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ABSTRACT

We introduce a generalization of the atomic snapshot ob-
ject, which we call the partial snapshot object. This object
stores a vector of values. Processes may write components
of the vector individually or atomically scan any subset of
the components. We investigate implementations of the lat-
ter partial scan operation that are more efficient than the
complete scans of traditional snapshot objects. We present
an algorithm that is based on a new implementation of the
active set abstraction, which may be of independent inter-
est.

Categories and Subject Descriptors

E.1 [Data Structures]: distributed data structures; D.1.3
[Programming Techniques|: Concurrent Programming—
distributed programming; F.2.2 [Analysis of Algorithms
and Problems]: Nonnumerical algorithms and problems

General Terms
Algorithms, Theory
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1. INTRODUCTION

A fundamental problem in distributed computing is that
of obtaining a consistent view of a collection of shared data
while other processes are concurrently updating the data.
The naive solution of simply reading different portions of
the data piece-by-piece may yield inconsistent results. For
example, consider the problem of computing the total as-
sets of a stock portfolio by checking the value of each stock
one by one, while, concurrently, the values of the stocks are
fluctuating, and stocks are constantly being added to the
portfolio or removed from it. The result might exceed the
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maximum value the portfolio had at any time during the
day if each stock is checked when it is at its peak value for
the day.

The snapshot object [1, 5, 8] was introduced as an abstrac-
tion of the problem of obtaining a consistent view of several
data items. The snapshot object stores a vector of m com-
ponents and provides two atomic operations: update(i,v),
which writes the value v into component 4 of the vector, and
scan, which returns the entire contents of the vector. (We
focus on multi-writer snapshot objects, where any process is
allowed to update any component.) The snapshot object has
proved to be an enormously useful abstraction. It has been
used as a building block for solving many other problems, in-
cluding approximate agreement [11], timestamping [16], ran-
domized consensus [6, 7] as well as several concurrent object
constructions [8, 17]. It could also be used in garbage col-
lection, debugging distributed programs and storing check-
points for data recovery.

Many algorithms implementing snapshots have been pub-
lished in the literature, using either read/write registers or
more sophisticated objects. (See [15] for a survey.) How-
ever, in all of these implementations scan operations remain
costly. In many applications of snapshot objects, the total
number of components, m, is very large, and this can con-
tribute significantly to the cost of a scan.

Often, however, users need a consistent view of only a
small portion of the vector. In the stock portfolio example
above, the vector might store an entire database of stock in-
formation, but individual queries might require a consistent
view of only a few entries in the database, for example, the
stocks in one person’s portfolio, or the stocks for a particular
type of industry.

If we know, in advance, the portions of the vector for
which a consistent view must be obtained and, furthermore,
those portions do not overlap, then the vector can be split
into smaller pieces, with each piece stored in a separate
snapshot object. However, this solution works only under
rather specialized conditions. Such conditions clearly do not
hold for the stock example above, where queries are unpre-
dictable and could require views of overlapping portions of
the database. Algorithms that use snapshots as a building
block often assume, impractically, that the entire memory is
a giant snapshot object to simplify the design of the algo-
rithm.

This paper introduces a more flexible kind of snapshot
object with the goal of handling unpredictable queries as
efficiently as possible. We define a partial snapshot object
which, just like a traditional snapshot object, stores a vector



of m components and allows processes to update a single
component. However, unlike traditional snapshot objects,
processes may scan any subset of the components. (A formal
definition is given in Section 2.1.)

The partial snapshot object is a generalization of an or-
dinary snapshot object, since an ordinary scan operation
is equivalent to a partial scan of the set of all components
of the object. Conversely, a snapshot object trivially imple-
ments a partial snapshot object: the components required by
any partial scan can be extracted from a global scan that
returns all components. Such implementation would how-
ever be wasteful because it does not take advantage of the
fact that partial scans need only a small amount of informa-
tion. The motivation of this work is to make the complexity
of partial scan operations dependent only on the number of
components they access (we talk about a local implemen-
tation) rather than the total number of components in the
shared object.

