
 1 

Automatically Detecting Pointing Performance  
Amy Hurst, Scott E. Hudson, Jennifer Mankoff 

Human Computer Interaction Institute  
Carnegie Mellon University 

5000 Forbes Ave, Pittsburgh, PA 15213 
{akhurst, scott.hudson, jmankoff@cs.cmu.edu} 

Shari Trewin 
T.J. Watson Research Center 

IBM  
P.O. Box 704, Yorktown Heights NY 10598 

trewin@us.ibm.com 
 

ABSTRACT 
Since not all persons interact with computer systems in the 
same way, computer systems should not interact with all 
individuals in the same way.  This paper presents a 
significant step in automatically detecting characteristics of 
persons with a wide range of abilities based on observing 
their user input events. Three datasets are used to build 
learned statistical models on pointing data collected in a 
laboratory setting from individuals with varying ability to 
use computer pointing devices.  The first dataset is used to 
distinguish between pointing behaviors from individuals 
with pointing problems vs. individuals without with 92.7% 
accuracy.  The second is used to distinguish between 
pointing data from Young Adults and Adults vs. Older 
Adults vs. individuals with Parkinson’s Disease with 91.6% 
accuracy.  The final data set is used to predict the need for a 
specific adaptation based on a user’s performance with 
94.4% accuracy.  These results suggest that it may be 
feasible to use such models to automatically identify 
computer users who would benefit from accessibility tools, 
and to even make specific tool recommendations.  
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INTRODUCTION 
Computer technology has become an integral component in 
people’s lives for employment, recreation, and socializing.  
Unfortunately, computers are not universally accessible and 
there is a growing population of people who are motivated 
to use computers, but find it physically difficult to do so.  

One of the main reasons computers are inaccessible is that 
they treat all users the same, and usually do not know much 
about each individual user.   This is particularly unfortunate 
given the amount of accessibility software that comes pre-
installed on most computers or is available online including 
pointer configuration utilities, screen magnifiers, and 
onscreen keyboards.  Not only do most users not know 
what technology they need to make a computer accessible, 
insurance limitations and high cost can prevent them from 
having an assistive technology clinician assess their ability.  
As a result, it is not uncommon for people to end up using 
either no accessibility tools, or tools that are not suited for 
their pointing abilities.  

We envision making computers more accessible to a wider 
range of users by automatically assessing a user’s pointing 
performance and adapting to it.  This would be 
accomplished by deploying software adaptations, or 
changes to how the pointing device interacts with on-screen 
elements, that could improve a user’s current performance. 
This approach can provide practical and affordable 
solutions since it does not require additional hardware or 
assistive technology assessments by clinicians.  

In this paper we first describe common pointing problems 
and discuss research and commercial technologies that have 
been developed to address some of these problems.  
Second, we discuss our work towards automatic assessment 
through statistical modeling of three datasets.  We have 
constructed learned statistical models that are able to 
distinguish between pointing actions from individuals with 
and without physical impairments, that cause pointing 
problems, with 92.7% accuracy, and distinguish between 3 
classes of users with similar ages and motor abilities with 
91.6% accuracy. We next report our models that able to 
predict if an individual would benefit from the Steady Click 
[11] adaptation with 94.4% accuracy. We conclude with 
future work.  

COMMON POINTING PROBLEMS 
Physical difficulty accessing a computer can be caused by 
many factors including a physical impairment or age-
related changes in motor coordination. Pointing errors often 
occur when the user knows what he or she wants to do but 
cannot successfully complete the physical action.  Below is 
a list adapted from [10] which describes many common 
pointing problems reported in the literature, and some of the 
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software solutions that have been designed to minimize 
those problems.  This list is divided into four categories of 
pointing subtasks: clicking, drag and drop, targeting, and 
navigation, focusing on errors that could be easily 
addressed with software.  The problem is listed in italics 
followed by possible software solutions to that problem. 

Clicking 

Pressing incorrect physical button - Remap button 
functions or replace clicking with another style of activation 
such as Crossing [1].  

Difficulty with double click timing  - Change double click 
timing.  

Accidental click (Unintentional clicks made during another 
action) – Ignore clicks when pointer is moving.  

Repeated click (Additional clicks made during a click 
action)– Ignore multiple clicks on the same target, or cap 
the clicking rate.  

Drag and Drop  

Difficulty keeping mouse button pressed during drag 
(causing user to drop too early) – Click Lock setting which 
makes the mouse button a toggle so user can drag without 
keeping the button down.  

