Model-based Behavioral Attestation

Masoom Alam
Institute of Management
Sciences, Pakistan

Tamleek Ali
Institute of Management
Sciences, Pakistan

Xinwen Zhang
Samsung Information Systems
. | America, San Jose, CA, USA
mmalam@imsciences.edu.pk xinwen.z@samsung.com

tamleek@imsciences.edu.pk

ABSTRACT

Remote attestation is an important characteristic of trusted
computing technology which provides reliable evidence that
a trusted environment actually exists. Existing approaches
for the realization of remote attestation measure the trust-
worthiness of a target platform from its binaries, configura-
tions, properties or security policies. All these approaches
are low-level attestation techniques only, and none of them
define what a trusted behavior actually is and how to specify
it. In this paper, we present a novel approach where the
trustworthiness of a platform is associated with the behav-
ior of a policy model. In our approach, the behavior of a
policy model is attested rather than a software or hardware
platform. Thus, the attestation feature is not tied to a
specific software or hardware platform, or to a particular
remote attestation technique, or to an individual type of
security policy. We select usage control (UCON) as our
target policy model as it is a comprehensive and flexible
model. We propose a framework to identify, specify, and
attest different behaviors of UCON.

Categories and Subject Descriptors

D.4.6 [OPERATING SYSTEMS]: Security and Protec-
tion—Access controls; Information flow controls

General Terms
Security

Keywords

Remote attestation, UCON, behavioral attestation, high-
level framework

1. INTRODUCTION

The term “Trusted Computing” refers to a technology
introduced by the Trusted Computing Group (TCG) [2], in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SACMAT’08, June 11-13, 2008, Estes Park, Colorado, USA.

Copyright 2008 ACM 978-1-60558-129-3/08/06 ...$5.00.

175

Mohammad Nauman
Institute of Management
Sciences, Pakistan
nauman@imsciences.edu.pk

Jean-Pierre Seifert
Samsung Information Systems
America, San Jose, CA, USA
j.seifert@samsung.com

which PCs, consumer electronic devices, PDA’s and other
mobile devices are equipped with a special hardware chip
called Trusted Platform Module (TPM).

TCG defines trust as follows: “trust is the expectation that
a device will behave in a particular manner for a specific pur-
pose” [3]. The term particular manner is concerned with the
question of how a task is expected to be performed; specific
purpose refers to a particular task or scenario like usage of an
object, web service access, or some computational activity.
In other words, “trust is directly associated with the expected
behavior of a particular task”.

Remote attestation is an essential characteristic of trusted
computing which provides reliable evidence that a trusted
environment actually exists. This feature enables a trusted
computing platform to remotely certify to third parties in
enciphered form the behavior of its running software and
the status of its hardware and software components. In a
typical remote attestation scenario (cf. Fig 1), a challenger
verifies the trustworthiness of a target or remote platform
before dispatching a resource, or before or during an access
to an object. If the target platform has provable trusted
environment, sensitive information can be released to it.

Several approaches have been proposed in the literature
for the realization of remote attestation. For instance, con-
figuration - based attestation requires that a target platform
presents the trusted configurations of its platform to a chal-
lenger. Based on the configurations, the challenger deter-
mines the trustworthiness of a target platform. However,
revealing all system configurations may give some insights
into the target platform, thus making a security attack in-
evitable [13].

Binary attestation has been studied in detail in two ap-
proaches: IMA [10] and PRIMA [6]. In IMA, a target plat-
form presents the trusted status (i.e. binary hashes) of all its
components loaded after booting to a challenger. However,
IMA alone is not very practical in open and heterogeneous
environments. PRIMA [6] enhances the IMA approach by

2. Attestation
Request

3. Attestation
Response
4. Object

Challenger / Service Provider

Target Platform

Figure 1: A Typical Remote Attestation Scenario

enabling integrity measurement via information flow control
using SELinux [1] policies. However, PRIMA still relies
on the binary measurements of trusted subjects, and only
considers a simple behavior of the system: low integrity data
is filtered before flowing to high integrity subjects. There-
fore, PRIMA alone cannot capture the dynamic behaviors
of general platforms where many other security policies can
be required.

In order to overcome the limitations of binary and config-
uration based attestations, property-based attestation [9, 4]
proposes to collectively map related system configurations to
some properties. For example, “Multi Level Security (MLS)
enabled” is a property which can be mapped to system con-
figurations such as the support of MLS in SELinux policies.
In this way, the configurations of a target platform are not
disclosed to a challenger. However, considering an enormous
growth in hardware and software platforms especially in
open environments like Internet, the mapping of all system
configurations to properties is not very feasible and such
mappings quickly become intractable.

Each of these existing low-level remote attestation tech-
niques is useful in some scenarios but becomes infeasible in
others. The fundamental issue of these techniques lies on
the lack of a mechanism to identify and attest the behaviors
of a platform instead of binaries and static configurations.
In order to capture the dynamic behaviors of a system, there
is a need to use these techniques together in a supporting
manner so that the weaknesses of one can be addressed by
another.

Semantic remote attestation [5] proposes a program or
software’s semantic analysis and requires a Trusted Virtual
Machine (TVM) running on a target platform. In order to
verify the behavior of a running software, the TVM monitors
the security policy attached to the software which is based
on different properties of the software. TVM is binary at-
tested in order to ensure that the security policy attached
to a software is indeed enforced. Li et al. [7] have coined
the term behavioral attestation and presented an approach
where the behavior of the security policy of a target plat-
form is attested. In their approach, a complete analysis of
the entire security policy of a target platform is proposed.
For behavioral analysis, the approach uses a very simple
example from Unix password file that “Alice can do this
and Bob cannot”; therefore, the approach has a very limited
demonstrated scope.

These two approaches propose that the trustworthiness
of a target platform should be associated with the behavior
of its security policies. However, none of these approaches
define what the correct behavior of a security policy is and
how to specify it. Without such a benchmark, there is
nothing with which the enforcement behavior can be com-
pared to draw conclusions about trustworthiness. Moreover,
due to an enormous number of different types of security
policies, e.g., different operating system policies, web service
policies, and so on, it is also not feasible to associate the
trustworthiness of a platform with its security policies and
such associations quickly become intractable.

