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ABSTRACT
This paper studies obstruction-free software transactional
memory systems (OFTMs). These systems are appealing,
for they combine the atomicity property of transactions with
a liveness property that ensures the commitment of every
transaction that eventually encounters no contention.

We precisely define OFTMs and establish two of their fun-
damental properties. First, we prove that the consensus
number of such systems is 2. This indicates that OFTMs
cannot be implemented with plain read/write shared mem-
ory, on the one hand, but, on the other hand, do not require
powerful universal objects, such as compare-and-swap. Sec-
ond, we prove that OFTMs cannot ensure disjoint-access-
parallelism (in a strict sense). This may result in artificial
“hot spots” and thus limit the performance of OFTMs.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems

General Terms
Theory, Algorithms

Keywords
Transactional memory, obstruction-freedom, consensus
number, impossibility

1. INTRODUCTION
Transactional memory (TM) is a new software paradigm

in which processes (threads) of an application communi-
cate using lightweight, in-memory transactions. Basically,
a process that wants to access a shared data structure ex-
ecutes some operations on this structure inside an atomic
program called a transaction. When the transaction com-
mits, all these operations appear as if they took place in-
stantaneously, at some single, unique point in time. When
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the transaction aborts, however, all the operations are rolled
back and their effects are never visible to other transactions.
This method of providing thread-safety is as easy to use
as coarse-grained locking and, in many cases, nearly as ef-
ficient on multi-core systems as hand-crafted, fine-grained
locking [21, 25]. Moreover, unlike lock-based schemes, trans-
actions are composable [17].

Transactional memory can be implemented as a software
library. Such a TM implementation is called a software TM
(STM) [29]. A specific class of STMs is particularly interest-
ing: those called obstruction-free STMs [19] (which we call
OFTMs). Roughly speaking, an OFTM guarantees progress
for every process that eventually does not encounter con-
tention. OFTMs are appealing in real-time systems where
priority inversion is an important issue, as well as within op-
erating systems where kernel-level transactions (e.g., inside
interrupt handlers) must be able to preempt (and, in many
cases, abort) user-level ones at any time [30]. In an OFTM,
a process that is preempted, delayed or even crashed cannot
inhibit the progress of other processes.

Whereas a lot of practical experiments have been con-
ducted to fine tune the performance of OFTMs [19, 26, 1,
8, 30], very little research has been devoted to establish the
theoretical power and limitations of such systems. This pa-
per is a preliminary step in that direction.

A typical OFTM. All current OFTMs [19, 26, 1, 8, 30]
employ the same basic high-level principle, and differ mostly
in the optimization techniques they use to lower the over-
head of transaction processing. The best way to explain
the principle is to look at the first, and arguably simplest,
OFTM called DSTM [19].

The basic idea is the following. To update some object x,
a transaction Ti acquires an exclusive ownership of x (using
a compare-and-swap (CAS) operation). From this moment
on, x contains the information that it is owned by Ti and
points to the transaction descriptor of Ti, which indicates
whether Ti is still live, already committed or aborted. The
ownership of x by Ti is exclusive but revocable: otherwise
the STM would not be obstruction-free. Indeed, if another
transaction Tk wants to update x before Ti is completed, Tk

cannot get blocked waiting for Ti to terminate. A contention
manager might tell Tk to back off for some fixed time (maybe
random) to give Ti a chance, but eventually Tk must be able
to abort Ti and acquire x without any interaction with Ti.

If Ti wants to read some object y, then Ti just needs to
make sure that no other transaction Tk is currently updat-
ing y; if not, then Ti may have to eventually abort Tk. Once
y is not updated by any transaction, Ti simply reads the



current state of y, without writing anything to shared mem-
ory. Later, when Ti reads other objects, or tries to commit,
the state of y is re-read to ensure that Ti still observes a
consistent state of the system (i.e., that nobody changed y
after it was read by Ti).

Once a transaction Ti acquires ownership of all the objects
Ti wants to update (and reads all objects it had to), Ti tries
to commit by atomically changing its status field from “live”
to “committed” (using CAS). Clearly, Ti will fail to do so if
any other transaction has already aborted Ti, by atomically
changing the status field of Ti from“live”to“aborted”(again,
using CAS). Once Ti commits, all further transactions see
the updates done by Ti.

The computational power of an OFTM. DSTM uses
CAS for both object acquisition and transaction commit-
ment. In fact, all current OFTMs use CAS, which seems
at first glance necessary to ensure both obstruction-freedom
and atomicity. It is natural to ask whether we can implement
an OFTM using objects that support only weaker operations
than CAS (i.e., objects lower in the Herlihy’s hierarchy [18]),
e.g., read-write registers.

An object that supports a CAS operation (e.g., a CAS
object) is universal. It can wait-free [18] implement any
atomic object shared by any number of processes. On the
contrary, an OFTM seems generally unable to implement
wait-free atomic objects, for it can abort any transaction
when some other transaction is concurrently executing steps.
This suggests that OFTMs have lower computational power
than CAS, and might be implemented using weaker objects.

We show in Section 4 that an OFTM is not universal for 3
or more processes. The proof goes through showing a com-
putational equivalence of an OFTM to “fail-only” consen-
sus, an object introduced in [6] and called here fo-consensus.
This equivalence result is, we believe, interesting in its own
right, for it may help devising further impossibilities (as fo-
consensus has much simpler semantics than an OFTM). We
prove here that fo-consensus cannot solve (wait-free) con-
sensus for 3 processes or more and, using the observation
of [6] (that fo-consensus can implement consensus in a sys-
tem of 2 processes), we establish that the consensus number
of an OFTM is 2. This means that, on the one hand, an
OFTM cannot be implemented from only read-write regis-
ters, but, on the other hand, objects as powerful as CAS are
not necessary to implement an OFTM. In fact, we exhibit
an OFTM implementation that uses only one-shot objects
of consensus number 2 and registers.