Targeting Errors  

Difficulty moving mouse to a target (Overshooting) – Make 
it easier to get onto a target by predicting what target the 
user is moving towards [7]; gravitate cursor towards 
possible targets [13]; or help the user “feel” the boundaries 
of a target [4]. 

Difficulty staying on target (user moves pointer before 
clicking) – Make it harder to leave a target once on it [4,13] 
(or user moves mouse during click and falls off target) – 
Freeze mouse cursor while button is pressed [9]. 

Navigation (Target Independent) 

Difficulty moving mouse large or small distances (Due to 
user’s range of motion or degree of control.) – Adjust 
“Gain” or ratio between physical movement to cursor 
movement [6] 

Difficulty keeping mouse motion steady (may be result of 
tremor or spasticity)  - Filter spurious mouse movements or 
aggregate mouse movements to infer direction or predict 
target.  

Many of these errors can cause a user to restart or undo 
subsequent actions, which usually increases the total time to 
complete the action. 

 

AUTOMATICALLY DETECTING MOTOR PERFORMANCE 

Several of the technology solutions described in the 
previous section are readily available for users to download 
or are built in to modern operating systems. However, while 

these technologies have improved access for many users, 
they have not solved all accessibility problems. Many users 
do not know that these facilities are available or do not 
know how to tune the software to their needs.  Such 
problems are frequently solved by assistive technology 
experts who perform an assessment of an individual’s 
abilities and help select and configure accessibility 
technology. Unfortunately, this can be an expensive process 
and not available to everyone.  

Frequent assessments are important because most users’ 
performance abilities change over time, for example, with 
the progression of a degenerative disease.  Unfortunately, 
tuning these technologies to one’s performance is not easy, 
as many of these technologies require the user to make 
decisions about unfamiliar settings, or assume a default 
average value.   Creating software that is able to provide 
frequent assessment, or automatically tune the parameters 
of a software utility is a very practical solution in terms of 
cost to an individual.  

Static adaptations can be especially problematic for 
individuals with frequently changing abilities.  For 
example, an individual with Parkinson’s disease may 
experience dramatic performance differences due to their 
medication.  As a result, the range of abilities a person 
exhibits throughout a day can be huge: e.g., medications 
may temporarily completely suppress the tremor of 
someone who could not use a mouse at other times.  Even if 
expert assessments were widely available, they could not 
provide dynamic adaptation to support high variability 
performance changes, such as fatigue. 

Many of the adaptations described in our list can be 
extremely helpful in addressing the specific need they were 
designed for, however some can sometimes inhibit efficient 
performance of pointing tasks. For example, if a long click 
adaptation is used such that short, accidental clicks can be 
filtered out, then the user must make all of their clicks long.  
However, if accidental clicks could be identified based on 
features of the movement, then this adaptation could only 
be deployed when the user needed it; without requiring the 
user to change their deliberate clicking behavior.  Overall, 
in order to be most successful, assistive computer 
technology must be able to adjust to the user and adapt to 
their current performance dynamically.   

We are working to automatically detect pointing 
performance to learn how to deploy adaptations at the 
correct time. Our approach relies on building general 
models that could be deployed to make classifications 
without prior knowledge of the participant’s ability.  The 
best way to build models that will generalize is to use large 
datasets of pointing actions that represent a wide range of 
problems.  Ideally these examples are representative of 
problems that happen in everyday or real world computer 
use.  Unfortunately, extracting movement trajectories and 
target sizes from real world data is not easy (although it can 
be done through hand coding, programmatic accessibility 
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hooks, computer vision or hybrid techniques [4]).  While 
validation with real world data will be needed, an important 
first step is to demonstrate the feasibility of this approach 
with laboratory data.   

Methodology 

In the following sections we will describe learned statistical 
models we constructed from three datasets to distinguish 
between pointing performance in different populations.  All 
three of these datasets were collected in independent 
laboratory studies [5,6,11], (in two cases also augmented 
with additional new data from able-bodied participants) and 
reanalyzed here to test the feasibility of creating predictive 
models.  Participants in all of these studies performed 
pointing tasks where they were told to move to a specific 
target and click on it. 