Our Approach: In this paper, we present a novel ap-
proach — Model-Based Behavioral Attestation (MBA) — in
which the trustworthiness of a target platform is associated
with the behavior of its policy model. As a policy model pro-
vides an abstract and formal representation of the security
properties of a platform, we define trust as follows: “trust

176

is the expectation that a policy model will behave in a par-
ticular manner for a specific purpose,” where, “the behavior
of a policy model refers to the aggregate of its observable
actions or reactions in response to its environment.” Thus,
in MBA, a target platform is trustworthy for a challenger if
each behavior of that policy model is trustworthy, which is
followed by the target platform for the specific purpose of
the challenger.

Contributions: Our contributions in this paper are three-
fold: 1) We present MBA, which is a high-level framework
that abstracts the details of low-level attestation techniques.
It is not a new attestation technique. Rather, it provides a
framework through which the existing low-level techniques
can be selected based on different scenarios and transfor-
mations. 2) We generalize behavioral attestation [7] and
associate behaviors with policy models instead of individ-
ual security policies. Thus, the attestation is more exact,
simple and scalable. 3) We identify and specify the correct
behavior of UCON as an example target policy model for
demonstration of MBA.

UCON is a comprehensive usage control model, which
covers all aspects of usage control (cf. Section 2). This
selection is motivated by the fact that usage control sce-
narios are concerned with the enforcement of access control
policies about an object, which does not necessarily remain
within the domain of its stakeholder. For example, in health
care scenarios, medical data can be accessed within private
clinics, laboratories and/or other hospitals. Without guar-
anteeing the correct enforcement of usage control policies, it
is impossible to impose constraints on object usage. Thus,
UCON is a classical model for remote attestation.

Outline: Section 2 gives an overview of UCON. Section 3
presents our approach of Model-based Behavioral Attesta-
tion. The identification of different behaviors associated
with the UCON model is described in Section 4 and its spec-
ification in Section 5. Section 6 elaborates the attestation
of enforcement behaviors. In Section 7, we conclude our
contributions and present future directions for this research.

2. USAGE CONTROL (UCON)

Access to an object is not limited to server side and there
are several unresolved issues after the release of the object
to a remote platform. These issues are concerned with the
continuous control over the usage of an object by a subject
after it is released, e.g., the decrease, expiry, or revocation of
permissions of a subject. Park and Sandhu [8] have coined
the term usage control and proposed a model called Usage
CONtrol (UCON), which enhances traditional access control
models [12, 11] in two respects: 1) continuity of an access
decision and, 2) mutability of attributes. Continuity of an
access decision means that a decision to allow access to an
object is not only made before access but also during access
and may result in revocation of access permissions if policy
conditions are no longer satisfied. Mutability of attributes
means that attributes of subjects or objects may change' as
side effects of access, which may also result in a change in
ongoing or subsequent access decisions.

Policy statements in UCON are categorized as
authorizations, obligations and conditions. Authorizations
refer to predicates which are based on subject or object

1Only the mutability of subject and object attributes is
allowed in UCON.

preupdate postupdate

[R \ permitAccess
requesting

onupdate

. tryAccess
Initial

denyAccess
revokeAccess

preupdate postupdate

Figure 2: UCON Model States

attributes only. Obligations are directives to a subject
to perform additional actions before or during an access.
Predicates exclusively based on environment attributes
such as system time, device type etc., are categorized as
conditions.

Zhang et al. [15] have proposed a formal model for UCON
policy specification. In this paper, we use this formalized
model to present our approach of behavior specification and
as a basis for a framework for behavioral attestation. A
brief introduction to the logical specification of UCON is
presented in the following.

Figure 2 shows the state transition model of UCON.
Each state is associated with a state transition action.
For instance, state accessing is associated with the state
transition action permitAccess and revoked is associated
with revokeAccess. For attributes mutability, each
state has attribute update actions associated with it.
State requesting, for instance, is associated with the
attribute update action preupdate, accessing is associated
with onupdate, and so on. According to [15], these
attribute update actions are dependent on the type of the
corresponding attribute and a separate program/software
can be used to update different types of attributes. For
example, date and time attributes can be updated by
one software whereas, role attribute can be updated by
a different software. Upon the successful update of an
attribute, the corresponding attribute update action returns
true; otherwise it returns false. A state transition
action can be associated with authorization and condition
predicates, obligations and attribute update actions, each of
which returns either true or false. In this paper, we use the
definition of UCON model given in [15].

M

DEeFINITION 1. A UCON model is a 5-tuple:
(Ta PA,PCvAA,AB)- Where:

e T is a set of sequence of system states (e.g., accessing,
revoked etc),

e P4 is a finite set of authorization predicates built from
the attributes of the subjects and objects,

o Pc is a set of conditions predicates built from the
system (or environment) attributes,

o A4 is a finite set of usage control (attribute update)
actions,

e Ar is a finite set of obligation actions.

A UCON policy p is a also a 5-tuple, each element of which
is a subset of the corresponding element in M. A UCON

177

preupdate(s.NoOfTimesUsed)
[s NoOfTimesUsed <=5 /\

s.designation = ‘surgeon’”
tryAccess permltAccess
Initial ~® accessing

Figure 3: An Example UCON Policy Instance

system consists of a set of subjects S, a set of objects O, a
set of rights R, a set of attributes ATT, and a set of UCON
policies.

Each policy model is built from different components.
Based on Definition 1, we have identified 12 components
of a UCON model. These are subjects, subject attributes,
objects, object attributes, environment attributes, rights,
authorizations, obligations, conditions, system states, state
transition actions and attribute update actions.

Further, each UCON policy has the following meta
information associated with it:

1. Decision Timings: Decision timings specify the state
at which the usage decision is made. There are two
types of decision timings: pre and on. The decision
timing pre means that the decision to allow an access
to an object is made before the access and on refers
to usage control scenarios where decision to allow the
access to an object is coupled with continuous usage
of the object.

2. Update Timings: Update timings define the time
when attributes are updated. Update timing 0 means
that no update is allowed; 1 means before an access;
2 means during and 3 means after access. A policy
can have accumulated update timings such as 0 only
or 123.

3. Policy Statement Type: Depending on the type
of a policy statement, a policy can be made up of
authorizations only, obligations only, conditions only
or any of their combination. The policy type is
reflected in the policy name. Policy type preABy
includes policies in which policy statements consist of
authorizations and obligations only, decision are made
before an access and no attribute update is allowed.