The parallelism of an OFTM. An STM implementation
should minimize the interactions between transactions that
access disjoint sets of (application-level) objects. Basically,
if a transaction Ti does not access any object accessed by
another transaction Tk, then neither of these transactions
should delay the other one. Ideally, the STM should en-
sure that the processes executing Ti and Tk do not perform
conflicting operations on the underlying memory locations.
This property prevents artificial “hot spots”—memory lo-
cations that are accessed concurrently and in a conflicting
way by unrelated transactions. These may provoke “useless”
cache invalidations—thus decreasing performance. We call
this property strict disjoint-access-parallelism1.

1Among the properties defined in [3], strict disjoint-access-
parallelism corresponds to 1-local contention (or 0-local con-
tention according to [7]). Our property also expresses similar

Lock-based TM implementations, most of which use some
variant of the known two-phase locking protocol, are usually
strictly disjoint-access-parallel (e.g., TL [11]). Notable ex-
ceptions are those TMs that use global timestamps in order
to speed up the read validation process, e.g., TL2 [10] and
TinySTM [13]. In those implementations, every transaction
has to access a common memory location to determine its
timestamp.

It could seem, at first, that DSTM (and other OFTMs)
is strictly disjoint-access-parallel. Unfortunately, this is not
the case. Consider a transaction Tm that updated both x
and y, and then got suspended for a long time. Objects x
and y both point to the transaction descriptor of Tm. Thus,
a transaction Ti when accessing x, and a transaction Tk

when accessing y will both go to Tm’s transaction descriptor
and possibly update it in order to abort Tm. Hence, Ti and
Tk may contend on the same memory location, even if Ti

and Tk use only object x and y, respectively.
Unfortunately, there is no remedy to this situation: If a

separate transaction descriptor of Tm is created for each ob-
ject, then there is no way to atomically commit Tm. Indeed,
if the status of Tm is changed in the descriptor pointed by x,
and not yet by y, then some transactions may read the values
written by Tm and commit, thus forcing Tm to also eventu-
ally commit, while the others may read old object values
and cause an irrecoverable conflict with Tm, thus requiring
that Tm is eventually aborted.

In fact, we prove in this paper (Section 5) that no OFTM
can be strictly disjoint-access-parallel. This means that
transactions that are themselves unrelated, but happen to
have some indirect connection via other transactions, can
delay each other.

Scoping the Results. Proving our results requires a pre-
cise definition of the notion of an OFTM. While indeed the
term has been widely used, it has never been formally stated.
We propose a precise, yet general, definition of an OFTM
(Section 2) and we prove its equivalence to two alternatives
(Section 3).

For presentation simplicity, we consider, as a safety prop-
erty of an OFTM, basic serializability [27]. Our results also
hold for OFTMs that ensure the stronger opacity prop-
erty [16], which preserves real-time ordering and ensures
that non-committed transactions observe a consistent state
of the system. The results also hold for a weak definition
of an OFTM that allows crashed processes to block the
progress of others even for very a long, but always finite,
period of time [9, 4] (see Section 6).

2. PRELIMINARIES

2.1 Overview
Processes. We consider a classical asynchronous shared-
memory system [18, 24] of n processes (threads) p1, . . . , pn,
of which n−1 may, at any time, fail by crashing. Once a pro-
cess crashes, it does not take any further actions. The fail-
ures model the fact that processes may often be delayed arbi-
trarily (e.g., when de-scheduled, waiting for IO operations,

goals as the notion of disjoint-access-parallelism introduced
in [23]. However, the property of [23], unlike our strict
disjoint-access-parallelism, allows transactions that are in-
directly connected (via other transactions), to delay each
other.
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Figure 1: An example execution of an operation move on a high-level object A by a process pi. Operation
move is implemented using operations inc and dec on base objects x and y.

or encountering a page fault), in which case they should
not block other processes (the very idea behind obstruction-
freedom). A process that does not crash (in a given execu-
tion) is said to be correct.

Objects. We consider the actions taken by processes at
two levels (cf. Figure 1). At the low-level, we consider pro-
cesses executing operations on base objects (e.g., hardware
memory locations). At a high level, we consider (the same)
processes executing operations on high-level objects that are
implemented using base objects. When a process pi invokes
an operation op on a high-level object x, pi follows the im-
plementation of op that determines the operations on base
objects pi must execute in order to provide the correct se-
mantics of op on x. The two-level distinction is relative: an
object x is a high-level object when we look at its implemen-
tation, or a base object when we look at another high-level
object y implemented from x (and possibly other base ob-
jects).

An execution of each operation is delimited by two events:
the invocation and the response from the operation. We
assume that, in every execution, all events can be totally
ordered according to their execution time. If several events
are executed at the same time (e.g., on multiprocessor sys-
tems), they can be ordered arbitrarily. Events of operations
on high-level objects, issued by a process pi, are local to pi.
However, pi’s events on base objects, which we call steps,
can be visible to other processes. We assume that every
shared object2 is wait-free: if a correct process pi invokes an
operation on x, then pi eventually returns from the opera-
tion.

A register object exports only operations: read that re-
turns the current value (state) of the register, and write(v)
that changes the state of the register to value v. Thus, a reg-
ister acts as a simple variable, and so in the algorithms we
use registers as variables instead of specifying explicitly the
read and write operations. We assume that every register is
atomic (i.e., linearizable [22]).

We say that object x can implement object y if there
exists an algorithm that implements y using some number
of instances of x (i.e., a number of objects of the same type as
x) and registers. We say that objects x and y are equivalent
if x can implement y and y can implement x.

Histories. A (high-level) history of a shared object x is
a sequence of all events of operations executed on x by all
processes in a given execution. A low-level history of an
implementation Ix of a high-level object x is a sequence of:
(1) all events of operations executed on x, and (2) all steps
executed on behalf of Ix, by all processes in a given execu-
tion. We assume a typical well-formedness property of every
(high-level or low-level) history: at each process pi, no two

2When we say “(shared) object x” we mean “base or high-
level object x”.

operations on high-level objects (and no two operations on
base objects) overlap, i.e., pi executes operations on high-
level objects, and also on base objects, sequentially, as it is
shown in Figure 1 (for a precise definition of a well-formed
history, see the full version of this paper [15]).

