Potential-Driven Load Distribution
for Distributed Data Stream Processing

. *
Weihan Wang
University of Toronto

weihan@eecg.toronto.edu

Mohamed A. Sharaf
University of Toronto

. - *
Shimin Guo
Google, Inc.

sguo@google.com

M. Tamer Ozsu
University of Waterloo

msharaf@eecg.toronto.edu tozsu@cs.uwaterloo.ca

ABSTRACT

A large class of applications require real-time processing of
continuous stream data resulting in the development of data
stream management systems (DSMS). Since many of these
applications are distributed, distributed DSMSs are start-
ing to receive attention. In this paper, we focus on an im-
portant issue in distributed DSMS operation, namely load
distribution to minimize end-to-end latency. We identify
the often conflicting requirements of load distribution, and
propose a “potential-driven” load distribution approach to
mimic the movements of objects in the physical world. Our
approach also takes into account heterogeneous machines,
different network conditions, and resource constraints. We
present experimental results that investigate our algorithms
from various aspects, and show that they outperform exist-
ing techniques in terms of end-to-end latency.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Distributed
databases

General Terms

Algorithms, Design, Performance

Keywords

Data streams, Distributed systems, Load balancing

1. INTRODUCTION

A large class of applications require real-time processing of
continuous streaming data, such as network traffic analysis,
sensor data processing, telecommunication accounting and

*This work has been partially conducted while the first two
authors were at the University of Waterloo.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SSPS'08, March 29, 2008, Nantes, France.

Copyright 2008 ACM 978-1-59593-963-0/08/03 ...$5.00.

monitoring, financial market analysis, etc. Several general-
purpose data stream management systems (DSMSs) [6, 1, 4]
have been proposed, with the goal of providing stream ap-
plications the ability to query over continuous data streams.

For the purposes of scalability and robustness in data
stream processing, prototypes of distributed DSMS have also
been proposed (e.g., Borealis [2]). An important issue in de-
signing a distributed DSMS (D-DSMS) is the distribution
of query operators, thus workload, across the physical ma-
chines with relatively balanced load. As the query plan and
the workload may change over time, a D-DSMS needs to
have the ability to dynamically adjust load distribution with
the goal of improving the overall performance.

In this paper, we identify the usually conflicting require-
ments for good load distribution and propose techniques
that strike a balance between these requirements which re-
sults in a reduced system latency. Our approach follows an
analogy to physical systems where we consider each query
operator as a physical object which is driven by different
types of potentials towards a location where it has lower po-
tential energy. Towards this, we define multiple types of op-
erator potential energies corresponding to multiple require-
ments for load distribution. The definition also addresses
different processing capacities and resource constraints. Then,
we use the potential energy to guide load distribution.

The contributions of this paper are as follows:

1. We propose a novel framework for load balancing, based
on an analogy with the physical world, that addresses
different aspects of load balancing in heterogeneous en-
vironments.

2. Under this framework, we propose several algorithms
to optimize initial load distribution as well as adjusting
the distribution periodically.

3. We demonstrate by means of extensive experiments
that a realistic implementation of the proposed ap-
proach improves the end-to-end latency compared to
existing techniques.

The rest of the paper is organized as follows. Section 2
introduces the basics of the load distribution problem. We
present the potential-driven approach framework in Section
3, and specific algorithms in Section 4. In Section 5, exper-
imental results are presented. We summarize related work
in Section 6 and conclude the paper in Section 7.

2. PRELIMINARIES
2.1 System Model

We represent each query plan by an acyclic directed query
graph where the nodes represent query operators and the
directed edges represent data flow from one operator to an-
other. For our work, it is not important whether the query
graph is a traditional one generated by an optimizer or a
boxes-and-arrows dataflow diagram as in Aurora [1] and Bo-
realis [2]. For the purposes of exposition and easier compar-
ison with previous work [11, 12], we use the second form
in this paper. Figure 1(a) illustrates a sample query graph,
where labeled squares represent operators. Two operators
are called neighbors if there is an edge between them. In
Figure 1(a), the operator labeled B is called the predecessor
(or upstream neighbor) of operator D and D is the succes-
sor (or downstream neighbor) of B, as an edge is directed
from B to D. An operator can have one or more predeces-
sors, and can output tuples to multiple successors to share
processing results (e.g. operator A in the figure). Associ-
ated with each edge is a finite-length input queue to buffer
tuples that cannot be immediately processed (not shown in
the figure).

There are two special types of nodes in a query graph,
namely data sources and endpoints, and shown in Figure
1(a) as circles labeled DS and EP, respectively. A data
source is where tuples are generated, whereas endpoints are
where data flow ends and where query results are consumed
by interested applications.

In a distributed system, operators are placed on a set of
physical machines (hosts) connected by a network. Tuples
are sent via the network if two neighboring operators are
located on different machines. Operators can freely move
from one host to another at runtime. However, such move-
ment comes with cost as operator migration consumes both
CPU cycles and network bandwidth.

In this paper, we assume heterogeneous hosts and network
links, so that the scale of participating hosts can vary rang-
ing from sensors to mainframes, and network links may have
different bandwidth and latencies as well. Given that set-
ting, our goal is to find operator placements which optmize
query latency in such a heterogeneous environment.

Example: Figures 1(b) and 1(c) show two possible place-
ments of the sample query graph. The rounded boxes la-
beled H1 and H2 represent two hosts on which the opera-
tors are placed. Cross-network data flow is represented by
the edges that cut the dashed boxes. The only difference
between the two placements is where operator D is located.

2.2 Load Distribution Requirements

In this paper, our objective is finding a good mapping from
operators to hosts so that to minimize end-to-end latency of
stream queries. End-to-end latency consists of operator
processing latency, queueing delay, and network delay for
cross-network streams.

