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Abstract 

In this paper, we propose a new distributed algorithm, called Directed Transmission Method 
(DTM). DTM is a fully asynchronous and continuous-time iterative algorithm to solve SPD 
sparse linear system. As an architecture-aware algorithm, DTM could be freely running on all 
kinds of heterogeneous parallel computer. We proved that DTM is convergent by making use 
of the final-value theorem of Laplacian Transformation. Numerical experiments show that 
DTM is stable and efficient.  
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1. Introduction 

Solving the large sparse linear system, =Ax b , is fundamental in the scientific computing. 
When the coefficient matrix A  is symmetric-positive-definite (SPD), the linear system is 
called the SPD linear system, which is widely encountered in engineering applications [1]. To 
solve large scale SPD systems, Domain Decomposition Method (DDM) is frequently used . 
DDM could be classified into Schur Complement method, Additive Schwarz method (or 
block-Jacobi) and Multiplicative Schwarz method (or block-Gauss-Seidel) [2, 3, 4]. Most of 
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these distributed numerical algorithms acquire synchronization. 

  Since synchronization is troublesome and time-consuming work, researchers have made 
many efforts for the asynchronous algorithms [17, 18, 19]. However, asynchronous methods 
were not considered mainstream by researchers in numerical analysis [18]. The main reason 
was that the performances of the traditional asynchronous algorithms, e.g. asynchronous 
block-Jacobi, are not comparable to the synchronous ones.  

Directed transmission method (DTM) is a new asynchronous iterative numerical algorithm 
to solve sparse linear SPD systems [20]. It does not need any synchronization among 
processors when doing the distributed computing.  

As a continuous-time iterative algorithm, the iterative formula of DTM is different from 
the traditional iterative algorithms, e.g. Gauss-Jacobi, which usually have the discrete-time 

iterative form, i.e. ( )T T1 1 1
1 2 1 2, , , ,k k k k k k

n nx x x f x x x− − −   =      . In DTM, the continuous-time 

variable t  is used instead of the iterative index k , and the continuous-time iterative form of 

[ ] [ ]( )T T

1 2 1 1 2 2( ), ( ), ( ) ( ), ( ), ( )n n nx t x t x t f x t x t x tτ τ τ= − − −  , iτ +∈ , 1, 2, ,i n=  , is used.  

Here iτ  are positive real values, called the transmission delay of ( )ix t . Usually, 

,  1, 2, ,i i nτ =  , are different; if we set 121 ==== nτττ  , then DTM is degenerated into 

a discrete-time iterative algorithm, which is called Virtual Transmission Method (VTM). 
VTM is a special case of DTM, and we introduced VTM in [6]. DTM could be considered as 
a generalization of VTM. 

DTM is an architecture-aware algorithm. In virtue of the directed transmission line, we 
may get a perfect one-to-one mapping from the transmission delay of the distributed 
algorithm to the communication delay of the distributed computer. This is called the 
Algorithm-Architecture Delay Mapping. This concept will be further described in this paper.  

 

Figure 1. Illustration of the N2N communication model. (A) Regular N2N 
communication among processors. (B) Irregular N2N communication among 
processors. 

DTM employs the Neighbor-To-Neighbor (N2N) communication model, which requires 
no global broadcasting but only local communication between neighboring processors, as 
shown in Fig. 1. The N2N model could be recognized as a kind of Peer-To-Peer (P2P) model, 
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but it is much simpler. 

DTM is inspired by the behavior of transmission lines from microwave network. The basic 
idea of DTM is to add Directed Transmission Lines (DTLs) into the graph of the sparse linear 
system to realize the asynchronous distributed computing.  

This paper is organized as follows. Section 2 introduces the Directed Transmission Line 
(DTL). Section 3 defines the electric graph. Section 4 describes how to partition the electric 
graph by Electric Vertex Splitting (EVS). Section 5 details the algorithm of DTM. Section 6 
presents the convergence theory for DTM. Numerical experiments are shown in Section 7. 
We conclude this work in Section 8. 

2. Directed Transmission Line (DTL) 

Transmission line is a magic physical element in electrical engineering [9, 10, 11]. The 
physical transmission line is undirected. In DTM, we bring in the directed transmission line 
(DTL), whose mathematical description is shown in (2.1). It should be noted that DTL does 
not exist in the nature, and it is an algorithmic element created by us.  

(2.1)               ( ) ( ) ( ) ( )out out in inU t Z I t U t Z I tτ τ+ ⋅ = − − ⋅ −  

where ( )outU t  and ( )outI t  represent the potential and current of the output port, while 

( )inU t  and ( )inI t  represent those of the input port. τ  is the propagation delay from the 

input to the output. Z  is the characteristic impedance of DTL, which must be positive. (2.1) 
is called the Directed Transmission Delay Equation. 