2.2 Transactional Memory
Overview. A transactional memory (TM) allows for pro-
cesses to communicate by reading or updating, within trans-
actions, shared variables, which we call here transactional
variables (or t-variables, for short)3. Once a transaction
Tk executed by a process pi commits, all the changes to t-
variables done by pi within Tk are atomically applied. If Tk

aborts, however, the changes are rolled back and are never
visible to other transactions.

Every transaction has a unique transaction identifier (e.g.,
Tk, Ti,k, etc.). A transaction Tk is executed, in a given low-
level history E, by at most one process, denoted by pE(Tk)4.
We assume that once Tk is committed or aborted, no process
performs any operations within Tk. Thus, when a process
pi wants to restart a computation of a transaction that has
just (become) aborted, pi simply repeats the computation
within a new transaction (with a different identifier).

TM as a shared object. A TM can be viewed as an object
with operations that allow for the following: (1) reading or
writing a t-variable x within a transaction Tk (returns the
response of the operation or a special value Ak), (2) request-
ing transaction Tk to be committed (operation tryC(Tk) that
returns either Ak or Ck), and (3) requesting transaction Tk

to be aborted (operation tryA(Tk) that always returns Ak).
The special return value Ak (abort event) is returned by a
TM to indicate that transaction Tk has been aborted. The
return value Ck (commit event) is a confirmation that Tk

has been committed. For simplicity, we say that a trans-
action Tk performs a TM operation, or executes an event
or step, meaning that some process pi performs the opera-
tion, or executes the event or step of the considered STM
implementation, within Tk.

It is worth noting that the TM operations described here
are used only on the interface between an application (trans-
actions) and a TM. When processes execute steps of a TM
implementation itself, they may do much more than the TM
external interface allows for. For example, they may abort
transactions executed by other processes, or even help other

3In general, transactions may use objects of any type; how-
ever, the proofs of our results are more easily explained with
only read-write t-variables (transactional registers). This
does not, however, limit the generality of our results, as ex-
plained in Section 6.
4We use unique transaction identifiers for convenience and
simplicity of notation. Such identifiers can be generated
locally by each process, e.g., by combining the id of the
process with the value of a process-local transaction counter.



processes in processing their transactions5. (Note that the
same processes execute transactions on behalf of both an
application and a TM implementation if the TM is not pro-
vided by hardware.)

Transactions. Let H be a (low-level or high-level) history
of a TM (shared object) and Tk be a transaction. We say
that Tk is in H, and write Tk ∈ H, if there is some event
executed by Tk in H.

We say that a transaction Tk is committed (respectively,
aborted) in H, if H contains commit event Ck (resp., abort
event Ak). A transaction that is committed or aborted (in
H) is completed. A transaction that is not completed (in
H) is called live. We say that a transaction Tk is forcefully
aborted in H, if Tk is aborted in H but Tk has not issued
tryA(Tk) in H. (The ability to forcefully abort a transaction
is essential for optimistic concurrency schemes.)

We say that a transaction Tk precedes a transaction Tm

(in a history H), if Tk is completed and the last event of Tk

precedes (in H) the first event of Tm. We say that transac-
tions Tk and Tm are concurrent in a history H, if neither Tk

precedes Tm, nor Tm precedes Tk (in H). We assume that
transactions at any single process are never concurrent.

Serializability. Serializability [27] is a safety property that
describes the semantics of a TM. Intuitively, serializability
requires that in every history H of a TM, all transactions
that have committed in H issue the same invocation events
and receive the same responses as in some sequential his-
tory S consisting of those transactions (in a sequential his-
tory, no two transactions are concurrent). A transaction
Tk commits somewhere between its invocation of operation
tryC(Tk) and the subsequent Ck response. Thus, a transac-
tion that is commit-pending, i.e., that has invoked tryC(Tk),
but has not received a matching response yet, may have al-
ready committed (or not). (We recall the precise definition
of serializability, as used in our correctness proofs, in [15]).

2.3 Obstruction-Free STM Implementations
In this section, we define precisely what an OFTM is.

We give here a definition based on the formal description of
obstruction-free objects from [6]. We use this OFTM defini-
tion throughout our paper. Later, in Section 3, we consider
alternative definitions. We show, however, that these are
computationally equivalent to the one we give here (Sec-
tion 3), and that the results proved in this paper hold also
for those definitions (Section 6).

The definition we consider here uses the notion of step
contention [6]: it says, intuitively, that a transaction Tk ex-
ecuted by a process pi can be forcefully aborted only if some
process other than pi executed a step concurrently to Tk.

More precisely, let E be any low-level history of some STM
implementation I. We say that a transaction Tk encounters
step contention in E, if there is a step of a process other
than pE(Tk) in E after the first event of Tk and before the
commit or abort event of Tk (if any).

Definition 1. We say that an STM implementation I
is obstruction-free (i.e., is an OFTM) if in every low-level
history E of I, and for every transaction Tk ∈ E, if Tk is
forcefully aborted in E, then Tk encounters step contention
in E.

5The TM model given here also does not support non-
transactional accesses to t-variables, which are outside the
scope of this paper.

3. ALTERNATIVE DEFINITIONS
OF OFTM

Alternative definitions of OFTMs based on the concept
of interval contention (instead of step contention) can also
be considered [4]. Basically, we can allow a transaction Tk

to be forcefully aborted only when there is a transaction
Ti that is concurrent to Tk and that is executed by a pro-
cess that has not crashed yet. We have at least two pos-
sible definitions here: In the simplest case (which we call
ic-obstruction-freedom), we can assume that a process that
crashes cannot cause any further transaction to be forcefully
aborted. A weaker variant of this definition (eventual ic-
obstruction-freedom), inspired by [4], allows a crashed pro-
cess to obstruct other processes (and their transactions) for
arbitrary, but finite time. More specifically:

Definition 2. We say that an STM implementation I is
ic-obstruction-free (i.e., is an ic-OFTM), if in every low-
level history E of I, and for every transaction Tk ∈ E, if
Tk is forcefully aborted, then there exists a transaction Ti

concurrent to Tk, such that process pE(Ti) has not crashed
before the first event of Tk.