Consider a simple variant of the original non-blocking
snapshot algorithm of Afek et al. [1]. Each component of
the partial snapshot object is represented by a register. To
update a component, a process writes the value in the cor-
responding register (together with its id and a counter). A
partial scan can be performed by repeatedly reading all reg-
isters of the components to be scanned until two sets of
reads return identical results. However, individual scans
may never terminate: a slow scanner can keep seeing dif-
ferent collects if fast updates are concurrently being per-
formed. The implementation is thus not wait-free. The
classical way to transform such a non-blocking implementa-
tion into a wait-free one is to rely on a helping mechanism
where every update embeds a scan whose result is written
into the shared memory [1]. A slow scanner can then even-
tually return the result of one such embedded scan that
it sees. If we use this helping mechanism to implement a
partial snapshot object, we must ensure that the embedded
scans include enough information to help slow concurrent
scans produce their outputs, and at the same time avoid
gathering too much information, which would be inefficient.
(This is not an issue for the original snapshot objects, since
all scans must return the values of all components.)

We propose here a solution with embedded scans that
record only the states of components that are actually needed
by concurrent partial scans. The scanners announce which
components they are currently attempting to scan, and up-
daters consult these announcements in order to perform their
embedded scans (these embedded scans need not announce
the components they are scanning). We use an active set
abstraction [3] as a building block to handle the announce-
ments.

The active set problem is to maintain a group with dy-
namic membership. Processes may join and leave the group
and perform queries that return a list of the current mem-
bers of the group. We use a solution to this problem to keep
track of the processes that are currently performing partial
scans. This information is used by the update operations
to determine which components their embedded scans must
read. We first show how this approach can be used to ob-
tain an implementation of a partial snapshot object using
only registers by adapting the classical snapshot algorithm
of Afek et al. [1].

The implementation from registers provides a blueprint
for the main algorithm of this paper, which gives an imple-

mentation of a partial snapshot object from stronger base
objects where scan operations are local, and updates are
efficient in an amortized sense.

To obtain this algorithm, we present a new solution to
the active set problem which, we believe, is interesting in its
own right. We use a compare&swap and a fetch&increment
object to expedite the join and leave operations so that
they run in constant time (unlike the original active set im-
plementation of [3]). We also use compare&swaps instead of
writes when storing values in the snapshot object to improve
the efficiency.

We provide a brief description of the model of computa-
tion and a formal definition of the partial snapshot object
and active set problem in Section 2. In Section 3, we de-
scribe the partial snapshot implementation from registers.
In Section 4, we give our new active set algorithm and the
partial snapshot implementation that provides local partial
scans. Sections 5 and 6 provide a discussion of related work
and some concluding remarks.

2. MODEL

We use a fairly standard model of asynchronous shared-
memory systems. Processes run at arbitrarily varying speeds
and may experience halting failures. The processes com-
municate by accessing linearizable shared objects of various
types. Because the objects are linearizable, we can think of
an execution as a sequence of steps, where that sequence is
obtained by interleaving the steps of different processes, each
of which is following its algorithm. The interleaving can be
done arbitrarily, and the algorithm must behave correctly
for all possible interleavings. In describing our algorithms,
we use the convention that names of shared objects begin
with a capital letter and names of local objects begin with
a lower-case letter.

A distributed implementation of a data structure provides
an algorithm for each process to follow to perform each op-
eration on that data structure. Our implementations of par-
tial snapshot objects are linearizable. Linearizability means
that, in any execution, it is possible to choose a linearization
point for each operation during the interval of time that op-
eration is being performed such that the responses given by
all operations are the same as they would be if they were per-
formed sequentially in the order of their linearization points.
If an execution includes incomplete operations, those opera-
tions may or may not be assigned linearization points. Our
implementations are wait-free, meaning that every process
completes its operation within a finite number of its own
steps.