In this paper, we identify three factors that affect the qual-
ity of load distribution. These factors are: (1) the average
load at each host, (2) the load variance at each host, and
(3) the utilization of network links.

221 Averageload

When a host is overloaded, i.e., the operators on this host
cannot process tuples as fast as they arrive, tuples have to be

(c) Placement 2

Figure 1: Sample Query Graph and Its Placement

h a host

9 an operator

[a network link

P a placement

n the number of hosts

m the number of operators
Id;, average load of h

an capacity coefficient of h

qn load quota of h

po | benchmark per-tuple processing cost of o
Ao observed data arrival rate of o
AL ideal data arrival rate of o

2 load correlation

d; delay of [

U bandwidth utilization of [
wy weight of Toad PE

We weight of correlation PE
Wn weight of network PE

0 periodic optimization threshold

Table 1: Notations

queued and thus they will experience large queueing delays.
As such, in the event of overloaded conditions, moving some
operators from the overloaded host to some lightly-loaded
hosts can significantly reduce the latency.

The average load of a host is measured periodically over
fixed-length periods, called measurement periods. These
should be sufficiently long to smooth out load fluctuation.
The load of operator o is defined as the fraction of time
needed by operator o to process the tuples that would ar-
rive at operator o over the length of a measurement period.
The load Idy of host h is the sum of loads of all its operators
(we summarize all notations used in the paper in Table 1).

To measure the load, let p, be the benchmark per-tuple
processing cost of operator o, which is the average time
needed for operator o to process an input tuple if opera-
tor o is placed on a benchmark machine. (Note that the
cost is independent of the machine it is actually being placed
on.) During a measurement period, the benchmark load con-
tributed by operator o is given by A,po, where A, is the ob-
served data arrival rate of o during the measurement period.

In practice, some hosts may be overloaded, in which case

operators that are fed by these overloaded hosts will see
lower tuple arrival rates than they would otherwise. To over-
come such inaccuracy, we can approximate the ideal arrival
rates \,, of operator o using the input rates of data sources
and operator selectivities in a cascading fashion, from up-
stream operators to downstream operators [11]. An oper-
ator’s selectivity can be calculated by measuring the data
flow rates of its input and output streams, and the selectiv-
ity is the rate of its output stream over the product of the
rates of all input streams.

We account for different processing capacities of different
hosts by introducing a capacity coefficient ap, for host h, that
describes the relative processing power of host h compared
to the benchmark machine. The actual per-tuple processing
cost of operator o on host h is then a,p,. Denoting the set
of operators on host h as Op, the load of host A is given by

ldn =on > Aopo.
0€0y,

Example: Consider host Hz on Figure 1(c). Assume dx
is the selectivity of operator X and Apg is the data source’
input rate. The ideal arrival rate of the two operators on
that host are computed as

XC =04 ADs
)\ID = (5,4 + 53) - ADS.

The average load of host Hs is then

ldu, = am, (XCPC +)\/DpD)'

We define the load quota qn as the maximum allowable
load on host h, which is a real number between 0 and 1.
Sometimes the users may not want to fully utilize some
hosts, either to conserve power for power-constrained devices
or because the hosts are shared by other users or applica-
tions. For hosts that have no resource constraints and are
entirely dedicated to the system, the load quota is simply 1.

2.2.2 Load Variance

Although the long-term average load on a host may not
exceed its capacity, short-term load variance can result in
temporary overload. During periods of overload, tuples ac-
cumulate in the input queues of the operators resulting in
high queueing delay. Therefore, to minimize latency, it is
necessary to reduce both the average load and the load vari-
ance on each host. Xing et al [11] tackle this problem by
examining load correlation between operators. The loads of
two operators are positively correlated if they tend to go
up and down synchronously. They are negatively correlated
if they follow opposite trends. In [11], it has been shown
that by placing mutually positively correlated operators on
separate machines and mutually negatively correlated oper-
ators on the same machine, not only will the load variance
on each machine be minimized, but also when the load in-
creases, the additional load will likely be distributed evenly
across the machines. In this paper, we define load variance
and load correlation as in [11]. Specifically, there are defined
as follows:

The load of each operator/host measured in the most re-
cent k periods are recorded. These k values form a load
time series. Given a load time series S = (s1, S2,...,5k),
the average load and load variance is given by

Given two load time series S; = (si1, Si2,...,Sik),t €
{1, 2}, their covariance and correlation coefficient are given
by

1g 1g 1g
COU(517SQ) = P E 815825 — (E g 51j> (E E 52j>)
= j=1 j=1

Cov(S51, S
p(S1,83) = ov(S1, 52) ‘
Vvar(S1) - \/var(S2)
We call the correlation coefficient of two load time series

the load correlation. Note that load correlation is always
between 1 and -1.

2.2.3 Averagelink Utilization

The third factor is the utilization of network links. When
one operator outputs tuples to another, if they reside on the
same host, the transfer can be done in main memory with
negligible delay. However, if they are on different hosts,
there is a non-negligible network delay, which may become
a significant part of the end-to-end latency. In addition,
network links have finite bandwidth, which may become a
system bottleneck and thus limit the overall throughput.
Therefore, we would like to reduce network utilization by
minimizing the number of cross-network streams.

Usually, the requirements on these three factors are con-
flicting. For example, let us suppose that in Figure 1, Place-
ment 2 is better than Placement 1 in terms of average load as
the former distributes the operators more evenly. However,
if we consider network usage, Placement 1 is more preferable
since it has two less cross-network edges than the other. Our
algorithms deal with these conflicting requirements in a uni-
fied manner, as we explain in the next sections.