The following example UCON policy formalizes the high-
level security requirement from medical domain that access
to a medical record is allowed at most 5 times and only
to surgeons. In this example, state accessing is made
conditional by associating authorization predicates with the
state transition action permitAccess (cf. Fig 3). Before
entering the accessing state (i.e., before access to the
medical Record is granted), the NoO fTimesU sed attribute
of the subject s is updated using the attribute update action
preupdate in the state requesting. This is an example of a
preA; type policy.

EXAMPLE 1. The medical record can be read at most 5
times and only by a surgeon.

1) permitaccess(s,medicalRecord,read) —

2) ((s.NoOfTimesUsed < 5) A (s.designation = ‘surgeon’))

3) A preupdate(s.NoOfTimesUsed)

4) preupdate(s.NoOfTimesUsed):

5) (s.NoOfTimesUsed = s.NoOfTimesUsed + 1)

__nstancer~---—____ Transformation from

to low level policy

Object + policy +
attestation request

Target Platform

)

Behavior Proofs

e __——— highlevel policy
blstileretzn o

~4

%Mode\ Engine @

Low-Level Behavior
Policy i

<Target>

Behavior Behavior

et

Low-Level Policy
<Tar
< B
< >
< B
<

Attestation
Techniques

+---5-0 Meas 1 = Hash
Meas 2 = X.509
) [Meas 3= MLs.

<subject> s </subject> N
Identification Association <object> 0 </object> Object
High-Level Beh. Policy Property-based Configuration-based . .
N N Binary Attestation
Attestation Attestation
(i requesting -> {AU} e Expected
| accessing > >, CR) Behavior e Enforcement °u
Transformation Behavi Behavior o P
Model N from High level Behavior Policy E av'?r « T
Behavior to Low level Behavior Policy ‘ Attestation - ~--\n& T
Target Platform
True | False
’ Legend: A Behavior . % Engine . @ Protected Object . @ Policy Repository . 4% TPM Chip

Figure 4: Model-based Behavioral Attestation (MBA)

Typically, remote attestation is to ensure that a remote
platform has the trusted environment where sensitive data
and resources can be released, or services and applications
can be deployed. The two novel features of UCON -
continuity of access decision and mutability of attributes —
require that usages of data or access to services have to be
continuously controlled even out of the stakeholder’s domain
and under dynamic computing environments. This makes
UCON a prime candidate for remote attestation. For this
reason, we have chosen UCON as an example target policy
model for our MBA technique. Our approach of MBA is
presented in detail in the following sections.

3. MODEL-BASED BEHAVIORAL

ATTESTATION

Model-based Behavioral Attestation (MBA) is a frame-
work for identifying, specifying and remotely attesting the
behaviors associated with different components of a policy
model. It is a high-level framework, built on top of low-level
attestation techniques and is a general approach that can
be realized for a variety of access control and usage control
models. The biggest advantage of the MBA approach is that
it is not tied to any specific software or hardware platform,
or to a particular attestation technique or to an individual
type of security policy. The framework helps to improve
the realization of remote attestation by breaking down a
statement like, “this system enforces a particular policy
model,” into individual elements of the policy enforcement.
The behavior of each of these individual elements can
then be attested through existing approaches like binary or
property-based attestation.

Hereafter, we provide step-by-step design principles for
the development of an attestation system based on MBA.

Steps 0 - 1) Behavior Identification & Association:
In this step, a target policy model is analyzed thoroughly to
identify a general set of behaviors associated with its distinct
components (cf. Fig 4 — Step 0-1). This identification helps
to categorize which set of behaviors of a policy model should
be trusted. These behaviors are used to determine the
trustworthiness of the target platform at which the policy
model is realized. This step has to be performed only once
for each policy model. The results can then be re-used in all
systems which need to attest the policy model.

178

Step 2) Behavior Specification: In the behavior
specification step, the system designer specifies the behavior
of a policy model’s components. A formal specification of
such behaviors helps to abstract the complex details of the
underlying hardware and software platforms.

We note that a policy is an instance of a model and
is composed of several components of the model. The
set of behaviors associated with different components of a
policy are collectively referred as the expected behavior of
the policy. An automatic way of associating such behaviors
with different components of a policy model can simplify the
behavior association and its specification. The end product
of this step is a high-level behavior policy. We include one
such algorithm which can automate this procedure during
the specification of UCON behaviors in Section 5.

Steps 3 - 4) Transformations: Transformations play a
key role in MBA. In Step 3, the policy of a target model is
transformed to some concrete and low-level policy language
like XACML [14]. The XACML behavior policies will
specify the expectation of a challenger regarding the usage
of her objects. This step bridges the gap between the high-
level policy specifications and its corresponding low-level
implementation. In Step 4, the high-level behavior policy
is transformed to a low-level behavior policy. Depending on
the underlying computing environment, different behavior
transformations can be defined for one high-level policy.
For example, for a relatively closed environment such as a
hospital, a relaxed set of transformations can be employed —
these relaxed transformations may require only property-
based attestation. However, for open environments, a
more restricted set of transformations might be used. The
biggest advantage of having different transformations is that
the high-level policy and its corresponding behavior policy
remain the same and do not change for different underlying
computing environments.

Steps 5 - 8) Behavior Attestation: In an MBA
scenario, a target platform receives the object, enforcement
policy and specification of measurements for collecting
proofs of policy enforcement (Step 5). It uses the object as
dictated by the policy and while doing so, collects proofs of
its behaviors (Step 6). It then sends this behavior — called
enforcement behavior — to the challenger (Step 7). In the
behavior attestation step (Step 8), the enforcement behavior

of the policy is compared to its expected behavior. The
verification mechanisms help the challenger in sorting out
the trustworthiness of the target platform. This procedure
can also be automated easily. We provide an algorithm for
this automation in the context of UCON model behavioral
attestation in Section 6.

In this paper, we focus on the specification and attestation
of behaviors. Transformations are concerned with the
implementation of MBA and are part of future work.

Our overall approach can be defined as follows:

DEFINITION 2. (Behavior Specification) Let M be a
target model in our model-based attestation. If T represents
a finite set of different components in model M such that T
= {t1,t2,...,tn} and Ezb represents a finite set of expected
behaviors of T such that E.b = {ezbi,ezba, ..., ezbn}
then Behavior Association (BA) is a function that maps
the available components T in model M to their expected
behaviors FEzb. Formally:

BA: T — Ezb
where — represents the behavior association relation.