Definition 3. We say that an STM implementation
I is eventually ic-obstruction-free (i.e., is an eventual
ic-OFTM), if for every low-level history E of I there ex-
ists a finite period of time d, such that for every transaction
Tk ∈ E that is forcefully aborted, there exists a transaction
Ti concurrent to Tk, such that process pE(Ti) has not crashed
earlier than d before the first event of Tk.

Clearly, every STM that is obstruction-free is also ic-
obstruction-free: a process that has crashed can no longer
perform any steps. The opposite is also true: because slow
processes cannot be distinguished from crashed ones, the
only way for a process pi to ensure that other processes are
alive is for pi to observe steps of other processes. Thus:

Theorem 4. Every OFTM is an ic-OFTM, and every
ic-OFTM is an OFTM.

Clearly, every OFTM that is (ic-)obstruction-free is also
eventually ic-obstruction-free. However, the opposite is not
true: a history of an eventual ic-OFTM may contain finite
sequences of forcefully-aborted transactions that are concur-
rent only to some transaction executed by a crashed process.

Nevertheless, one can implement an (ic-)OFTM using an
eventual ic-OFTM. The transformation is not straightfor-
ward, though. For example, one could think that sim-
ply restarting every forcefully aborted transaction several
times would provide ic-obstruction-freedom. But an even-
tual ic-OFTM may forcefully abort transactions at a single
process arbitrarily (albeit finitely) many times in a row with
ic-obstruction-freedom violation. Furthermore, restarting a
computation of a transaction cannot be done by a TM imple-
mentation itself: the restarted transaction may see different
states of the system and it is up to the application using a
TM to decide then what operations on which t-variables to
perform within the transaction.

Due to space limitations, we show the implementation of
an ic-OFTM using an eventual ic-OFTM in the full version
of this paper [15]. Hence, we prove the following result:

Theorem 5. Every eventual ic-OFTM can implement an
OFTM. Every OFTM is an eventual ic-OFTM.



4. AN OFTM CANNOT SOLVE
3-CONSENSUS

The consensus problem consists for a number of processes
to agree (decide) on a single value chosen from the set of
values these processes have proposed. It is known that in
an asynchronous system in which some processes may crash,
solving consensus is impossible when only registers are avail-
able [14].

In this section, we show that it is impossible to solve
consensus for 3 processes (called 3-consensus) using only
OFTMs and registers (as base objects). We prove this re-
sult in two steps: First, we show that an OFTM is equiv-
alent to a “fail-only” consensus object [6] (or fo-consensus,
for short), i.e., that an OFTM can implement fo-consensus
and vice versa. Then, we prove that fo-consensus cannot
implement 3-consensus.

4.1 Definitions
Solving consensus consists in ensuring the following prop-

erties: (1) every value decided is one of the values proposed
(validity); and (2) no two processes decide different values
(agreement). The consensus number of an object O is the
maximum number of processes among which one can solve
consensus using any number of instances of O (i.e., base
objects of the same type as O) and registers.

Intuitively, fo-consensus provides an implementation of
consensus (via an operation propose), but allows propose
to abort when it cannot return a decision value because of
concurrent invocations of propose. When propose aborts,
it means that the operation did not take place, and so the
value proposed using this operation has not been“registered”
by the fo-consensus object (recall that only a value that
has been proposed, and “registered”, can be decided). A
process which propose operation has been aborted may retry
the operation many times (possibly with different proposed
value), until a decision value is returned.

More precisely, let D be any set, such that ⊥ /∈ D. Fo-
consensus (object) implements a single operation, called pro-
pose, that takes a value v ∈ D as an argument and returns
a value v′ ∈ D ∪ {⊥}. If a process pi is returned a non-⊥
value v′ from propose(v), we say that pi decides value v′.
Once pi decides some value, pi does not invoke propose any-
more. When operation propose returns ⊥, we say that the
operation aborts.

Let E be any low-level history of a fo-consensus imple-
mentation Ic. We say that a propose operation executed by
a process pi is step contention-free (in E) if there is no step
of a process other than pi between the invocation and the
response events of this operation (in E). Fo-consensus sat-
isfies the following properties (for every E): (1) fo-validity
says that if some process decides value v, then v is proposed
by some propose operation that does not abort; (2) agree-
ment says that no two processes decide different values; and
(3) fo-obstruction-freedom says that if a propose operation
is step contention-free, then the operation does not abort.

4.2 Equivalence
We prove that an OFTM is equivalent to fo-consensus by

showing that: (1) one can implement fo-consensus using an
OFTM base object, and (2) one can implement an OFTM
using fo-consensus objects and registers.

Lemma 6. Every OFTM can implement fo-consensus.

Algorithm 1: Implementing fo-consensus from an
OFTM (code for a process pi)

uses: V – a t-variable
initially: V = ⊥, k = 0

upon propose(vi) do1

k ← k + 1;2

within transaction Ti,k do3

if V = ⊥ then V ← vi;4

else vi ← V ;5

on event Ci,k do return vi;6

on event Ai,k do return ⊥;7

Proof (sketch). Implementing fo-consensus using an
OFTM is straightforward. Algorithm 1 does so by having
every process pi that invokes propose use a transaction Ti,k

6

to atomically change the value of t-variable V from ⊥ to the
value proposed by pi. If Ti,k commits, then pi can safely
decide on the non-⊥ value that is in V (written by Ti,k or
read by Ti,k). Indeed, by serializability, only one committed
transaction can observe that V = ⊥ and set V to a non-⊥
value. Thus, agreement and fo-validity are ensured. Fur-
thermore, Ti,k can be aborted only if Ti,k encounters step
contention. But then the containing propose operation is
not step contention-free and can abort without violating fo-
obstruction-freedom.