3. APOTENTIAL-DRIVEN APPROACH

3.1 Overview

We propose a load distribution framework that is formu-
lated using an analogy to the physical world. In the physical
world, a set of objects that exert forces on each other will
spontaneously adjust their positions and evolve to an equi-
librium where the total potential energy (PE) of the objects
are at a local minimum. For example, consider a set of
electrically charged particles, some of which are connected
by springs, that interact with one another through gravity,
electrical force, and the springs. If these particles are let to
move almost freely, then each one will be driven by multi-
ple types of potentials and move towards a position where
it has lower PE. In such system, the change in the location
of one object will change the PEs of all other objects it is
interacting with. The end result is usually a well spread set
of objects, without many agglomerating in one place.

So how is this related to the load distribution problem?
We observe that load distribution exhibits similar dynamics

when we move operators around in the pursuit of reducing
end-to-end latency. Specifically, the location (host) which is
the most preferable for a particular operator depends on the
locations of other operators. Meanwhile, moving an operator
to a more preferable location might change the preferable
locations of the other operators, which in turn may cause
other operators to move.

Example: We would move one or more operators out
of host H; in Figure 1(b) as the total number of operators
(and thus the average load) on that host is relatively high.
However, moving operator D from H; to H2 may, in turn,
cause A to move in the same direction as an effort to reduce
network usage. A’s movement may disturb load balance and
cause further movement.

We define the PE of operators with respect to the locations
of other operators in such a way that an operator has lower
PE if placed at a more preferable location in terms of end-
to-end latency. Then we let operators move in the same
fashion as physical objects do: moving towards locations
where they would have lower PE. The result is expected to
be a distribution of operators to hosts in which the total PE
of operators is small, which in turn translates into smaller
latency.

We need to answer the following two questions to solve
our load distribution problem: (1) how we define the PE
function for operators, and (2) how we find the optimal map-
ping to minimize the total PE of all operators, based on that
function. The next subsection addresses the first question,
whereas the second question is addressed in Section 4.

3.2 Operator PEs

It is important that the definition of the PE of an op-
erator reflects its preference over possible locations, given
the locations of the other operators in the system. As dis-
cussed earlier, there exist multiple requirements for selecting
preferable placements. Therefore, we define different types
of operator PEs, just as there are different types of PEs in
the physical world. Our approach is quite flexible in that
it can accommodate a wide array of requirements for load
distribution by defining a PE function for each.

Next, we define three types of PEs corresponding to the
three requirements discussed in the previous section.

(1) Load PE: An operator has higher load PE if it resides
on a more heavily loaded host. Therefore, an operator tends
to be pushed out of a heavily-loaded host to a lightly-loaded
one. The load PE can be defined in a number of ways.
For example, it can increase linearly with the load of the
host. Alternatively, it can increase slowly with the load
when the load is low, but rapidly when the load approaches
the quota of the host. The latter can be used when we
are not too bothered by the load of a host as long as it
does not exceed the quota. In our experiments, we adopt
the following definition of load PE of operator o on host h,
given the placement P of the other operators

ld ld
= if = <1,

PEZ(O7 h,P) = an ld "
h .
1+p-(— —1) otherwise.
qn
where p is the overload penalty coefficient, which is normally
a value much greater than 1. Under this definition, the
load PE of operator o on host h increases steadily as host
h becomes more loaded, and increases dramatically faster

once the quota is filled. This definition realistically captures
the requirement of load balancing.

(2) Correlation PE: This type of PE is concerned with
load variance. Xing et al [11] have shown that placing neg-
atively correlated operators on the same host helps reduce
the load variance of the host. Intuitively, an operator tends
to move to hosts where its load time series fits in nicely with
those of the rest of the operators on the same host. There-
fore, we define the correlation PE of operator o on host h
to be proportional to the correlation between the load time
series of operator o and the sum of load time series of all
other operators on h. In our experiments, we simply set the
correlation PE equal to the correlation coefficient:

PEC(07 h7 P) = p(07 h)7

where p(o, h) denotes the correlation coefficient between the
load time series of operator o and the sum of load time series
of all operators on h except o.

(3) Network PE: This type of PE accounts for the over-
head incurred by network transmission. For operator o, if
all its downstream neighbors are on the same host as o, then
its network PE is 0 (minimum). Otherwise, suppose L is the
set of links that o uses to send tuples to other hosts (only
downstream links are included to avoid double counting).
Each [€ L will contribute an additive term to the network
PE of o

PEu(0,h, P) = c(l).
leL

For each ! € L, ¢(l) is dependent on both link delay d; and
bandwidth utilization u; of the link. u; is defined as the ratio
of the amount of data to be sent on one link in unit time
over the bandwidth of the link. ¢(!) has the general form
of ¢(l) = f(di) - g(ui), where both f(-) and g(-) are non-
decreasing functions. Each link resembles a “rubber band”
that connects operators, which pulls the connected operators
to the same location. In our experiments, we found that the
following definition of ¢(I) worked quite well

C(l) _ dl lf uy S 1;
"\ d;-u; otherwise.

The underlying idea is that the “tension” of a rubber band
only depends on the delay of the link as long as the band-
width is sufficient. Once the bandwidth utilization reaches
100% forming a bottleneck, the tension will increase with
the traffic on that link.

Example: Network PE of operator A in Figure 1(b) is
c(l12), where l12 is the link between H; and Hs. Operators
C and D in Figure 1(c) should have the same network PE as
they share a common link, but the value should be different
than ¢(l12) due to different bandwidth utilization of the two
placements. Other operators in both placements have zero
network PEs.