If the input and output of one DTL are the output and input of another DTL, respectively, 
and they have the same characteristic impedance, these two DTLs are called Directed 
Transmission Lines Pair (DTLP). The mathematical description of DTLP is given in (2.2). 

(2.2)           1 1 2 2 1 2 2 1

2 2 1 1 2 1 1 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

U t Z I t U t Z I t
U t Z I t U t Z I t

τ τ
τ τ

→ →

→ →

+ ⋅ = − − ⋅ −
 + ⋅ = − − ⋅ −

 

Where 2 1τ →  is the propagation delay of the DTL from Port 2 to Port 1, and 1 2τ →  is the 

propagation delay of the DTL from Port 1 to Port 2. Fig. 2C illustrates the symbol of DTLP. 

It should be noticed that 2 1τ →  and 1 2τ →  may be different. Further, the physical 

transmission line could be recognized as a special DTLP with the feature of symmetric 
propagation delay, i.e. 2 1 1 2τ τ→ →=  [9, 10, 11]. Fig. 2 illustrates the symbols of DTL and 

DTLP. 

 

Figure 2. Symbols of DTL and DTLP. (A) The symbol of DTL from Port 1 to Port 
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2. (B) DTLP between Port 1 and Port 2. (C) The simplified symbol of DTLP 
between Port 1 and Port 2. 

Why do we prefer DTL rather than the undirected one? This is because that the 
communication from one processor to another is directed, i.e. the communication delay from 
Processor A to B may be different from that from Processor B to A. In virtue of DTL, we may 
get a perfect one-to-one mapping from the transmission delay of DTL to the communication 
delay of the digital data link between processors. This is concept of Algorithm-Architecture 
Delay Mapping. 

3. Electric Graph 

Assume there is an n-dimension symmetric linear system,  

(3.1)                                   =Ax b                       

where T
1( , , )nx x=x  , T

1( , )nb b=b  , A is an n-dimension symmetric matrix.  

According to the graph theory of matrix, A  could be represented by an undirected graph 
G  [2, 3]. Assume i j≠ , if 0ija ≠ , there is an edge ijE  between iV  and jV  in the G ; 

otherwise, iV  and jV  are not connected. 

In this section, we define the electric graph eG  of the symmetric linear system (3.1). We 

call ija  the weight of the edge ijE , if i j≠ . We call iia  the weight of iV , and call ib  the 

source of iV . ix  is called the potential of iV . It is easy to know that an electric graph is 

one-to-one mapped to a symmetric linear system. eG  is defined to be SPD, iff the 

coefficient matrix A  is SPD. All these concepts and terminology will be useful to describe 
the DTM algorithm in the following sections. 

Example 3.1: The electric graph of (3.2) is shown in Fig. 3. 
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Figure 3. Illustration of the electric graph of the symmetric linear system (3.2). 
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4. Electric Vertex Splitting (EVS) 

In this section, we partition the electric graph eG  into a number of separated subgraphs by a 

new splitting technique, called Electric Vertex Splitting (EVS), which is also presented in [6]. 
EVS is called wire tearing when partitioning the circuit. 

The basic idea of this partitioning technique is based on the Kirchhoff's Current Law from 
circuit theory [12, 16, 17, 18, 19]. This concept is illustrated in Fig. 4. 

 

Figure 4. Illustration of EVS. (A) The original node, with current 
flowing through it. (B) Splitting this node. (C) The node is split into a 
pair of twin nodes, and the currents are disclosed. (D) Simplified symbol 
of the inflow currents. 

There are four steps to do EVS. 

Step-1, Set the splitting boundary BG . eV G∈  is called boundary vertex iff BV G∈ ; 

otherwise, V is called inner vertex.  

Step-2, Split each boundary vertex into two vertices, which are called twin vertices. 

Step-3, Split the weight and source of each boundary vertex, and split the weight of edge 
on the boundary, i.e. ijE , if eGEij ∈  and B,i jV V G∈ . 

Step-4, Add new variables, called inflow currents, ω , to represent the influence coming 
from the adjacent subgraphs.  

After these four steps, the original electric graph is split into N subgraphs. If there is 
inflow current flowing into one vertex, then this vertex is called a port. As the result, twin 
vertices are also the ports of subgraphs. 

Example 4.1: We split the electric graph eG  of the linear system (3.2). 2V  and 3V  are set 

to be the boundary BG  and we split the weights and sources of them, then we get 4 ports, 

2aP , 2bP , 3aP  and 3bP , with currents 2aω , 2bω , 3aω  and 3bω  flowing into them, 

respectively. After that eG  is split into two subgraphs. Finally we obtain two subsystems 

(4.1) and (4.2). 
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(4.1)                 
1

2a 2a

3a 3a

5 1 1 1 0

1 2.5 0.9 0.8

1 0.9 3.3 1.6

x
x
x

ω
ω

− −       
      − − = +      

      − −      

 

(4.2)                 
2b 2b

3b 3b

4

3.5 1.1 1 1.2

1.1 3.7 2 1.4

1 2 8 4 0

x
x
x

ω
ω

− −       
      − − = +      

      − −      

 

 

Figure 5. Illustration of EVS. 