For simplicity, we use the “within transaction Tm . . . on
event . . . ” notation in Algorithm 1 instead of referring ex-
plicitly to the TM operations described in Section 2.2. The
precise meaning of this notation is the following: A read
(or write) of a t-variable x inside a “within transaction Tm

. . . on event” block B means that transaction Tm (i.e., the
process pi that executes Tm) should invoke a read (write)
operation of x on the TM and wait (or execute the code
of the TM implementation) until Tm receives a subsequent
response from the operation. If the response is Am, the
“on event Am” block is executed. Otherwise, the execution
of block B continues. If B is completed successfully (i.e.,
without any operation returning Am), Tm sends the TM a
commit request, i.e., invokes operation tryC(Tm) of the TM.
If the response of the request is Cm (or Am), the “on event
Cm” (respectively, “on event Am”) block is executed.

Lemma 7. An OFTM can be implemented from fo-
consensus (and registers).

Proof (sketch). Implementing an OFTM using fo-
consensus (and registers) is a more difficult task. The idea,
presented in Algorithm 2, is to use a scheme similar to that
underlying DSTM [19], but replace CAS with fo-consensus.
Clearly, the transformation is not immediate: fo-consensus is
a one-shot object, while a CAS object can change its state
infinitely many times. This suggests the need for an un-
bounded number of fo-consensus objects to implement an
OFTM. Basically, the major difference between DSTM and
Algorithm 2 is that, because in our algorithm we cannot use
CAS, the indirection to object data and to owner transac-
tion’s identifier, which are handled in DSTM via single CAS
pointers, have to be represented in our OFTM implementa-
tion by (infinite) arrays of fo-consensus objects.
6The variable k is used here to generate a unique transaction
id i, k, where i is the id of process pi.



Algorithm 2: Implementing an OFTM from fo-consen-
sus and registers

uses: Owner, State – arrays of fo-consensus objects;
TVar, Aborted, V – arrays of registers (other
variables are local to transaction Tk)

initially: Aborted[Tk] = false for every transaction Tk,
V [x] = ⊥ for every t-variable x, wset = ∅

upon read of t-variable x by Tk do1

return acquire(Tk, x);2

upon write of value v to t-variable x by Tk do3

s← acquire(Tk, x);4

if s = Ak then return Ak;5

TVar[x, Tk]← v;6

return ok ;7

procedure acquire(Tk, x)8

if x /∈ wset then9

version← 1;10

state← initial state of x;11

v ← V [x];12

repeat13

owner← Owner[x, version].propose(Tk);14

if owner = ⊥ then return Ak;15

if owner 6= Tk then16

s← State[owner].propose(aborted);17

if s = ⊥ then return Ak;18

if s = committed then19

state← TVar[x, owner];
else Aborted[owner]← true;20

if V [x] 6= v then return Ak;21

version← version + 1;22

until owner = Tk;23

wset← wset ∪ {x};24

TVar[x, Tk]← state;25

V [x]← Tk;26

else state← TVar[x, Tk];27

if Aborted[Tk] then return Ak;28

return state;29

upon tryCk do30

s← State[Tk].propose(committed);31

if s = committed then return Ck;32

else return Ak;33

upon tryAk do34

return Ak;35

The idea behind the algorithm is very simple. If a trans-
action Tk wants to read or update a t-variable x, then Tk

must be granted an exclusive, but revocable, ownership on
x (procedure acquire). To do so, the algorithm first searches
for the latest committed state of x (lines 13–23). Then, if
there is any live transaction Ti that currently owns object x,
Ti is aborted (lines 16–20). Finally, Tk is set as the current
owner of x (line 14). Committing or aborting a transaction
Tk is done by proposing value committed, or aborted, to the
corresponding fo-consensus State[Tk]. Clearly, Tk can com-
mit only if no other transaction aborted Tk before. Also, Tk

can be aborted by another transaction Ti only if Tk has not
committed yet.

The first time a transaction Tk accesses a t-variable x, Tk

creates a new version of x. Each version of x is mapped
onto a single transaction via the array of fo-consensus ob-
jects Owner. Transaction Tk creates a new version of x by
proposing its id to subsequent elements of Owner[x, . . .]7

until Tk decides its id (lines 13–23). While doing so, Tk

also finds all the transactions that owned x before, i.e., that
owned previous versions of x. If any such transaction Ti has
committed, Tk reads the latest value written to x by Ti from
register TVar[x, Ti] (line 19). If Ti is live, however, i.e., Ti

is still the exclusive owner of x, Tk must abort Ti before
going further (lines 17–20). This ensures that at any time
there is indeed only one owner of x. Once Tk succeeds in
becoming an owner of x, Tk saves the newest value of x in
register TVar[x, Tk]. If transaction Tk accesses x for the sec-
ond time, Tk is already an owner of x, and so Tk can proceed
without going through the array Owner again.

For space limitations, we give the proof of correctness of
Algorithm 2 in the full version of the paper [15].

4.3 Impossibility Result

Theorem 8. Fo-consensus cannot implement 3-consen-
sus.

The intuition behind the proof is the following. We as-
sume, by contradiction, that there exists an algorithm A
that implements 3-consensus using only fo-consensus objects
and registers. We then derive a contradiction by using a clas-
sical “valency argument” [14]. Basically, we show that if A
ensures the validity and agreement properties of consensus,
then A may violate wait-freedom in some executions, i.e.,
it may happen that some correct process proposes a value
and is never returned a decision value. We do so by proving
that any finite low-level history E of A, after which more
than one value can be decided, can be extended into a low-
level history E′ in such a way that still more than one value
can be decided after E′. Note that a process pi may decide
value v after a low-level history E only if pi is sure that no
value other than v can be decided by other processes after
E (otherwise, agreement could be violated).

Proof. Assume, by contradiction, that there exists an
algorithm A that solves consensus using only fo-consensus
objects and registers, in a system of 3 processes: p1, p2 and,
p3 (i.e., A implements a 3-consensus object C). Without
loss of generality, assume that: (1) the processes can propose
only values 0 and 1 to C, (2) every correct process eventually
proposes a value to C, and (3) the initial state of the system
is fixed.

