

City, University of London Institutional Repository

Citation: Stumpf, S., Sullivan, E., Fitzhenry, E., Oberst, I., Wong, W-K. and Burnett, M.
(2008). Integrating rich user feedback into intelligent user interfaces. Paper presented at the
International Conference on Intelligent User Interfaces, 24-27 Feb 2014, Haifa, Israel.

This is the accepted version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/14847/

Link to published version: http://dx.doi.org/10.1145/1378773.1378781

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral
Rights remain with the author(s) and/or copyright holders. URLs from
City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or
charge. Provided that the authors, title and full bibliographic details are
credited, a hyperlink and/or URL is given for the original metadata page
and the content is not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

 1

Integrating Rich User Feedback
into Intelligent User Interfaces

Simone Stumpf, Erin Sullivan, Erin Fitzhenry,

Ian Oberst, Weng-Keen Wong, Margaret Burnett

Oregon State University

Corvallis, OR

{stumpf, sullivae, fitzheer, obersti, wong, burnett}@eecs.oregonstate.edu

ABSTRACT

The potential for machine learning systems to improve via a

mutually beneficial exchange of information with users has

yet to be explored in much detail. Previously, we found that

users were willing to provide a generous amount of rich

feedback to machine learning systems, and that the types of

some of this rich feedback seem promising for assimilation

by machine learning algorithms. Following up on those

findings, we ran an experiment to assess the viability of

incorporating real-time keyword-based feedback in initial

training phases when data is limited. We found that rich

feedback improved accuracy but an initial unstable period

often caused large fluctuations in classifier behavior. Partic-

ipants were able to give feedback by relying heavily on sys-

tem communication in order to respond to changes. The

results show that in order to benefit from the user’s

knowledge, machine learning systems must be able to ab-

sorb keyword-based rich feedback in a graceful manner and

provide clear explanations of their predictions.

Author Keywords Machine learning, user feedback.

ACM CLASSIFICATION KEYWORDS H.5.2 [Information

interfaces and presentation (e.g., HCI)] User Interfaces:

Theory and methods. H.1.2 [Models and Principles]: Us-

er/Machine Systems: Human information processing, Hu-

man factors.

INTRODUCTION

Many intelligent user interfaces attempt to adapt to a user’s

needs based on the user's history of interaction. One in-

creasingly common approach being brought to intelligent

user interfaces is machine learning, in which the system

learns new behaviors by examining usage data.

Traditionally, machine learning systems have been de-

signed and implemented off-line by experts and then de-

ployed. Recently however, it has become feasible to allow

these systems to continue to adapt to end users by learning

from their behavior after deployment. Interactive email

spam filters, such as in Apple’s Mail system, are prime ex-

amples.

A common problem of intelligent user interfaces that base

predictions on the usage history is that training data during

the initial start-up phase is sparse. Consequently, the aim is

to improve accuracy quickly to an acceptable level from

very few training examples. Similarly, reacting to changes

in classification by the user, usually known as concept drift

[10], needs to be swift and be based on only a few examples

or corrections.

Also, how are such corrections made? This is a second

problem: the norm for machine learning systems that take

user feedback is to allow the user to indicate only that a

prediction was wrong or to specify what the correct predic-

tion should have been. This is just a glimpse of the rich

knowledge users have about the correct prediction.

We believe that addressing the second problem may help to

make headway on the first problem as well. Our previous

work [27] has shown that machine learning systems can

explain their reasoning through keywords in a way that is

understandable to users, and that in turn, the users can make

corrections to the reasoning. We found that the majority of

feedback concerned reweighting keywords and selecting

different keywords. Participants were more accurate than

the machine—but they were not perfect, and occasionally

made mistakes. This demonstrates both the potential viabil-

ity of allowing users to correct system reasoning, and the

likely pitfall of rich user feedback introducing errors into

the reasoning, against which the system needs to guard.

Machine learning approaches that take rich user feedback

into account are still in their infancy, and there are many

open problems requiring investigation. For example, how to

incorporate rich user feedback into machine learning algo-

rithms, theoretically and practically, needs to be explored.

Also, data is needed to evaluate more fully how effective

these approaches are for classification, especially early in

training and based on real user feedback. Finally, the usa-

bility of such approaches and their effects on users' behav-

 2

ior needs to be studied. Obtaining feedback, incorporating it

into learning algorithms and communicating its effects pose

very challenging problems alone, and even more so when

combined in an intelligent user interface. We are interested

in exploring rich feedback approaches and their potential in

improving both machine learning and user interaction.

To help provide some answers to these problems, we devel-

oped an intelligent email system that assisted a user in clas-

sifying emails into appropriate folders. In this paper, we

report on an experiment that allowed users to help guide the

system through adding and deleting keywords, and chang-

ing weights on keywords in emails. The predictions and

changes to these predictions resulting from the user feed-

back were communicated by the user interface on the fly.

We aimed to answer the following research questions:

 What are the effects of user feedback on accuracy, espe-

cially when few training examples are available?

 What are the effects of user feedback on users: How is

feedback given? What are the perceptions of communi-

cations between users and the system?