Assume the original graph eG  is partitioned into N separated subgraphs, 

, 1, 2, ,jM j N=  . For two subgraphs, if each of them has at least one port belonging to the 

same pair of twin vertices, they are called adjacent subgraphs. 

According to Section 3, each subgraph could be mapped back into a linear system. To 
express this linear system, we define portj ,Γ  to be an ordered set of the ports in jM , and 

innerj ,Γ  to be an ordered set of the inner vertices in jM . Then, we define ju  to be the 

potential vector of ,j portΓ , and jy  to be the potential vector of innerj ,Γ . Then, the subsystem 

for each subgraph could be expressed by the following equation: 

(4.3)                  
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where  1,2, ,j N=  . jω  is the inflow current vector of ports. The inflow current of an 

inner vertex is zero. ju  and jω  are called the local boundary conditions of jM . 

It should be noted that the split vertices could be split again and again, which are called 
multilevel wire tearing, as seen in Fig. 6, in contrast to the level-one wire tearing mentioned 
above. The level-two or level-three wire tearing might be applied to partitioning 2- or 
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3-dimention physical problems. Because of the limited space, we mainly focus on the 
level-one wire tearing. 

 

Figure 6. Illustration of the multilevel wire tearing. (A) The original 
vertex. (B) The twin vertices after the level-one splitting. (C) Four 
vertices after the level-two splitting. (D) Eight vertices after the 
level-three splitting. 

5. DTM 

Assume that the electric graph eG  has been partitioned into N subgraphs, then we insert 

one DTLP between each pair of twin vertices, which means that we use the directed 
Transmission Delay Equations as the distributedly-iterative relationship between the 
boundary conditions of the twin vertices. A simple example is given as below. 

Example 5.1: This example is based on Example 4.2. After splitting the original graph into 
two subgraphs, we are going to compute this problem using two processors. Subgraph 1 is 
located at Processor A, and Subgraph 2 is located at Processor B. Here we assume that the 
communication delay from Processor A to B is 6.7 μs and that from Processor B to A is 2.9 
μs. Fig. 7A illustrates the architecture of this simple parallel computer. 

We insert one DTLP between 2aV  and 2bV , as shown in Fig. 7A. Their characteristic 

impedance 2Z  between 2aV  and 2bV  is set to be 0.2. Then we insert another pair between 

3aV  and 3bV , and the characteristic impedance 3Z  of them are set to be 0.1. 

 

Figure 7. Illustration of the algorithm-architecture delay mapping of DTM. (A) 
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The architecture of the parallel computer. (B) Illustration of inserting DTLP 
between each pair of twin vertices. 

The propagation delays of DTL from Subgraph 1 to 2 are set to be 6.7 μs, which is the 
same as the communication delay from Processor A to B, and the propagation delays of DTL 
from Subgraph 2 to 1 are set to be 2.9 μs. This is an instance of the algorithm-architecture 
delay mapping, as mentioned in Section 1 and 2.  

According to (2.2), the mathematical equation of the DTLP between 2aV  and 2bV  is: 

(5.1)         




−⋅−−=⋅+
−⋅−−=⋅+

)7.6(2.0)7.6()(2.0)(

)9.2(2.0)9.2()(2.0)(

a2a2b2b2

b2b2a2a2

ttxttx
ttxttx

ωω
ωω

  

And the mathematical equation of the DTLP between 3aV  and 3bV  is: 

(5.2)         3a 3a 3b 3b

3b 3b 3a 3a

( ) 0.1 ( ) ( 2.9) 0.1 ( 2.9)

( ) 0.1 ( ) ( 6.7) 0.1 ( 6.7)

x t t x t t
x t t x t t

ω ω
ω ω

+ ⋅ = − − ⋅ −
 + ⋅ = − − ⋅ −

  

With (4.1), (5.1) and (5.2), the linear system of Subgraph 1, running on Processor A, could 
be expressed as below: 

(5.3)            
















−⋅−−=⋅+
−⋅−−=⋅+
















+
















=

































−−
−−
−−

)9.2(1.0)9.2()(1.0)(

)9.2(2.0)9.2()(2.0)(

)(

)(

0

6.1

8.0

1

)(

)(

)(

3.39.01

9.05.21

115

3b3b3a3a

b2b2a2a2

3a

a2

a3

a2

1

ttxttx
ttxttx

t
t

tx
tx
tx

ωω
ωω

ω
ω

 