Finally, the total PE of an operator is the weighted sum
of its three individual PEs

PE(o,h,P) = w; - PEi(o,h,P)+ w.- PE.(o,h, P)
+wn + PEn (o, h, P).
The summation must be weighted because the value of

individual PEs are not normalized by any means. In the
absence of a clear method to normalize these PEs, and in

order to get an unbiased result, we must scale these values so
that no single type of PE unduly dominates the others. We
will study the effect of different weight assignments through
experiments and we will also provide insights towards auto-
mated weight assignments.

4. POTENTIAL-DRIVEN ALGORITHMS

Following the definition of PE, we can formally define the
goal of load distribution algorithms as finding an optimal
placement P* for all operators that minimizes the total PE:

* : (P)
P* = arg glel%oezo PE(o,hy 7, P),
where P is the family of all possible placements, O is the
set of all operators in the query graph under consideration,
and hE,P) is the host where o shall reside according to P. As
the query graph and the workload often change over time, a
practical algorithm should be able to update P* periodically
at runtime to adapt to such changes.

Obviously, there may exist more than one way to find P*
or an approximation of P*, and finding such an algorithm is
independent of the above definition of PE. In this paper, we
propose two approximate algorithms, but other approaches
that achieve optimality are also possible. Our algorithms are
divided into two classes: one that finds an initial mapping
and one that periodically adjusts the mapping.

4.1 Initial Mapping

Before the initial mapping algorithm starts, we first ran-
domly distribute the operators to hosts and run the system
for a warm-up period to obtain load statistics necessary to
compute the PEs for operators. After the warm-up period,
we run the initial mapping algorithm which redistributes the
operators without considering their original locations.

Given the large search space, the problem of finding the
optimal mapping is difficult and computationally expensive.
Therefore, we propose two heuristic algorithms that prune
the search space by placing operators one-by-one. Specifi-
cally, we exploit two standard techniques for solving opti-
mization problems, as we explain next.

41.1 Greedy Algorithm
The first algorithm, INIT_GREEDY, greedily finds a host

for each operator in some order (ordering is discussed shortly).

The algorithm ignores the original operator placement and
starts from an empty system, in which no operator has been
placed on any host. Then, for each operator o, it finds a
host h such that PFE(o,h,P) is minimized, and adds the
(0, h) pair into mapping P. Once a host is assigned to each
operator, P is the mapping we get. Since the algorithm is
straightforward, we do not show its pseudocode.

4.1.2 Dynamic Programming

A more sophisticated algorithm, INIT_DYN_PROG, uses
dynamic programming (see Algorithm 1). Again, starting
from an empty system, the algorithm considers operators
one by one in some order. It uses an (m + 1) x n matrix
A to store intermediate results, where m is the number of
operators and n is the number of hosts. Element als, j] of
A stores the least sum of PE achievable for the first 7 oper-
ators given that the ¢th operator is placed on the jth host,
0<i<m,1<j<n,and Pj(z) is the mapping that achieves

Algorithm 1 INIT_DYN_PRrROG(O, H)

1: n — size(H)
2: m « size(O)
3: for j=1tondo
4: P](O) — g
5: al0,7] <0
6: end for

7: for i =1 tom do
8 for j =1tondo
9

r—arg min PE(OL], H]j},P{'™")

10: ali,j] — afi — 1,7] + PE(O[i], H[j], P")
11: P — PV U0, Hj)
12: end for
13: end for
14: 4 — arg min a[m, k]
1<k<n

15: return Pi(m)

the least sum of PE. At the beginning, the zero-th row of
A is initialized to 0, and the Pj(o)’s are set to empty. The
matrix is updated according to rules described in lines 9 —
11 of the algorithm. Finally, the smallest is chosen from the
last row of A, and returned as the corresponding mapping.

Note that in both algorithms, the sum is computed over
the PE of each operator without considering the effects of
operators that are added to the mapping later. Normally,
adding a new operator to the system will change the PE of
many other operators. However, we ignore such effects to
reduce the amount of computation at the cost of accuracy
and optimality. Alternatively, one may apply some iterative
method to gradually approach the “equilibrium” state, and
we plan to investigate this in future work.

4.1.3 Operator Ordering

In both algorithms, we need sorted access to the oper-
ators. Generally, different orderings will produce different
mappings, and it is not clear how to choose one (trying all
possible orders is computationally not feasible). Our obser-
vation is that, operators with lower load have more flexibility
in choosing hosts than those with higher load. For example,
if the placement of an operator with high load is left to a
later stage, it could happen that although the overall sys-
tem has some spare capacity to accommodate that operator,
there is no single host that has enough room to accommo-
date it. Based on this observation, for both of the above
algorithms, the operators are considered in the descending
order of their load.

4.2 Periodic Optimization

While the algorithms for initial mapping do not care where
operators are originally placed, algorithms for periodic re-
optimization must take that into account that frequent op-
erator migration could incur large overhead (Section 2.1),
which sometimes can be even larger than the performance
gain from a better mapping. Therefore, for periodic opti-
mization, we only move operators when the migration over-
head is well justified by the gain of doing so.

Our solution is in large part based on the same algorithms
for initial mapping, with a simple modification to control the
number of the operators that can be moved by the algorithm.
0 is a user-defined real number in the range of [0, 1). At each
time the periodic optimization is performed, we first fix the

last |8 x m| operators on the ordered operator list to their
original hosts, and instruct the algorithms to compute the
placement of the rest of operators based on that of the fixed
ones. The operators with the lowest load (and so they are
at the tail of the list) are chosen to be fixed because they
have the least impact on system performance. By tuning
the value of 0, it is possible to smoothly tradeoff between
the quality of optimization and migration cost as well as
computational overhead.

Another possible way to define threshold measurement is
in terms of the number of bytes being moved or the amount
of time needed by the movement, which has finer granular-
ity than the former. However, these alternatives are not
investigated further in this paper.