THE EXPERIMENT

Experiment Set-up

We recruited 43 undergraduate and graduate students with

fluent English-speaking skills for this experiment. All had

experience using email, but none had Computer Science

backgrounds. Each completed a background questionnaire

with gender, GPA, major, years speaking English, and years

of email experience. We obtained logs of 30 participants’
1

interactions with the experimental system as they worked

with the system to classify email into folders.

The emails being classified consisted of a pool of 1151

email messages, which we considered to be the contents of

a user’s inbox. The training set consisted of 50 of these

emails (ten emails each in five folders) along with their

folder assignments, which were used to train the classifier

initially. Fifty of the remaining emails were chosen ran-

domly to form the feedback set, which were presented to

participants in the main task. The test set consisted of the

remaining 1051 emails from the original pool of emails.

We used the publicly available Enron email data set as a

basis for collecting data. For this experiment, we selected

nine folders containing at least ten messages. In our previ-

ous study, we had used four of these folders (Personal, Re-

sumé, Bankrupt, Enron News), which were from user

farmer-d. However, the Resumé and Bankrupt folders do

not contain a large enough number of emails needed to

train, obtain feedback and evaluate the classifier. Therefore,

we combined the resumes folder from user kaminski-v and

farmer-d. We also added a new folder consisting of emails

from the large Systems folder of user lokay-m. Thus, five

1
 13 data files were lost due to data corruption issues.

folders for classification were Personal, Resumé, Bankrupt,

Enron News, and Systems. Finally, four additional folders

(Congratulations, Floorspace, Surveys, and Enron Travel

Club) from users beck-s and lokay-m were used to simulate

real-world folder and filing complexity. None of the emails

in the feedback set belonged to these four additional fold-

ers.

Before the main task, we introduced the participants to the

basic mechanisms of providing feedback to the system. Par-

ticipants were also given some time to familiarize them-

selves with the contents of the email folders, each of which

contained several emails that had already been filed by the

original user at Enron. The tutorial lasted 20 minutes. After

the tutorial, the screen was cleared and participants were

given 50 new emails (i.e. the feedback set) in a randomized

order for the main task, which they had 40 minutes to com-

plete.

For the main task, each participant was asked, first, to im-

prove the system’s sorting ability by correcting folder as-

signments and by adding, removing, and increasing the

weight of ("voting up") keywords, and, second, to file cor-

rectly classified emails away. Participants were not required

to work with all 50 emails within the time limit.

Finally, participants completed a post-session questionnaire

asking for subjective ratings of mental effort, time pressure,

overall effort, performance success, and frustration level,

based on standard NASA TLX questions [16]. It also asked

their level of understanding of how the system worked, the

ease of feedback to change system behavior, and the level

of trust they had in the system. For each rating (5-point

Likert scale), participants could also give additional com-

ments to explain the score. We also provided an opportunity

for participants to tell us what would improve their ability

to verify and correct the sorting suggestions.

Email Program

Several forms of obtaining user feedback have been ex-

plored in the literature, including natural language [4] and

feature-value pairs [22]. A large body of work employing

user feedback falls under the topic of programming by

demonstration, which enables a system to learn a procedur-

al program interactively from user demonstrations [12, 20,

23]. For example, the process might be ordering an item

from an on-line web-site. With some exceptions [24], the

user is not usually given the opportunity to provide feed-

back about the reasoning behind the learned program.

Previous work [10, 17] has also shown that explaining why

certain outcomes happened, based on user actions, can con-

tribute positively to system use. Similarly, it has been

shown that highlighting the relationship between user ac-

tions and ensuing predictions can influence user preference

[3].

Building upon this background, we devised the "E-mazing"

email program. It mimicked basic features in commonly

used email clients such as Mozilla Thunderbird. It also pro-

 3

vided explanations of the classifier’s reasoning about what

emails belonged in what folders (using the "keyword-

based" explanations technique of [27]), and provided ways

users could give feedback to the classifier to improve its

predictions.

To explain its reasoning, as shown in Figure 1, the feedback

panel (bottom left) displayed the top ten keywords for the

selected email to explain why it had been classified in the

predicted folder. These keywords were also highlighted in

the email message displayed in the preview pane (large

pane at the bottom),

The feedback panel was the main way through which the

user could give feedback. It allowed participants to select

words in an email that should be treated as keywords, to

make previously selected keywords be ignored, and to ad-

just the weights of each keyword. The keywords displayed

were the ones that had been learned for each folder. Initially

the folder, displayed in the dropdown menu at the top of the

panel, was chosen for the current email message by the

classifier. If the participant saw the folder choice as incor-

rect, s/he could choose a different folder, which then

switched its keyword list and highlighting to those key-

words important to the new folder.

In E-mazing, some keywords can be given more influence

than others. For example, the keyword "resume" might be

weighted heavily for the Resumes folder. The weights

ranged from very low, low, medium, high, to very high. Par-

ticipants could tell the classifier to change the weight by

adjusting the vote slider. This slider told the classifier to

increase the weight of the keyword by the amount indicat-

ed, which ranged from "Do Not Change" to "Increase a

lot!!". Once a participant was satisfied, they pressed "Ap-

ply" and the feedback was given to the classifier. An Undo

button at the bottom of the feedback panel allowed partici-

pants to undo their previous action.