DEFINITION 3. (Behavior Verification) If Enb represents
a finite set of enforcement behaviors of T in model M
such that Enb={enb1,enb1,...,enbn}, then the comparison
of enforcement behavior with the expected behavior takes the
form: {enb1 ® ezb1,enba ® ezba, ..., enbn ® exbn} where ®
represents the comparison relation between the enforcement
and expected behaviors. We define Behavior Verification
(BV) as a partial function that maps the comparison of
enforcement and expected behaviors (Enb ® FEib) to some
boolean value. Formally:

BV: E,b ® Ezb — {true | false}

4. BEHAVIOR IDENTIFICATION AND AS-
SOCIATION

In order to formally specify the behavior of a policy model,
its components need to be identified. A policy model is built
from its distinct components, the behavior of each of which
effects the overall behavior of the policy model. Thus, in
our viewpoint, the behavior of a policy model is the aggregate
of observable actions or reactions of its distinct components
in response to their environment. In this statement, the
environment of a policy model is defined by its policy
instance and observable actions refer to those actions which
are performed by different components of a policy model
during policy enforcement. Observability of actions means
that there must be a way of communicating to the challenger
that the required actions were performed.

Based on the components of UCON specified in Section 2,
we identify three types of behaviors which need to be
associated with the UCON model. These are (1) active
subject/object behaviors, (2) state transition behaviors, and
(3) attribute update behaviors.

1. Active subject/object behaviors capture the behaviors
of all subjects and objects and their corresponding
rights, which are active for a given system state. These
behaviors correspond to the subjects, objects, and
rights of UCON.

2. State transition behaviors capture the behaviors
of state transitions when associated authorizations,

— =
O

s
evol

7

Figure 5: UCON ACM Domain

obligations, and conditions are fulfilled. These
behaviors correspond to authorizations, obligations,
conditions, system states, and state transition actions
of UCON. Moreover, these behaviors also capture the
behavior of attributes involved in related predicates.

3. Attribute update behaviors capture the behaviors of
attribute update actions such as preupdate, onupdate,
and postupdate. These behaviors correspond to the
update actions of subject and object attributes.

Note that although UCON considers conditions as
decision making factors, it does not capture changes to
conditional information (system attributes). Therefore,
behaviors of system attribute updates are not included in
MBA. In general, MBA trusts that system attributes are
monitored and updated in a trusted way.

In general, the criteria for behavior analysis is complete, if
it covers all the components of a given target policy model.
Our behavior analysis of UCON is complete, since it covers
all the components of the UCON model given in Definition 1.

4.1 Active Subject/Object Behaviors

UCON is a session oriented model in which a state
transition activates or deactivates a subject and/or an
object. We use Access Control Matrix (ACM) to capture
the behaviors of subjects or objects added and removed as a
result of different state transitions. We define UCON ACM
as follows:

DEFINITION 4. The ACM of a UCON system state is
defined as A : O x R — 2° where O is a set of active objects,
R is a set of rights, and S is a set of active subjects.

Thus, if s € A(o,r), it means that subject s is exercising
right » on object o in some state. For simplicity, we
assume that there is only one usage session for a single
(s,0,7) existing at one time. However, one subject can
access multiple objects and one object can be accessed
by multiple subjects at the same time. Figure 5 shows
different UCON states and their associated ACM actions.
The ACM actions mark the domain of active subjects and
objects. For example, a subject or object is considered
active when a state transition from requesting to accessing
occurs. The ACM action create captures the corresponding
behavior. Likewise, the ACM action revoke and end capture
the behaviors when an access has been revoked and when
an access is ended, respectively. These ACM actions are
described below.

ACM Action create: Whenever a subject is permitted
to access an object, the ACM action create adds a new
subject s and object o to the set of active subjects S and the
set of active objects O, respectively. The new set of active

subjects and set of active objects are denoted by S’ and
O’, respectively. Further, the creator s is added to ACM for
(0,7) and the modified ACM (A’) is the new ACM. Formally:

create(s,o0,r) = (0', S, R, A") where
S"'=8Su{s}, O'=0U{o} and

A'(o,r) = A(o,r) U{s}

ACM Action revoke: The ACM action revoke captures
the behavior when a subject or object is removed from the
set of active subjects and the set of active objects due to
state transition from accessing to revoked. The revoke
ACM action is defined as follows:

revoke(s,o0,7) = (0',S', R, A') where

’r _def S |A_1({S})| 2 2
§=56{s}= { S —{s} otherwise

;L _def | O Yo |A(o,)] > 2
O =06{o} = { O —{o} othe;wise

and A'(o,7) = A(o,r) — {s}

In order to obtain the current set of active subjects,
subject s is removed from the set of active subjects (S&{s}).
However, the removal places a restriction that if subject s
is accessing more than one objects on the ACM — verified
through the inverse of A — subject s is not removed.
Similarly, before removing object o from the ACM, it is also
verified that object o is not being accessed by any subjects
through any right. Further, the ACM is updated at (o, r) by
removing s from the ACM entry (o,). The new set of active
subjects and objects are denoted by S’ and O’, respectively.

ACM Action end: Similar to revoke, the ACM action
end conditionally removes the active subject and object from
the ACM. Formally:

end(s,o0,7) = (0', S, R, A"

The ACM action revoke is caused by a call from usage
control system whereas, the ACM action end is caused by a
subject itself. The effects of both the transitions are same,
thus, both ACM actions result in the same behavior. Based
on the ACM actions, we now define the trustworthiness of
the UCON ACM as follows:

DEFINITION 5. The UCON ACM behavior is trustworthy
if all of the following conditions hold:

e create(s,0,1) —0€ O'ANse€ S Ase Ao,r)

e revoke(s,0,7) = S =SS {s} AO' =06 {o}A
A'(o,7) = A(o,7) — {s}

e end(s,0,7) = 8" =S {s} AO' =06 {o}A
A'(o,7) = A(o,7) — {s}

Three symbols CR, EN, RK are defined to show that
trustworthiness is expected for ACM actions create, end and
revoke, respectively.