4.3 Complexity Analysis

Consider the initial mapping algorithms (the analysis ap-
plies to periodic optimization algorithms as well). For both
algorithms, we need to first sort the operators, which takes
O(mlogm). The greedy algorithm has a loop of m iter-
ations, and each iteration needs to evaluate PE on all n
hosts. If we ignore the complexity of evaluating PE for the
moment, the computational complexity of the greedy algo-
rithm is O(mn + mlogm). The dynamic programming al-
gorithm needs to fill a matrix of size O(mn), and for each
entry, it needs to evaluate PE for n times (the 9th line),
which gives a total running time of O(mlogm + mn?).

Now we consider the complexity of evaluating PE. Ac-
cording to the definition of the PE function, it involves eval-
uating three individual PEs. To evaluate load PE, we need
to know the load on the host of interest, which is an oper-
ation of O(1) time. To evaluate correlation PE, we need to
compute the correlation coefficient of two load time series,
which takes O(k) time, where k is the length of the load time
series. Finally, to evaluate network PE, we need to account
for every data stream that connects the operator to an op-
erator on another host. Since the arity of each operator is
usually considered a constant, the worst case running time
of evaluating network PE for a single operator is also con-
stant. Combining with the previous analysis, the worst case
running time of the greedy algorithm is O(mnk + mlogm),
and of the dynamic programming is O(mnzk’ + mlogm).

5. EXPERIMENTAL ANALYSIS

In this section, we present the results of our experimental
analysis, which tries to answer several questions:

e What is the relationship between system performance
and the value of PE?

e How optimal are our algorithms against query graphs
with different topologies and configurations?

e How do the weights of individual PEs affect the algo-
rithms’ performance, and how can we guide end users
to tune those parameters to achieve best performance?

e Do our algorithms outperform existing ones?

For the last question, we compare our algorithms with the
one proposed by Xing et al. in [11] (referred to as XZH),
which is most relevant to our work.

5.1 TheSmulator

To simulate a D-DSMS, we used a custom-built discrete
event simulator which is written in Java. The simulator

100 tuples
20 ms/tuple
U(1, 5) ms/tuple

Operator input queue length
Operator migration cost ratio
po of filters

Selectivity of filters U(0.8, 1.0)
Do of joins U(1, 2) ms/tuple
Selectivity of joins U(0.01, 0.2)

Window size of joins
Stable input inter-arrival period
Fluctuating input load period
Fluctuating input high rate
inter-arrival period

U(1, 10) tuples
70 ms/tuple
N(12.0, 0.05) sec
E(50) ms/tuple

Fluctuating ratio (Z&112t) 4
uy - d; U(4, 10k) tuples
d; U(1, 500) ms
qn 1
Overload penalty coeflicient 20.0
Statistics window size 50 sec
Samples per stat. window (k) 10
‘Warm-up time 120 sec
w) 1.0
We 1.0
Wn 1.0
0 0

Table 2: Default Simulation Parameters

supports filters and binary joins. Since we only consider op-
erators’ external behavior and not their actual semantics,
other operator types like multi-way joins can always be sim-
ulated via combinations of the two. We assume uniprocessor
hosts so that all operators on the same host are scheduled
sequentially. We choose FCFS scheduling policy for all hosts
in the following experiments.

Network links are unidirectional channels and a full-duplex
link is simulated by bundling two links in different direc-
tions. As a common practice, if an operator has more than
one downstream neighbour on another host, it will transmit
each tuple to that host only once, and duplicate the tu-
ple after arrival. Finally, we use capacity and delay as two
parameters to describe a link. Capacity is the maximum
number of tuples that can exist on a link at any given time.

The bandwidth of the link is calculated as %

5.2 Experimental Setup

We test our algorithms under different schemes. A scheme
is defined by three orthogonal facets: query graph topology,
input workload pattern, and the parameters of the query
graph and the workload.

Query Graphs: Two types of query graphs are used for
experiments. One consists of a number of independent filters
chains, with the same number of filters on each chain (we
call this number chain length). Another is hybrid, consisting
of both filters and binary joins. Operators in both types
are initially randomly distributed.

Workload: Workload describes the patterns in which in-
put tuples are generated. There are two types of workloads:
stable models constant workload where all data sources gen-
erate tuples at the same stable input rate. Fluctuating is
where the average input rate of each data source periodi-
cally alternates between a high rate and a low rate. In both
periods, tuples’ inter-arrival time is drawn from an exponen-
tial distribution with the mean set to the current input rate.
The duration of high rate and low rate periods follow nor-
mal distribution with the same mean and variation. To vary

load correlations between input streams, we align data rate
modes of each data source with randomly selected offsets.

Given an instantiation of the other two facets, stable work-
load leads to deterministic results but the fluctuating one
does not. Therefore, for the experiments based on fluctu-
ating workload, we repeat each of them for at least 3 times
and report the average result.

Scheme 1: Chain / Stable

n 3
m 9
No. of chains 1
ap 1
po of filters 20 ms/tuple
Selectivity of filters 1.0
uy - d; 10’000 tuples
d; 100 ms

Stable input inter-arrival period

100 ms/tuple

Scheme 2: Chain / Stable

n 20

m 200
No. of chains 20

ap, U(1, 10)

Scheme 3: Chain / Fluctuating

n 10
m 90
No. of chains 3
alphayp, U(1, 2)
po of filters 10 ms/tuple
Fluctuating input high rate E(100)
inter-arrival period ms/tuple
Fluctuating ratio (28112t) 2.5

Scheme 4: Hybrid / Stable

n 5

m 40
No. of data sources 5
Percentage of filters 50%

ap 1

Scheme 5: Hybrid / Fluctuating

n 10
m 100
No. of data sources 5
Percentage of filters 85%
on U(L, 10)
Scheme 6: Chain / Fluctuating
n 20
m 200
No. of chains 20
Qp 1
uy - dj 10’000 tuples
d; 0
Fluctuating input high rate E(15)

inter-arrival period ms/tuple

Table 3: Scheme-specific Parameter Values

Parameters: We have six different schemes (see the next
subsection). Table 2 lists default parameter values across
all the schemes, which are used throughout the experiments
unless explicitly stated or overridden by scheme-specific val-
ues. All values are either deterministic or uniformly (U),
normally (N), or exponentially (E) distributed.