Besides the above communications about keywords, partic-

ipants could also communicate about folders. When the

folder displayed in the folder column of the inbox was cor-

rect and the user did not wish to do any further manipula-

tions, s/he could "file it" (by pressing the File It button).

This moved the email to the predicted folder (or, the partic-

ipant could select a different folder from the dropdown

menu in the feedback panel).

Once changes were applied, the program updated the pre-

dicted folders of the emails in the inbox. Emails for which

the classifier changed the predicted folder after user feed-

back were highlighted in red in the email list.

Figure 1. A partial screenshot of the E-mazing email program.

 4

Whenever an email was filed away, the system provided

information about the potential benefits and risks of the

participant’s changes in the status panel (middle left). These

were to motivate the participant, and to provide a reasona-

bly accurate assessment on the progress (or harm) their

changes were causing.

Classification Algorithm

A key question in incorporating user feedback into a ma-

chine learning algorithm is how to do the actual incorpora-

tion. One general approach is to treat user feedback as hard

constraints to the algorithm. For instance, the constraints

can enforce qualitative monotonicities [1], clamp labels in a

Conditional Random Field (CRF) [11], fix parameters in a

graph model [19] or incorporate prior knowledge into sup-

port vector machines [15]. Other work uses the feedback to

select features for the learning algorithm [21, 14]. In [29],

the authors let the user directly build a decision tree for the

data set with the help of visualization techniques.

In our preliminary work [28], we incorporated user feed-

back into a Naïve Bayes classifier by converting the feed-

back into a set of constraints. During training, the parame-

ters of the classifier were calculated through a constrained

optimization procedure which maximized the likelihood of

the data given the constraints provided by the user feed-

back. Unfortunately, this approach either decreased classifi-

cation accuracy or produced little improvement. In some

cases, the constraints were already satisfied, leading to no

changes to the classifier’s behavior. In other cases, the

feedback over-constrained the learning algorithm, resulting

in sub-optimal settings of the classifier’s parameters.

As a result, we have been exploring an approach called user

co-training, which leverages user feedback more aggres-

sively. Because our preliminary results have been encourag-

ing, particularly in situations in which training data was

scarce, we selected that approach for the current experi-

ment.

User co-training is similar to the co-training algorithm [5]

used in semi-supervised learning. Semi-supervised learning

[8] is used when labeled data is limited but unlabeled data

is abundant; its goal is to improve the performance of a

learning algorithm trained on the small amount of labeled

data by leveraging the structure of the unlabeled data. Co-

training employs two classifiers that work on the same data

but have two different "views" of the data through inde-

pendent sets of features. The two classifiers are assumed to

produce the same classification even though they have dif-

ferent views. Initially, the two classifiers are trained on a

labeled training set. Then, in the second phase of training,

the classifiers compare which of the two can more confi-

dently classify a training instance from the unlabeled data.

The most confidently classified training instance is labeled

and added to the training set for the next round of training.

We adapted the notion of co-training by regarding the user

as one of the classifiers in co-training and using this classi-

fier to label data for a second classifier, which was a Naïve

Bayes algorithm in our study. In order to treat the user as a

classifier, we developed a user feedback classifier that rep-

resents the user and treats the keywords selected in the user

feedback as a set of features for the specific folder to which

the user assigns the email. In order for a keyword to be se-

lected by the user, the user must either have added the key-

word or modified the weight of the keyword. If a keyword

is deleted by the user, that keyword is removed from the set

of features used by the classifier. Thus, associated with

each folder f is a vector of keywords vf obtained by taking

the union of all the user-selected keywords in the email

messages placed into folder f. The weight of each compo-

nent in the vector vf is determined by the votes proposed by

the user in the feedback
2
. The weight of each type of vote

ranges from 0 to 2.0 as shown in Table 1, with the exact

amount determined by the position of the vote slider bar set

by the participant.

Vote Weight

Do Not Change 0

Increase a tiny bit 0.01-0.39

Increase a bit 0.40-0.79

Increase some 0.80-1.19

Increase a lot 1.20-1.59

Increase a lot!! 1.60-2.00

Table 1. Weights for each vote.

Just as in standard co-training, we iteratively increment our

training set with the emails that are most confidently as-

2
 Even though the weight modification is called a “vote”,

the effects are not cumulative. Each component in the vec-

tor vf is set to the vote weight. For instance, if the user se-

lects the keyword “bankrupt” and votes “Increase a lot!!”

twice with a value of 2.0, the weight on the keyword bank-

rupt will be set to 2.0 and not 4.0.

Let F be the set of all folders.

For each folder f, create a vector vf with the voted

weights of the user-selected keywords

For each message m in the unlabeled data

FolderScoref = sum of weights in vf of keywords

 appearing in m

fmax eFolderScorf
Ff

 maxarg

fother eFolderScoreFolderScor
max\

max
fFf

Scorem=FolderScorefmax – FolderScoreother

Sort Scorem for all messages in decreasing order

Select the top k messages to add to the training set

along with their folder label fmax

Figure 2. Our user co-training algorithm.

 5

signed to folders by the user feedback classifier
3
. In order to

determine our confidence in the folder assignment, we de-

rive a score for each email message. This score is indica-

tive of the gap between the best folder as predicted by the

weighted user-selected keywords, and the next best predict-

ed folder. The emails with the top k scores along with their

folder predictions are then added to the training set for the

Naïve Bayes classifier. Pseudocode for the user co-training

algorithm is shown in Figure 2. We set the value of k to be

10 as there was little change in the results for values of k >

10.