Machine learning techniques were employed to distinguish 
between different levels of performance.  Each dataset was 
segmented into a set of movement trials which served as 
training instances (or simply instances for short).  All three 
of the datasets we analyzed define an instance as movement 
followed by a click on the target.  Each such instance is 
labeled with an indication of the properties of the user who 
performed it, for example whether subsequent tests 
indicated that the user would benefit from a particular 
adaptation.  It is these labels that our statistical models, or 
classifiers, attempt to predict.   

Information associated with the details of each movement 
instance is summarized into a set of features that quantify 
the performance of each interaction. Examples of potential 
features to describe a pointing task include the amount of 
time it took to perform the instance, the number of pauses 
during movement, or a count of the number of times the 
mouse button was pressed.  

A statistical model works by finding correlations between 
the occurrence of certain features and the occurrence of the 
property it tries to predict (the label for each instance).  
Once a statistical model has been created (learned), it can 
take the features associated with a new motion and use 
these to make a prediction about the properties of the user 
who made that motion and if they would benefit from a 
particular adaptation.  

Since our analysis primarily makes use of the features 
gathered in the original studies, each dataset has a slightly 
different set of features. Since not all features necessarily 
contribute to creating a good classifier, we employ feature 
selection algorithms to provide an indication of how 
valuable each feature may be at constructing a classifier.   

To select features that are finely tuned to a particular 
learning algorithm, while taking into account any 
information overlap, we employ a wrapper-based feature 
selection approach [6]. This approach performs a 
combinatoric optimization to choose the subset of features 
that produces the best accuracy for a given type of 
classifier.  All classifiers were built with the C4.5 Decision 

Tree learning algorithm [12] as implemented in the WEKA 
machine learning environment [14]. In addition to 
classification accuracy, we use the Kappa Statistic [14] to 
measure the agreement between predicted and observed 
classifications of the dataset.  This measure corrects for 
agreement that occurs by chance, and is reported as a 
number between 0 and 1, where 1 is 100% agreement, and a 
value of 0.7 is acceptable agreement [8]. The prior 
probability, or simply prior, is also important to 
understanding the accuracy of a prediction.  The prior is the 
accuracy one would obtain using a trivial classifier which 
always selected the most frequent class as it’s prediction. 

We test the generalizability of the learned statistical models 
with two methods: per-person and random hold out cross 
validation. These techniques are used to provide an 
estimation of how the classifier will perform on new data, 
through multiple groupings and tests of the existing data.  
In both of these types of cross validation, a subset of data is 
withheld, and the remainder, or training set, is used to build 
a model.  The subsequent model is then used to predict the 
held out data, or test set, that was not used to build the 
model.  This process is performed several times with 
different data held out to get the most reliable estimates. 
For both approaches, the accuracy of the classifier is 
reported as an average of the accuracy of each test set on its 
corresponding training set. 

In per-person hold out, the model is built with a training set 
from all data but one randomly selected participant, and 
then tested with that participant’s data.  This procedure is 
repeated with 10 individuals from each group to be 
classified. To perform a random hold out 10-fold cross 
validation, 90% of the total data (from all participants) is 
randomly selected as the training set and is used to build a 
classifier.  The remaining 10% is then used as a test set on 
that classifier.  This process is performed 10 times with 10 
disjoint hold out test sets and the average accuracy of these 
10 trials is reported.  

We report results for both types of hold out to simulate 
what would happen after a constructed model is deployed 
and encounters new data. Per-person hold out is analogous 
to the situation where a completely new user appears whose 
data was not used to create the models.  It tends to produce 
more realistic results for settings in which we expect high 
individual variation and/or low independence between 
training instances taken from the same individual.  
However, it is not possible or practical to apply per-person 
hold out tests for some types of problems or datasets. For 
example, per person holdout tests tend to be overly 
pessimistic when there are small numbers of users or where 
a single individual provides a notable fraction of all data in 
a particular class. On the other hand, one can almost always 
do random hold out 10-fold validation.  Since it is 
applicable to almost all problems and can work well even 
with small datasets, 10-fold random holdout has emerged as 
the standard reporting method. 



 

Movement Behaviors of People With Pointing 
Difficulties  
We will first discuss our success at identifying pointer 
movements from individuals who have difficulty pointing 
with a mouse. This analysis is performed on a range of 
individuals who are grouped according to whether or not 
they have difficulty with pointing tasks on a computer 
versus those who do not have difficulty.  