Those parameter values were carefully chosen to meet the

5r — — — —Scheme 2 .
7/
Scheme 5 y
4 L
S
g3l
>
(8]
c
2
S 2t
1 L
o L L L L
0 20000 40000 60000 80000 100000

Potential Energy

Figure 2: Relationship between PE and Latency

following criteria: 1) be close to real environments; 2) be
close to the parameter values used by [11], for comparable
results; and 3) feed the system with medium to very heavy
workload (optimization on lightly loaded systems does not
produce significant results and are not of interest).

5.2.1 Schemes

To evaluate our algorithms thoroughly, we use six differ-
ent schemes covering all combinations of query graphs and
workloads (see Table 3). Scheme 1 simulates a simple envi-
ronment, where filters, hosts, and network links are homo-
geneous, and the query graph only contains one chain with
nine filters. This scheme is helpful for intuitive analysis.
Schemes 2 to 5 try to cover typical settings of all combina-
tions of query graphs and workloads, from simple to com-
plex. They are expected to simulate real use cases. Scheme
6 is dedicated to a comparison between our algorithm and
XZH which will be presented in Section 5.3.7.

5.2.2 Performance Measures

In the following experiments, we measure the average end-
to-end latency provided by the D-DSMS. The latency of a
tuple t is the difference between its birth time and the time
it arrives at an endpoint. Birth time is the time ¢ enters
the query graph if it is generated by a data source, or the
birth time of the youngest tuple that contributes to t’s birth
if ¢ is generated by an operator. End-to-end latency is then
defined as the average latency of all tuples that arrive at
endpoints during the period of measurement.

5.3 Experimentsand Results

We performed each experiment extensively under all schemes.

Since the results are similar among different schemes, we
only report interesting ones.

5.3.1 PEvs. Latency

To investigate the relationship of PE to end-to-end la-
tency, we generate 50 variations based on Schemes 2 and 5,
and for each of these running schemes, we measure its total
PE, and latency. Based on Scheme 2, we generate 20 varia-
tions by varying the length of chains from 1 to 20; based on
Scheme 5, we generate 30 with the number of hosts ranging
from 1 to 30.

Figure 2 shows the relationship between PE and latency.

_______ o 0.35 45
Original Lo - = = - = - Original + Original
6 ——Greedy e Optimized 40 Optimized
Dynamic Prog. P
Y g . 0.3 NS A N 35 |
5t c
‘ S _30
5 <025 3 |
\ﬂui 4 + . a8 2 25
> . 2 250t
%) <] 2
5 3 . 3 02 T
&3 , B 15
g B 2 L
5l , 0.15 07
- 5+
it - 0.1 : : 0
, -5 0 5 10 5 0 5 10
0 ke))))) log (weight of load PE) log (weight of load PE)
1 6 11 16 21 26

Chain Length (operators)
Figure 4: Effect of w; under Scheme 5

Figure 3: Algorithms’ Performance on Latency

------- Scheme 3a

100 100
It is interesting that Scheme 2’s variations exhibit a perfect M """"" heme %
linearity, likely caused by the linearity of the chain query | _ _ _ _ e AR Scheme 3
graphs. Both curves show positive correlation between PE s O \II —— — -ismm| o B
. . [} Smspt | O F
and the latency, confirming our expectation. 2 I EEEREEE imop | & 10 :
3 gt l..o777 77 >
. . T g
5.3.2 Greedy vs. Dynamic Programming £ \ g
In this experiment, we compare the two algorithms for B ox | b————+ EREN
solving the optimization problem. That is, the greedy al- '
gorithm and dynamic programming (Section 4). The ex-
0.01 + + + + + 0.1

periment is performed by measuring latency under different
chain lengths as shown in Figure 3. The curve marked as
“original” is the measurements done before any load distri-
bution algorithm is applied (the remaining plots also follow
this convention). The results show no distinguishable differ-
ence between the two algorithms. Further investigation on
its cause is ongoing. However, our initial theory is that for
this problem a simple greedy is sufficient. Hence, in remain-
ing sections we only focus on the greedy algorithm.

5.3.3 Effect of w;

There are three tunable weights that could noticeably im-
pact the results of our algorithms (see Section 3.2): wy, we,
and w,. Apparently, if we scale them by the same amount,
we will only change the value of the PE function but not the
behavior of the algorithms. Thus, we can always “transfer”
the effect of one weight to the other two, by dividing all of
them by the value of that weight. In other words, studying
the effects of any two weights is sufficient. To simplify the
presentation, we will focus in this section on w; and wy,.

We first study the effect of w; under Scheme 5. Under dif-
ferent values of w;, we record latency as well as load devia-
tion among all hosts. Since load PE reflects the requirement
of distributing load among hosts evenly, then it is expected
that the load deviation should decrease as w; increases. The
left plot in Figure 4 shows that the trend is as anticipated
(z-axes in log,, scale). The latency also decreases as w;
increases, as shown in the right plot in Figure 4. We also
notice that improper weight values (e.g. log(w;) < 0) may
lead to a latency even larger than the original one.