RESULTS

How Much Did Feedback Improve the System?

Classifying email accurately by machine learning is a very

challenging problem, as has already been reported by sev-

eral supervised learning efforts to automatically classify

email messages into categories defined by users [6, 9, 26].

The challenges stem from numerous factors, such as imbal-

anced categories, incomplete information in the email mes-

sages, and the fact that the categories (folders) set up by the

users are often idiosyncratic and non-orthogonal.

What about accuracy in classifying email by humans? In

order to assess participant-introduced error in our experi-

ment we calculated their filing accuracy as the accuracy of

folder assignment made by participants compared to the

folder assignment made by the original Enron users (Table

2, second column). (For folder assignment, the participant

either filed the email in a folder or applied a corrected fold-

er from the drop-down menu.) In our experiment, the aver-

age filing accuracy was 64.2%.

This error rate is high. It is possible that the amount of user-

introduced error could have been reduced if participants

could have worked on their own emails, but in other human

data relating to judgments and classifications (e.g., [25]),

error rates up to 20% have been reported. Clearly, human

inconsistencies and errors in classifying email are a threat

in this domain.

This fact underscores the importance of machine learning

algorithms in this domain dealing with some amount of er-

ror. Accuracy improvements are particularly challenging if

machine learning needs to guard against substantial error

rates while at the same time responding to user feedback.

Turning to machine accuracy, in order to compare the ef-

fects of user feedback on the machine learning algorithm,

we created three versions of the email classifier, each

trained in ways appropriate to each version. Specifically:

Baseline: The user co-training algorithm was trained using

the 50 emails in the original training set along with the

3
 This variant of user co-training is slightly different from

the version used in [28] where we multiplied the sum of the

components in vf with the posterior probability of the most

likely folder as calculated by the Naïve Bayes classifier.

emails in the feedback set that participants had assigned to

folders. (Once again, for folder assignment, the participant

either filed the email in a folder or applied a corrected fold-

er from the drop-down menu.) For the emails from the

feedback set, we trained the classifier using the actual fold-

er assignments made by the Enron users as the class label.

Folder Feedback: Similarly, we trained this classifier using

emails from the original training set along with emails in

the feedback set that participants had assigned to folders.

However, for the emails from the feedback set, we trained

the Folder Feedback classifier using the participant’s folder

assignments instead of the Enron users’ folder assignments.

Rich Feedback: The user co-training algorithm was trained

Participant Participants’
Filing Accu-

racy

Baseline Folder
Feedback

Rich
Feedback

101 0.700 0.544 0.321 0.516

105 0.429 0.096 0.286 0.100

109 0.667 0.106 0.102 0.553

110 0.560 0.105 0.300 0.649

111 0.794 0.438 0.247 0.257

202 0.757 0.317 0.108 0.109

204 0.564 0.103 0.111 0.106

206 0.340 0.105 0.502 0.500

207 0.658 0.293 0.097 0.287

208 0.760 0.469 0.108 0.114

213 0.694 0.547 0.320 0.500

214 0.588 0.098 0.094 0.101

215 0.313 0.287 0.272 0.304

217 0.720 0.113 0.096 0.120

301 0.844 0.496 0.575 0.662

303 0.767 0.493 0.493 0.768

304 0.560 0.177 0.327 0.297

305 0.723 0.199 0.120 0.288

312 0.760 0.495 0.578 0.106

316 0.440 0.498 0.327 0.310

3001 0.280 0.116 0.500 0.109

3003 0.689 0.172 0.290 0.284

3004 0.923 0.559 0.503 0.101

3005 0.320 0.104 0.102 0.104

3006 0.660 0.109 0.148 0.163

3008 0.740 0.500 0.205 0.157

3009 0.711 0.112 0.153 0.297

3102 0.718 0.314 0.283 0.287

3103 0.667 0.329 0.391 0.381

3105 0.923 0.350 0.505 0.499

Table 2. The accuracy of the Baseline, Folder Feedback, Rich

Feedback classifiers on the independent test set.

 6

using the original training set plus all forms of user feed-

back in the feedback set, i.e. both folder assignments and

keyword modifications.

We then evaluated these versions on the test set (described

in the experiment set-up section). The results, shown in Ta-

ble 2, indicate that the Rich Feedback classifier improved

accuracy over the Baseline classifier for 60% of the partici-

pants. In addition, the Rich Feedback classifier outper-

formed the Folder Feedback in 60% of the cases (for a dif-

ferent group of participants from those in the Baseline

comparison). Rich Feedback sometimes decreased accura-

cy, including decreases of 46% (vs. Baseline) and 47% (vs.

Folder Feedback) in the worst cases. The cases in which it

increased accuracy were similarly dramatic, with the best

improvement at 54% (vs. Baseline) and 45% (vs. Folder

Feedback).

What led to improvements in Rich Feedback accuracy? We

found that participants with a high average or maximum

time between filing emails had a higher Rich Feedback ac-

curacy (linear regression, p=0.0466 and p=0.0240, respec-

tively). Likewise, participants with more changes to folder

assignments had a higher accuracy (linear regression,

p=0.0227). Changing folder assignments allowed partici-

pants to see the keywords associated with other folders.

