
Fundamental Parallel Algorithms for
Private-Cache Chip Multiprocessors

Lars Arge
MADALGO

∗

University of Aarhus
Aarhus, Denmark

large@daimi.au.dk

Michael T. Goodrich
University of California, Irvine

Irvine, CA 92697, USA
goodrich@ics.uci.edu

Michael Nelson
University of California, Irvine

Irvine, CA 92697, USA
mjnelson@ics.uci.edu

Nodari Sitchinava
University of California, Irvine

Irvine, CA 92697, USA
nodari@ics.uci.edu

ABSTRACT
In this paper, we study parallel algorithms for private-cache
chip multiprocessors (CMPs), focusing on methods for foun-
dational problems that can scale to hundreds or even thou-
sands of cores. By focusing on private-cache CMPs, we show
that we can design efficient algorithms that need no addi-
tional assumptions about the way that cores are intercon-
nected, for we assume that all inter-processor communica-
tion occurs through the memory hierarchy. We study several
fundamental problems, including prefix sums, selection, and
sorting, which often form the building blocks of other paral-
lel algorithms. Indeed, we present two sorting algorithms, a
distribution sort and a mergesort. All algorithms in the pa-
per are asymptotically optimal in terms of the parallel cache
accesses and space complexity under reasonable assumptions
about the relationships between the number of processors,
the size of memory, and the size of cache blocks. In addition,
we study sorting lower bounds in a computational model,
which we call the parallel external-memory (PEM) model,
that formalizes the essential properties of our algorithms for
private-cache chip multiprocessors.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems—Sorting and
searching

General Terms
Algorithms

∗Center for Massive Data Algorithmics – a Center of the
Danish National Research Foundation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’08, June 14–16, 2008, Munich, Germany.
Copyright 2008 ACM 978-1-59593-973-9/08/06 ...$5.00.

Keywords
Parallel External Memory, PEM, private-cache CMP, PEM
sorting

1. INTRODUCTION
Advances in multi-core architectures are showing great

promise at demonstrating the benefits of parallelism at the
chip level. Current architectures have 2, 4, or 8 cores on
a single die, but industry insiders are predicting orders of
magnitude larger numbers of cores in the not too distance
future [12, 20, 23]. Such advances naturally imply a number
of paradigm shifts, not the least of which is the impact on
algorithm design. That is, the coming multicore revolution
implies a compelling need for algorithmic techniques that
scale to hundreds or even thousands of cores. Parallelism
extraction at the compiler level may be able to handle part
of this load, but part of the load will also need to be carried
by parallel algorithms. This paper is directed at this latter
goal.

There is a sizable literature on algorithms for shared-
memory parallel models, most notably for variations of the
PRAM model (e.g., see [17, 18, 24]). Indeed, some re-
searchers (e.g., see [26]) advocate that PRAM algorithms
can be directly implemented in multicores, since separate
cores share some levels of the memory hierarchy, e.g. the
L2 cache or main memory. After all, an argument can be
made that ignoring the memory hierarchy during algorithm
design worked reasonably well for the single-processor ar-
chitectures: in spite of recent developments in the cache-
optimal models, most algorithms implemented and used by
an average user are designed in the RAM model due to the
small size of average input sets and relative simplicity of the
RAM algorithms. However, we feel that to take advantage
of the parallelism provided by the multicore architectures,
problems will have to be partitioned across a large number
of processors. Therefore, the latency of the shared memory
will have a bigger impact on the overall speed of execution
of the algorithms, even if the original problem fits into the
memory of a single processor. The PRAM model contains
no notion of the memory hierarchy or private memories be-
yond a few registers in the CPUs. It does not model the
differences in the access speeds between the private cache

on each processor and the shared memory that is address-
able by all the processors in a system. Therefore, it cannot
accurately model the actual execution time of the algorithms
on modern multicore architectures.

At the other extreme, the LogP model [9, 19] and bulk-
synchronous parallel (BSP) [10, 13, 25] model, assume a
parallel architecture where each processor has its own in-
ternal memory of size at least N/P . In these models there
is no shared memory and the inter-processor communica-
tion is assumed to occur via message passing through some
interconnection network.

The benefit of utilizing local, faster memory in single-
processor architectures was advocated by researchers almost
20 years ago. Aggarwal and Vitter [1] introduced the exter-
nal memory model (see also [5, 16, 27]), which counts the
number of block I/Os to and from external memory. They
also describe a parallel disk model (PDM), where D blocks
can simultaneously be read or written from/to D different
disks, however, they do not consider multiple processors.
Nodine and Vitter [22] describe several efficient sorting al-
gorithms for the parallel disk model. Interestingly, Nodine
and Vitter [21] also consider a multiprocessor version of the
parallel disk model, but not in a way that is appropriate
for multicores, since they assume that the processors are
interconnected via a PRAM-type network or share the en-
tire internal memory (see, e.g., [28, 29, 30]). Assuming that
processors share internal memory does not fit the current
practice of multicore. But it does greatly simplify parallel
algorithms for problems like sorting, since it allows elements
in internal memory to be sorted using well-known parallel
sorting algorithm, such as Cole’s parallel merge sort [6].

Cormen and Goodrich [8] advocated in a 1996 position pa-
per that there was a need for a bridging model between the
external-memory and bulk-synchronous models, but they
did not mention anything specific. Dehne et al. [11] de-
scribed a bulk-synchronous parallel external memory model,
but in their model the memory hierarchy was private to each
processor with no shared memory, while the inter-processor
communication was conducted via message passing as in reg-
ular BSP model.

More recently, several models have been proposed empha-
sizing the use of caches of modern CMPs [2, 4, 3]. Bender
et al. [2] propose a concurrent cache-oblivious model, but
focus on the correctness of the data structures rather than
efficiency. Blellochet al. [3] (building on the work of Chen
et al. [4]) consider thread scheduling algorithms with opti-
mal cache utilization for a wide range of divide-and-conquer
problems. However, the solutions they consider are of a more
moderate level of parallelism.

In contrast to this prior work, in this paper we consider
designing massively parallel algorithms (in PRAM sense)
in the presence of caches. Indeed, our algorithms are ex-
tremely scalable: if we set the cache sizes to be constant or
non-existent, our algorithms turn into corresponding PRAM
algorithms. At the other extreme, if we have only a single
processor, our algorithms turn into solutions for the single-
disk, single-processor external-memory model of Aggarwal
and Vitter [1].

We study a number of fundamental combinatorial prob-
lems, which have been studied extensively in other parallel
models (so as to establish them accurately being called “fun-
damental”), as well as the sorting problem. We provide algo-
rithms that have efficient parallel I/O complexity, including

two parallel sorting algorithms—a distribution sort and a
mergesort. We also provide a sorting lower bound for our
model, which shows that our sorting algorithms are optimal
for reasonable numbers of processors.

