
A Service-Oriented Middleware for Providing Context
Awareness and Notification

Luiz Olavo Bonino da Silva
Santos

University of Twente
P.O.Box 217

7500AE – Enschede – the
Netherlands

+31 53 489 44 54

l.o.bonino@ewi.utwente.nl

Peter Vink
Philips Research
P.O. Box WB61

5656AA – Eindhoven – the
Netherlands

+31 40 274 95 52

peter.vink@tass.nl

Remco Poortinga–van Wijnen
Telematica Instituut

P.O. Box 589
7500AN – Enschede – the

Netherlands
+31 53 485 04 92

remco.poortinga@telin.nl

ABSTRACT
In the last few years context awareness has emerged as an
important element in distributed computing. It offers mechanisms
that allow applications to be aware of their environment and
enable these applications to adjust their behavior to the current
context. Considering the dynamic nature of context, the data flow
of relevant contextual information can be significant. In order to
keep track of this information flow, a flexible service mechanism
should be available for the client applications. In this document
we propose a demonstration of the Awareness and Notification
Service (ANS) middleware. ANS provides context-awareness
capabilities to users and client applications. The conditions for the
notification and the notification itself are defined in rules that
users submit to the service by means of a convenient rule
language.

Keywords
Context awareness, middleware, software demonstration.

1. INTRODUCTION
Context awareness represents an important use of distributed
computing and introduces a new class of smart applications.
Awareness of a user’s surroundings and state helps applications to
adapt their functionality depending on context changes and
without direct user interaction. However, introducing context-
awareness in applications demands a series of features such as
discovery and selection of context sources, interaction with these
sources, and manipulation and interpretation of contextual
information, amongst others. These factors complicate the
introduction of ad-hoc context-awareness solutions for system
designers and developers. To tackle these requirements, a flexible
mechanism allowing user applications to easily specify the
relevant changes in the environment is of need.

Commonly, context-aware systems involve the interaction of
distributed, mobile and heterogeneous applications and devices.
Therefore, the use of concepts and technologies of Service-
Oriented Computing can support tackling these issues of
distribution, mobility and heterogeneity.

In this proposal we present an Awareness and Notification Service
– ANS – following a rule-based approach which provides
notifications depending on users’ context. Section 2 introduces
ANS. Section 3 details the proposed demonstration and its
requirements.

2. THE AWARENESS AND
NOTIFICATION SERVICE
The Awareness and Notification Service supports developers in
adding context-awareness capabilities to their applications. Thus
developers do not have to deal with monitoring, controlling and
managing contextual information inside their applications. This
avoids the necessity of creating specific context-awareness
features for each application and, therefore fostering a rapid
development. Applications are only responsible for registering so-
called monitoring rules. These rules specify the context to be
monitored and the notification to be sent once the expected
context holds.

Once the client application has subscribed the monitoring rule,
ANS starts gathering the required contextual information. In the
case that the triggering condition contained in the monitoring rule
holds, ANS proceeds to notify the client application according to
the notification message specified in the rule. An example of such
rule specifies that John should be notified when his children arrive
at home. In this example, the ANS monitors the location of John’s
children and notifies him when they enter home.

Our approach considers that changes in the application’s
environment are modeled by means of Event-Condition-Action
(ECA) rules [1][2]. A domain specific language has been
developed to define context and context events supporting the
specification of context-based reactive behaviors.

Following the Event-Control-Action pattern described in [1], three
main parts are present in ARS as depicted in Figure 1.
EventMonitor receives context data events from context sources
through the Context Management Service (CMS). EventMonitor
sends these events to the Controller that monitors them and
evaluates the registered rules. If the triggering condition of the
rule is evaluated true, Notifier is triggered to perform the suitable
action. The action also depends on the user’s context, for instance,
if the user is in a meeting the notification can be sent via SMS to
his mobile phone instead of via e-mail which would be the case if
he were in his office. The subscribed rules and the ontologies used
in ANS are stored in a KnowledgeRepository and made available
for both RuleManager and EventMonitor.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MC’07, November 26–30, 2007, Newport Beach, CA, Copyright 2007
ACM ISBN 978-1-59593-935-7//07/11…$5.00.