Is it true that a larger weight always leads to a lower
latency? To verify this, we generate four variants of Scheme
1 and conduct the same experiment on each of them. These
variants only differ in their benchmark costs of operators,
ranging from 1 to 40 ms/tuple (mspt). The left plot in
Figure 5 shows the measured latency with respect to wj.

-4 4 6

2 0 2 0 2 4
log (weight of load PE) log (weight of load PE)

Figure 5: Effect of w; under Different Schemes

The figure illustrates that when the processing cost is
high, it makes host load a dominant contributor to the la-
tency. As such, using large w; values will emphasize the
importance of the load PE and make it a dominant term
of the PE function which leads to a reduced latency. To
the contrary, in cases when the cost is low, a large w; will
instead increase the latency. As a rudimentary conclusion,
good performance will be obtained if w; can properly scale
the term of load PE, enabling it to truly reflect the impor-
tance of host load compared to the other factors.

A good algorithm should be able to automatically adapt
to different situations without frequent adjustment on its pa-
rameters. Can we find a “universal” value of w; that works
well in most, if not all, cases? Such a value should usu-
ally result in short latency. After extensive experiments,
we found that a value around 102 satisfies this requirement.
For example in Figure 5’s left plot, all curves reach or ap-
proach their lowest point when the z-coordinate is close to
2. Similarly, the right plot shows the relationship between
the latency and w; under four random variations of Scheme
3. To generate each variation, we randomly distort several
parameters that are selected arbitrarily. According to the
chart, the algorithm achieves its best result when log(w;) is
around 4; log(w;) = 2 also produces acceptable result. In
practice, it should be sufficient to initially set w; to 10°.

5.3.4 Effect of w,

We study the effect of w,, in the same way: under Scheme
5, we measure its latency and network utilization with re-

o
i
o
o

= * Original
Optimized

= * Original
Optimized

o
o w
w &

o
N
a

o
o
3

Network Utilization (tuple/ms)
o o
[N N

o
o
a

Latency (sec)

Latency (sec)

Original
Optimized

Original
Optimized

o
o

-5.5 -4 -2.5 1 0.5

log (weight of network PE)

&
w»

-4 -2.5 -1 0.5
log (weight of network PE)

Figure 6: Effect of w, under Scheme 5

100 pra— 100
R A N Scheme 3a P
_____________ AR Scheme3b | :
—————————— Scheme 3¢ |
10F[==mm-" 20 mspt Scheme 3d | 1
z =
8 20 mspt 2 10
c 10 mspt| g
> — — — = Smspt >
§ 1
g N g
8 -~ 81
01 \
[—
001 : 1 . . 01 | | | ;
A
6 -5 4 3 2 -55 4 -25 -1 0.5

log (weight of network PE) log (weight of network PE)

Figure 7: Effect of w, under Different Schemes

spect to the values of w,,. Given our previous rationale about
w; (Figure 4), host load should be a dominant contributor
to the latency of Scheme 5. This explains the increase in
latency when network PE is given a high weight by using
larger w, values as shown in the right plot of Figure 6.

Figure 7 shows the relationship between latency and wn,
under variants of Scheme 1 with different benchmark costs
(left), and under randomly generated variants of Scheme
3 (right). We can see from the left plot that as processing
costs increase, the trends for latency shift from decreasing to
increasing. This observation confirms our claim that exces-
sive emphasis on one term will cause performance regression
when the term’s corresponding factor is not dominant.

We found from experiments that a value of w, around
10™2 can achieve good results with high probability. As il-
lustrated in both plots in Figure 7. In summary, w; = 102,
we = 1, and w, = 1072 is our recommended orders of mag-
nitude in practical use. We apply the values of (100, 1,0.001)
in the subsequent experiments.

5.35 Effectof 9

Non-zero 6 values are used in periodic optimization (Sec-
tion 4.2) to determine how many operators to move at each
period. Figure 8 shows end-to-end latency versus 6 under
Schemes 3 and 4. It is clear that as § becomes larger and
thus more operators are fixed, the optimized latency be-
comes worse. When 6 reaches 1, no operators are movable
and hence the latency becomes equal to the original one.

0.6 0.8 1

0.2 0.4 .
Theta

0.4 0.6 0.8 1 0

0 0.2 . .
Theta

Figure 8: Effect of 6§ under Scheme 3 and 4

1T Il
M Load Quota 070 msftuple
0250 ms/tuple @400 ms/tuple
0.8
T
3 0.6
-
=i
&
S
% 0.4
(=}
T
0.2
04 | | Ll
1 2 3 4 5 6 7 8
Host ID
1
M Load Quota
08 | 0 28 ms/tuple
— M 050 msituple
§ @100 ms/tuple
206
o
@
o
-
0.4
<]
T
0.2
04 | | Ll
1 2 3 4 5 6 7 8
Host ID
Figure 9: Algorithm’s Sensitivity to Load Quota

5.3.6 Algorithm's Sensitivity to Load Quota

The default value of host load quotas is set to 1 (Table 2)
to enable the algorithms to optimize system performance un-
conditionally. When there exist certain resource constraints,
it may be necessary to limit utilization of some hosts.

To test the algorithm’s sensitivity to load quotas, we uni-
formly distribute the quotas between 0 to 1, and compare
each host’s actual load with its load quota under different
system workload. Figure 9 shows the results under Schemes
2 and 5. We reduce the number of hosts on each scheme to 8
for clarity. We observe a good approximation of actual loads
to quotas. Note that in the first chart, the inter-arrival pe-
riod of 70 ms/tuple imposes very heavy workload and causes
the four hosts with highest load quotas to be 100% loaded.