In the following section we formally define the parallel
external-memory model. Next we present algorithms for
several fundamental building blocks in parallel algorithm de-
sign: prefix sums and multi-way selection and partitioning.
In section 4 we describe two PEM sorting algorithms: a dis-
tribution sort and a mergesort. In section 5 we prove the
lower bounds on sorting in the PEM model. We conclude
with some discussion and open problems.

2. THE MODEL
The model we propose is a cache-aware version of the

model proposed by Bender et al. [2]. It can be viewed as
a variation of the single-disk, multiple-processor version of
the model of Nodine and Vitter [21]. We call it the parallel
external memory (PEM) model to underline the similarity of
the relationship of the PEM model and the single-processor,
single-disk external memory (EM) model of Aggarwal and
Vitter [1] to the PRAM and the RAM models, respectively.
The Parallel External Memory (PEM) model is a compu-
tational model with P processors and a two-level memory
hierarchy. The memory hierarchy consists of the external
memory (main memory) shared by all the processors and P
internal memories (caches). Each cache is of size M , is parti-
tioned in blocks of size B and is exclusive to each processor,
i.e., processors cannot access other processors’ caches. To
perform any operation on the data, a processor must have
the data in its cache. The data is transferred between the
main memory and the cache in blocks of size B. (See Fig-
ure 1.)

Figure 1: PEM Model

Main
Memory

B

Caches

CPU 1

CPU 2

CPU P
M/B

M/B

M/B

The model’s complexity measure, the I/O complexity, is
the number of parallel block transfers between the main
memory and the cache by the processors. For example,
an algorithm with each of the P processors simultaneously
reading one (but potentially different) block from the main
memory would have an I/O complexity of O(1), not O(P).

Unlike previous parallel disk models, there is no direct
communication network among the processors. All the com-
munication among the processors is conducted through writ-
ing and reading to/from the shared memory. Multiple pro-
cessors can access distinct blocks of the external memory

concurrently. When it comes to accessing the same block
of the external memory by multiple processors, just like in
the PRAM model, we differentiate the following three vari-
ations:

• Concurrent Read, Concurrent Write (CRCW): multi-
ple processors can read and write the same block in
the main memory concurrently.

• Concurrent Read, Exclusive Write (CREW): multiple
processors can only read the same block concurrently,
but cannot write to it.

• Exclusive Read, Exclusive Write (EREW): there is no
simultaneous access of any kind to the same block of
the main memory by multiple processors.

In the cases of the EREW and CREW simultaneous write
to the same block of main memory by P ≤ B processors
can be handled in various ways. A simple conflict resolution
strategy is to serialize the writes resulting in a total of P
I/Os. With access to an additional auxiliary block of main
memory by each processor, the basic serialization strategy
can be improved to O(log P) parallel I/O complexity. The
idea is to gradually combine the data into a single block by
the P processors in parallel by scheduling the writes in a
binary tree fashion: in the first round half of the processors
combine the contents of their memory into a single block by
utilizing their auxiliary block, in the second round a quarter
of the processors combine the resulting blocks, and so on for
O(log P) rounds. Finally, one of the processors writes out
the combined block into the destination address.

For the CRCW PEM model, the concurrent writes of dis-
joint sets of items of the same block can still be accomplished
concurrently. However, during the writes of the same items
of a block by different processors, we can use rules corre-
sponding to one of the conflict resolution policies of the
analogous CRCW PRAM model.

In this paper, we consider only the CREW PEM model
and leave concurrent writes and their implication in the
PEM model for future work.

3. THE FUNDAMENTALS
Simulating a PRAM algorithm with the PRAM time com-

plexity T (N, P) on the PEM model results in a trivial PEM
algorithm with the I/O complexity O(T (N, P)). This is very
inefficient in cases when P < N/B, where we can get an
O(B) factor speedup in the I/O complexity over the simple
simulation. However, for some problems a PRAM algorithm
is also an efficient PEM algorithm as it is, without any modi-
fications. For example, consider the all prefix sums problem.

Definition 1. Given an ordered set A of N elements,
the all-prefix-sums operation returns an ordered set B of N
elements, such that B[i] =

Pi
j=0 A[j], 0 ≤ i < N .

Theorem 1. If the input set A is located in contiguous
main memory, the all-prefix-sums problem can be solved in
the PEM model with the optimal O(N/PB + log P) PEM
I/O complexity.1

1For simplicity of exposition by log x we denote the value
max{1, log x}.

Algorithm 1 PEM MULTI PARTITION(A[1:N],M, d, P)

1: for each processor i in parallel do

2: Read the vector of pivots M into the cache.
3: Partition Si into d buckets and let vector Ji =

{ji
1, . . . , j

i
d} be the number of items in each bucket.

4: end for

5: Run PEM Prefix Sums on the set of vectors
{J1, . . . ,JP } simultaneously.

6: for each processor i in parallel do

7: Write elements Si into memory locations offset appro-
priately by Ji−1 and Ji

8: end for

9: Using the prefix sums stored in JP the last processor P
calculates the vector B of bucket sizes and returns it.

Proof. The PEM solution is by simulating an optimal
PRAM algorithm for P < N processors. The PRAM algo-
rithm consists of four phases: sum N/P elements in paral-
lel, up-sweep, down-sweep, and distribute the results of the
down-sweep phase across N/P elements in parallel (see [24]
for details). The resulting PRAM complexity is O(N/P +
log P), with the first and the last phases contributing the
O(N/P) term, while the up- and down-sweep phases con-
tributing the O(log P) term.

Since the input set A is in the contiguous memory, the
first and the last phases can be accomplished in O(N/PB)
I/O complexity in the PEM model. The up-sweep and the
down-sweep phases can be simulated in the PEM model with
each PRAM memory access counting as a single PEM I/O
for a total O(log P) I/Os. Combining the I/O complexities
of the four phases yields the theorem.

In all the algorithms that follow, we assume that the input
is partitioned into N

P
-sized contiguous segments S1, . . . , SP

that each processor primarily works on. We say that proces-
sor i is responsible for the items in the address space spanned
by Si.

3.1 Multiway Partitioning
Let M = {m1, . . . md−1} be a vector of d−1 pivots sorted

in increasing order and let A be an unordered set of N ele-
ments. The goal of d-way partitioning is to partition A into
d disjoint subsets, or buckets, such that all the elements of
the i-th bucket Ai are greater than mi−1 and are at most
mi.

2 In addition, we require for the final contents of each
bucket to be located in contiguous memory.

Algorithm 1 presents a PEM solution to the multiway
partitioning problem. Note that in line 5, P processors run
d separate Prefix Sums simultaneously. In particular, each
processor i loads the vector Ji into its cache and the P
processors simulate a PRAM all-prefix-sums algorithm on
the set {j1

1 , . . . , jP
1 } in O(log P) I/Os.