We are primarily concerned with the time complexity of
implementations. For wait-free implementations, we can
measure time complexity in terms of the worst-case number
of steps a process must perform to complete an operation.
The (worst-case) amortized time per operation is the maxi-
mum, over all finite executions, of the total number of steps
in the execution divided by the number of operations in the
execution. We can also state amortized time more precisely
in terms of several different types of operations. If there
are k different types of operations that can be performed,
opi,...,0pk, we can say that the amortized time of the im-
plementation is ¢1 per opi, ..., tx per opy if, in any finite
execution that has M; invocations of operations of type op;
(for all 7), the total number of steps by all processes is at
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An algorithm is adaptive if its (possibly amortized) time
complexity is independent of the number of processes in the
system. Ordinarily, it will depend, instead, on the con-
tention, which can be measured in several ways. The point
contention of an operation op, denoted C(op) is the maxi-
mum number of processes that run simultaneously at any
time during the interval that op is active. The notation C' is
used to denote the maximum, over all operations, of C (op).
A subscript s or u is added to C' if we are interested only in
the number of simultaneous scan operations or the number
of simultaneous update operations, respectively. Thus, C is
the maximum number of scans that are ever simultaneously
active. The interval contention of an operation op, denoted
C/(op) is the total number of processes with operations whose
active intervals overlap op’s interval. Again, C refers to the
maximum, over all operations, of C(op) and subscripts s or
u can be added as for point contention.

2.1 Problem Definitions

A partial snapshot object is similar to a snapshot object,
but permits the user to scan a subset of the components
of the object, rather than requiring all scans to return the
complete state of the object. More formally, a partial snap-
shot object is a linearizable object that stores a vector from
D™, where D is the domain. It provides two operations:

e update(i,v), where 1 < i < m and v € D, changes the
ith component of the state to v and returns ack, and

e scan(i1,...,%r), where 7 < m and 1 < i; < m for
all j € {1,...,r}, does not change the state of the
object and returns the vector (x;,,. .., z;,) if the state
of snapshot object is (z1,...,Zm).

For (partial) snapshot implementations, linearizability means
that the value of a component returned by a scan is the value
written by the update to that component with the latest lin-
earization point prior to the linearization point of the scan
(or the initial value of the component, if no such update
exists). We say a partial snapshot implementation is local
if the complexity of the scan depends only on the number
of components it accesses, rather than m; we also strive to
have updates with adaptive complexity that is independent
of m.

As we shall see, devising local implementations of the par-
tial snapshot object is closely linked to the active set problem
[3]. Intuitively, a solution to the active set problem keeps
track of a set of processes. Processes may join or leave the
set and get a list of processes currently in the set. However,
if a process is joining or leaving the set while another pro-
cess is getting the list, the latter process may consider the
former in the set or outside the set.

More formally, an active set abstraction provides three
operations: join, leave and getSet. The join and leave
operations return ack. In any execution, calls to join and
leave by the same process alternate, starting with a join. A
process is active from the time it completes a join operation
until it next calls leave. A process is inactive from the time
it completes a leave operation until it next calls join. A
process is also called inactive for the period before it begins
its first join. A process is neither active nor inactive while
it is executing join or leave. The getSet operation returns

a set S of process ids that contains all active processes, and
does not contain any inactive process; it may contain any
subset of the processes that are neither active nor inactive.

3. AN IMPLEMENTATION
FROM REGISTERS

We now describe how to adapt the snapshot algorithm
of Afek et al. [1] to achieve an implementation of a partial
snapshot object from registers with limited scan and update
complexity. The implementation uses a register to represent
each of the components of the partial snapshot object. An
update to a component is accomplished by writing to the
corresponding register. Processes also write their ids and a
counter along with the value to be stored. This avoids the
ABA problem: no two write operations write exactly the
same contents into a register, so if two reads of a register
return the same result that register’s contents cannot have
changed between the two writes. The partial scan algorithm
repeatedly reads the registers corresponding to the compo-
nents begin scanned. Each set of reads is called a collect. If
two collects ever return identical results, the scan returns
those values. To make the algorithm wait-free there is an
additional helping mechanism: each update writes the result
of a scan (called an embedded-scan), and a slow scanner can
eventually return the result of one such embedded-scan that
it sees. This result is written along with the value, process
id and counter value into a single large register. (If all of
this information cannot be stored in a single register, one
can instead store a pointer to a set of registers that stores
the information, but that will increase the time and space
complexity of the algorithm.)