Methodology 

As a first step to learn about performance differences 
between people who have difficulty with pointing and 
clicking versus those who do not, we analyzed laboratory 
data from both groups. We used the dataset described in [6] 
which was gathered from individuals who had physical 
impairments which affected their ability to use a mouse, 
and collected a corresponding new dataset from students at 
our university. The combined dataset included data from 33 
participants (21 able bodied, 17 female).  The diagnoses in 
the motor impaired group varied included the following 
conditions {6 Spinal Cord Injury (2 C4/5, 2 C5/6, 1 C7, 1 
unknown), 1 Traumatic Brain Injury, 2 Cerebral Palsy, 1 
Friedrich’s Ataxia, 1 Multiple Sclerosis, 1 Muscular 
Dystrophy}. All but two of the motor impaired  
participants completed these trials using a standard mouse.  

Participants completed Fitts’ Law-style pointing tasks using 
the IDA Software Suite [6].  IDA is a software tool to 
assess an individual’s ability to access a computer based on 
performance with a range of computer skill tasks.  To 
evaluate pointing performance, all participants completed 
32 trials of a pointing task with at least 10 different mouse 
gain settings.  Each trial presented the user with a square 
box that varied in size and distance from the box in a 
previous trial.  All participants started the tasks with a 
mouse gain of 10, and Enhanced Pointer Precision on.  
After each block of 32 targets at a given gain setting, IDA 
would calculate the user’s performance using an algorithm 
described in [6] and would then try another gain setting 
until it had enough data to predict the “best” one. 

Features 

This section presents the features, or details of each 
movement instance in this dataset.  The features are 
organized into four categories that will be used in all three 
datasets, including features calculated from the movement 
that are specific to this task, features that describe what 
happened during the click, features that describe the 
pointer’s motion, and features that describe pauses in the 
pointer’s motion. 

Task Specific Features 

• Did the user correctly select the target? 

• How long did it take to finish the trial? 

• How many times did the cursor enter the target? 

• Maximum distance traveled beyond the target, or 
“Overshoot” 

Features Related to the Click 

• Count of “Missed” or accidental clicks 

Features Related to Movement 

• Deceleration time, or how long it took to move from 
peak velocity to maximum displacement, divided by 
total movement duration 

• Total distance traveled during trial 

• Mean instantaneous velocity during initial movement 
towards target 

• Number of direction changes 

Pause Features 

• Time spent before first movement of the trial, or 
“Reaction Time” 

Model Building 

We constructed a decision tree classifier using wrapper-
based feature selection using data from all of the 
participants in the motor impaired group, and with an equal 
number of randomly selected participants from the other 
group.  As illustrated in the confusion matrix below (Table 
1) we were able to build classifiers that were able to 
correctly identify the class with 92.7% accuracy (Kappa = 
.85) as measured by per-person hold out.  

Since 24 separate models were constructed (one for each 
person held out) slightly different feature sets were selected 
for each of these models.  However, all of these feature 
selection runs selected the total time it took to complete the 
action and the number of clicks that occurred during the 
action.  

We also conducted analysis with random 10-fold cross 
validation and wrapper selected features which correctly 
classified the instances with 94.5% accuracy (Kappa = .89).  
This feature selection also chose in each case the total time 
to complete the action, number of clicks that occurred 
during the action, and in addition chose the number of times 

 Classified as 
Actual Motor 

problems 
No motor 
problems 

Motor 
problems 

3779 477 

No motor 
problems 

138 4278 

Accuracy: 92.7%   
Prior: 50.9% 

Table 1. Confusion matrix for classification distinguishing 
between motor impaired individuals that have pointing 
problems versus able bodied users 
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the cursor entered the target, as the features to use in the 
model.   

MOVEMENT BEHAVIORS OF YOUNG ADULTS, 
ADULTS, OLDER ADULTS AND INDIVIDUALS WITH 
PARKINSON’S DISEASE 
The previous result indicated that the statistical models are 
capable of identifying user’s ease of pointing with high 
accuracy.  While it is an important and valuable first step to 
distinguish between groups with and without pointing 
difficulties, this classification may be too broad to make 
many accommodations.  Instead, we need to be able to 
make a finer distinction based on what kinds of errors those 
individuals are making. Unfortunately, the dataset discussed 
in the previous section does not have enough examples of 
particular types of motor impaired performance to 
confidently distinguish multiple classes of performance. As 
a second step, in this section we look at another dataset 
from four groups of users, three of whom have significantly 
different performance abilities.  