Theorem 2. If the input set A and the set of d = O(M)
pivots M are located in contiguous memory, then the d-way
partitioning problem can be solved in the PEM model with
O(N/PB + ⌈d/B⌉ log P + d log B) I/O complexity.

Proof. Let’s analyze the total I/O complexity of Algo-
rithm 1.
2For the first and d-th bucket, we only require that all the
elements of A1 are at most m1 and all the elements of Ad

are greater than md−1.

Algorithm 2 PEM SELECT(A[1:N], P, k)

1: if N ≤ P then

2: PRAM SORT(A,P); return A[k].
3: end if

4: for each processor i in parallel do

5: mi = SELECT(Si, N/2P) {Find median of each Si}
6: end for

7: PRAM SORT({m1, . . . , mP }, P) {Sort the medians}
{Partition around the median of medians}

8: t = PEM PARTITION(A,mP/2, P)
9: if k ≤ t then

10: return PEM SELECT(A[1 : t], P, k).
11: else

12: return PEM SELECT(A[t + 1 : N], P, k − t).
13: end if

Since the input array A and M are in the contiguous
memory, Lines 1 through 4 run in O(⌈N/PB⌉) I/O. In line 5,
each step of PRAM simulation, requires reading and writing
of vector Ji, which is stored in contiguous memory. Thus,
the I/O complexity of line 5 is O(⌈d/B⌉ log P).

After prefix sums have been calculated, Ji−1 and Ji de-
fine the start and end addresses of where the elements in
the buckets should be written. If a full block can be writ-
ten by a single processor, then the processor writes it out
with a single I/O. If the data to be written out into one
block is straddled across multiple processors, the processors
combine the data into a single block before writing it out as
described in Section 2. There are at most 2(d − 1) blocks
in each processor that are not full, thus, line 7 takes at
most O(N/PB +d log B) I/Os. Finally, line 9 takes at most
O(⌈N/PB⌉+⌉d/B⌉) I/Os. The theorem follows.

3.2 Selection
Let A be an unordered set of size N and let k be an integer,

such that 1 ≤ k ≤ N . The selection problem is to find item
e ∈ A which is larger than exactly k − 1 elements of A.

Algorithm 2 provides the PEM solution to the selection
problem. A few points worth mentioning. In Lines 2 and
7, PRAM SORT is an optimal O(log N) PRAM sorting al-
gorithm, e.g. Cole’s mergesort [6]. In line 5, SELECT is
a single processor cache optimal selection algorithm. And
finally, in line 8, PEM PARTITION is a special case of Al-
gorithm 1 which partitions input A around a single pivot and
returns the size of the set of elements which are no larger
than the pivot.

Theorem 3. If the input set A is located in contiguous
memory, the selection problem can be solved in the PEM
model with O(N/PB + log PB · log(N/P)) I/O complexity.

Proof. (sketch) Let’s analyze the I/O complexity of Al-
gorithm 1. Each recursive invocation of PEM SELECT par-
titions the input around the median of medians, which elim-
inates at least a quarter of all elements. The PRAM SORT
is invoked on at most P elements for a total O(log P) I/Os.
By Theorem 2, the I/O complexity of PEM PARTITION is
O(N/PB + log P + log B). Thus, the recurrence for the I/O
complexity of Algorithm 2 is

T (N, P) =



T (3
4
N, P) + O

`˚

N
PB

ˇ

+ log PB
´

if N > P
O(log P) if N ≤ P

Solving the recurrence yields the theorem.

Algorithm 3 PEM DIST SORT(A[1:N], P)

1: if P = 1 then

2: Sort A using cache-optimal single-processor sorting al-
gorithm

3: Flush the cache of the processor and return
4: else

{Sample 4N√
d

elements}
5: for each processor i in parallel do

6: if M < |Si| then

7: d = M/B; Load Si in M -sized pages and sort
each page individually

8: else

9: d = |Si|; Load and sort Si as a single page
10: end if

11: Pick every
√

d/4’th element from each sorted mem-
ory page and pack into contiguous vector Ri of sam-
ples.

12: end for

13: in parallel do: combine vectors of samples
R1, . . . RP into a single contiguous vector R and make√

d copies of it: R1, . . . ,R√
d.

14: for j = 1 to
√

d in parallel do {Find
√

d pivots}
{Using different sets of P/

√
d processors}

15: M[j] = PEM SELECT(Rj , P/
√

d, j · 4N/d)
16: end for

17: Pack
√

d pivots M[j] into contiguous array M
{Partition A around

√
d pivots}

18: B = PEM MULTI PARTITION(A[1 : N],M,
√

d, P)

19: for j = 1 to
√

d + 1 in parallel do

20: recursively call PEM DIST SORT on bucket j of

size B[j] using a set of O
“l

B[j]
N/P

m”

processors re-

sponsible for elements of bucket j
21: end for

22: end if

4. SORTING
In this section we present two sorting algorithms for the

PEM model: a distribution sort and a mergesort. Both algo-
rithms have optimal I/O complexity for a reasonable num-
ber of processors, as well as optimal (linear) space complex-
ity. While the distribution sort is a much simpler algorithm,
the mergesort boasts optimal work complexity speedup and
scales better as the number of processors approaches N .

4.1 Distribution Sort
Combining the results of the previous section we can con-

struct a solution for the distribution sort.In the distribution
sort, the input is partitioned into d disjoint sets, or buckets,
of approximately even sizes, each bucket is sorted recursively
and concatenated to form a completely sorted set.

The PEM distribution sort is presented in Algorithm 3.
It proceeds as follows. First, the algorithm selects

√
d =

min
nl

p

N/P
m

,
l

p

M/B
mo

pivots of approximately evenly-

spaced rank (lines 5–17). Then, the algorithm partitions the

original set around these pivots into
√

d+1 buckets (line 18).
Finally, each bucket is recursively sorted in parallel utilizing
only processors which are responsible for the elements of
that bucket (lines 19–21). In the base case of the recursion,
when the bucket size is at most N/P, a single processor sorts
it using any of the cache-optimal single processor algorithms.

To find the pivots with optimal parallel I/O complexity,
we adapt the approach of Aggarwal and Vitter [1]. In par-

ticular, we sample 4N/
√

d items, on which we run the se-

lection algorithm
√

d times to find
√

d pivots, which are
spaced evenly among the sample items. As the following
lemma shows, these pivots provide good enough partitions
to achieve logarithmic depth of the recursion.

Lemma 1. The size of each partition after a single itera-
tion of PEM DIST SORT is at most 3

2
N√

d
.

Proof. The proof by Aggarwal and Vitter [1] treats each
loaded memory page independently, thus, the proof doesn’t
change if they are loaded and sampled by different proces-
sors. The same proof applies to the case when M < |Si| =
N/P .