These findings suggest that participants who took more care

in creating their rich feedback were more effective in im-

proving the classifier’s accuracy.

For a close-up view of accuracy patterns, consider Figure 3,

which shows the Baseline classifier accuracy for participant

101 over a test set of 800 email messages as a function of

the number of training examples. To gain insights into the

behavior of our classifier, we added more training examples

to the original training set of size 50 by moving email mes-

sages from the test set to the training set
4
. All training ex-

amples had the original Enron users’ folder assignments as

4
 The step-function behavior before 50 training data points

is due to the fact that the original training set of size 50 con-

tained the emails sorted by folder. The additional emails

added to the original training set were randomly chosen

from the test set.

the class label.

One would typically expect to see a steady improvement in

classification accuracy. However, this improvement only

happened after about 70 training examples. The accuracy

fluctuated wildly between 0-70 training examples, with a

dramatic drop in accuracy at the 51
st
 training example. This

unstable period is due to the classifier not having enough

training data and having its classification boundaries dra-

matically changed each time it saw a new training example.

Further analysis at training example 50 showed that the

classifier classified many emails from the Systems folder

correctly, but at training example 51, almost none of the

emails from the Systems folder were classified correctly.

This behavior occurred in all the participants’ classifiers

during the unstable period.

These results have implications for the design of machine

learning algorithms that can incorporate rich feedback. We

had initially hypothesized that user feedback would be most

helpful during the initial stages when training data is lim-

ited, but our results point out the importance of being wary

of the initial unstable periods, which can be very frustrating

for users, as we will discuss in the next section. Early start-

up periods aside, there is little research to date into what

types of machine learning algorithms can be used effective-

ly in an interactive setting where a user can modify the

learning algorithm directly. We have investigated a user co-

training approach in this work as well as a constraint-based

approach in our preliminary work. However, many other

learning algorithms remain unexplored.

The Rich Feedback System from the Users’ Perspective

Users’ willingness and effectiveness at interacting with the

system are an essential part of intelligent user interfaces. To

investigate how users might perceive the opportunities for

rich communication, we analyzed the post-session ques-

tionnaires as to participants' ratings and reasons for these

ratings.

Participants in general rated the system as acceptable, but

there is room for improvement. Responses to TLX ques-

tions (Mental Demand, Temporal Demand, Success of Per-

formance, Effort, Frustration) were all around the mid-point

of the 5-point Likert scale. Participants also gave neutral

ratings for ease of feedback (mean = 3.07, std.dev. = 1.12),

trust if they could verify the correctness of the predictions,

and whether they would recommend the program to a friend

(mean = 2.86, std.dev. = 1.05). There appeared to be no

overall problems with understanding how the suggestions

worked (mean = 3.21, std.dev. = 1.01).

What Participants Said

Where were the opportunities for improvement in the users’

perspectives? To consider this question, we analyzed the

comments that participants gave explaining their ratings.

We used an affinity diagramming process [18] to develop

codes bottom-up from the questionnaire comments. This

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250 300 350

Number of training data points

A
c
c
u

ra
c
y

Figure 3. A plot of accuracy versus the number of training

data points for Participant 101.

 7

process allows large amounts of items to be organized into

high-level concepts that have high consensus within a group

of researchers. We proceeded as follows: Each comment

was divided into thematic statements. Each statement was

assigned randomly to one of three researchers. Each re-

searcher sorted statements individually into groups and

wrote down higher-level concepts that described the groups'

content. Researchers could use any existing groups in addi-

tion to their own. After all statements had been sorted, the

concepts were reviewed by all researchers and supercodes

were generated if necessary. We validated the reliability of

the codes through a consistency check. Two researchers

independently coded the statements. They then further re-

fined the codes and developed norms about how to apply

them. For the coding scheme, the total agreement value was

79%, which indicates high coding reliability.

Supercodes were used when responses differed in some

particular aspect of content but were related in a general

high-level concept. For example, some participants made

general comments on how the system was learning but oth-

er participants commented more specifically on the sys-

tem’s learning changing too much or too little. As a result,

the "Wall of red" and "System learning too little" codes are

part of the supercode of "Effects of system learning".

We calculated the frequency of these codes based on the

number of participants that gave these respective responses.

A participant could make a comment in a response to a

question that covered more than one code. If a code was

found to be repeated in comments to several questions we

only counted it once. Subcodes also counted as an occur-

rence of the supercode. Table 3 shows the nine codes that

resulted from this process.

System Learning and User Control: Heed Me!

The supercode "Effects of System Learning" was the most

common, occurring in 28 participants (65%). Of these, 12

participants (28%) commented that the system was learning

too much, and 16 (37%) commented that it was learning too

little.

A general theme was that participants were willing and per-

haps even eager to provide direction to the system, but

when they did so, they expected better obedience from the

system for the amount of effort they expended. A higher

rating for "frustration" and a lower rating for "ease of feed-

back" were predictive for mentioning these kinds of prob-

lems (logistic regression, p=0.00448 and p=0.00456, re-

spectively). There was also a predictive relationship be-

tween the number of emails filed and rating for overall ef-

fort (linear regression, p=0.04391, R
2
=0.1372,

F[1,28]=4.453).