To achieve our goal of low complexity, an embedded-scan
does not determine the values of all components in the snap-
shot object, but must find the values of enough components
to be useful in helping other scans complete. To accomplish
this, we use an embedded partial scan that records only the
states of components that are needed by concurrent scans.
Thus, scanners must announce which components they are
currently attempting to scan, and updaters must read these
announcements in order to perform their embedded-scans.
We use an active set algorithm [3] for these announcements.

The wait-free implementation is given in Figure 1. It uses
an array of registers R[1..m] with one element for each com-
ponent of the snapshot object. It also uses an array of
single-writer registers A[l..n], where each process can an-
nounce which components it is currently scanning, and the
registers required to implement the active set algorithm.
The embedded-scan operation carries out the scan opera-
tion, but without announcing the components it is scanning.
The result of an embedded-scan is a list of index-value pairs
(#,v), such that component ¢ of the partial snapshot object
has value v at the moment the embedded-scan is linearized.
In general, the indices appearing in this list will be a super-
set of the arguments given to the embedded-scan. All other
variables (scanners, counter, view) are local.

We outline the proof of correctness, which closely follows
the proof technique of Afek et al. [1]. Each update is lin-
earized at its write operation. An embedded-scan that ter-
minates by condition (1) in the pseudocode is linearized be-
tween its two identical collects. An embedded-scan that ter-
minates by condition (2) is linearized at the same time as
the embedded-scan whose result it borrows. Finally, each



embedded-scan(ii,.. ., i)
repeatedly read R[i1],..., R[ir] until either

(1) two sets of reads return the same vector, (z1,...,zr);

then return ((i;, first field of z;))1<j<r,

or (2) three different values written by the same process have been seen (in any locations);
then let (v, view,c,id) be the one of these three values with the highest counter field.

return view
end embedded-scan

update(i, v)
scanners < getSet

(i1, .oy ip) — U Alp]

pEscanners
view < embedded-scan(i1,. .., %)
R[i] « (v, view, counter,id)
counter «— counter + 1
end update

scan(i1,...,r)
Alid] — (i1,...,4r)
join
((z1,v1),- .., (i}, vk)) < embedded-scan(i1,...,ir)
leave
component j of the result vector is v, where iy = 4,
end scan

Figure 1: A wait-free implementation from registers

scan is linearized at the same time as its embedded-scan.

We argue that each embedded-scan returns a result consis-
tent with its linearization point. First, suppose the embedded-
scan terminates by condition (1). Asremarked above, when-
ever two reads of a register return the same result, that
value must have been in the register for the entire interval
between the two reads. Thus, if the embedded-scan returns
((¢1,v1),..., (ir,vr)), then each R[i;] must have contained
v; at the time the scan is linearized (for j € {1,...,7}).

Now consider an embedded-scan FE that terminates by
condition (2). Let E’ be the embedded-scan whose result
is borrowed by E. In this case, the update that performs
E’ must have started after E did: this is because the pro-
cess that performs E’ did at least one other write during E
before writing the output of E’, and that earlier write must
have been part of a different update operation. It follows by
an induction argument that the linearization point of each
embedded-scan that terminates by condition (2) is between
the invocation and the termination of the embedded-scan.

Now, it remains to show that the last line of the scan rou-
tine is well-defined. Let S be an invocation of scan(i1, .. ., r)
by some process p that reaches the last line of the scan rou-
tine. We must show that, for all j € {1,...,r}, there is an
i}, in the result of S’s embedded-scan FE that is equal to i ,
meaning that the result of E' contains enough information to
produce the output of S. If E terminates by condition (1),
then this is obvious: the components in the result of E are
identical to the arguments of S. Otherwise, if I/ terminates
by condition (2), the result of E was originally produced
by some other embedded-scan E’ that terminated by con-
dition (1). As argued above, the update U that performed
E' began after E. The getSet performed by U must there-
fore include process p in its output because p completed its
join operation before calling F. So the arguments given to
E’ must include all of S’s arguments and, thus, the view
returned by E’ and written by U will contain sufficient in-
formation to produce the output for S.