Corollary 1. The depth of the recursion is O(logd P)

Now we can bound the I/O complexity of Algorithm 3.

Theorem 4. The I/O complexity of Algorithm 3 is

O

„‰

N

PB

ı „

logd P + logM/B

N

PB

«

+ f(N, P, d) · logd P

«

where
f(N, P, d) = O

“

log PB√
d

log N
P

+ ⌈
√

d
B

⌉ log P +
√

d log B
”

.

Proof. In the base case, the bucket size is O(N/P), so
using any cache-optimal single processor sorting algorithm

will take O
“

N
PB

logM/B
N

PB

”

I/Os to sort it.

Lines 5 through 12 can be accomplished using simple scans
with each processor reading at most O(N/P) items for a to-
tal O(N/PB) I/Os. To combine the vectors of samples into
a single contiguous vector in line 13, the processors com-
pute prefix sums on the sizes of vectors Ri to determine the
addresses of items in the destination vector R. Once the
addresses are known, writing out of vector R can be accom-
plished by scanning the items in parallel in O(|R|/PB +

log B) I/Os. Since |R| = 4N/
√

d, the creation of
√

d copies
of R takes O(⌈N/PB⌉) I/Os. Thus, the total I/O complex-
ity of line 13 is O(N/PB + log P + log B). By theorem 3,
each PEM SELECT call takes

O

„

N√
d

/

„

P√
d

B

«

+ log
P√
d
B · log N√

d
/

P√
d

«

= O

„

N

PB
+ log

P√
d
B · log N

P

«

I/Os.

Line 17 can be accomplished trivially in O(
√

d) I/Os. By
Theorem 2, partitioning in line 18 is accomplished in

O

„

N

PB
+

l√
d/B

m

log P +
√

d log B

«

I/Os.

Finally, the recursion depth is O(logd P). Combining the
terms yields the theorem.

Theorem 5. The total memory required by the PEM dis-
tribution sorting algorithm is O(N).

Proof. The
√

d copies of the sample array R of size
4N/

√
d each contribute only a linear increase of memory.

All the rest of operations of the algorithm are accomplished
using the input memory.

Lemma 2. If P ≤ N
B

and M < Bc for some constant

c > 1, then log N

P

P = O
“

log M

B

N
B

”

.

Proof. log N

P

P ≤ logB
N
B

= (c − 1) logBc/B
N
B

≤ (c −
1) log M

B

N
B

= O
“

log M

B

N
B

”

Theorem 6. If the number of processors P is such that
f(N, P, d) = O(⌈N/PB⌉) and M < Bc for some constant
c > 1, then the I/O complexity of the distribution sort is

O

„

N

PB
logM/B

N

B

«

.

Proof. If f(N, P, d) = O(⌈N/PB⌉), then the I/O com-
plexity of the distribution sort from Theorem 4 reduces to

O

„

N

PB

»

logd P + logM/B

N

PB

–«

(1)

• d = M/B: Equation (1) reduces to

O
“

N
PB

“

log M

B

P + log M

B

N
PB

””

= O
“

N
PB

log M

B

N
B

”

• d = N/P < M : Equation (1) is bounded by

O
“

N
PB

“

log N

P

P + log M

B

M
B

””

= O
“

N
PB

log N

P

P
”

.

And since 1 ≤ f(N, P, d) = O(⌈N/PB⌉) and M =

BO(1), the theorem follows from Lemma 2.

This bound, as we’ll see in Section 5, is optimal to within a
constant factor. Note, that the assumption that M = BO(1)

accurately represents current hardware trends for caches.
Given particular hardware with the parameters M and B,

the requirement f(N, P, d) = O(N/PB) provides a simple
equation to evaluate the upper bound on the processors to
be used in the distribution sort to achieve the optimal I/O
complexity. However, the lack of a simple closed form for
the upper bound on P as a function of N, M , and B doesn’t
provide much insight and intuition for the upper bound on
P . In the following section we will present a mergesort algo-
rithm which uses up to N/B2 processors. This bound on P ,
as we’ll see in Section 5, is within B/ log B of the maximum.

4.2 Mergesort
For simplicity of exposition, throughout this section we

utilize at most P ≤ N
B2 processors. The algorithm is cor-

rect for larger P , but the I/O bounds are not guaranteed.
Our sorting procedure is a pipelined d-way mergesort al-
gorithm similar to the sorting algorithm of Goodrich [14],
which itself is a BSP adaptation of previous parallel sorting
algorithms [6, 15].

A d-way mergesort partitions the input into d subsets,
sorts each subset recursively and then merges them. To
achieve optimal I/O complexity and parallel speedup, the
sorted subsets are sampled and these sample sets are merged
first. Each level of the recursion is performed in multiple
rounds with each round producing progressively finer sam-
ples until eventually a list of samples is the whole sorted
subset of the corresponding level of recursion. The samples
retain information about the relative order of the other el-
ements of the set through rankings. These rankings allow
for a quick merge of future finer samples at higher levels of
recursion. Each round is pipelined up the recursion tree to
maximize parallelism.

4.2.1 Details of the PEM Mergesort algorithm

We set d = max



2, min

‰

q

N
P

ı

,
˚

M
B

ˇ

ffff

and let T be

a d-way rooted, complete, balanced tree of depth O(logd P).
Each leaf is associated with a separate processor and a subset
of items of size at most

˚

N
P

ˇ

.
For each node v of T , define U(v) to be a sorted array

of items associated with the leaves of the subtree rooted at
v. Then the goal of this sorting algorithm is to construct
U(root(T)). This construction is conducted in a bottom-
up, pipelined fashion in stages, where in each stage t we
construct a subset Ut(v) ⊆ U(v) of items at each active
node. A node is said to be full in stage t if Ut(v) = U(v).
A node is said to be active in stage t if Ut(v) 6= ∅ and the
node was not full in stage t − 3.

Initially, for each leaf v of T , we construct U(v) using an
optimal external memory sorting algorithm, e.g., that of Ag-
garwal and Vitter [1]. This sets each leaf node to be initially
full and active while all the internal nodes are empty.

Array B is called a k-sample of an array A if B consists of
every k-th element of A. Note that if array A is sorted, then
so is B. For every active node v of T we define a sample
array Lt(v) as follows:

• If v is not full, then Lt(v) is a d2-sample of Ut(v).

• If v is full, then Lt(v) is a d-sample of Ut(v).

We define Ut(v) =
d
S

i=1

Lt−1(wi), where {w1, w2, . . . wd} are

the children of node v.
So far, all the definitions are equivalent to definitions of

Goodrich [14], so we reuse the following bounds.