GPA scores were also predictive of frustration ratings (line-

ar regression, p=0.01162, R
2
=0.1455, F[1,41]=6.979). Aca-

demic success is sometimes attributed to critical reasoning

[13] and it may be that participants felt particularly frustrat-

ed if they understood how to critique the system but their

changes were not heeded closely enough. For example:

P3102: "I conceptually understood the basic structure -

higher frequency of more weighted words led to emails

placed in category A vs. category B - but what I did fre-

quently seemed to have little effect."

A practical implication of these reactions is that, if a ma-

chine learning system provides the ability for users to offer

suggestions for reasoning changes, the users expect not on-

ly that those suggestions be heeded, but also that they be

able to detect the fact that their suggestions are being heed-

ed.

Granularity of User End of the Dialog: Folders or Words?

Eighteen participants (42%) expressed confusion or diffi-

Code Frequency Example

Keywords 31 (72%)
"You had to be careful on what keywords to assign because

many of them could show up anywhere."

Effects of system learning 28 (65%)
"I understood what to do, but it was difficult at times to get the

system to do what I meant for it to do."

Folders 18 (42%)
"If the program flagged emails that weren't strongly placed in a

file or emails that could fit easily into 2 or more folders"

Effects of system learning : System learn-

ing too little
16 (37%)

"Some of the commands I gave to the computer were not per-

formed by the computer."

Communication of system changes 16 (37%)
"The system kept going back saying the emails filed will now be

going to a different folder after I changed or deleted a keyword."

Transparency about the system’s internal

workings
15 (35%)

"Not satisfied, would like to know more about how it works or at

least the mechanics behind it."

Effects of system learning/ Communication

of system changes: Wall of red
12 (28%)

"It seemed like every time I changed one keyword by just a little,

ALL the emails would suddenly switch into that folder."

Communication of system changes: Com-

munications from the status panel
8 (19%) "I couldn't get the system to file at even a 50% success rate."

Unlearn 7 (16%)
"The ability to later move something to a different folder if it

ended up in the wrong one."

Table 3. Codes and their frequency of occurrence in participants' comments

 8

culties using folder assignments as a means to provide

feedback. A frequent suggestion was that the system should

be responsive to moving emails between folders, especially

if participants changed their minds. Some participants re-

ported that it was unclear that keywords were specific to

folders. Problems were also caused by only being allowed

to assign one folder as the correct folder.

Participants commented more heavily on the use of key-

words as a basis for learning (31 participants, 72%). Many

of them were concerned with the difficulty of finding words

that could represent one folder well and not appear in other

folders:

P3102: "Language is ridiculously malleable, and so

choosing the words that would only apply in a given

scenario, or would apply significantly, was difficult."

As a result, participants who commented on keywords often

wanted more methods of using keywords for feedback be-

sides the "add keyword", "remove keyword" and "increase

weight" they were given in the program. Common sugges-

tions included the ability to decrease the weight of words,

to add rules based on keywords, to specify context of key-

words in the structure of an email (specifically send and

receive fields), and the use of phrases:

P0208: "The program doesn't allow for groups of words

to be considered as one. Such as "love you baby" or

other obvious phrases "I'll get back to you" or "on my

desk" appear often and would make the program more

effective."

Our findings have two practical implications. First, users

should be able to provide folder assignments more flexibly,

especially if folder organization is not orthogonal. Second,

more refinements to the feedback mechanisms are needed,

and feedback mechanisms need to be extended to cover

keywords combinations and parsing/extracting keywords in

a different way, relational features, and even wholesale

changes to the algorithm.

The System's End of the Dialog

Communication from the system was important to many

participants. Sixteen participants (37%) made comments of

type "Communication of System Changes". The reasons

can be attributed to two different communication mecha-

nisms we employed in the program.

First, emails where folders had changed due to learning

were highlighted in red. Twelve participants (28%) reacted

strongly to this. At issue was the fact that, especially in the

early stages of adding feedback when the classifier was un-

stable, feedback could change most or all the messages,

creating a "wall of red":

P0313: "A small change swung most of the inbox emails

to a given folder."

P3004: "You had to be careful on what keywords to as-

sign because many of them could show up anywhere…It

seems that by changing [the weight of] one word could

potentially change all email classifications at once. It

was a little bit like 1 step forward, 2 steps back at

times."

Second, there was the status panel. Eight participants (19%)

mentioned this panel in the post-session questionnaire, cor-

rectly interpreting the information as progress on their

feedback:

P3102: "At the end, I was only around 50% successful

at showing the program which emails could be filed

where I wanted them."

Many participants found communications by the system to

be inadequate. Fifteen participants (35%) had comments in

the "Transparency" category, reflecting the need for better

explanation or understanding of how the system worked.

Participants’ suggestions for how to improve the system’s

transparency varied, but most involved making some

change in how keywords were presented (80% of partici-

pants who mentioned the "Transparency" code also men-

tioned the "Keyword" code). A common request was for the

system to provide a "master list" of keywords for each fold-

er:

P3003: "I would like to be able to view a master list of

all the keywords for each folder and their importance."