Methodology 

This data was gathered in a study that examined the effects 
of age and Parkinson’s Disease on a point-and-click task 
using a mouse [5]. It includes pointing performance from 
the following four groups: Young Adults (8 participants, 
ages 20-30), Adults (8 participants, ages 35-65), Older 
Adults (7 participants, ages 70 and older), and individuals 
with Parkinson’s Disease (6 participants, ages 48-63).  A 
more detailed summary of this population is described in 
[5].  

In a statistical analysis of the original dataset, Keates and 
Trewin found that older adults took longer to complete the 
task and they paused more than the other three groups. 
Additionally it took older adults four times as long to reach 
peak velocity as it did adults and young adults. Individuals 
with Parkinson’s Disease showed the lowest peak velocity 
out of all the groups; less than half of that of the young 
adults and adults.  Finally, individuals with Parkinson’s 
Disease tended to pause towards the end of the movement.   

Features 

This data set provided detailed recordings of point-and-
click task performances, allowing a more sophisticated set 
of features to be employed.   This feature set differs from 
the previous one because it has more features describing 
when the pauses occurred, as well as features related to 
acceleration and velocity changes.   Having these additional 
features enabled us to build a more detailed picture of the 
difference between groups. 

Task Specific Features 

• Total time trial time 

• Number of times the cursor entered the target 

Features Related to the Click  

• Length of click 

• Distance and angle moved during the click, or “Slips” 

• Time between mouse down event and preceding 
movement 

• Count of “Missed” or accidental clicks 

Features Related to Movement 

• Average and peak velocity and acceleration during the 
movement phase of the trial. 

• Number of direction changes 

• Total distance traveled during trial 

• Movement error, offset and variability 

Pause Features 

• Count of the number of pauses of different lengths 
(from 0 msec to 2500+ msec) during the trial 

Model Building 

We were able to reproduce the high accuracy of 
distinguishing motor impaired from able-bodied use in this 
dataset even though it involved a slightly different task, and 
feature set.  In a two-way classification between a group of 
adults and young adults versus a group of older adults and 
Parkinson’s individuals a learned statistical model gave a 
classification accuracy of 94.6% (Kappa = .89) using a 
decision tree and validated with random 10-fold cross 
validation.  

A similarly constructed model was able to distinguish 
differences between the Parkinson’s and older adult group 
with 91.4% accuracy (Kappa = .83).  In a 3-way 
classification with the adult and younger adult vs. 
Parkinson’s vs. older adult groups, we were able to build a 
learned statistical model with a decision tree and wrapper-

Figure 1. Augmented screenshot of the click task 
showing an example sequence of the first 4 targets out 

of a series of 37.  Each target has a random angle of 
approach, and one of 3 size/distance pairs. 



 

based feature selection that performed with 91.6% accuracy 
(Kappa = .85) as validated with random 10-fold cross 
validation.  Table 2 shows the results of other possible 3 
way pairings.  

Unfortunately this level of accuracy did not appear for this 
dataset when we leveled per-person holdout.  We conducted 
a 3-way classification of this data using per-person holdout 
using 7 randomly selected young adults or adults, the 7 
older adults, and the 6 individuals with Parkinson’s Disease 
as testing data.  Predictions were made with a decision tree 
using wrapper selected features.  The models were able to 
predict the test participant’s class with 74.1% accuracy 
(Kappa = .58).  We believe the performance of this model is 
not as high as with the random holdout because there was 
high variability in the data due to the small number of 
participants in each group, and performance differences 
between a few of the older adults and individuals with 
Parkinson’s Disease (Table 3).   

A 4-way classification using a decision tree with random 
10-fold cross validation distinguished between the four 
groups with 70.0% accuracy (Kappa = .59).  Not 
surprisingly, analysis of the confusion matrix (Table 4) for 
this classification problem shows that the classifier had the 
most difficulty distinguishing between the young adult and 
adult groups. 

In order to further understand how well learned statistical 
models behaved on this dataset, we built models to 
distinguish between each pairing of the groups We used 
features selected with a wrapper based feature selection to 
build a statistical model using a decision tree and random 
10-fold cross validation for each paring of the groups 
(Table 5). These models found the highest accuracy when 
distinguishing between the Adult and Parkinson’s (96.7%, 

Kappa = .95), and the lowest accuracy at distinguishing 
between the Adult and Young Adults (59.3%, Kappa = .19).    
The low accuracy at distinguishing between the young adult 
and adult groups suggests (not surprisingly) that these 
groups perform very similarly and are hard to distinguish. 
The wrapper based feature selection selected the following 
features for all pairs: length of the click, a count of amount 
of continuous movement, a count of pauses between 1500 
and 2000 milliseconds before target.   