The above definition states that the UCON ACM is
trustworthy if following the ACM action create(s,o,r),

180

subject s is added to the set of active subjects (represented
by S’), object o is added to the set of active objects
(represented by O’) and the ACM itself contains an
entry (o,7) such that s € A(o,r). Similarly, based on
the definitions of the ACM actions end and revoke, the
trustworthiness of the ACM actions end and revoke is
defined.

In general, for every identified behavior, the formal
specification takes the form: first, the behavior and its
trustworthiness are defined. Afterwards, a symbol is
used to denote that trustworthiness is expected for the
corresponding behavior.

4.2 State Transition Behaviors

In UCON, a state transition action is associated with
a combination of authorization, obligation and condition
statements. For simplicity, we assume that a logical
expression represents all of them such that a state transition
occurs only if the logical expression associated with the
transition is true. We define a state transition behavior
as follows:

DEFINITION 6. Given a state t; and a logical expression
e, we write t;—1 —. t; if the transition from state t;—_1 to t;
is allowed by the logical expression e where e is a conjunction
of authorization, obligation, and condition statements.

Logical expressions contain subject, object and/or
environment attributes. These attributes play a key role in
sorting out usage control decisions in UCON. Due to their
significant importance, the correct enforcement of UCON
policies requires that all attributes involved in a particular
usage control scenario should be trusted. If attributes,
or the procedures responsible for updating them are not
trusted, the end result is an untrusted attributes mutability,
or untrusted decision continuity. Consider an example, when
attribute like subject location or number of times that an
object can be accessed is updated in an untrusted way, or
the behavior of the login shell representing a subject or the
memory area used to load an object is not trusted, the
state transition resulting from this attribute predicate is
not a valid transition; i.e., the resulting system state is not
trusted. Instead of relying on normal attribute mutability
and decision continuity — the key UCON concepts, we
propose trusted attribute mutability and trusted decision
continuity.

Trusted attribute mutability means that subject or
object attributes can be updated, if and only if, the
corresponding attribute behaviors are trusted and the
procedures responsible for updating them are also trusted.
Similarly, trusted decision continuity means that in addition
to decision continuity features of UCON, all the attributes
involved in a particular state transition should be in a
trusted state.

Each subject s or object o is represented by a set of
attributes in UCON. For trusted decision continuity, we
define each attribute attr; to be a 3-tuple (name, value,
behavior), where name and value have the same semantics
as defined in UCON, and behavior represents the trusted
status of the attribute. At model level, behavior is an
abstract entity which can have different semantics for
different attributes. For example, for memory, it can mean
the status of memory protection against intrusions; for a
binary file, it can mean the integrity of the file. The actual

semantics are augmented in the behavior transformation
step. The behavior of an attribute is either TRUSTED
or UNTRUSTED, where a TRUSTED value corresponds
to a Boolean value true and UNT RUSTED corresponds to
a Boolean value false. We define the trustworthiness of a
state transition behavior as follows:

DEFINITION 7. Let Attributes = {attr1,attra, ..., attry}
represent a finite set of subject, object and environment
attributes defined in a logical expression e such that t;—1 —¢
ti. Then, the trustworthiness of a state transition behavior
takes the form:

Vj. attrj.behavior = TRUSTED N e=TRUE
where j=1,...,n.

We use —. to denote that trustworthiness is expected for
the corresponding state transition behavior.

4.3 Attribute Update Behaviors

Attribute update actions such as preupdate, onupdate and
postupdate enable attributes mutability. We define attribute
update behavior as follows:

DEFINITION 8. Given an attribute x;, and an update
operation ‘update’, the attribute update behavior is defined
as the application of the update operation on the attribute.
The application of the operation yields a new value which is
assigned to the attribute. Formally:

/
update : x; — ;

The trustworthiness of attribute update behavior is
defined as follows:

DEFINITION 9. An attribute update behavior is trustwor-
thy iff the corresponding attribute is in a trusted state and
the procedure updating it is also trusted. Formally:

true iff x;.behavior = TRUSTED A
update(z;) = update.behavior = TRUSTED
false otherwise
where i = 1,...,n and x; represents the subject or object

attribute that needs to be updated.

We write AU, to denote that a trusted change is expected
for attribute x, and AU for the set of all attributes that can
be updated.

The wupdate represents the preupdate, onupdate and
postupdate attribute update actions. Any attribute
update action is an (update, behavior) pair, where behavior
represents the trusted status of the corresponding update
procedure.

S. BEHAVIOR SPECIFICATION

In this section, we present the formal specifications of
UCON model behaviors and propose an algorithm for the
automation of behavior specification of a UCON policy. A
UCON policy is an instance of the UCON model, and is
composed of several states (e.g., requesting, accessing etc.)
Hence, each ez b; of Definition 2 is associated with a single
state of the UCON policy. Moreover, depending on the
type of the policy, each state can have different UCON
components associated with it. For example, the policy
type preABCy designates that no attribute update should
be performed which means that no attribute update action

181

Function: BA
Input: Wellformed Siqtes(P)
Output: Expected Behavior E;b of Policy p
pt = getPolicyType(p); Exb =0
UpdateTimings = getUpdateTimings(p¢)
6 Constuct the set AUA based on the value of the udpate timings.

7) // e.g. if update timing is 12 then AUA = {preupdate,onupdate}
8) foreach state t;(s,0,r) in S¢gtes do

9) exb=0;

10) // Based on Definition 8, associate Behaviors

11) // with the states of Policy p

12) if I(AUA = 0) then // check for update timings 0

13) if (update(x;) in ¢;) then

14) exb = ey;b U { AU, } //Attribute Update Behavior

15) //Associate Active Subject/Object Behavior as follows:
16) if (t;=accessing) then // if state is accessing

17) ezb = egxb U {CR, —.} // Associate ACL action create
18) // and state transition behavior
19) if (t;=end) then // if state is end

20) exb = exb U {EN, —.} // Associate ACL action end
21) //and state transition behavior

22) if (t;=revoked) then// if state is revoked

23) exb = egxb U {RK, —.} //Associate the ACL action revoke
24) //and state transition behavior

25) t; — ezb

26) Eub = Ezb U {ezb}

27) end foreach

28)return E;b

Figure 6: BA (Behavior Association) Function

can be associated with any state of the policy. Likewise,

preABC) also requires that decision should be made before

an access which means that state revoked is not a part of
the policy instance of type pre ABCj.