A practical implication for machine learning systems that

take rich feedback into account is that explanations are

needed that allow the user to choose good feedback. In par-

ticular, users need to see what influence keywords have on

prediction choices.

Types and Timing of Feedback

Appropriate Feedback

In our previous study [27] keyword changes covered the

majority of rich feedback that participants gave (53% dif-

ferent feature selection, 12% weight adjustment). There-

fore, in this experiment, we provided mechanisms for par-

ticipants to add keywords, delete keywords and change the

weights on keywords.

We found that, in aggregate, participants used these feed-

back mechanisms about equally over the course of the ex-

periment, although they tended to display individual prefer-

ences for certain feedback mechanisms. Table 4 shows the

average amount that each feedback mechanism was used by

participants. When participants added a keyword, they fre-

quently also adjusted the weight of that keyword at the

same time.

There was some evidence that participants carefully consid-

 Mean Std. Dev.

Add keyword 37.6 29.2

Delete keyword 37.8 56.2

Weight Change 40.4 28.9

Table 4. Mean Keyword Changes Made by Participants

 9

ered their feedback choices. Participants altered 9% of their

additions, deletions and weight changes to keywords and

75.2% of their folder assignments before they committed

them to the learning system, suggesting a fair amount of

experimentation before settling upon their desired keyword

manipulations.

These findings suggest that these mechanisms for allowing

rich feedback are viable ways of engaging users in the rea-

soning process. Selecting different keywords and making

changes to weights were all used by our participants with

great care, and lend themselves for straightforward integra-

tion into intelligent user interfaces.

Unlearning

Current machine learning algorithms do not allow "unlearn-

ing" directly. Instead, the only way that a concept can be

unlearned is to provide enough new training examples that

contradict previous training data or if new data is weighted

more heavily. In our experiment we provided an Undo but-

ton which allowed the participants to retract any feedback

that they had made to the learning system and revert to the

previous state of the classifier. This made the system ex-

plicitly unlearn feedback. Participants used this approach

for 1.32% of their changes to keywords. Seven participants

(16%) also mentioned the need to unlearn in the post-

session questionnaire.

System communication plays a key role in identifying un-

desired changes that may make the system less accurate,

and when the system should unlearn. We found that partici-

pants were more likely to undo changes if they resulted in

many new changes in the inbox and the newly predicted

folders of those emails were incorrect (logistic regression,

p=0.00052).

There are several implications for the design of machine

learning systems. Even simple communications from the

system about its reasoning can be effective ways to allow

the user to assess the changes made and which changes

were undesirable.

Our findings also indicate that other ways to tell the system

to unlearn, in addition to giving more counter-examples, are

important to users. The ability to unlearn a concept is an

aspect that has received little attention in machine learning

systems.

Gender Differences

Gender may influence how feedback to learning is given.

Recent research has reported gender differences in males’

versus females’ interest in exploring and experimenting

with innovative features [2]. In our study, females took on

average 6.64 minutes longer than males to complete the

experiment (two-sample t-test, p=0.0279), but there was no

significant difference in the number of emails filed for

males and females. In our experiment, we found that fe-

males added nearly twice as many keywords (mean=49.7)

as males did (mean=25.5) (two-sample t-test, p=0.0208).

Although females changed more keyword weights

(mean=49.8) than males (mean=31), this difference was not

significant, and there was no difference in number of key-

words deleted.

The importance of guarding against undesired changes may

also be influenced by gender. Six out of the seven partici-

pants who commented on the need for the system to be able

to unlearn in the post-session questionnaire were female.

This is consistent with previous research showing that fe-

males perceive more risk than males in tasks involving

mathematical or spatial reasoning [7].

IMPLICATIONS AND CONCLUSION

Our results have practical implications for the design of

intelligent user interfaces that take rich feedback into ac-

count. First, from a user perspective, we have found that

appropriate feedback mechanisms and system communica-

tion played important roles. We found that participants

placed emphasis on being heeded by the system if they gave

feedback. We showed that participants used feedback

mechanisms with care to guard against undesired effects.

The choice of feedback mattered; participants strived for

good keywords and requested a greater variety of mecha-

nisms to allow better feedback. The communication from

the system mattered here too. Participants expressed the

need for explanations that helped them in their choice of

feedback.

From a machine learning standpoint, we have shown empir-

ical results of incorporating rich user feedback into classifi-

cation. We showed that user feedback, employing the

mechanisms we devised, can improve accuracy considera-

bly, especially if a machine learning system must be re-

sponsive to few initial training examples or to changes in

classification. We have discovered wild swings in decision

boundaries during early, unstable stages of classifier train-

ing. This can frustrate users, and algorithms accepting rich

user feedback must alleviate this problem.

We have also identified open research questions. The abil-

ity to unlearn learning was important to our participants,

and this has not been addressed in machine learning sys-

tems. Gender may have played a role in how feedback

mechanisms were used and in unlearning learning; there has

been little research about gender in relation to intelligent

user interfaces. In future work, we would like to explore

more sophisticated forms of rich user feedback as well as

develop new machine learning algorithms for responding to

this feedback.

Our experiment provided some positive initial results yet

also underlined the challenges that incorporating rich user

feedback poses. This suggests more steps in exploring ways

in which intelligent user interfaces can incorporate the intel-

ligence of users.