We now consider the step complexity of the update and
scan operations. Let Tjoin, Ticave and Tgetser be the step
complexities of the three active set operations. The num-
ber of processes returned by a getSet operation is always

bounded by C,. Thus, in an execution where all partial
scans access at most 7maqe components, the number of argu-
ments that an update passes to its embedded-scan is at most
Cs Tmas. An embedded-scan will satisfy termination condi-
tion (2) after performing at most 2C., + 1 collects. The time
for an update is thus O(éu -Cy - Tmaz) + Tgetset. The time
for a scan of r components is O((Cy, +1)-7) + Tjoin + Ticave-
In the best known solution to the active set problem [12], all
operations have step complexity O(C2). Thus, we have the
following theorem.

THEOREM 1. The algorithm in Figure 1 is a wait-free,
linearizable implementation of a partial snapshot object from
registers where processes perform O((Cy +1) -1+ C?) steps
per scan and O(C,, - Cs - Tmas + C?) steps per update.

If the implementation is altered to use small registers, as
mentioned above, the time complexity increases slightly. An
update performs an additional 0(6S ‘ Tmaaz) Steps to write
its view, sorted by indices, so this just increases its time by
a constant factor. A scan that satisfies exit condition (2)
can use binary searches within a recorded view to read the r
components it must return using an additional O(rlog C's +

7108 Tmax) steps.

4. USING STRONGER PRIMITIVES TO
ACHIEVE LOCAL PARTIAL SCANS

We describe here an implementation of a partial snapshot
object where scan operations are local, and updates are effi-
cient in an amortized sense. We do this using compare&swap
and fetch&increment objects in addition to registers.

A compare&swap object stores a value and provides an
operation compare&swap(old, new), which changes the ob-
ject’s value to mew if and only if it is currently equal to
old. The operation returns the previous value stored in the
object. A fetch&increment object stores an integer, and
provides an operation that atomically increments the value
and returns the new value. For convenience, we assume a
fetch&increment object can also be read without changing
its value.



We modify the snapshot algorithm in Figure 1 in two ways
to make use of these stronger primitives. First, we create
a new algorithm for the active set problem which accom-
plishes joins and leaves in a constant number of steps.
Secondly, we change the write performed by an update to
a compare&swap. This allows us to bound the number of
collects done by a partial scan of r components in terms of
r rather than the contention. Together, these changes yield
a wait-free snapshot algorithm where a partial scan finishes
in O(r?) steps. This increases the time required for update
operations, but the amortized time for updates and scans is
still reasonable: in particular, the amortized time depends
only on 7me, and the contention.

4.1 A New Active Set Algorithm

We design an active set algorithm where joins and leaves
happen very quickly. Since this is done by pushing most of
the real work into the getSet operations, the worst-case time
complexity of getSets becomes unbounded. However, in an
amortized sense, getSets are still efficient.

Our active set algorithm uis given in Figure 2. It uses
an array of registers I[1..], each element of which stores
the id of one active process. The algorithm also uses one
fetch&increment object H that stores the highest index in
I that has been written to, and one compare&swap object
C. To join the set, a process performs a fetch&increment on
H to obtain an index of a free entry of I into which it can
write its id. To leave the set, the process simply writes 0
into this entry of I. The compare&swap object C holds a list
of intervals of array indices that are known to contain only
0’s, which can be safely skipped by a process doing a getSet
operation. A getSet operation will read through the entries
of I up to the location indexed by H, skipping all entries
that appear in an interval of C, using the values of C' and
H that are read at the beginning of the getSet operation.
While reading I, any entries of I that have been vacated are
added to a local list of intervals that can be safely skipped,
and the process attempts to put this updated list into C'
using a compare&swap at the end of the getSet to ensure
that subsequent getSets do not have to check those vacated
entries of I again. While locally constructing the updated
list, any consecutive intervals that have no gaps between
them should be coalesced into a single interval in order to
keep the length of the list as small as possible. To make the
local operations on the list efficient, the intervals in the list
should be kept in sorted order.