Every process pi starts executing A by proposing value 0
or 1 to C. Unless pi crashes, pi eventually decides value of 0
or 1. Once any process pi decides a value v, no other process
can decide a value different than v; otherwise, agreement
would be violated. Thus, in every infinite low-level history E

7Algorithm 2 uses the name (symbol) of a t-variable x to
index some of its arrays. This means that, a priori, the
algorithm is not dynamic, i.e., it requires that t-variables are
allocated statically at the beginning of each execution. Note,
however, that the sole purpose of the algorithm is to prove
the equivalence result. In fact, its use of unbounded memory
and high time complexity make it rather impractical. On the
other hand, the algorithm supports an infinite number of t-
variables, which makes dynamic allocation of t-variables a
non-issue.



of implementation A there is a point after which the decision
value is fixed to 0 or 1.

In this proof, we consider only those low-level histories
that are complete. A history E is complete if it does not
contain any pending (low-level) operation invocation step.
(An invocation of an operation is pending at a process pi

in E, if the invocation is not followed by a (corresponding)
response at pi.) A low-level history E is valid if E can be
generated by algorithm A. Two histories E and E′ are said
to be indistinguishable for a process pi, if pi invokes the same
operations and receives the same responses in E as in E′.

An extension of E is any low-level history E′ of C, such
that E is a prefix of E′. We say that E is 0-valent (re-
spectively, 1-valent), if in every extension of E only value 0
(respectively, 1) is decided (in C) by any process. A history
that is not 0-valent or 1-valent is called bivalent [14]. Note
that because E defines precisely the state of base objects
after E (assuming E is complete), the “valency” of E is also
defined.

The result of [14] implies the existence of at least one low-
level history of C in which all processes propose a value and
that is bivalent. In the following theorem, we prove that,
given a bivalent history E, we can find an extension E′ of
E, E′ 6= E, such that E′ is also bivalent. This means that
there exists an infinitely long history that is bivalent. That
is, there is a history in which all correct processes propose
some values to consensus object C but none of them decides,
which violates wait-freedom.

Claim 9. For every finite bivalent complete low-level his-
tory E of A there exists a complete valid extension E′ of E,
E′ 6= E, such that E′ is also bivalent.

Proof. By contradiction, assume that there exists a bi-
valent complete history E, such that every complete exten-
sion E′ of E is univalent. By [14], for every such history E′,
every process’s next step executed after the last event of E
should be an invocation of the propose operation on some
fo-consensus object.

Denote by c.propose(pk, v) a sequence of an invocation
and a response event of the propose operation, executed on
fo-consensus object c by process pk and returning value v.
Denote by [cr.propose(pi, vl), cs.propose(pk, vm)] a minimal
sequence S of events, such that (1) process pi invokes the
propose operation on fo-consensus object cr and is returned
value vl in S, and (2) process pk invokes the propose op-
eration on fo-consensus object cs and is returned value vm

in S. Note that the two propose operations in S may be
concurrent (overlapping), and so one or both of them may
abort.

Let v1, v2, and v3 be some values different than ⊥, for
which the following complete extensions of E are valid8:
E1 = E · cr.propose(p1, v1), E2 = E · cs.propose(p2, v2), and
E3 = E · ct.propose(p3, v3). Assume that E1 and E3 are 0-
valent, and E2 is 1-valent (the other cases are symmetrical).

First, we show that cr, cs, and ct are the same fo-
consensus object. Suppose that cr and cs are different ob-
jects. But then the valid history E′ = E1 ·cs.propose(p2, v2)
is indistinguishable for process p3 from the valid history
E′′ = E2 · cr.propose(p1, v1). Thus, if p1 and p2 crash just
after E′ or E′′, p3 will decide the same value after E′ and

8We denote by E · S the concatenation of history E and
sequence S of events.

E′′—a contradiction with the fact that E′ is 0-valent (be-
cause E1 is 0-valent) and E′′ is 1-valent (because E2 is 1-
valent). Analogously, we can show that cs = ct. Hence,
cr = cs = ct = c.

Consider the following (valid) history, which is a com-
plete extension of history E: E4 = E · [c.propose(p1,⊥),
c.propose(p3,⊥)]. There are two cases to consider:

Case 1: E4 is 0-valent. History E4 is indistinguish-
able for p2 from history E, and fo-consensus c is in the
same state after E and E4. Hence, the extension E′ =
E4 · c.propose(p2, v2) of E4 is valid and indistinguishable for
process p2 from history E2. But E2 is 1-valent, and so in
every extension of E′ process p2 will decide 1 if p1 and p3

crash just after E4—a contradiction with the fact that E′ is
0-valent (because E4 is 0-valent).

Case 2: E4 is 1-valent. Consider the following (valid)
history: E5 = E · [c.propose(p1,⊥), c.propose(p2,⊥)]. His-
tory E5 is indistinguishable for process p1 from history E4,
and the state of fo-consensus c is the same after E4 and E5.
Hence, E5 is 1-valent: otherwise, if p2 and p3 crashed just
after E4 or E5, p1 could not decide different values after E4

(which is 1-valent) and after E5.
History E5 is indistinguishable for process p3 from history

E, and fo-consensus c is in the same state after E and E5.
Hence, the extension E′ = E5 · c.propose(p3, v3) of E5 is
valid and indistinguishable for process p3 from history E3.
But E3 is 0-valent, and so in every extension of E′ process p3

will decide 0 if p1 and p2 crash just after E5—a contradiction
with the fact that E′ is 1-valent (because E5 is 1-valent).

From Lemma 6, Lemma 7, Theorem 8, and the claim of [6]
that consensus can be implemented from fo-consensus and
registers in a system of 2 processes, we have:

Corollary 10. The consensus number of an OFTM
equals 2.