The behavior of the policy is determined by the aggregate
of the behaviors of the components present in different
states. Thus, each UCON policy can have a different set
of behaviors associated with it depending on its policy type.

For simplicity, we assume that all policies have accumu-
lated authorization, obligation and condition statements.
However, decision timings, i.e., pre and on, and update
timings, i.e., 0,1,2 and 3 are distinguishing factors.
For behavior specification, we define expected behaviors
associated with the states of a UCON policy as follows:

DEFINITION 10. Let T represent the set of states in
UCON model such that T = {initial, requesting, denied,
accessing, revoked, end} and p is a policy instance of
UCON model. Then, Siates s a function that maps the
policy p to a set of states T'. Formally:

Stutes p— P(T)
For each state t; for usage session (s,o0,r) where t; € T and
s€ S, 0€ O,r € R, the expected behavior ezb; of state t; is
equal to a set of symbols used to denote that trustworthiness
is expected for the identified behaviors. Formally:

exbi = P{CR | EN | RK, —., AU}

ti(s,0,7) — egxb;

The above definition describes the expected behavior of
a state corresponding to the subject s, object o and right
r. The expected behaviors are associated with a state
using the behavior association relation . The set of
behaviors associated with different states of a UCON policy
are collectively referred to as the expected behavior (Ezb —
by Definition 2) of the corresponding policy.

Based on these definitions, we now define the Behavior
Assoctation (BA) function (cf. Fig 6) which associates

different behaviors with different states of a UCON policy.
The function takes a set of states from a UCON policy
as input and returns its expected behaviors. We assume
that the input of a UCON policy is well-formed and the
logical expressions of the corresponding policy are also well-
formed. A UCON policy is well-formed if it contains only
the states allowed by it decision timings and the attribute
update actions required by its update timings.

Depending on the update timings of a policy p, the BA
function (cf. Fig 6) constructs the set AUA (Attribute
Update Actions) (line 6). The AUA set ensures that if
update timing is 0, no attribute update behavior shall be
associated with any state of the policy p. Afterwards,
for each state t; in Sigtes, the BA function associates the
attribute update behaviors (line 12-14), state transition
behaviors and active subject/object behaviors (line 16-24)
with state t;. For example, if there is an update expected
in attribute x; within the state ¢;, then the corresponding
behavior is added to the set of behaviors e;b; (line 13-14).
Similarly, if ¢; is accessing, then the ACM action create
and state transition behavior are augmented to ezb; (line
16-17). At the end, each state t; is associated with the set
of behaviors e b; using the behavior association relation (line
25). The sets of behaviors e;b; are collected in an overall
expected behavior ;b (line 26). The function® returns this
expected behavior E,b of the policy p (line 28). The set
of expected behaviors of a policy is also called its behavior
policy.

Using the BA function, we now specify the behaviors of
the example UCON policy presented in Section 2.

EXAMPLE 2. Behavior Policy for Example 1
1) requesting(s,medicalRecord,read)— {AUs. NoOfTimesUsed}
2) AUs NoOfTimesUsea => ((8-NoOfTimesUsed =

3) $.NoOfTimesUsed + 1)
4) iff (s-NoOfTimesUsed.behavior=TRUSTED A
5) preupdate.behavior=TRUSTED))

6) accessing(s,medicalRecord,read)— {CR,—.}

7) CR => medical Record € O' As € S'A

8) s € A(medicalRecord, read)

9) —¢ => (s.NoOfTimesUsed < 5 A s.designation = ‘surgeon’)
10) A s.NoOfTimesUsed.behavior=TRUSTED

11) A s.designation.behavior=TRUSTED

In the above example behavior policy, the only behavior
associated with the state requesting is the attribute update
behavior (line 1), as described in lines 2-5. The state
accessing is associated with a set of behaviors (line 6).
The first element in the set of behaviors designates that the
ACM action create (line 7-8) is expected in state accessing
for the current subject and object. The second element is
the expected state transition behavior (line 9-11). The last
element in the set of behaviors (line 10-11) describes the fact
that the attributes involved in the logical expression e are
expected to be in trusted state.

6. BEHAVIOR ATTESTATION

In this section, we present the formal semantics of the
framework for behavior attestation of UCON. Behavior
attestation refers to a mechanism, which verifies that
the distinct components of a target model perform their

2The algorithm provided in Figure 6 has linear time and
space complexity in the size of the policy.

182

observable actions in expected manner. One of the biggest
advantage of our approach is that, it is not tied to any
specific software or hardware platform, thus attestation can
be realized for a variety of softwares and hardware platforms.
We assume that, the target platform sends enforcement
behavior of a UCON policy. The enforcement behavior of
a UCON policy is organized according to its states. Each
state is associated with a set of proofs of the fulfillments
of different expected behaviors. We define enforcement
behavior as follows:

DEFINITION 11. Given a state t, an enforcement behavior
enb is a mapping from state t to a set of proofs of expected
behaviors. Formally:

enb:t — P{S(CR) | p(EN) | ¢(RK), d(—-), p(AU)}

where ¢ is a function — called proof function, that takes an
expected behavior as input and returns its trusted proof.
For example, ¢(CR) may return a proof of the expected
ACM action create in the form of a trusted certificate, that
advocates the current status of active subjects and objects in
a particular state. The implementation of the proof function
requires that the target platform should support the low-
level techniques required for that individual proof. This
implementation is left unspecified in our framework. The
reason is that, we do not include such implementation issues
following our practice of keeping the model and attestation
mechanisms distinct.

In order to compare enforcement behaviors with expected
behaviors, we define four satisfies relations. These relations
are based on the enforcement behaviors of a state, its
expected behaviors and the trustworthiness of corresponding
expected behaviors. In general, an enforcement behavior of
a state can only satisfy its expected behavior if and only if
the corresponding expected behavior is trustworthy.