Correctness of the active set algorithm follows from one
simple invariant: An index appears in an interval stored in
C only after the corresponding entry of I is set to 0 (and
that entry of I never changes thereafter). Thus the getSet
operation finds the id of every process that has completed
its join before the getSet begins. Furthermore, the getSet
does not return the id of any process whose leave is com-
pleted before the getSet begins since the leave erases the
process’s id from the array I.

The join and leave operations take O(1) steps. The
number of steps that have to be taken by a getSet can
be bounded only by the number of joins in the entire exe-
cution. For example, if k£ joins and leaves occur with no
getSet operations, a subsequent getSet will have to read
through all k£ entries of the I array. However, we shall show
that the amortized complexity of all operations is bounded
in terms of contention. When analyzing an active set al-

join
| — fetch&increment(H)
1]l — id

end join

leave
I[l] <0
end leave
getSet
oldC — C
h«—H
newC' « oldC'
result — {}
for j —1..h
if j is not in one of the intervals in oldC
entry «— I[j]
if entry = 0 then add j to an interval in newC
else result < result U {entry}
end if
end if
end for
compare&swap(oldC, newC') on object C
return result
end getSet

Figure 2: A wait-free active set algorithm

gorithm, active processes are counted, along with processes
performing operations, when measuring contention [3]. This
measure of contention is appropriate for the active set prob-
lem because it is usually studied as a subroutine in the con-
text of solving some larger problem, and active processes are
those that are in the middle of performing some operation
within the large problem; indeed, this is exactly what we
do when we implement partial snapshot objects using the
active set algorithm as a subroutine.

Consider any execution. A getSet operation G reads at
most C'(G) non-zero values. If a getSet operation reads a 0
value in I, this read is charged to the leave operation that
wrote the 0. Thus the amortized time per getSet is bounded
by C. The amortized time per join is just its actual cost,
which is O(1). We can also show the amortized cost per
leave is O(C)). Let Ty be the beginning of the execution.
Let T; be the moment that the ith successful compare&swap
is performed on C'. Notice that no getSet starts after T; and
ends before T; 11 (since then its compare&swap on C' would
be successful, contradicting the definition of the T;’s). Thus,
every getSet that takes steps between 7; and 7541 is running
at time T; or at time T;11. If a leave operation writes 0 in
I[l] between T; and Tiy1, then, at all times beyond T;42,
is included in some interval stored in C'. Thus, the getSets
that can charge a read to this leave operation are all active
either at T; or T;4+1 or T;+2. Each such operation can charge
at most one read to the leave operation. Thus, each leave
operation is charged for at most 3C reads and its overall
amortized complexity is at most 3C + 1. This analysis is
summarized in the following theorem.

THEOREM 2. The algorithm in Figure 2 is a wait-free so-
lution to the active set problem in which joins and leaves
take O(1) steps. Moreover, the amortized time complezity of

any execution is O(1) per join operation, O(C) per leave



operation and O(C) per getSet operation.

We remark that the size of the compare&swap object in
this algorithm is quite large: it could have to store up to

O(C) intervals. If this is a concern, we can instead store the

list of intervals in a set of O(C) registers and store in C a
pointer to this set of registers. This just adds O(C) steps to
the complexity of getSet operations but it ensures that all
objects used are of a reasonable size.

Although our algorithm achieves our primary goal of hav-
ing good time complexity, it does so using an unbounded
number of registers. When a bound on the number of joins
that can be performed in an execution is known a priori,
the space can be bounded. Finding a way to recycle the
registers in the case where no bound is known is left as an
open question.

4.2 A Snapshot Algorithm with Local Scans

We now give our partial snapshot algorithm that uses the
new active set algorithm. The snapshot algorithm uses an
array R[1..m] of compare&swap objects, and an array S[1..n]
of single-writer registers. Pseudocode is given in Figure 3.
Besides using our new implementation of join, leave and
getSet, there are only a few ways that this algorithm dif-
fers from the one in Figure 1: the termination condition
(2) for embedded-scans is different, and updates perform a
compared&swap in place of a write.