5. IMPOSSIBILITY OF STRICT
DISJOINT-ACCESS-PARALLELISM

In this section, we prove that no OFTM can be strictly
disjoint-access-parallel. We first define precisely our notion
of strict disjoint-access-parallelism. Then, we prove our re-
sult. We discuss its scope in Section 6.

5.1 Definitions
To define the notion of strict disjoint-access-parallelism,

we distinguish base object operations that modify the state
of the object, and those that are read-only. We say that
two processes (or transactions executed by these processes)
conflict on a base object x, if both processes execute each an
operation on x and at least one of these operations modifies
the state of x.

Intuitively, an STM is strictly disjoint-access-parallel if it
ensures that processes executing transactions which access
disjoint sets of t-variables do not conflict on common base
objects. More precisely:

Definition 11. We say that an STM implementation I
is strictly disjoint-access-parallel if, for every low-level his-
tory E of I and every two transactions Ti and Tk, if Ti and
Tk conflict on a base object, then Ti and Tk both access some
common t-variable.
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Figure 2: Execution used in the strict disjoint-access-parallelism impossibility proof. R(x) : 0 denotes a read
of a t-variable x returning value 0, and W (x, 1) denotes a write of value 1 to a t-variable x.

5.2 Impossibility Result

Theorem 12. No OFTM is strictly disjoint-access-
parallel.

The intuition behind the proof of the result is the follow-
ing (the full proof is in the full version of the paper [15]).
We assume, by contradiction, that there is an OFTM that
is strictly disjoint-access-parallel, and we consider the sce-
nario depicted in Figure 2, with transactions T1, T2, and T3

involved in low-level histories E1 and Ep·2·s·3. The trans-
actions access t-variables x, y, w, and z, initialized to 0.
Transaction T1 reads value 0 from w and z, and writes value
1 to both x and y, while transactions T2 and T3 read, respec-
tively, x and y, and write value 1 to, respectively, w and z.
In low-level history E1, transaction T1 executes alone. Thus,
T1 modifies x and y and eventually commits (by the prop-
erties of an OFTM, T1 cannot be forcefully aborted in E1).

Suppose now that process p1, which executes T1, gets sus-
pended at some point t in E1 and either T2 or T3 is exe-
cuted and committed before p1 resumes taking steps. (Note
that p2 and p3 cannot wait for p1 to take steps, because
the system is asynchronous and p1 might have crashed; nei-
ther T2 nor T3 can be forcefully aborted, because p1 does
not take any steps when any of these transactions are exe-
cuted.) Clearly, if t is before the invocation of tryC(T1), then
T2 and T3 cannot read value 1 from x or y. This is because
T1 might invoke tryA(T1) instead of tryC(T1), in which case
value 1 may never be seen by any committed transaction.
If t is after the commit event of T1, then both T2 and T3

can only read value 1 from x or y—otherwise serializability
would be violated, because T1 reads value 0 from w and z.
This means that there must be some “critical” step s, such
that (1) if t is before s, then neither T2 nor T3 can read 1
from x or y, and (2) if t is after s then at least one of the
two transactions, say T3, reads 1 from x or y (the other case
is symmetrical).

Consider a low-level history Ep·2·s·3 in which transaction
T2 is executed and committed before step s, then p1 executes
step s, and finally transaction T3 is executed and committed
(with p1 being suspended during the execution of T2 and T3).
By our assumption, T2 reads 0 from x in Ep·2·s·3. This means
that T1 cannot commit, as the conflict between T1 and T2 is
not resolvable without aborting one of the two transactions
or violating serializability. Transaction T3 executes after
step s and, as T2 and T3 access different t-variables, process
p3 cannot read any base objects that are modified by p2.
Hence, transaction T2 is effectively “invisible” to p3. But
then T3 reads value 1 from y. However, this means that
T1, which is the only transaction that writes to y, must be
committed—otherwise serializability is violated. Hence, on

the one hand, T1 must commit, but, on the other hand, T1

cannot commit, and so we reach a contradiction.

6. SCOPING THE RESULTS
In this section, we discuss the scope of our results.

Obstruction-freedom. The results in Sections 4 (equiva-
lence to fo-consensus) and 5 (impossibility of strict disjoint-
access-parallelism) are proved for OFTMs. It is worth dis-
cussing, whereas those results hold also for weaker defini-
tions that are presented, and compared, in Section 3.

Theorems 4 and 5 imply, together with Lemmas 6 and 7,
that an ic-OFTM and an eventual ic-OFTM are also equiv-
alent to fo-consensus, and thus have consensus number of 2.
Theorem 4 also implies, together with Theorem 12, that an
ic-OFTM cannot be strictly disjoint-access-parallel.

However, it is not obvious that strict disjoint-access-
parallelism is impossible for an eventual ic-OFTM. To prove
that, we go back to the proof of Theorem 12. In the proof,
transactions T2 and T3 could not be forcefully aborted. How-
ever, an eventual ic-OFTM could abort T2 and T3, because
T1 is concurrent to both T2 and T3. But process p1 does
not take any steps while T2 and T3 execute. Hence, p2

and p3 cannot say whether p1 has crashed or is just sus-
pended (as the system is asynchronous). Therefore, if we
keep restarting transactions T2 and T3 (i.e., their computa-
tions), those transactions will eventually commit. Hence, we
can reach the same contradiction as in the proof of Theo-
rem 12: even eventual ic-OFTMs cannot be strictly disjoint-
access-parallel.

Opacity. Serializability is a relatively weak safety property
for a TM. Most STM implementations ensure a stronger
correctness criterion called opacity [16], which adds to seri-
alizability the requirements that (1) all transactions (even
non-committed ones) always observe a consistent state of the
system, and (2) the real-time order of transactions is pre-
served. An OFTM that ensures opacity is still equivalent
to fo-consensus—Algorithm 2, in fact, guarantees opacity
(see its correctness proof in [15]). Hence, an OFTM ensur-
ing opacity has still consensus number 2, i.e., opacity does
not make an OFTM able to implement 3-consensus. Also,
the impossibility of strict disjoint-access-parallelism clearly
holds for any OFTM that ensures opacity.