Eliminate 2a ( )tω  and 2b ( )tω  from (5.3), we get following simplified description, 

(5.4)     
1

2a 2b 2b

3a 3b 3b

( )5 1 1 1

1 7.5 0.9 ( ) 0.8 5 ( 2.9) ( 2.9)

1 0.9 13.3 ( ) 1.6 10 ( 2.9) ( 2.9)

x t
x t x t t
x t x t t

ω
ω

− −     
    − − = + ⋅ − − −    

    − − + ⋅ − − −    

 





−−−+−=
−−−+−=

)9.2()9.2(10)(10)(

)9.2()9.2(5)(5)(

3333

2222

ttxtxt
ttxtxt

bbaa

bbaa

ωω
ωω

 

Using the same way, we could combine (4.2), (5.1) and (5.2) to get the simplified description 
of Subgraph 2 running on Processor B: 

(5.5)     
2b 2a 2a

3b 3a 3a

4

( ) 1.2 5 ( 6.7) ( 6.7)8.5 1.1 1

1.1 13.7 2 ( ) 1.4 10 ( 6.7) ( 6.7)

1 2 8 ( ) 4

x t x t t
x t x t t
x t

ω
ω

+ ⋅ − − −− −     
    − − = + ⋅ − − −    

    − −    

 





−−−+−=
−−−+−=

)7.6()7.6(10)(10)(

)7.6()7.6(5)(5)(

3333

2222

ttxtxt
ttxtxt

aabb

aabb

ωω
ωω

 

  At the right hand side of (5.4), the time-delay variables are the previous computing result 
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received from Processor B, so they are known at the current time. Processor A solves (5.4) to 
get the potentials and currents of Subgraph 1 at the current time, and then send them to 
Processor B. This is the computing process of Processor A, and so is that of Processor B.  

At last, we set the initial value of (5.4) and (5.5) in (5.6) and do the asynchronous and 
distributed computing. The result is shown in Fig. 8. 

(5.6)         2a 2b 3a 3b

2a 2b 3a 3b

(0) (0) (0) (0) 0

(0) (0) (0) (0) 0

x x x x
ω ω ω ω

= = = =
 = = = =

 

 

Figure 8. Computing result of DTM 

The choice of the characteristic impedance of DTLP, i.e. 2Z  and 3Z , would affect the 

convergence speed of the algorithm. Fig. 9 illustrates this effect. As the result, we could 
speedup DTM if the characteristic impedances of DTLPs are carefully chosen. 

  After illustrating DTM by an example, we give the mathematical description of this 
algorithm. Assume that the electric graph eG  has been partitioned into N subgraphs, 

, 1, 2, ,jM j N=  , then we insert one DTLP between each pair of twin vertices. This means 

that we use the Directed Transmission Delay Equations as the boundary conditions for (4.3).  

In the previous section, we have defined ,j portΓ  as an ordered set of the ports of jM , and 

we defined ju  to be the potential vector of ,j portΓ , and jy  to be the potential vector of 

innerj ,Γ . Further, we define twinj ,Γ  to be another ordered set of ports whose twin vertices 

belong to ,j portΓ . The vertices in ,j portΓ  and their corresponding twin vertices in twinj ,Γ  

have the same order. The vertices of twinj ,Γ  belong to the adjacent subgraphs of jM . 
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Figure 9. RMS error of DTM when t = 100 μs 

Define ,j twinu  as the potential vector of twinj ,Γ , and ,j twinω  as the current vector of 

twinj ,Γ . Then, (5.7) expresses the Directed Transmission Delay Equations of DTL pointed to 

jM . Note that DTL apart from jM  are not considered here, and they would be considered 

by the subgraphs they point to. 

(5.7)            )()()()( ,, τωZτuωZu −⋅−−=⋅+ tttt twinjjtwinjjjj  

Where t is the continuous-time variable. r  is the total number of DTL pointed to jM . iτ , 

1, ,i r=  , is the propagation delays of the i-th DTL. 

[ ]T
21 )()()()( tututut rj =u , 

[ ]T

1 2( ) ( ) ( ) ( )j rt t t tω ω ω=ω  , 

[ ]T
,2,21,1, )()()()( rtwinrtwintwintwinj tututut τττ −−−=− τu , 

[ ]T
,2,21,1, )()()()( rtwinrtwintwintwinj tttt τωτωτω −−−=− τω . 

1 r( , , )j diag z z=Z  , is a positive diagonal matrix, called the local characteristic impedance 

matrix of jM . Its diagonal elements are the characteristic impedances of DTL. Note that the 

characteristic impedances of the DTL belonging to the same DTLP should be same. 
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(5.7) is a continuous-time iterative relation, and , ( )j twin t −u τ  and , ( )j twin t −ω τ  are the 

previous computing results passed from the adjacent subgraphs of jM , which are called the 

remote boundary condition of jM . Merge (5.7) and (4.3), we get: 

(5.8)         
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where I  is the identity matrix. 