If an update U does a successful compare&swap on R,
it is linearized when it performs that step. If U’s com-
pare&swap is unsuccessful, then there must have been some
other successful compare&swap by another process updat-
ing the same component of the snapshot object between U’s
first read and U’s compare&swap; U is linearized immedi-
ately before that successful compare&swap. All embedded-
scan and scan operations are linearized as in the algorithm
of Figure 1.

The proof of correctness follows the same line of reasoning
as in Section 3. Here, we describe only the points at which
the proof differs. If an update performs an unsuccessful
compare&swap, it leaves no trace of its existence in shared
memory. This means that no scan will ever see the value of
this update. This is correct, since the update is linearized
immediately before another update to the same component.
The argument that the linearization point assigned to each
embedded-scan F that terminates by condition (2) is within
the interval of FE is slightly different. If £ has seen three
different values in the same location, the second one was put
into the object during the operation E. This means that the
third value was put into the object by an update that read
the object after it contained the second value, so it is safe
for E to borrow the results of that update’s embedded-scan
because that embedded-scan began after E did.

We now look at the time complexity of this implemen-
tation. The worst-case time for a scan of r components
is O(r?), since condition (2) of its embedded-scan will be
satisfied after 2r 4+ 1 collects and the join and leave sub-
routines take O(1) time. Since the update uses the getSet
operation, there is no bound on the number of steps that
an individual update may take in the worst case. How-
ever, we can again bound the amortized time per opera-
tion using the amortized analysis of the active set subrou-
tines. Let rmas be the maximum number of components
accessed by one partial scan in an execution. Since the num-
ber of components an embedded-scan must read is bounded

by Cs - Tmaz, the time complexity of an embedded-scan is
0(€§ -12,42). Using this, together with the amortized com-

plexity of active set operations found in Section 4.1, we get
an amortized complexity of O(r? + C,) per scan operation

and O(éi TEae+Cs) = O(éi -12,42) Der update operation.

THEOREM 3. The algorithm in Figure 3 is a wait-free,
linearizable implementation of a partial snapshot object with
worst-case time O(r2) for partial scans. Moreover, the amor-
tized complexity of any execution is O(?"2 +C‘u) per scan and

O(éi 1r2,,2) per update.

Using smaller objects, as described in the comments fol-

lowing Theorems 1 and 2 would add O(C’ - Tmaz) steps to

each update and O(r1og(C's - Tmaz)) steps to each scan.

S. RELATED WORK

There are implementations of ordinary adaptive snapshots
from registers, whose step complexity depends only on the
point contention [9, 12, 4]. As discussed in the introduc-
tion, these can be used to implement a wait-free single-writer
partial snapshot object by simply ignoring irrelevant com-
ponents, with O(Cf) step complexity per scan and update
(using [12]). Although our implementation of partial snap-
shots from registers has higher step complexity, it provides
a blueprint for the local algorithm using stronger primitives.
In addition, our implementation supports multi-writer snap-
shot objects and stores smaller values.

While most algorithms for atomic snapshots use only read
and write operations, a few papers studied implementations
of atomic snapshots from primitives that are stronger than
reads and writes. Attiya et al. [10] present an atomic snap-
shot implementation that uses O(n) steps for a combined
update and scan operation; the algorithm uses 2-processor
test&set registers. Riany et al. [22] implement a single-
writer atomic snapshot object with O(1) time complexity for
an update and O(n) time complexity for a scan; their algo-
rithm uses compare&swap, fetch&increment, and fetch&dec-
rement primitives. Jayanti [21] shows that the same com-
plexity bounds can also be achieved for the more general,
multi-writer atomic snapshot object; this algorithm uses
only compare&swaps. When the number of components m is
smaller than the number of updaters n, Fatourou and Kalli-
manis [14] use compare&swaps to implement a multi-writer
atomic snapshot object with O(1) time complexity for an
update and O(m) time complexity for a scan.

These algorithms provide a complete view of all the com-
ponents: none of them provides partial scans with lower
time complexity, depending only on the number of compo-
nents scanned.