ANALYZING MOVEMENT BEHAVIORS TO PREDICT IF 
AN ADAPTATION IS NEEDED 
Given our success at predicting with high likelihood which 
group a given movement instance came from, we wanted to 
learn how well we could predict if an individual would 
benefit from one of the adaptations based on data from their 
unadapted use.  This classification is exactly the type a 
system would use to assess whether an adaptation should be 
deployed.  

In order to investigate this problem, we looked at a dataset 
that had data from individuals with and without a pointing 
adaptation. This dataset was collected to evaluate the 
performance of the “Steady Click” [11] adaptation that was 
designed to minimize pointer slips during a click.  This 
adaptation creates a “Steady Click” by disabling dragging 
during a click (i.e. the user is not able to move the pointer, 
or slip, while one of the buttons is pressed).  It was found 

 Classified as 

Actual A YA OA P 
YA 711 352 38 8 
A 498 599 53 18 

OA 58 48 755 61 
P 22 13 45 770 

Accuracy: 70.0%   
Prior: 28.8% 

Table 4. Random 10-fold 4-way prediction {YA = Young 
Adult, A = adult, OA = Older Adult, P = Individual with 
Parkinson’s Disease}. Note the confusion between Adult 
and Young Adults. 

Labels Classification 
Accuracy 

Kappa 
Statistic 

YA + A, P, OA 91.6 .85 

A, P, OA 89.7 .84 

YA, P, OA 98.9 .85 

 
Table 2. Performance of statistical models using 3-way 
analysis  {YA = Young Adult, A = Adult, OA = Older 
Adult, P = Individual with Parkinson’s Disease} 
 

Labels Classification 
Accuracy 

Kappa 

A, P 97.6 .95 

A, OA 93.8 .87 

A, YA 59.3 .19 

P, OA 91.4 .83 

P, YA 96.7 .93 

OA, YA 93.3 .86 

Table 5. Classification results for all pairings  
{YA = Young Adult, A = adult, OA = Older Adult, P = 
Individual with Parkinson’s Disease}  

 Classified as 
Actual YA + A OA P 
YA + A 977 17 8 

OA 105 533 207 
P 182 306 439 

Accuracy: 74.1%   
Prior 36.1% 

Table 3. Per-person holdout confusion matrix {YA = 
Young Adult, A = Adult, OA = Older Adult, P = 
Individual with Parkinson’s Disease} 
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that this adaptation significantly reduced slipping errors for 
8 of the 11 participants, and lead to significantly improved 
target acquisition times for 5 participants.  For some 
participants, suppression of slipping errors did not 
significantly improve performance because other targeting 
errors remained.  For others, target acquisition times were 
reduced, but the improvement was not statistically 
significant, perhaps due to insufficient data.  The work 
presented here uses error rates as the fundamental measure 
of the “helpfulness” of Steady Clicks. 

Methodology 

The Steady Click dataset consists of 18 participants 
performing clicking tasks.  This dataset consists of 11 
motor impaired adults (5 female, mean age 49) who were 
pre-screened as having slipping problems, or self reported 
such problems, and 7 able-bodied adults (4 female, mean 
age 41) who did not.  Two of the participants with 
disabilities had Parkinson’s Disease, two had Cerebral 
Palsy, three had impairments results from a stroke, one had 
Multiple Sclerosis, another had spinal cord damage 
resulting from a gunshot accident, and two had impaired 
manual dexterity cause by unspecified neuromuscular 
conditions. All were familiar with a standard mouse and 
used that as their input device.  All participants completed a 
task where they were presented with a 19-column and 30-
row grid of rectangles.  Each rectangle was 52 pixels wide 
and 22 pixels tall and contained a 2 to 5 character word in 
it.  For each trial one of the rectangles would be highlighted 
in blue and the user would need to move their mouse to that 
target and click in the rectangle (Figure 2). 

Features 

In addition to many of the features that were represented in 
the previously discussed datasets, this dataset has many 
additional features relating to the last pause that occurred 
before the user moved the mouse.  

Task Specific Features 

• Was the click on the target? 

• How long did it take to complete the move-click 
sequence? 

Features Related to the Click  

• Duration of click 

• Number of other button events that occurred during a 
click 

• Distance pointer moved during the click 

Features Related to Movement  

• Velocity and acceleration at mouse down and mouse 
up events. 