Lemma 3 ([14]). If at most k elements of Ut(v) are in
an interval [a, b], then at most dk +2d2 elements of Ut+1(v)
are in [a, b].

Corollary 2 ([14]). If at most k elements of Lt(v)
are in an interval [a, b], then at most d(k + 1) + 2 elements
of Lt+1(v) are in [a, b].

Lemma 4 ([14]). The total size of all the Ut(v) and
Lt(v) arrays stored at non-full nodes v of T is O(N/d).

For three items a, b and c, we say that a and c straddle [6]
b if a ≤ b < c. Let X and Y be two sorted arrays and let two
adjacent items a and c in Y be straddling b, an item in X.
Define the rank of b in Y , to be the rank of a in Y .3 Array
X is said to be ranked [6] into Y , denoted X → Y , if for
each element b ∈ X we know b’s rank in Y . If X → Y and
Y → X, we say X and Y are cross-ranked, denoted X ↔ Y .
We maintain the following induction invariants at the end
of each stage t at each node v of T .

Induction Invariants:
1. Lt(v) → Lt−1(v).

2. If v is not full, then Ut(v) → Lt−1(wi) for each child
wi of v in T .

3. Lt(v) → Ut(v).

3In the exposition below, we assume that all arrays involved
in ranking are augmented with dummy nodes −∞ and +∞
as the first and last elements of the of the arrays.

At each stage t, we maintain only arrays Ut(v), Ut−1(v),
Lt(v), Lt−1(v) and St−1(v) for each active node v of T . The
array St−1(v) is an auxiliary array used during computation
of each stage. Each entry St−1(v)[i] is of size O(1) associated
with the item Lt−1(v)[i].

We will show that we can compute stage t + 1 with each
processor reading and writing at most O

`

N
PB

´

blocks. To
accomplish this we need to maintain the following load-
balancing invariant at each node v of T . Let r = N

Pd
. (Note

that r ≥ d because r = N
Pd

≥ N
P

· 1√
N/P

=
q

N
P

≥ d.)

Load-balancing Invariant:
• If array A is not full, then A is partitioned into contigu-

ous segments of size r each, with a different processor
responsible for each segment.

• If array A is full, then A is partitioned into contiguous
segments of size N/P each, with a different processor
responsible for each segment.

Since, by Lemma 4, the total size of all non-full arrays is
at most O(N/d), each processor is responsible for O(N/P)
items.

Lemma 5. If P ≤ N
B2 then d ≤ N

PB
.

Proof. Note that P ≤ N
B2 ⇒

q

N
P

≥ B. Then N
PB

=
q

N

P

q

N

P

B
≥ d

q

N

P

B
≥ d.

Computation of Stage t + 1:
1. Consider a set Bk of items from array Lt(wi) which

are straddled by the k-th and (k + 1)-th items of the
array Lt−1(wi). The processors responsible for the el-
ements of Lt(wi) can determine the members of Bk

using Induction Invariant 1 for each Bk by a simple
linear scan of the items of Lt(wi). The same proces-
sors can then calculate the ranges of indices of elements
of Lt(wi) that comprises the set Bk. These ranges are
then merged and written by the processors responsi-
ble for Bk into St−1(wi)[k], i.e., the auxiliary space
associated with item Lt−1(wi)[k].

2. For each element a ∈ Ut(v), using Induction Invari-
ant 2, the processor p responsible for a, can determine
a’s rank in Lt−1(wi) for each child wi. Let it be ki.
Then, the processor p can read the item St−1(wi)[ki]
of the auxiliary array to get the indices of the ele-
ments of Lt(wi) which are straddled by Lt−1(wi)[ki]
and Lt−1(wi)[ki + 1]. Reading the locations of Lt(wi)
indicated by those indices will provide p with the ac-
tual values of the items of Ut+1(v).

3. Each processor responsible for a contiguous segment
[e, f) of Ut(v) reads the items of Lt(wi) from the previ-
ous step and merges them using a simple d-way merge
to construct a sublist of Ut+1(v) of size O

`

N
P

´

. Note,
that the rank of an item g ∈ Lt(wi) in Ut+1(v) is
the sum of the ranks of g in Lt(wi) for all children
wi. Since each processor reads at least one item from
each of its children (even if it falls outside of the [e, f)
range), we can compute g’s rank in Lt(wj) for all the
siblings wj of wi during the merge procedure and,

therefore, accurately compute the rank of each item
g in Ut+1(v). This automatically gives us Induction
Invariant 2. Concurrently with the merge procedure,
as Ut+1(v) grows, the processor reads the segment of
Ut(v) that it is responsible for and computes Ut(v) →
Ut+1(v). At the same time, using Induction Invari-
ant 3, it also computes Ut+1(v) → Ut(v), resulting in
Ut(v) ↔ Ut+1(v). The processor also determines the
sample Lt+1(v) and ranks it into Ut+1(v), giving us In-
duction Invariant 3. Induction Invariant 1 is achieved
by using the cross-rankings of Ut(v) and Ut+1(v) to
rank Lt+1(v) into Lt(v).

4. Flush the data remaining in the cache to main memory
and rebalance the responsibilities of each processor to
satisfy the load-balancing invariant.

Lemma 6. The I/O complexity of computing stage (t+1)
is O(N

PB
).

Proof. Let’s analyze the I/O complexity of each step in
the algorithm

Step 1: By Corollary 2, the size of Bk is at most 3d + 2.
And since r ≥ d, at most a constant number of processors
are responsible for the items in each set Bk. Thus, the range
of ranks of the items of Bk in Lt(wi) can be computed using
a constant number of I/Os by the processors responsible
for Bk. Each processor reads and writes at most r items
and since all arrays are contiguous and sorted, the total I/O
complexity of this step is O(r/B) = O(N/PB).

Step 2: Since the arrays are sorted, the contiguous seg-
ments of array Ut(v) correspond to the contiguous segments
of arrays Lt−1(wi) and Lt(wi). Therefore, the I/O access
can be accomplished in blocks. By Lemma 3 and the Load-
balancing Invariant, the total number of items read by each
processor is at most O(dr + 2d2 + dB) (the last dB term
comes from the fact that each processor reads at least one
block of data from lists Lt−1(wi) and Lt(wi) of each of its d
children). To calculate the I/O complexity of this step, let’s
assume that a processor reads ri items for each child i, i.e.

d
P

i=1

ri ≤ O(dr + 2d2 + dB). Then the I/O complexity of this

step is

d
X

i=1

l ri

B

m

≤
d

X

i=1

“ri

B
+ 1

”

≤ O(dr + 2d2 + dB)

B
+ d

≤ O

„

N

PB
+ d

«

= O

„

N

PB

«

. (2)

The third inequality comes from the fact that

d = min



q

N
P

, M
B

ff

Step 3: Reading of the contiguous segment of Ut(v) of
size r by each processor is the only additional I/O access of
this step. Since the segment is contiguous, the additional
I/O complexity of this step is O(r/B) = O(N/PB).

