In their model, administra-
tive privileges about the role sqanusr can only be assigned
to a domain administrator, which also has administrative
privileges about ehrstaff and orstaff. Although we agree
that there may be practical settings where administrative
domains may be useful, we do not adopt such restrictions
here.

Closely related is the work by Crampton and Loizou [5],
who define the concept of administrative scope. Basically a
role r is in the scope of a role r′ if there is no role above r
that is not comparable to r′. They show how administrative
scope can be used to constrain delegations to evolve in a
natural progression in the role hierarchy. Administrative
scopes can be used as a basis for a policy distribution, but
this does not yield the sound and complete administration
procedures defined in our model.

Similarly, in the ERBAC model, proposed by Kern et al.
scopes are used to define over which RBAC objects and ad-
ministrator has authority [9]. The ERBAC model focuses on
administrating RBAC policies in a commercial enterprise se-
curity software. Although ERBAC has been verified against
a business case involving multiple remote company sites, the
main goal of the administrative component of ERBAC is to
allow for delegation of administrative authority, and does
not deal with the issue of distributing (parts) of RBAC poli-
cies in a proper way.

Li and Mao design three main requirements (flexibil-
ity and scalability, psychological acceptability, economy of
mechanism) and analyze them in different existing adminis-
trative models, and they design UARBAC, a new family of
models. As mentioned earlier, none of the above-mentioned
models address the issue of distributing (administrative)
policies across a distributed system.

Somewhat related to our work is the paper by Bhamidi-
pati and Sandhu which discusses how RBAC can be used in
a number of different architectures with multiple servers in
a network [3]. They focus on the capabilities of the servers,
specifically on whether or not RBAC is supported, and treat
the role-hierarchy as a central service. In our model on the
other hand we distinguish which policy changes are relevant,
and we do not update subsystems about irrelevant policy
changes. dRBAC is a decentralized trust management and
access control mechanism for systems that span multiple ad-
ministrative domains [8]. It is targeted at settings where
independent organizations form dynamic coalitions. Similar
settings are also addressed by the TM models to be discussed
below. In dRBAC, local policies in one administrative do-
main can be used in another domain; on the other hand,
dRBAC does not address the issue of distributing policies
(efficiently) across systems within an administrative domain.

Role-based Trust Management (TM) [12] and distributed
certificate systems, such as SDSI [13], are remotely related
lines of research. In these systems, a number of agents ex-
change security statements and may create hierarchies sim-
ilar to those used in RBAC. Issuing TM credentials corre-
sponds to administrative commands in RBAC. In TM how-
ever it is generally assumed that users are free to utter se-
curity statements, while the focus is on whether to trust

100

such statements (which involves some trust calculation by
the receiver of such statements). In RBAC this assump-
tion is inappropriate, because policy changes are explicitly
guarded by administrative privileges. The central issue of
this paper, that is, to ensure that users can perform the ac-
tions they are allowed to, without broadcasting the entire
security policy, has also been researched in TM. In some
TM models the user is expected to collect the credentials
needed for access by itself. In others credential chain dis-
covery algorithms are used, which are automatic procedures
to retrieve missing credentials. In this paper we describe a
model that prevents situations where policy definitions must
be retrieved ad-hoc by a subsystem, by pushing them to the
interested subsystems upon the issuing of policy changes.

8. CONCLUSION
Despite a large body of literature on the administration of

RBAC policies [5, 7, 14, 17], there is no proposal for RBAC
administration in distributed systems. In this paper we fill
this gap: we present a model for the implementation of a
common RBAC standard in a distributed system. We focus
on the formal requirements for such implementation, and we
propose an administration procedure for the deployment of
policy changes across the distributed system, which is effi-
cient and preserves the formal requirements. A key part of
our model is a privilege mapping, which captures the intu-
itive idea that different systems protect different objects. To
demonstrate how the procedure can be implemented in prac-
tice, we translate our procedure to practical pseudo-code,
and finally we also indicate how to extend our model to
cover settings with multiple administrative systems, which
are rather common in practice.