Removing ( )j tω  from (5.8), we obtain the following SPD system. 

(5.9)        { }11
, ,( ) ( )( )

( )
j j j twin j j twinjj j j

jj j j

t tt
t

−−  + − − ⋅ −   
    

       

f Z u τ Z ω τuC + Z E
=

yF D g
 

)()()()( ,,
11 τωτuZuZω −−−+−= −− tttt twinjtwinjjj  

(5.9) is called the local system of jM , which should be solved when the remote boundary 

condition is updated. (5.9) could be solved by Sparse or Dense Cholesky, CG, MG, etc.  

It is noticeable that the coefficient matrix of (5.9) is constant during computing process, 
and this is the key to speed up DTM. For instance, if we use the Cholesky factorization to 
solve the local system, actually only once factorization should be done at the beginning; as 
long as we get the Cholesky factor, it is a piece of cake to solve (5.9) since we just need to do 
the forward and backward substitution in the following time.  

If all the DTLs have an equal propagation delay, noted by 1 time unit, then (5.9) could be 
re-expressed as the discrete-time iterative form (5.10), which is the local system of VTM [6]. 

(5.10)          
-1 -1 -1 -1k k k

j j j j j j j,twin j j,twin
k

j j j j

     +
     
          

C + Z E u f Z (u - Z ω )
=

F D y g
 

1
,

1
,

11 −−−− −⋅+⋅−= k
twinj

k
twinj

k
j

k
j ωuZuZω  

Referring to (5.4), (5.5) and (5.9), it is noticeable that DTM is different from the traditional 
iterative algorithms, i.e. Gauss Jacobi, which usually have the discrete-time iterative form, i.e. 

1( )k kf −=x x . In DTM, the continuous-time variable t  is used instead of the iterative index 
k . This indicates that DTM is a continuous-time iterative algorithm, which is more flexible 
than the traditional discrete-time algorithms.  

Table 1 gives the detail of the DTM algorithm. It should be noted that there is no 
synchronization step, no broadcasting, but only N2N communication. Once one processor 
receives the remote boundary conditions from one or more adjacent processors, it could 
immediately do its local computation without waiting for the slowest processor. DTM is 
suited to be implemented using the message passing approach [13]. 

Table 1.  Algorithm of DTM 
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Assume the original electric graph is partitioned into N subgraphs. For Subgraph 

jM , 1, ,j N=  , do in parallel: 

1.  Guess the initial local boundary condition, (0)ju  and (0)jω , of each port. 

2.  Communicate with adjacent subgraphs, to make an agreement of the 
characteristic impedances for each DTLP. As the result, jZ  is set. 

3.  Wait until receiving part of the remote boundary conditions, , ( )j twin t −u τ  

and , ( )j twin t −ω τ , from one or more of the adjacent subgraphs. 

3.1     Solve the local system with the updated remote boundary condition and 
obtain the new local boundary condition, ( )j tu  and ( )j tω . 

3.2     Send the new local boundary condition to the adjacent subgraphs of 

jM . 

3.3.     If convergent, then break. 

4.  EndWait. 

 

Figure 10. Illustration of the computing process of DTM. (A) The 
original electric graph of the sparse linear system. (B) Partition the 
original graph into N subgraphs by EVS. (C) Add DTLs between 
adjacent subgraphs. (D) Map each subgraph onto one processor, and 
map each DTL to a directed communication path. 

6. Convergence theory 

Theorem 6.1 (Convergence): Assume an SPD linear system is partitioned into N subgraphs 
by EVS. If there is at least one SPD subgraph, and the other subgraphs are 
symmetric-non-negative-definite (SNND), then DTM converges to the solution of the 
original system. The characteristic impedances of DTLP could be set to arbitrary positive 
values. 
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This conclusion is valid for both the level-one and multilevel wire tearing. For the case of 
level-one splitting, a basic proof is given in the Appendix according to the final-value 
theorem of Laplacian transformation [14].  

7. Numerical experiments 

In this section, we test DTM on DTM toolbox, which is developed by us under MATLAB & 
SIMULINK [15, 16]. This toolbox gives us an easy way to simulate the behavior of DTM on 
heterogeneous parallel platform. 

 

Figure 11. (A) Heterogeneous topology of 16 processors in a 4x4 mesh. The N2N 
communication delays are also illustrated (unit: ms). (B) Bar chart of the N2N 
communication delays. 

We first test DTM on 16 processors configured as a 4x4 mesh shown in Fig. 11. Here the 
communication network is very unsymmetrical. The maximum delay (99ms) is about 9 times 
larger than the minimum delay (10ms) and the delay from Processor Pk to Pj is quite different 
from the delay from Processor Pj to Pk.  