Step 4: Rebalancing step can be accomplished in O(1)
I/Os, and since each processor reads in at most N/P items in
the previous steps, the flushing of the cache and, therefore,
this step, can be accomplished in O(N/PB) I/Os.

Since each of the four steps takes O
`

N
PB

´

I/Os, the total

I/O complexity of computing stage t + 1 is O
`

N
PB

´

.

Corollary 3. If P ≤ N/B2, the I/O complexity of the

PEM mergesort algorithm is O
“

N
PB

“

log M

B

N
PB

+ logd P
””

,

where d = min

‰

q

N
P

ı

,
˚

M
B

ˇ

ff

.

Proof. Our definition of Lt(v) implies that if a node v
becomes full in stage t, then v’s parent becomes full in stage
t + 3. Therefore, our algorithm has O(logd P) stages each
of which requires O

`

N
PB

´

I/O accesses. Together with the
initial step of sorting the items at the leaves of the tree T ,
the total I/O complexity of our algorithm is

Q(N, P ; M, B) = O

„

N

PB

„

log M

B

N

PB
+ logd P

««

.

Corollary 4. If P ≤ N/B2 and M = BO(1), the I/O
complexity of the PEM mergesort algorithm is

O

„

N

PB
log M

B

N

B

«

.

Proof. Consider the two cases:

• d = M/B <
p

N/P :

Q(N, P ;M, B) = O
“

N
PB

log M

B

N
PB

”

+O
“

N
PB

log M

B

P
”

= O
“

N
PB

log M

B

N
B

”

.

• d =
p

N/P < M/B:

Q(N, P ;M, B) ≤ O
“

N
PB

log M

B

M2

B3

”

+O
“

N
PB

log N

P

P
”

≤ O(1) + O
“

N
PB

logM/B
N
B

”

The final inequality follows from the fact that the algorithm
utilizes at most P ≤ N/B2 ≤ N/B processors and, there-
fore, Lemma 2 applies.

This bound, as we’ll see in Section 5, is optimal to within a
constant factor. In addition, the computational complexity
of each processor is within a constant factor of optimal:

Lemma 7. The parallel computational complexity of the
PEM mergesort algorithm is O(N

P
log N).

Proof. The total internal computation time of each pro-
cessor (together with the initial sorting of the items at the
leaves of T) is

T (N, P) = O

„

N

P
log

N

P

«

+ O

„

N

P
log d · logd P

«

= O

„

N

P
log N

«

.

Lemma 8. The total memory required by the mergesort
algorithm is O(N).

Proof. The total size of all the arrays at full nodes of the
tree is O(N). The total size of all the arrays at the non-full
nodes, by Lemma 4, is O(N/d). The rankings of Induction
Invariant 2 require O(d) memory per item in non-full lists,
while other rankings require O(1) memory per item. Thus,
the total memory required by our algorithm is O(N).

This establishes the following result:

Theorem 7. Given a set S of N items stored contigu-
ously in memory, one can sort S in CREW PEM model
using p ≤ N

B2 processors each having a private cache of size

M = BO(1) in O
“

N
PB

log M

B

N
B

”

parallel I/O complexity,

O
`

N
P

log N
´

internal computational complexity per proces-
sor and O(N) total memory.

5. BOUNDS FOR SORTING ALGORITHMS
IN THE PEM MODEL

First we prove the lower bound for the I/O complexity of
sorting in the deterministic CREW PEM model.

Theorem 8. The number of I/O rounds required to sort
N numbers in the CREW PEM model is at least

Ω

„

min



N

P
,

N

PB
log M

B

N

B

ff

+ log
N

B

«

Proof. The proof is presented in Appendix A.

Theorems 8 implies that our mergesort algorithm from
previous section is asymptotically optimal if it utilizes up
to N/B2 processors. Now we prove that using more than

N
B log B

processors does not improve the I/O complexity of
any sorting algorithm in the CREW PEM model, i.e. our
mergesort algorithm is factor B/ log B within optimal pro-
cessor utilization.

The trivial upper bound of N/B for processor utilization
follows from the following observation. Each processor needs
to read at least one block, and multiple processors reading
the same block doesn’t improve the I/O complexity of any
algorithm. This trivial bound can be improved by studying
the packing problem:

Packing problem: Data D of size n′ < N is scattered
randomly across main memory of size N . The goal is to
collects D into contiguous memory.

Theorem 9. P ≤ N
B log B

is the upper bound on opti-
mal processor utilization to solve the packing problem in the
CREW PEM model.

Proof. Any algorithm has to scan every location of the
memory to locate all items of D. With P processors, scan-
ning requires Ω(N/PB) I/O transfers. Gathering the data
scattered across different blocks into contiguous location re-
quires Ω(log B) I/Os. Combining both bounds we conclude
that to solve the packing problem any algorithm requires
Ω(N/PB + log B) I/O transfers. The theorem follows.

The packing problem is reducible to sorting, thus, the I/O
complexity of any sorting algorithm does not improve by us-
ing more than N

B log B
processors. Therefore, our mergesort

algorithm, which uses at most N/B2 processors, is factor
B/ log B within the optimal processor utilization. Reducing
the gap remains an open problem.

6. DISCUSSION
In this paper we presented the Parallel External Mem-

ory (PEM) model which combines the parallelism of the
PRAM model with the I/O efficiency of the external mem-
ory model. We presented several algorithms for various fun-
damental combinatorial problems. Our algorithms build on

lessons learned from extensive research in parallel and single-
processor I/O-efficient algorithms to provide solutions which
are I/O-efficient and scale well with the number of proces-
sors.

Having only two levels of hierarchy in the PEM model
provides a major limitation for the model. With the in-
crease in the number of processors, the access to the main
memory becomes a bottleneck in physical implementation
of the model. Thus, to maintain the scalability of physical
implementation, the PEM model needs to be extended to
support a multi-level hierarchy such that at any particular
level, only small-sized subsets of caches are sharing the cache
of the higher level. The result would be a tree-like memory
hierarchy with a small branching factor. A step in this di-
rection has been taken recently with analysis of a three-level
hierarchy with a mix of private and shared caches [3]. How-
ever, it remains to be seen if this can be extended to an
arbitrary size of the hierarchy and if efficient PRAM-style
parallel algorithms can be designed for such a model.

Acknowledgment
We would like to thank Jeff Vitter and Won Chun for several
helpful discussions. We would also like to thank anonymous
reviewers for helpful comments on the earlier versions of the
paper.

7. REFERENCES

[1] A. Aggarwal and J. S. Vitter. The input/output
complexity of sorting and related problems. Commun.
ACM, 31(9):1116–1127, 1988.