ACKNOWLEDGEMENTS

We thank the participants of our study. We also thank Lida

 1

0

Li for his assistance. This project was supported in part by

NSF (grants IIS-0133994, CCF-0325273, ITWF-0420533),

by Intel, and by DARPA (grant HR0011-04-1-0005, con-

tract NBCHD030010).

REFERENCES

1. Altendorf, E., Restificar, E., Dietterich, T. Learning

from sparse data by exploiting monotonicity constraints.

Proc. UAI (2005).

2. Beckwith, L. Kissinger, C., Burnett, M., Wiedenbeck,

S., Lawrance, J., Blackwell, A., Cook, C. Tinkering and

gender in end-user programmers’ debugging, Proc. CHI

2006, ACM Press (2006), 231-240.

3. Billsus, D., Hilbert, D., Maynes-Aminzade, D. Improv-

ing proactive information systems. Proc. IUI (2005),

159-166.

4. Blythe, J. Task learning by instruction in Tailor. Proc.

IUI (2005), 191-198.

5. Blum, A., Mitchell, T. Combining labeled and unlabeled

data with co-training. Proc. COLT (1998).

6. Brutlag, J., Meek, C. Challenges of the email domain for

text classification. Proc. ICML (2000), 103-110.

7. Byrnes, J. P., Miller, D. C., Schafer W. D. Gender dif-

ferences in risk taking: A meta-analysis. Psychological

Bulletin 125 (1999), 367-383.

8. Chapelle, O., Scholkopf, B., Zien, A. Semi-Supervised

Learning. MIT Press, Cambridge, MA, 2006.

9. Cohen, W. Learning rules that classify e-mail. Proc.

AAAI Spring Symp. Information Access (1996).

10. Crawford, E., Kay, J., McCreath, E. IEMS – The Intelli-

gent Email Sorter. Proc. ICML (2002), 83-90.

11. Culotta, A. Kristjansson, T. McCallum, A., Viola, P.

Corrective Feedback and Persistent Learning for Infor-

mation Extraction. Artificial Intelligence 170, (2006),

1101-1122.

12. Cypher, A. (ed.) Watch What I Do: Programming by

Demonstration, MIT Press, Cambridge, MA, 1993.

13. Facione, P. A. The California Critical Thinking Skills

Test: College Level Technical Report #2. California Ac-

ademic Press, Millbrae CA. 1990 (ERIC Document Re-

production Service No. ED 327 550).

14. Fails, J. A., Olsen, D. R. Interactive machine learning.

Proc. IUI (2003), 39-45.

15. Fung, G., Mangasarian, O., Shavlik, J. Knowledge-

based support vector machine classifiers. Proc. NIPS

(2002).

16. Hart, S., Staveland, L. Development of a NASA-TLX

(Task load index): Results of empirical and theoretical

research, Human Mental Workload (1988), Hancock, P.

and Meshkati, N. (eds.), 139-183.

17. Herlocker, J., Konstan, J., Riedl, J. Explaining collabo-

rative filtering recommendations. Proc. CSCW (2000),

241-250.

18. Holtzblatt, K., Beyer, H. Making customer-centered

design work for teams. Comms ACM 36, 10 (1993), 92-

103.

19. Huang, Y., Mitchell, T. M. Text clustering with extend-

ed user feedback. Proc. SIGIR (2006), 413-420.

20. Lieberman, H., (ed.) Your Wish is My Command: Pro-

gramming By Example. 2001.

21. Liu, B. Li, X. Lee, W., Yu, P. Text Classification by

Labeling Words. Proc. AAAI (2004).

22. McCarthy, K., Reilly, J., McGinty, L., Smyth, B. Exper-

iments in dynamic critiquing. Proc. IUI (2005), 175-

182.

23. McDaniel, R.G. and Myers, B.A. Getting more out of

programming-by-demonstration. Proc. CHI (1999), 442-

449.

24. Oblinger, D., Castelli, V., Bergman, L. Augmentation-

based learning. Proc. IUI (2006), 202-209.

25. Phalgune, A., Kissinger, C., Burnett, M., Cook, C.,

Beckwith, L. Ruthruff, J. Garbage in, garbage out? An

empirical look at oracle mistakes by end-user program-

mers. Proc. VL/HCC (2005), 45-52.

26. Shen, J., Li, L., Dietterich, T. Herlocker, J. A hybrid

learning system for recognizing user tasks from desk ac-

tivities and email messages. Proc. IUI (2006), 86-92.

27. Stumpf S, Rajaram V, Li L, Burnett M, Dietterich T,

Sullivan E, Drummond R, Herlocker J. Toward Har-

nessing User Feedback For Machine Learning. Proc.

IUI (2007).

28. Stumpf S, Rajaram V, Li L, Wong W-K, Burnett M,

Dietterich T, Sullivan E, Herlocker J. Interacting Mean-

ingfully with Machine Learning Systems: Three Exper-

iments. EECS OSU Technical Report 2007-46,

http://eecs.oregonstate.edu/library.

29. Ware, M., Frank, E., Holmes, G., Hall, M., Witten, I. H.

Interactive machine learning: letting users build classifi-

ers. IJHCS 55 (2001), 281-292.