DEFINITION 12. Given a state t, an enforcement behavior
en b satisfies an expected ACM action iff ACM is trustworthy
in state t. Formally:

enb(t) Ea CR iffoe O'Ase S"Ase A(o,T)

enb(t) Ea RK iff ' = S {s}A O = 06 {o}A
A'(o,7) = A(o,7) — {s}

enb(t) Ea EN iff S = S6 {s}A O' = 06 {o}A
A,(Ov T) = A(Ov T) - {8}

We have already defined the trustworthiness of the UCON
ACM in Definition 5. The above definition uses Definition 5
to set a condition for the comparison between an expected
ACM action behavior and its enforcement behavior. For
example, an enforcement behavior can only satisfy the
expected ACM action create behavior if it contains a proof
that, subject s is added to the set of active subjects, object
o is added to the set of active objects and the ACM itself
contains an entry (o,r) such that s € A(o, 7).

DEFINITION 13. Given a state t, an enforcement behavior
enb satisfies an expected state transition behavior iff state
transition behavior is trustworthy in state t. Formally:

enb(t) Ee —e iff Vi. attr;.behavior = TRUSTED
N e=TRUE, where i=1,...,n.

In other words, the above definition means that, in
order to satisfy an expected state transition behavior, the
enforcement behavior must contain a proof that a state

transition has occurred only when the associated logical
expression was true and all attributes present in the
expression were trusted.

DEFINITION 14. Given a state t, an enforcement behavior
enb satisfies an expected attribute wupdate behavior iff
attribute update behavior is trustworthy in state t. Formally:

enb(t) Eauw AUz, iff x;.behavior = TRUSTED A
update.behavior = TRUSTED
where 1 =1,...,n

Function: BV

2) Input: Enforcement Behavior E, b, Expected Behavior E;b

3) Output: Boolean

4) if (|E.b| '= |E,b]) then return false;

5) // if the number of states isn’t the same in expected

6) // and enforced behavior, return false

7) foreach e,b in E;b do

8) t; = getState(ezb)

9) if ((—e € ezb(ti)) A l(enb(ti) Ee —¢)) then return false;

10) if ((—e ¢ exb(ti)) A (enb(ti) FEe —¢)) then return false;

11) if ((CR € ezb(ti)) A l(enb(t;) =a CR)) then return false;

12) if ((CR ¢ exb(t:)) A (b(t;) Fa CR)) then return false;

13) if ((EN € exb(t;)) A (enb(t) Ea EN)) then return false;

14) lf ((EN ¢ exb(ti)) A (enb(t;) o EN)) then return false;

15) if ((RK € exb(ts)) A l(enb(ts) Fa RIC)) then return false,

16) if ((RK ¢ exb(t;)) A (enb(ti) Fa RK)) then return false;

17) if ((AUz; € exb(t;)) A H(enb(ti) Fau AlUz,;)) then return false;
18) if ((.AI/{Iz & exb(t;)) A (enb(ti) Fau AUz)) then return false;
19) end foreach

20) return true

Figure 7: BV (Behavior Verification) Function

Based on these definitions, we now specify the Behavior
Verification (BV) function (cf. Fig 7) which verifies the
expected behaviors of a policy against its enforcement
behaviors. The function takes the enforcement behavior and
expected behaviors as input, and returns a Boolean value. In
Behavior Verification, the first check is related to the number
of states in expected and enforcement behaviors (line 4). If
the number of component behaviors (and thus states) in the
two behavior sets are not the same, verification fails. If the
number of states match, the behavior of each component
is then verified (line 7). For each expected behavior e.b,
the function first fetches the state ¢; associated with e;b
(line 8). Afterwards, using a series of if statement pairs,
different enforcement behaviors are verified. For example, if
the behavior —. is expected in an ezb, it has to be satisfied
by the enforcement behavior (line 9). Also, if it is not
expected, then it should not be satisfied by the enforcement
behavior (line 10). In other words, there should be a one-to-
one correspondence between the expected and enforcement
behaviors. The rest of the behaviors follow the same pattern
of reasoning (lines 11-18). If all matches are successful and
no discrepancy is found between expected and enforcement
behaviors, the function® returns true (line 20).

Behavior verification is summarized by the following
definition:

DEFINITION 15. A state t; of a policy model M is
trustworthy iff all the behaviors associated with it are
trustworthy. Further, a policy model M is trustworthy iff
all its states are trustworthy.

3The algorithm provided in Figure 7 has linear time and
space complexity in the size of the policy.

183

Based on the above definition, we conclude this section
with the following theorem.

THEOREM 1. A model M is trustworthy if its first state
to is trustworthy.

Proof: We prove this with mathematical induction. If to
is trustworthy, then all behaviors associated with o are
trustworthy. Now, we assume that ¢, is trustworthy and
prove that t,,4+1 is trustworthy.

e State Transition Behaviors: State t, is trust-
worthy, which means that e,b(t,) = —. holds (by
Definition 13). Now, suppose if the behavior of
the reference monitor responsible for making state
transition decisions is measured, e.g., through signed-
hash values, then it is trusted for all reachable states.
Trivially, if ¢,—1—et, then t,—¢/tp41, which further
means that if enbn(tn) Fe —e holds, and then
enb(tnt+1) FEe —e also holds.

Now, for the attributes involved in the logical
expression:

1) If there is no update in state t,, and attributes
involved in a usage control session are monitored,
e.g., through attribute certificates, then they are also
trustworthy in state t,+1.

2) If there is an attribute update in state t, to a
subject or object attribute a. Then, the new attribute
value a’ is only trustworthy iff a is trustworthy and
the procedure responsible for updating is trustworthy
(by Definition 9). We assume that behavior of the
attribute update actions responsible for update is
measured, e.g., through signed-hash method, then the
behavior remains trusted for all set of states. Thus, a’
is also trustworthy in state t,41.

Thus, e,b(tn+1) Fe —e holds.

e Active Subject/Object Behaviors: State ¢, is
trustworthy, which means that if an ACM action is
associated with state t,, then the corresponding ACM
action is also trustworthy (by Definition 15).

1) If tn,=requesting, then tn41 is either accessing
or denied. Since the state denied is not within the
domain of UCON ACM, we take t,4+1=accessing.
Now, if subject s; requests for right r1 on object 01
in state t,, then the ACM is trustworthy in state ¢,41
iff o1¢ O' A s1¢ 8" A s1¢ A'(o1,71) (by Definition 5).
However, if subject s; is exercising r2 on 01, then
the ACM is trustworthy iff o€ O’ A s1€ S A
s1€A’(01,72) in state t,41 (by Definition 5). If these
conditions hold then enb(tn+1) Fo CR holds, and
correspondingly ACM is trustworthy.