Acknowledgements
We would like to thank the anonymous reviewers for their
helpful comments. We thank Jan Cederquist for discussions
about early drafts of this paper. Marnix Dekker was funded
by TNO and SenterNovem through the IOP Gencom project
PAW. Sandro Etalle was partly funded by the projects EU-
Serenity, and EU-NOE-ARTIST2.

9. REFERENCES
[1] RBAC Standard, ANSI INCITS 359-2004, 2004.
[2] E. Barka and R. S. Sandhu. Framework for role-based

delegation models. In Proceedings of the 16th Annual
Computer Security Applications Conference (ACSAC),
pages 168–176. IEEE Computer Society Press, 2000.

[3] V. Bhamidipati and R. Sandhu. Push architectures for
user role assignment. In Proceedings of the 23rd
National Information Systems Security Conference
(NISSC), pages 89–100, 2000.

[4] J. Crampton and H. Khambhammettu. Delegation in
role-based access control. In Proceedings of the 11th
European Symposium on Research in Computer
Security (ESORICS), LNCS, pages 174–191. Springer,
Berlin, 2006.

[5] J. Crampton and G. Loizou. Administrative scope: A
foundation for role-based administrative models. ACM
Transactions on Information System Security
(TISSEC), 6(2):201–231, 2003.

[6] M. A. C. Dekker, J. Cederquist, J. Crampton, and
S. Etalle. Extended privilege inheritance in RBAC. In
Proceedings of the 2007 ACM Symposium on
Information, Computer and Communications Security
(ASIACCS), pages 383–385. ACM Press, 2007.

[7] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli.
Role-based Access Control. Computer Security Series.
Artech House, 2003.

[8] E. Freudenthal, T. Pesin, L. Port, E. Keenan, and
V. Karamcheti. dRBAC: Distributed role-based access
control for dynamic coalition environments. In
Proceedings of the 22nd International Conference on
Distributed Computing Systems (ICDCS), pages
411–420, IEEE Computer Society Press, 2002.

[9] A. Kern, A. Schaad, and J. Moffett. An
administration concept for the enterprise role-based
access control model. In Proceedings of the 8th ACM
Symposium on Access Control Models and
Technologies (SACMAT), pages 3–11, 2003.

[10] N. Li, J. Byun, and E. Bertino. A critique of the ANSI
standard on role based access control. IEEE Security
and Privacy, pages 1540-7993.

[11] N. Li and Z. Mao. Administration in role-based access
control. In Proceedings of the 2007 ACM Symposium
on Information, Computer and Communications
Security (ASIACCS), pages 127–138. ACM Press,
2007.

[12] N. Li, W. H. Winsborough, and J. C. Mitchell.
Distributed credential chain discovery in trust
management: extended abstract. In Proceedings of the
8th ACM Conference on Computer and
Communications Security (CCS), pages 156–165.
ACM Press, 2001.

[13] R. L. Rivest and B. Lampson. SDSI – A simple
distributed security infrastructure. Presented at
CRYPTO’96 Rump session, 1996.

[14] R. S. Sandhu, V. Bhamidipati, and Q. Munawer. The
ARBAC97 model for role-based administration of
roles. ACM Transactions on Information and System
Security (TISSEC), 2(1):105–135, 1999.

[15] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE
Computer, 29(2):38–47, 1996.

[16] J. Wainer and A. Kumar. A fine-grained, controllable,
user-to-user delegation method in RBAC. In
Proceedings of the 10th ACM Symposium on Access
Control Models and Technologies (SACMAT), pages
59–66. ACM Press, 2005.

[17] H. Wang and S. L. Osborn. An administrative model
for role graphs. In Proceedings of the IFIP TC-11 WG
11.3 Annual Working Conference on Data and
Application Security (DBSec), pages 302–315. Kluwer,
2003.

[18] L. Zhang, G. Ahn, and B. Chu. A rule-based
framework for role-based delegation and revocation.
ACM Transactions on Information and System
Security (TISSEC), 6(3):404–441, 2003.

[19] X. Zhang, S. Oh, and R. S. Sandhu. PBDM: a flexible
delegation model in RBAC. In Proceedings of the 8th
ACM Symposium on Access Control Models and
Technologies (SACMAT), pages 149–157. ACM Press,
2003.

101