The architectural design of ANS follows the Service-Oriented
Architecture (SOA) principles. The service is implemented as a
web service relying on standards such as SOAP, WSDL, UDDI
and XML. The external entities with which ANS interacts are also
implemented as web services, such as the client applications and
the CMS. In the internal perspective, the ANS implementation
follows the OSGi component based framework approach [4]. The
current implementation of ARS uses the Oscar OSGi Framework
[5].

Figure 1. The ANS architecture

ANS exports two interfaces available both in the Oscar
framework and as web service’s interfaces through WSDL.:

• IManageRule, used by client applications to manage rules,
and;

• IReceiveContext, which is a call back mechanism to receive
information from context sources through the CMS. In addition,
ANS reacts to Web Service events generate by CMS.

RuleManager is externally accessed via the IManageRule
interface. The RuleManager provides facilities for unsubscribing,
updating, starting and stopping rules. When a client application
wants to register a rule, it sends the rule to the RuleManager that
is responsible for parsing, validating and storing the incoming
rule. In the parsing and validating phases, the RuleManager
translates entered user rules to reaction rules that can be handled
by the Controller. The rules received by the RuleManager from
client applications are expressed in the ANS domain-specific ECA
language called ECA-DL [6]. RuleManager transforms this ECA-
DL rule into a rule that can be handled by the underlying rule-
engine. Currently, ARS uses the JESS rule engine [10].

3. ANS DEMONSTRATION
The demonstration of ANS shows the awareness capabilities of
the middleware by using a location-based scenario. To illustrate
the use of the middleware we present a context source connected
to an RFID sensor that informs the location of users. The users are
identified by carrying RFID tags.

To demonstrate rules that identify when users enter certain rooms
we use the signal strength of the RFID tags to create virtual areas
of proximity. Since the signal strength of the RFID change

depending on the distance to the reader, we define that certain
ranges of the signal strength correspond to concentric regions as
depicted in Figure 2. The RFID context source detects the signal
strength of the tags and informs CMS. When the location-based
rules are subscribed, ANS requests CMS to be informed whenever
there is a location-based event. For each event CMS sends to
ANS, the Controller component evaluates the rules and, if the
user enters the region specified in the rule a notification is fired to
the client.

In order to present the demonstration, requirements are: a table to
place the computer running the middleware and the RFID reader
and a space in front of the table of at least 3 meters. Visitors can
carry the tags and participate in the demonstration. Moreover, a
context source simulator is available to demonstrate more
complex situations. The strength of the rule-based system is
clearer when more complex rules are defined. For instance,
combining multiple context sources by using the context source
simulator together with the RFID context source allows the
demonstration of a rule that evaluates the location of a user and
the temperature of the environment.

Figure 2. Demonstration scenario

4. ACKNOWLEDGMENTS
The work reported here is supported by the European Commission
as part of the IST-IP Amigo project under contract IST-004182.

5. REFERENCES
[1] Dockhorn Costa, P., Pires, L. F., Sinderen, M. Architectural

Patterns for Context-Aware Services Platforms. in
Proceedings of the Second International Workshop on
Ubiquitous Computing (IWUC 2005), Miami, May 2005, pp
3-19.

[2] Ipina, D., Katsiri, E. An ECA Rule-Matching Service for
Simpler Development of Reactive Applications. Published as
a supplement to the Proc. of Middleware 2001 at IEEE
Distributed Systems Online, Vol. 2, No. 7, November 2001.

[3] Bonino da Silva Santos, L.O., Ramparany, F., Dockhorn
Costa, P., Vink, P., Etter, R., Broens, T. A Service
Architecture for Context Awareness and Reaction
Provisioning. In Proceedings of the 2nd Modeling, Design,
and Analysis for Service-Oriented Architecture Workshop
(MDA4SOA 2007), Salt Lake City, USA, July 13th 2007.

[4] OSGi Consortium, http://www.osgi.org.
[5] Oscar OSGi Framework -

http://forge.objectweb.org/projects/oscar/
[6] Dockhorn Costa, P., Ferreira Pires, L., van Sinderen, M.,

Broens, T., Controlling Services in a Mobile Context-Aware
Infrastructure, in Proceedings of the Second Workshop on
Context Awareness for Proactive Systems – CAPS 2006,
Kassel, Germany, June 2000.