This is a terrible parallel environment for the parallel algorithms which need 
synchronization and broadcasting, while it is cozy for DTM. Fig. 12 shows the convergence 
curve of DTM to solve linear systems on 16 processors. The sparse SPD linear systems for 
test are randomly generated and regularly partitioned using the level-one and level-two 
mixed EVS to achieve load balance.  
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Figure 12. Computing result of DTM on 16 processors 

 Then we test DTM on 64 processors configured as an 8x8 mesh, as shown in Fig. 13. The 
N2N communication delays are uniformly distributed between 10ms and 100ms. Fig. 14 
illustrates the computational errors of two sparse linear systems, having 1089 and 4225 
unknowns, respectively. 

 

Figure 13. (A) Heterogeneous topology of the 64 processors in an 8×8 mesh. 
The N2N communication delays are different. (B) Bar chart of the N2N 
communication delays.  
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Figure 14. Computing result of DTM on 64 processors.  

Theoretically, the dimension of the sparse linear system being solved by DTM could be 
arbitrarily-large, and the processors could be arbitrary number. Limited by our hardware, here 
we only test n = 289, 1089 and 4225 on 16 and 64 processors. 

8. Conclusions 

  In this paper, we propose a new parallel algorithm, DTM, to solve the sparse SPD linear 
systems, and we bring in EVS to partition the electric graph of the symmetric linear system. 
We present the convergence theorem, which makes DTM feasible for any kinds of SPD 
systems. 

DTM is an asynchronous, distributed and continuous-time iterative algorithm and it is able 
to be freely running on all kinds of heterogeneous parallel computers, e.g. multicore or 
manycore microprocessor, clusters, grids, clouds, Internet, ad hoc network and wireless 
network.  

Compared to VTM, the convergence speed of DTM is slower. We wonder if there is some 
way to lessen the speed gap between DTM and VTM. Since VTM could be considered as a 
global synchronous version of DTM, we guess that a tradeoff between DTM and VTM could 
be made by some sync-async-mixed approach in the physical domain (e.g. 
global-async-local-sync) or time domain (e.g. async-sync-async-sync, synchronizing once 
after a period of asynchronization). 
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Appendix.  Proof of the convergence theorem 
Here we prove a simple version of the convergence theory, and we assume that there is no 
inner vertex and all the vertices are split. Actually, if there were inner vertices, they could be 
eliminated and we still able to get (A.1). 

(A.1)                ⋅ =A u b  

Assume that the SPD system (A.1) is partitioned into two SPD subgraphs (A.2) by 
level-one wire tearing technique, and the characteristic impedances of DTLPs are set to be 
arbitrary positive value. 

(A.2)          1 1 1 1

2 2 2 2

( ) ( )

( ) ( )

t t
t t

= +
 = +

A u b ω

A u b ω
 

where 1 2= +A A A , 1 2= +b b b . The DTLs could be described as below: 

(A.3)        1 1 2 2

2 2 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

t t t t
t t t t

+ ⋅ = − − ⋅ −
 + ⋅ = − − ⋅ −

u Z ω u τ Z ω τ

u Z ω u σ Z ω σ
 

where 1( , , )rdiag z z=Z  , which is the characteristic impedance matrix. Below is another 

description of convergence theorem when N = 2. 

Lemma A.1: Suppose the solutions of (A.2) by DTM on two parallel processors are 1( )tu  

and 2 ( )tu . 0, 1,2, ,iz i r∀ > =  , we have 

              1
1 2lim ( ) lim ( )

t t
t t −

→+∞ →+∞
= =u u A b  

To prove Lemma A.1, we prove following Lemma at first. 

Lemma A.2: A is a r×r SPD martrix, Z is a r×r positive diagonal martrix, ∃Q , T =QQ I , 

and 
1T −

=ZA ZQTQ Z , where ( )1 2, , rdiag t t t=T  , it  is the i-th eigen value of ZA. 

Proof:  
As ZA Z  is symmetric and positive definite, ∃Q , T =QQ I , and T=ZA Z QTQ , 

where ( )1 2, , rdiag t t t=T  , it  is the i-th eigen value of ZA Z . Obviously, 

ZA Z =ZA, thus it  is the i-th eigenvalue of ZA too. Therefore we have 
1 1T− −

= =ZA Z ZA Z Z ZQTQ Z  
■ 
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Proof of Lemma A.1: 
We perform Laplacian transformation to (A.2) at first 

(A.4)            










+=⋅

+=⋅

)()(

)()(

2
2

22

1
1

11

s
s

s

s
s

s

Ω
b

UA

Ω
b

UA
 

(A.5)        






⋅⋅−⋅=⋅+

⋅⋅−⋅=⋅+
−−

−−

)()()()(

)()()()(

1122

2211

ssss

ssss
ss

ss

ee

ee

ΩZUΩZU

ΩZUΩZU

σσ

ττ

 

Where 1( , , )rs ss diag e ee τ τ− −− =τ  . 1( , , )rs ss diag e ee σ σ− −− =σ  . r is the total number of 
DTLP. 