2) If t, = accessing, then t,41 is either revoked or
end. Since both the states end and revoked have the
same ACM behaviors, therefore by proving one of them
is trustworthy, the ACM is trustworthy. Suppose, if s1
is currently exercising right 71 on o1, then the ACM is
trustworthy iff o1€ O" A s1€ 8" A s1€ A'(01,71) in Ly,
and t,41 is trustworthy iff ' = SO {s1}A O’ =06
{o1} A A'(01,71) = A(0o1,71) — {51} (by Definition 12).
If these conditions hold, then e,b(t,+1) o EN, and
enb(tnt1) Fa RK also holds.

e Attribute Update Behaviors: State t, is
trustworthy, which means that e,b(t,) Fau AUz holds
for attribute z (by Definition 14). Suppose, if the
behavior of the attribute update action responsible
for updating x is measured, e.g., through signed-hash
method, then the behavior remains constant for all
states. On the other hand, if attribute x involved in
a particular usage control session is monitored, using
e.g., attribute certificate, then it means that attribute
is also trusted for all states. Thus, if e,b(tn) Fau AUz
holds, then e,b(tn+1) Fau AU, also holds.

Thus, all three behaviors are trustworthy in state t,+1 if
they are trustworthy in state ¢,, which completes the proof
of the theorem that a model M is trustworthy iff ¢o is
trustworthy. a

We conclude that if a policy model is trustworthy in its
initial state, a challenger can consider the target platform
as trustworthy and can assume that the associated instance
policy of the model will indeed be enforced.

7. CONCLUSION AND FUTURE WORK

In this paper, we have presented a high-level behavior
specification and attestation framework, which can be built
on top of various low-level attestation techniques. In our
approach, the behavior of a model is attested rather than
a hardware or software platform. We selected UCON as
an example target model in this paper because UCON
is an ideal model to capture continuous access control in
distributed and dynamic environments. Thus, usage control
is an prime candidate for remote attestation. (In Appendex
A, we provide another example in the form of behavior
specification of the RBAC model.)

The product of our work presented here is a high-level
framework which can utilize different low-level techniques in
a supporting manner for the purpose of attesting a remote
platform. Behavior is associated with different components
of a policy model. The behavior of each of these components
can be attested separately at runtime and the aggregate of
these behaviors can be used to measure the trustworthiness
of the remote platform. Trust is thus associated with
the dynamic behavior of a policy model instead of static
measures such as hardware or software configurations or
properties of the remote platform.

MBA opens a new dimension in the form of behavior
identification, specification and verification of access control
and usage control models. Currently, behavior specification
is not automatic and requires manual intervention. A fully
automated behavior specification framework will simplify
behavioral attestation. The details of this aspect will be
explored in our future work.

Another important aspect is the transformation of high-
level behavior specifications to some low-level policies such
as XACML. We conjecture that, such a transformation
framework will help service providers specify their behavior
expectations in the form of a concrete policy.

8. ACKNOWLEDGEMENT

This work has been supported by the Institute of
Management Sciences reseach grant number RG-CS-
07001 to Security Engineering Research Group, Peshawar,
Pakistan.

184

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

REFERENCES

Security-Enhanced Linux (SELinux).
http://www.nsa.gov/selinux/.

Trusted Computing Group (TCG).
https://www.trustedcomputinggroup.org/.

TCG Specification Architecture Overview v1.2, page
11-12. Technical report, TCG, April 2004.

Liqun Chen, Rainer Landfermann, Hans Lohr, Markus
Rohe, Ahmad-Reza Sadeghi, and Christian Stiible. A
Protocol for Property-based Attestation. In STC ’06:
Proceedings of the first ACM workshop on Scalable
trusted computing, pages 7—-16, New York, NY, USA,
2006. ACM Press.

Vivek Haldar, Deepak Chandra, and Michael Franz.
Semantic remote attestation — a virtual machine
directed approach to trusted computing. In. Proc. of
the Third Virtual Macine Research and Technology
Symposium USENIX 2004.

Trent Jaeger, Reiner Sailer, and Umesh Shankar.
PRIMA: Policy-Reduced Integrity Measurement
Architecture. In SACMAT °06: Proceedings of the
eleventh ACM symposium on Access control models
and technologies, pages 19-28, New York, NY, USA,
2006. ACM Press.

Xiao-Yong Li, Chang xiang Shen, and Xiao-Dong Zuo.
An Efficient Attestation for Trustworthiness of
Computing Platform. In ITH-MSP, pages 625-630,
2006.

Jaehong Park and Ravi Sandhu. Towards Usage
Control Models: Beyond Traditional Access Control.
In SACMAT ’02: Proceedings of the seventh ACM
symposium on Access control models and technologies,
pages 57—64, New York, NY, USA, 2002. ACM Press.
Ahmad-Reza Sadeghi and Christian Stiible.
Property-based Attestation for Computing Platforms:
Caring about Properties, not Mechanisms. In NSPW
’04: Proceedings of the 2004 Workshop on New
Security Paradigms, pages 6777, 2004. ACM Press.
Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and
Leendert van Doorn. Design and Implementation of a
TCG-based Integrity Measurement Architecture. In
SSYM’04: Proceedings of the 13th conference on
USENIX Security Symposium, pages 16—16, Berkeley,
CA, USA, 2004. USENIX Association.

Ravi Sandhu. Rationale for the RBAC96 Family of
Access Control Models. In RBAC ’95: Proceedings of
the first ACM Workshop on Role-based access control,
page 9, New York, NY, USA, 1996. ACM Press.

Ravi S. Sandhu. Lattice-Based Access Control Models.
Computer, 26(11):9-19, 1993.

Elaine Shi, Adrian Perrig, and Leendert Van Doorn.
BIND: A Fine-Grained Attestation Service for Secure
Distributed Systems. In SP ’05: Proceedings of the
2005 IEEE Symposium on Security and Privacy, pages
154-168, 2005.

XACML 2.0 Specification Set. Available at:
http://www.oasis-open.org/ committees/
tc_home.php? wg_abbrev=xacml.

Xinwen Zhang, Francesco Parisi-Presicce, Ravi
Sandhu, and Jaehong Park. Formal Model and Policy
Specification of Usage Control. ACM Trans. Inf. Syst.
Secur., 8(4):351-387, 2005.