[2] M. A. Bender, J. T. Fineman, S. Gilbert, and B. C.
Kuszmaul. Concurrent cache-oblivious B-trees. In
Proc. 17th ACM Sympos. Parallel Algorithms
Architect., pages 228–237, New York, NY, USA, 2005.
ACM.

[3] G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons,
V. Ramachandran, S. Chen, and M. Kozuch. Provably
good multicore cache performance for
divide-and-conquer algorithms. In Proc. 19th
ACM-SIAM Sympos. Discrete Algorithms, 2008.

[4] S. Chen, P. B. Gibbons, M. Kozuch, V. Liaskovitis,
A. Ailamaki, G. E. Blelloch, B. Falsafi, L. Fix,
N. Hardavellas, T. C. Mowry, and C. Wilkerson.
Scheduling threads for constructive cache sharing on
cmps. In Proc. 19th ACM Sympos. on Parallel
Algorithms Architect., pages 105–115, New York, NY,
USA, 2007. ACM.

[5] Y.-J. Chiang, M. T. Goodrich, E. F. Grove,
R. Tamassia, D. E. Vengroff, and J. S. Vitter.
External-memory graph algorithms. In Proc. 6th
ACM-SIAM Sympos. Discrete Algorithms, pages
139–149, 1995.

[6] R. Cole. Parallel merge sort. SIAM J. Comput.,
17(4):770–785, 1988.

[7] S. Cook, C. Dwork, and R. Reischuk. Upper and lower
time bounds for parallel random access machines
without simultaneous writes. SIAM J. Comput.,
15(1):87–97, 1986.

[8] T. H. Cormen and M. T. Goodrich. A bridging model
for parallel computation, communication, and I/O.
ACM Computing Surveys, 28A(4), 1996.

[9] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay,
K. E. Schauser, E. Santos, R. Subramonian, and
T. von Eicken. LogP: Towards a realistic model of
parallel computation. In Principles Practice of Parallel
Programming, pages 1–12, 1993.

[10] P. de la Torre and C. P. Kruskal. A structural theory
of recursively decomposable parallel
processor-networks. In SPDP ’95: Proceedings of the
7th IEEE Symposium on Parallel and Distributeed
Processing, page 570, Washington, DC, USA, 1995.
IEEE Computer Society.

[11] F. Dehne, W. Dittrich, D. Hutchinson, and
A. Maheshwari. Bulk synchronous parallel algorithms
for the external memory model. Theory of Computing
Systems, 35(6):567–598, 2002.

[12] D. Geer. Chip Makers Turn to Multicore Processors.
IEEE Computer, 38(5):11–13, 2005.

[13] A. V. Gerbessiotis and C. J. Siniolakis. Deterministic
sorting and randomized median finding on the BSP
model. In Proc. 8th ACM Sympos. Parallel Algorithms
Architect., pages 223–232, New York, NY, USA, 1996.
ACM Press.

[14] M. T. Goodrich. Communication-efficient parallel
sorting. SIAM Journal on Computing, 29(2):416–432,
2000.

[15] M. T. Goodrich and S. R. Kosaraju. Sorting on a
parallel pointer machine with applications to set
expression evaluation. J. ACM, 43(2):331–361, 1996.

[16] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S.
Vitter. External-memory computational geometry. In
Proc. 34th Annu. IEEE Sympos. Found. Comput. Sci.,
pages 714–723, 1993.

[17] J. JáJá. An Introduction to Parallel Algorithms.
Addison-Wesley, Reading, Mass., 1992.

[18] R. M. Karp and V. Ramachandran. Parallel
algorithms for shared memory machines. In J. van
Leeuwen, editor, Handbook of Theoretical Computer
Science, pages 869–941. Elsevier/The MIT Press,
Amsterdam, 1990.

[19] R. M. Karp, A. Sahay, E. E. Santos, and K. E.
Schauser. Optimal broadcast and summation in the
LogP model. In SPAA ’93: Proceedings of the fifth
annual ACM symposium on Parallel algorithms and
architectures, pages 142–153, New York, NY, USA,
1993. ACM Press.

[20] G. Lowney. Why Intel is designing multi-core
processors. https://conferences.umiacs.umd.edu/
paa/lowney.pdf.

[21] M. H. Nodine and J. S. Vitter. Deterministic
distribution sort in shared and distributed memory
multiprocessors. In Proc. 5th ACM Sympos. Parallel
Algorithms Architect., pages 120–129, 1993.

[22] M. H. Nodine and J. S. Vitter. Greed sort: An
optimal sorting algorithm for multiple disks. J. ACM,
42(4):919–933, July 1995.

[23] J. Rattner. Multi-Core to the Masses. Parallel
Architectures and Compilation Techniques, 2005.
PACT 2005. 14th International Conference on, pages
3–3, 2005.

[24] J. H. Reif. Synthesis of Parallel Algorithms. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
1993.

[25] L. G. Valiant. A bridging model for parallel
computation. Commun. ACM, 33(8):103–111, 1990.

[26] U. Vishkin. A PRAM-on-chip Vision (Invited
Abstract). Proceedings of the Seventh International
Symposium on String Processing Information
Retrieval (SPIRE’00), 2000.

[27] J. Vitter. External memory algorithms. Proceedings of
the 6th Annual European Symposium on Algorithms,
pages 1–25, 1998.

[28] J. S. Vitter and M. H. Nodine. Large-scale sorting in
uniform memory hierarchies. J. Parallel Distrib.
Comput., 17:107–114, 1993.

[29] J. S. Vitter and E. A. M. Shriver. Optimal disk I/O
with parallel block transfer. In Proc. 22nd Annu.
ACM Sympos. Theory Comput., pages 159–169, 1990.

[30] J. S. Vitter and E. A. M. Shriver. Algorithms for
parallel memory I: Two-level memories. Algorithmica,
12(2–3):110–147, 1994.

APPENDIX

A. LOWER BOUNDS FOR SORTING IN
THE PEM MODEL

In this appendix we prove Theorem 8. The lower bounds
provided in this section hold for the deterministic PEM
model. Furthermore, we assume a CREW PEM model, in
which only one processor may write to a particular block
at one time. We derive a sorting lower bound in the PEM
model by first deriving a lower bound on a simpler problem—
that of permuting. In the permuting problem, the N keys
to be sorted form a permutation of {1, 2, ..., N}.

Theorem 10. The worst-case number of I/O rounds re-
quired to permute N distinct keys is

Ω

„

min



N

P
,

N

PB
log M

B

N

B

ff«

Proof. Follows from the lower bound of the external
memory model of Aggarwal and Vitter [1].

The lower bound on the complexity of permuting implies
the same lower bound on the complexity of sorting. This
bound is a good one for many values of the parameters.
However, in some cases we can achieve a better lower bound
by looking at the complexity of communicating information
between different processors. We again look at a simpler
problem first, that of computing the logical“or”of N boolean
values.