Remove 1( )sΩ  and 2 ( )sΩ  from (A.5), and we get: 

      

1 2
1 1 2 2

2 1
2 2 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

s s

s s

s s
s s

s s
s s

e e

e e

− −

− −

⋅ ⋅ ⋅ ⋅ − = ⋅ − ⋅ ⋅ + ⋅
 ⋅ ⋅ ⋅ ⋅ − = ⋅ − ⋅ ⋅ + ⋅


τ τ

σ σ

Z b Z b
I + Z A U I Z A U

Z b Z b
I + Z A U I Z A U

 

( ) ( ) ( )

( ) ( ) ( )

1 1 2 1
1 1 2 2 1

1 1 1 2
2 2 1 1 2

( ) ( )

( ) ( )

s s

s s

s s
s s

s s
s s

e e

e e

− −

− −

− −

− −

 ⋅ ⋅ = ⋅ ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ +   


⋅ ⋅  = ⋅ ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ +   

τ τ

σ σ

Z b Z b
U I + Z A I Z A U I + Z A

Z b Z b
U I + Z A I Z A U I + Z A

 

Then we get: 

(A.6)      ( ) ( )1
( )s −= −1 1 2U I T W + W  

Where 

( ) ( ) ( ) ( )1 1

1 2 2 1
s se e− −− −= ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅τ σT I + Z A I Z A I + Z A I Z A  

( ) ( ) ( )

( )

1 1 1
1 1 2 2

1 1
1

s s
s

s

e e− −

−

− − ⋅= ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅

⋅+ ⋅

τ σ Z b
W I + Z A I Z A I + Z A

Z b
I + Z A

 

( ) ( ) ( )

( )

1 1 2
2 1 2 2

1 2
1

( ) s

s

s
s

s

e

e

− −

−

−

−

⋅= ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅

⋅+ ⋅ ⋅ ⋅

τ

τ

Z b
W I + Z A I Z A I + Z A

Z b
I + Z A

 

( ) ( ) ( ) ( )
( ) ( )

1 1

1 2 2 1

1

1 1

s se e− −

−

− −− = − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅

= ⋅ − ⋅

τ σI T I I + Z A I Z A I + Z A I Z A

I + Z A W I Z A
 

Where 

( )( ) ( ) ( ) 1

1 1 2 2
s se e−− −= ⋅ − ⋅ − ⋅ − ⋅ ⋅ ⋅ ⋅τ σW I + Z A I Z A I Z A I + Z A .  

As 1A  and 2A  are SPD, from Lemma A.2 we have, 
1

1 1 1 1

1

2 2 2 2

−

−

⋅ =

⋅ =

T

T

Z A ZQ TQ Z

Z A ZQ T Q Z
 

Where T T
1 1 2 2 ,= =Q Q Q Q I  1T  and 2T  and are positive diagonal matrices. Thus we have, 
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( )( ) ( ) ( )

( )( )
( ) ( )

( )( )
( )( )

1 1

1 1 2 2

1 1

1 1 1 1 1 1

11 1

2 2 2 2 2 2

11

1 1 1 1

11

2 2 2 2

1

  

  

s s

s s

s s

e e

e e

e e

− −

− −

−− −

−−

−−

−

− −

− −

− −

= ⋅ − ⋅ − ⋅ − ⋅ ⋅ ⋅ ⋅

= −

− ⋅ − ⋅ ⋅

= −

− ⋅ − + ⋅

=

T T

T T

T

T

τ σ

τ σ

τ σ

W I + Z A I Z A I Z A I + Z A

I + ZQ TQ Z I ZQ TQ Z

I ZQ T Q Z I + ZQ T Q Z

ZQ I + T I T Q Z

ZQ I T I T Q Z

ZK Z

 

Where, 
(A.7)    1 1 1 2 2 2

s se e− −= − ⋅ ⋅T Tτ σK Q Λ Q Q Λ Q  

( )( ) 1

1 1 1

−= −Λ I + T I T  

( )( ) 1

2 2 2

−= − +Λ I T I T  

Obviously, both 1Λ  and 2Λ  are diagonal matrices. All the diagonal elements of 1Λ  are 

larger than 1, while all the diagonal elements of 2Λ  are all less than 1. From above 

calculation, we have, 

( ) ( )11

1 1

−−− = ⋅ ⋅ ⋅ − ⋅I T I + Z A Z K Z I Z A  

(A.8)              ( ) ( ) ( )11 1 1
1 1

−− − −− = − ⋅ ⋅ ⋅ + ⋅I T I Z A Z K Z I Z A  

Comparing (A.6) and (A.8), we can conclude, 1( )s sU  has no pole in the region of the right 

half-plane plus the imaginary axis. 
Now we prove, by reduction to absurdity, that 1−K  has no pole in the region of the right 

half-plane plus imaginary axis. Assume 1s , one of the poles of 1−K , is in the region of the 

right half-plane plus imaginary axis, then 1( )sK  must be a singular complex matrix. 