Some adaptive implementations of the collect abstraction
use strong synchronization primitives [2, 18], which can be
used to obtain adaptive implementations of atomic snapshot
objects (at least single-writer). Again, none of these imple-
mentations is local, in the sense that scanning a smaller
subset of the components does not have a cost proportional
to the total number of components. The collect algorithm
of Herlihy et al. [18] is dynamic and can be translated into
an active set algorithm, which bears some similarities to
our active set algorithm. However, because we are less con-
cerned about space complexity, we use an array rather than
a linked list to make our join and leave run in constant



embedded-scan(ii,.. ., i)
repeatedly read R[i1], ..., R[¢,] until either

(1) two sets of reads return the same vector, (z1,...,zr);

then return ((i;, first field of z;))1<j<r,

or (2) three different values have been seen in some location;
then let (v, view, ¢,id) be the third value seen in that location.

return view
end embedded-scan

update(i, v)
old — RJi]
scanners <« getSet

(ila"'7ir)<_ U S[p]

pEscanners
view < embedded-scan(i1,. .., %)

compare&swap(old, (v, view, counter, id)) on object R][i]

if the compare&swap was successful then counter < counter + 1

end update

scan(i1,...,4r)
Slid] — {i1,... 40}
join
((i1,v1),. .., (i, vk)) < embedded-scan(i1,...,%,)
leave
component j of the result vector is v,, where iy = 4,
end scan

Figure 3: Partial snapshot algorithm with fast scans.

time, allowing us to obtain a local implementation of a par-
tial scan. In addition, their algorithm is lock-free whereas
ours is wait-free.

Jayanti [20] presented the f-array, an object with m com-
ponents; a process can either update a component of the
array or obtain the value of some function f applied to all
the components of the array. He presents an implementa-
tion of f-array, in which an update operations requires O(m)
steps, while f operation on all the components is performed
in O(1) steps; this assumes an LL/SC object that can store
any value of the function f. For certain aggregation func-
tions f, the update operation can be performed in O(logn)
steps. The multi-writer snapshot object is a simple special
case of an f-array; the function f can also be specified so
that an f-array provides an active set algorithm. However,
in these cases, the object to which LL/SC operations are
applied is large, since its size is proportional to the number
of processes or the number of components of the snapshot
object; moreover, the improvement in the scan operation is
achieved by making the cost of an update proportional to
the size of the f-array, regardless of the current contention
and number of components scanned.

6. CONCLUDING REMARKS

We have introduced partial snapshots, a generalized ver-
sion of snapshots, which we believe could be widely appli-
cable. We have given an algorithm for implementing these
partial snapshots in a local manner, using compare&swap
as well as fetch&increment. Finding a local implementa-
tion of partial snapshots that uses only reads and writes, or
even just compare&swap, or proving this is impossible, is the
main technical open question we leave for further research.

Other ways in which our algorithms might be improved

include adapting them to use smaller objects, bounding the
timestamps they use, and possibly improving the complexity
bounds to depend on point contention rather than interval
contention. We were focusing on time complexity, without
being overly concerned with space complexity. In particu-
lar, the number of registers used by our second algorithm
is bounded only by the number of operations performed in
an execution. It would be interesting to see whether the
registers could be recycled to improve the space complexity.

Further research using different approaches to implement-
ing partial snapshots may yield more efficient or more prac-
tical algorithms. Lower bounds on the complexity of local
implementations would also be of great interest, particularly
because they would have implications on the complexity of
implementing transactional memory [19, 24]. Indeed, a par-
tial scan can be viewed as a read-only transaction that de-
clares the objects it wishes to access in advance. Any lower
bound on the implementation of a partial scan would yield
a lower bound on the implementation of such transactions.
In fact, it would be interesting to see how efficient imple-
mentations of partial snapshots can help devise efficient im-
plementations of general transaction memory systems, along
the lines of [13, 23].

We also hope this work will help revive interest in the
active set problem, which elegantly captures a fundamen-
tal problem in distributed computing, and was very useful
in understanding how to achieve local implementations of
partial snapshots.
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