This problem was thoroughly studied in the PRAM model
of computation by Cook et al. [7] and in the BSP model by
Goodrich [14]. They provide a lower bound of Ω(log N)
on the complexity of computing the “or” of N boolean val-
ues. As it will turn out, their lower bound in the PRAM
model can be extended, with slight modifications, to the
PEM model. Before stating and proving the theorem, we
must introduce some additional terminology and notation,
which we take from [7].

Here we model the execution of the PEM system in a
slightly different manner. We allow an arbitrarily large set
of processors Π = {P1, P2, ...}. At each time step, each pro-
cessor is in one of infinitely many states. This effectively
takes the place of the processor’s local cache, allowing for

the storage of an unbounded amount of information. For
each time step t and processor Pi, let qt

i denote the state of
that processor at time t. In each round, a processor will, de-
pending upon its state, read the contents of a block of main
memory, write out to a block of main memory, and change
its state for the subsequent round. The only restriction on
this behavior is that only one processor may write to a given
block during any particular round.

The theorem in [7] applies to more than just computing
the or function, and we maintain that generality here. In
particular, consider any function f which operates on an in-
put string I = (x1, x2, ..., xn) of Boolean values. Let I(k)
denote the input string (x1, x2, ..., xk, ..., xn), where xk de-
notes the complement of Boolean value xk. I is said to be
a critical input for a function f if f(I) 6= f(I(k)) for all
k ∈ {1, 2, ..., n}. We will show a lower bound on the time
to compute any function which has a critical input. Notice
that or has a critical input consisting of all 0’s.

Definition 2. An input index i is said to affect a proces-
sor P at time t with I if the state of P at time t with input
I differs from the state of P at t with input I(i). Likewise,
an input index i is said to affect a memory block C at time
t with I if the contents of C at time t with input I differ
from the contents of C at time t with input I(i).

Let K(P, t, I) denote the set of input indices which affect
processor P at t with I . Likewise, let L(C, t, I) denote the
set of input indices which affect block C at t with I .

Define Kt and Lt to be sequences satisfying the following
recurrence equations:

1. K0 = 0

2. L0 = B

3. Kt+1 = Kt + Lt

4. Lt+1 = 3Kt + 4Lt

Lemma 9. |K(P, t, I)| ≤ Kt and |L(C, t, I)| ≤ Lt, for all
P, C, t, and I.

Proof. By induction on t. When t = 0 (the base cases),
K(P, t, I) is empty, and L(C, t, I) consists of B bits for any
input block, and is empty for any other memory block. If,
at time t + 1, processor P reads block C with input I , then
K(P, t + 1, I) ⊆ L(C, t, I) ∪ K(P, t, I), and so |K(P, t +
1, I)| ≤ |L(C, t, I)|+ |K(P, t, I)| which by the induction hy-
pothesis will be at most Lt + Kt. The most difficult point
arrives in proving that |L(C, t+1, I)| ≤ Lt+1(= 3Kt +4Lt).

There are two cases to consider. In the first case, some
processor P writes into block C with input I at time t + 1.
In this case, index i affects C at t +1 with I only if i affects
P at t + 1 with I . Thus |L(C, t + 1, I)| ≤ |K(P, t + 1, I)| ≤
Kt + Lt < Lt+1.

The second case is that no processor writes into block C
at time t + 1 with input I . In this case, an input index
can affect C at t + 1 in one of only two ways. Recall that a
block is affected by an input index if its contents are different
with input I than with input I(i). The first way this might
happen is if index i affects C at time t. The second way is
if some processor does write into block C on input I(i). We
say that index i causes processor P to write into C at t + 1
with I if P writes into C with I(i) at time t + 1. We use
Y (C, t + 1, I) to denote the set of indices which cause some
P to write into M at t + 1 with I . As previously noted,

index i can only affect C at t + 1 with I if i affects C at t
or if i causes some processor to write into M at t + 1 with
I . Hence L(C, t + 1, I) ⊆ L(C, t, I) ∪ Y (C, t + 1, I).

We must now obtain a bound on the size of Y = Y (C, t +
1, I). Let Y = {i1, ..., ir} with r = |Y |, and let P (ij) de-
note the processor which index ij causes to write into C
with I . Note that some of these processors might be the
same for different indices in Y . The following claim pro-
vides an important relationship between the bits that cause
two processors to write into C and the bits that affect the
two processors.

Claim 1. For all pairs ij , ik ∈ Y such that P (ij) 6= P (ik),
either ij affects P (ik) with I(ik) or ik affects P (ij) with
I(ij).

The claim is true since if neither processor is affected then
they will both write into C at time t+1 with input I(ij)(ik).

Now consider A, the set of all pairs (ij , ik) for which ik
affects P (ij) with I(ij). We obtain upper and lower bounds
on the size of A, which in turn will yield a bound on the
value of r = |Y |. For each of the r possible values of ij ,
at most Kt+1 of the choices for ik affect P (ij) with I(ij),
since |K(P (ij), t + 1, I(ij))| ≤ Kt+1. Thus |A| ≤ rKt+1.
We now seek a lower bound on the number of pairs (ij , ik)
for which P (ij) 6= P (ik). This will yield a lower bound
on |A|, since we know, from the above claim, that at least
one of (ij , ik) or (ik, ij) is in A. There are r choices for ij
and for a given ij there are at least r − Kt+1 choices for
ik, since at most |K(P (ij), t + 1, I)| ≤ Kt+1 indices can
cause P (ij) to write into C with I . Hence, there are at
least r(r − Kt+1) pairs (ij , ik) for which P (ij) 6= P (ik) and
thus, by our claim, |A| ≥ 1

2
r(r − Kt+1). We thus have that

1
2
r(r − Kt+1) ≤ |A| ≤ rKt+1, which directly yields that

r ≤ 3Kt+1 = 3Kt + 3Lt. Recalling that in this second case
we have L(C, t + 1, I) ⊆ L(C, t, I) ∪ Y (C, t + 1, I), we have
|L(C, t + 1, I)| ≤ Lt + |Y | ≤ 3Kt + 4Lt = Lt+1.

Theorem 11. Let f be any function on N bits that has
a critical input. The number of I/O rounds required to com-
pute f is at least logb(N/B), where b = 1

2
(5 +

√
21).

Proof. The theorem follows from Lemma 9 by noting
that Lt is bounded from above by Bbt, where b = 1

2
(5+

√
21).

Since f has a critical input I∗, the block containing the final
output, CO, must be affected by all of the n input bits.
Hence, when the algorithm terminates, |L(CO , t, I∗)| = n,
so t must be at least logb(N/B).

Combining the two lower bounds results in Theorem 8.