5.3.7 Comparisonwith XZH Algorithm

In this experiment, we compare our algorithm with XZH
from [11]. Specifically, we implemented the global load dis-
tribution algorithm [11], which performs load distribution by

Latency (sec)

-
N
N
IS

"""" Original
XZH
PD

"""" Originall - -
XZH -
PD

=
S}
T
-
N

o ©
T T
\

Latency (sec)

IS
T

0 == L L 0' . I
30

10 15 20 25 20 10 1
Chain Length (operators) High Rate Inter-arrival Period (ms/tuple)

Figure 10: Potential-Driven (PD) vs. XZH in an

XZH’s Favorable Environment

examining operators’ load levels and load correlations with
different hosts. In our experiment, all parameters of XZH al-
gorithm are set to the same values as listed in Table 2, and
its correlation improvement threshold is set to 0.8. Since
XZH algorithm does not consider heterogeneity or network
latency, to ensure fairness, we use Scheme 6 for comparison,
where we set all capacity coefficients to 1 and network delay
to 0. Since only chain shaped graphs were studied in [11],
we configure Scheme 6 as a chain graph.

The left plot in Figure 10 is obtained by varying the length
of chains from 5 to 30, and the right one is obtained by vary-
ing the scheme’s high input rates from 20 to 1 ms/tuple.
We can see that under this particular homogeneous envi-
ronment and ideal network conditions, our algorithm still
outperforms XZH since it considers operator load correla-
tion (as in [11]) in addition to total host load.

6. RELATED WORK

Xing et al [11] propose a correlation-based approach which,
in addition to balancing load across machines, tries to mini-
mize load variance on individual machines, preventing tem-
porary overload. Network limitations are not considered,
which could result in frequent transfer of tuples via net-
work links and significant overhead when the network con-
ditions are not perfect. Our work goes further by considering
network utilization as well as heterogeneous environments.
Also, the PE function that is central to our approach can be
extended with more terms, providing further flexibility.

The work in [12] assumes that operator movement is ex-
pensive, and try to place them in such a way that the result-
ing system can withstand large workload variation without
overloading or operator migration. Among other differences,
our work differs in that we aim to optimize latency. As in
[11], [12] assumes homogeneous machines and perfect net-
works; on the other hand, it uses CPU capacity to reflect
resource constraint and operator clustering as a preprocess-
ing step to prevent costly data crossing the network. [10] at-
tempts to consider the situations where the network transfer
delay cannot be ignored by grouping neighboring operators
in the initial mapping. When adjustment is necessary, only
operators at the boundary are migrated to the neighboring
host, so as to avoid creating excessive network traffic. Our
work reduces network traffic in a more systematic way, and
strikes a balance with other factors.

Other approaches that consider data transmission over-
head include [14, 13, 3, 9]. For example, [14, 13] aim to

minimize communication cost while maintaining balance of
load among hosts. Also, [7] proposes an overlay network
between a D-DSMS and the physical network in order to
optimize latency and network utilization based on a multi-
dimensional cost space. The work in [3] incorporates knowl-
edge of network characteristics such as bandwidth and topol-
ogy into operator placement algorithms. In the context of
sensor networks, [9] considers placing operators along the
nodes of a hierarchy to reduce network utilization.

Finally, intra-operator load distribution [8, 5] distributes
a single operator across multiple machines, as opposed to
inter-operator load distribution studied in this paper. The
former is useful when the granularity of inter-operator load
distribution is too coarse to achieve good performance. In-
tegrating intra- and inter-operator techniques remains as a
potential future work.

7. CONCLUSIONS

We have studied the problem of efficient load distribu-
tion in D-DSMS with the objective of minimizing end-to-end
latency. We identify three often conflicting requirements
for load distribution that are key to achieving our objec-
tive, namely load balancing, load variation minimization,
and network utilization reduction. We propose a potential-
driven approach to accommodate these conflicting require-
ments. Under this framework, we propose algorithms for
both initial operator mapping and periodic optimization.
We report extensive experimental results that analyze the
behavior of our approach, and we show that the proposed
method outperforms existing ones.

8. REFERENCES

(1] D. J. Abadi et al. Aurora: a new model and architecture for
data stream management. The VLDB Journal, 12(2), 2003.

[2] D. J. Abadi et al. The design of the borealis stream
processing engine. In CIDR, 2005.

[3] Y. Ahmad and U. Cetintemel. Network-aware query
processing for stream-based applications. In VLDB, 2004.

[4] S. Chandrasekaran et al. TelegraphCQ: Continuous
dataflow processing for an uncertain world. In CIDR, 2003.

[5] X. Gu, P. S. Yu, and H. Wang. Adaptive load diffusion for
multiway windowed stream joins. In ICDE, 2007.

[6] R. Motwani et al. Query processing, approximation, and
resource management in a data stream management
system. In CIDR, 2003.

[7] P. Pietzuch et al. Network-aware operator placement for
stream-processing systems. In ICDE, 2006.

[8] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and
M. J. Franklin. Flux: An adaptive partitioning operator for
continuous query systems. In ICDE, 2003.

[9] U. Srivastava, K. Munagala, and J. Widom. Operator
placement for in-network stream query processing. In
PODS, 2005.

[10] Y. Xing. Load distribution for distributed stream
processing. In EDBT Ph.D. Workshop, 2004.

[11] Y. Xing et al. Dynamic load distribution in the borealis
stream processor. In ICDE, 2005.

[12] Y. Xing, J.-H. Hwang, U. Cetintemel, and S. Zdonik.
Providing resiliency to load variations in distributed stream
processing. In VLDB, 2006.

[13] Y. Zhou, B. C. Ooi, and K.-L. Tan. Dynamic load
management for distributed continuous query systems. In
ICDE, 2005.

[14] Y. Zhou, B. C. Ooi, K.-L. Tan, and J. Wu. Efficient
dynamic operator placement in a locally distributed
continuous query system. In LNCS 4275, OTM, 2006.