Arbitrary t-variables. In the proofs of the results pre-
sented in this paper, we considered only t-variables that can
be read and written (i.e., transactional registers). Some of
the results may not hold if read-write t-variables are not pro-
vided by an OFTM. For example, an OFTM that supports
only write-only t-variables (i.e., where transactions cannot
read transactional data) can be trivially implemented with-



out any base objects, and thus has a consensus number of 1.
However, read-write t-variables are considered essential, and
so they are provided by every existing TM.

It is interesting, however, to see what happens when an
OFTM supports t-variables that export some operations
in addition to read and write. Clearly, such an OFTM is
strictly more difficult to implement than an OFTM that
supports only registers. Hence, it cannot be strictly disjoint-
access-parallel, and cannot have consensus number lower
than 2.

Now, consider an OFTM implementation A that supports
only read-write t-variables, and let Q be a type (class) of an
object that exports operations other than read and write.
Let B be an implementation of an object of type Q, in a se-
quential, non-transactional system, that uses only read-write
variables. Using a single instance of A, we can implement an
OFTM that provides t-variables of type Q. Basically, when-
ever a transaction invokes an operation op of a t-variable of
type Q, we follow the implementation B, using read-write
t-variables instead of non-transactional variables. Because
all operations performed by a transaction should appear as
if they were executed atomically, B executed by a transac-
tion must provide a correct implementation of an object of
type Q. This means that supporting t-variables that export
operations other than read and write does not increase the
computational power of an OFTM, i.e., its consensus num-
ber9.

Disjoint-access-parallelism. The original notion of
disjoint-access-parallelism, introduced in [23], allows for
transactions that are indirectly connected via other trans-
actions to conflict on common base objects. For example,
if a transaction T1 accesses t-variable x, T2 accesses y, and
T3 accesses both x and y, then there is a dependency chain
from T1 to T2 via T3, even though the two transactions T1

and T2 use different t-variables. Disjoint-access-parallelism
allows then the processes executing T1 and T2 to delay one
another. Disjoint-access-parallelism in the sense of [23] can
be ensured by an OFTM implementation, e.g., DSTM.

7. CONCLUDING REMARKS
Obstruction-freedom. The concept of obstruction-free
shared object implementations has been first informally in-
troduced in [20]. A formalization of the concept was then
proposed in [6]. In short, the definition of [6] requires op-
erations to return if there is no step contention. If there is,
the operations could abort but need to return control to the
application, i.e., rather than livelock forever. An alternative
definition, based on interval contention, was proposed in [4]
through the concept of “abortable” objects. In particular,
it is argued there that a definition based on step contention
(as in [6]) is not composable.

The concept of obstruction-free TM implementation was
first informally discussed in [19]. Many OFTMs have been
proposed since then, including DSTM [19], ASTM [26],
RSTM [1] and NZTM [30]. However, until our paper, there
has been no formal definition of the concept. Our definition

9However, an OFTM that supports t-variables of type Q
directly may be, in principle, more efficient than an OFTM
that implements such t-variables using transactional regis-
ters. For example, commutativity or conflict relations be-
tween some operations of Q may be exploited to allow for
more concurrency between transactions.

of an OFTM is a logical extension of that in [6] to transac-
tions. However, we also consider (in Section 3) alternative
definitions (e.g., inspired by [4]) and discuss their computa-
tional equivalence to our definition. We point out the fact
that our results apply also to these alternative definitions.

Limitations of OFTMs. The first paper to discuss the
limitations of OFTMs was [12]. The paper argues about
several practical disadvantages of ensuring obstruction-
freedom, and discusses how those can be overcome using
simple, lock-based schemes. In particular, the paper points
out the necessity for an OFTM to use indirection (a claim
questioned by [30]), which results in cache-locality problems,
and the difficulty of limiting the number of concurrent trans-
actions to the number of physical processors. Our consensus
impossibility result is clearly of different nature than the
claims in [12]. The impossibility of strict disjoint-access-
parallelism is indeed related to cache issues. However, those
issues result from transactional metadata accessed by trans-
actions that are not directly related, rather than from indi-
rections towards states of transactional objects [12].

It is worth noting that some lower bounds on obstruction-
free implementations have already been established. In [5],
space and time complexity lower bounds for obstruction-
free implementations of so-called perturbable objects have
been derived. As an OFTM can be used to implement any
perturbable object, these lower bounds naturally hold also
for OFTMs. However, the lower bounds concerning time
and space complexity are clearly of a different nature than
our consensus number proof and our strict disjoint-access-
parallelism impossibility. The last result in [5], which is
a lower bound on the number of stalls a process may in-
cur in some executions, is similar in scope to our strict
disjoint-access-parallelism proof. However, this particular
result of [5] holds only when there are no aborts, which is
clearly not the case for OFTMs. In [16], a complexity lower
bound for a class of STM implementations that ensure opac-
ity is proved. However, the bound is not inherent to OFTMs:
it holds for OFTMs as well as for lock-based STMs.

Consensus number of OFTMs. In [6], a “fail-only” con-
sensus object is introduced and shown to have consensus
number at least 2. We use this object as an intermediate
abstraction for our first result: that is, we (1) prove than an
OFTM is equivalent to a “fail-only” consensus, and (2) show
that a “fail-only” consensus (and thus an OFTM) has con-
sensus number at most 2. The proof of (2) uses the classical
“valency argument” first introduced in [14].

It is also important to notice that the consensus number
of objects roughly similar to TMs have already been deter-
mined. In particular, in [2, 28] upper and lower bounds
on the consensus number of several classes of multi-objects
are given. Multi-objects, however, differ from TMs in that:
(1) the sequence of operations that are to be executed atom-
ically (a multi-object operation) is known in advance (unlike
in transactions), (2) a multi-object operation cannot abort,
and (3) a multi-object consists of a set of objects with the
same type and a specified, finite consensus number (trans-
actions can use objects of any type and in any way).
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