Therefore, r∃ ∈φ  , 1=φ , and 

1( )s =K φ 0  

Set 1 1 1 1= TΗ Q Λ Q , 1 1
2 2 2 2

s se e− −= ⋅ ⋅Tτ σΗ Q Λ Q . From (A.7) and the above equation, we 

have: 

1 2=Η φ Η φ  

Consequently,  
(A.9)                           1 2=Η φ Η φ  

( )
( )

1 1 1 1 1 1 1 1 1 1

2 2
1 1 1 1 1 1 r

= =

= = >

HT T T

HH T T T

Η φ Q Λ Q φ Q Λ Q φ Q Λ Q φ

φ Q Λ Q φ Q φ Λ Q φ

 

       

1 1 1 1

1 1 1 1

2 2 2 2 2 2 22 2

2
2 2 22 2 2 2

s s s s

s s s s r

e e e e

e e e e

− − − −

− − − −

= ⋅ ⋅ ≤ ⋅ ⋅

≤ ⋅ ⋅ < ⋅ ⋅

T T

H T

τ σ τ σ

τ σ τ σ

Η φ Q Λ Q φ Q Λ Q φ

φ Q Λ Q φ
 

Because τ  and σ  are positive vectors and 1s  is in the region of the right half-plane plus 

imaginary axis, we have, 
1 1

2 2
1,   1s se e− −≤ ≤τ σ  
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As the result,  

(A.10)                     2 1r< <Η φ Η φ  

There is a contradiction between (A.9) and (A.10), thus we can conclude that 1−K  has 
no pole in the region of the right half-plane plus imaginary axis. Further, from (A.8) and 
(A.6), we can conclude 1( )s sU  and 1( )−−I T  have no pole in the region of the right 

half-plane plus imaginary axis. Therefore we have, 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )

1

0 0

1 1 1

1 2 2 1 1 1
1 1

1 2 2 1

1

2 2
11

1 2 2 1

1

2 2

1

2 2 2

lim( ) lim
s s

ss−

→ →

− − −

− −

−

−

−

−

=

⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅
=

⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ − ⋅

− ⋅ ⋅ ⋅ +
= ⋅

⋅ − ⋅ ⋅ ⋅ ⋅ − ⋅

+ − ⋅ ⋅ ⋅
=

− ⋅ ⋅ ⋅ + + − ⋅

1
1

W
I - T W

I - T

I + Z A I Z A I + Z A Z b I + Z A Z b

I - I + Z A I Z A I + Z A I Z A

I Z A I + Z A I
Z b

I + Z A - I Z A I + Z A I Z A

I I Z A I + Z A

I - I Z A I + Z A I I Z A ( )( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )

11

2 1

11

2 2
11

2 2

1
2 2

1
2 2

1
2

1

1
1 2

1

1 2 1

2

2

−

−

−

−

⋅
⋅ ⋅ ⋅

= ⋅
− − ⋅ ⋅ ⋅

+ ⋅
+ − ⋅ ⋅ ⋅

= ⋅
⋅ − − ⋅

+ ⋅
⋅ + − ⋅

= ⋅⋅ + ⋅

= ⋅
⋅ + ⋅

= + ⋅

Z b
I + Z A Z A

I
Z b

I I Z A I + Z A
Z A

I I Z A I + Z A

I
Z b

I + Z A I Z A
Z A

I + Z A I Z A

I
Z b

Z A
Z A

I
I

Z b
Z A Z A

A A b

 

Similarly, we get, 
1 2

2 2
0 0

lim( ) lim (
s s

ss− −

→ →
= = 1

1 2

W
I - T W A + A ) b

I - T
 

According to the final-value theorem of Laplacian transformation, we have   
1 1

1 0
lim ( ) lim( ) ( ) ( ) ( )
t s

u t s s− − −

→∞ →
= = = 1

1 2 1 2 1 2I - T W + W A + A b + b A b  

Similarly, we get, 

2lim ( )
t

u t −

→∞
= 1A b  

Therefore, Lemma A.1, the simple version of the convergence theorem, has been proved. 
The basic idea of this proof could be applied to prove the general convergence theorem of 
DTM. 
 

 