• Peak velocity reached during the movement 

• How far did the pointer travel during movement? 

Pause Features 
These features measure the state of the cursor at the time of 
the last pause before the click.  There are 5 categories of 
features, with individual features varying the definition of a 
pause (in 50 msec increments between 100 and 300 msecs). 

• How long was the last pause prior to the click? 

• How far away was the cursor from the target at the start 
of the pause? 

• How much time was spent moving between the pause 
and the click? 

• How far did the cursor move between the end of the 
pause and the click? 

• What was the peak velocity between the pause and the 
click? 

Model Building 

All the participants were grouped into three categories 
based on whether or not they had a motor impairment and 
whether the Steady Clicks adaptation significantly reduced 
their slip errors: Group 1: (H-I) Steady Clicks helped and 
they were motor impaired (8 participants) Group 2: (NH-I) 
Steady Clicks did not help and they were motor impaired (3 
participants) Group 3: (NH-A) Steady Clicks did not help 
and no motor impairment (7 participants). Essentially, those 
who were helped by Steady Clicks were those who 
frequently slipped while clicking the mouse.  We divide this 
data into three groups (instead of two) because early 
analysis indicated that the NH-I and NH-A had fairly 
different characteristics. Attempting to treat these disparate 
groups as a single category proved problematic for the 
classifier. The disabilities of those for whom Steady Clicks 
was not helpful were Parkinson’s Disease (2 individuals) 
and Cerebral Palsy.   

We used a two-level classifier to predict if individuals 
would benefit from the Steady Click adaptation. The first 
level of this classifier is a 3-way decision tree classification.  
The results of this 3-way classification, performed on each 
instance, are then used to classify each person (as “helped” 
or “not helped”) by considering whether the majority of 

 

Figure 2. Screen shot of study task showing how target cell is 
highlighted and how the user’s current location is also 

highlighted. 



 

their movement trials predicted them to be in the H-I group 
vs. the NH-I or NH-A groups. 

First we employed per-person hold out to build train/test 
sets, which were used to build decision trees using wrapper 
based feature selection for each participant.  The most 
common features selected by the wrapper-based feature 
selection algorithm were the distance the participant 
slipped, the total time it took to complete the trial, and the 
length of the click.  This 3-way classification distinguished 
between instances from these three groups with 82.7% 
accuracy (Kappa = .71), illustrated in Table 6. 

As indicated above, since our goal is to predict if Steady 
Clicks would help a given individual, in the second level of 
our model, we aggregated the results fo r the NH-I and NH-
A groups, and then classified each person based on the most 
frequently predicted group among their individual 
movements.  Using this technique, we were able to 
correctly predict if Steady Clicks would reduce the user’s 
clicking errors 17 out of 18 times, or 94.4% accuracy.  

A random 10-fold cross validation of with wrapper based 
feature selection distinguished between these three groups 
with 92.0% (Kappa = .87). It selected the distance in the X 
direction the user was from the target during the last pause, 
the velocity at the time of the mouse release, length of the 
click, distance the participant slipped, peak velocity, 
duration of the trial, and total distance traveled during the 
trial as features.  

CONCLUSION AND FUTURE WORK  

In this paper we described several learned statistical models 
that were constructed to detect pointing problems.  We were 
able to distinguish between actions performed by users with 
pointing problems and users without pointing problems 
with 92.7% accuracy.  We were also able to distinguish 
pointing actions made by young adults and adults vs. older 
adults vs. individuals with Parkinson’s Disease with 91.6% 
accuracy.  Finally we presented a learned statistical model 
that was able to predict whether the Steady Click adaptation 
would help an individual to prevent slipping errors with 
94.4% accuracy.  Each of these results provide an important 
first steps towards our goal of developing software to 
automatically assess a user’s performance and deploy 
adaptations to make the computer more accessible.  

Our future work includes testing the accuracy of these 
models on real world data and developing software to 
automatically detect pointing problems in the wild. We plan 
on collecting and analyzing data from motor impaired users 
who are performing real world computer tasks, and 
comparing those findings to these laboratory results.  This 
data will also be used as a test set to develop techniques to 
automatically learn target locations in the interface, since 
this knowledge will make more adaptations possible.  
Finally we will combine all this knowledge to build learned 
statistical models that are able to predict what adaptations 
should be used for different levels of performance.  
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