
ar
X

iv
:c

s/
06

03
02

5v
2

 [
cs

.A
I]

 2
5

Fe
b

20
07

Open Answer Set Programming with Guarded

Programs

STIJN HEYMANS

Digital Enterprise Research Institute (DERI)

Leopold-Franzens-Universität

Innsbruck, Austria

stijn.heymans@deri.org

and

DAVY VAN NIEUWENBORGH, and DIRK VERMEIR

Dept. of Computer Science

Vrije Universiteit Brussel, VUB

Pleinlaan 2, B1050 Brussels, Belgium

{dvnieuwe,dvermeir}@vub.ac.be

Open answer set programming (OASP) is an extension of answer set programming where one

may ground a program with an arbitrary superset of the program’s constants. We define a
fixed point logic (FPL) extension of Clark’s completion such that open answer sets correspond to
models of FPL formulas and identify a syntactic subclass of programs, called (loosely) guarded
programs. Whereas reasoning with general programs in OASP is undecidable, the FPL translation
of (loosely) guarded programs falls in the decidable (loosely) guarded fixed point logic (µ(L)GF).
Moreover, we reduce normal closed ASP to loosely guarded OASP, enabling for the first time, a
characterization of an answer set semantics by µLGF formulas.

We further extend the open answer set semantics for programs with generalized literals. Such
generalized programs (gPs) have interesting properties, e.g., the ability to express infinity axioms.
We restrict the syntax of gPs such that both rules and generalized literals are guarded. Via
a translation to guarded fixed point logic, we deduce 2-exptime-completeness of satisfiability
checking in such guarded gPs (GgPs). Bound GgPs are restricted GgPs with exptime-complete
satisfiability checking, but still sufficiently expressive to optimally simulate computation tree logic
(CTL). We translate Datalog lite programs to GgPs, establishing equivalence of GgPs under an
open answer set semantics, alternation-free µGF, and Datalog lite.

Categories and Subject Descriptors: I.2.3 [Artificial Intelligence]: Deduction and Theorem
Proving—Logic Programming; I.2.4 [Artificial Intelligence]: Knowledge Representation For-
malisms and Methods

General Terms: Theory

Additional Key Words and Phrases: Answer Set Programming, Open Domains, Fixed Point Logic

This is a revised and extended version of [Heymans et al. 2005a] and [Heymans et al. 2006a].
Stijn Heymans is supported by the European Commission under the projects Knowledge Web and
SUPER; by the FFG (Österreichische Forschungsförderungsgeselleschaft mbH) under the projects
RW2, SemNetMan, and SEnSE. Davy Van Nieuwenborgh is supported by the Flemish Fund for
Scientific Research (FWO-Vlaanderen).

http://arxiv.org/abs/cs/0603025v2

1. INTRODUCTION

In closed answer set programming (ASP) [Gelfond and Lifschitz 1988], a program
consisting of a rule p(X)← not q(X) and a fact q(a) is grounded with the program’s
constant a, yielding p(a) ← not q(a) and q(a). This program has one answer set
{q(a)} such that one concludes that the predicate p is not satisfiable, i.e., there
is no answer set of the program that contains a literal with predicate p. Adding
more constants to the program could make p satisfiable, e.g., in the absence of a
deducible q(b), one has p(b). However, in the context of conceptual modeling, such
as designing database schema constraints, this implicit dependence on constants in
the program in order to reach sensible conclusions is infeasible. One wants to be
able to test satisfiability of a predicate p in a schema independent of any associated
data, see, e.g., conceptual modeling as in the Object-role Modeling paradigm [Halpin
2001].
For answer set programming, this problem was solved in [Gelfond and Przymusin-

ska 1993], where k-belief sets are the answer sets of a program that is extended
with k extra constants (reasoning with k-belief sets was shown to be undecidable in
[Schlipf 1993]). We extended this idea, e.g., in [Heymans et al. 2005b], by allowing
for arbitrary, thus possibly infinite, universes1. Open answer sets are pairs (U,M)
with M an answer set of the program grounded with U . The above program has an
open answer set ({x, a}, {q(a), p(x)}) where p is satisfiable. Open Answer Set Pro-
gramming solves the above conceptual modeling problem, confirmed by the ability
of Open Answer Set Programming to simulate several expressive Description Logics
[Heymans et al. 2005b]. Moreover, as it is a rule-based formalism Open Answer
Set Programming is thus very suitable to function as an integrating formalism of
Description Logics and Logic Programming.
Characteristic about (O)ASP is its treatment of negation as failure (naf): one

guesses an interpretation for a program, computes the program without naf (the
GL-reduct [Gelfond and Lifschitz 1988]), calculates the iterated fixed point of this
reduct, and checks whether this fixed point equals the initial interpretation. We
compile these external manipulations, i.e., not expressible in the language of pro-
grams itself, into fixed point logic (FPL) [Grädel and Walukiewicz 1999] formulas.
First, we rewrite an arbitrary program as a program containing only one designated
predicate p and (in)equality; this makes sure that when calculating a fixed point of
the predicate variable p, it constitutes a fixed point of the whole program. In the
next phase, such a p-program P is translated to FPL formulas comp(P). comp(P)
ensures satisfiability of program rules by formulas comparable to those in Clark’s
completion. The specific answer set semantics is encoded by formulas indicating
that for each atom p(x) in the model there must be a true rule body that motivates
the atom, and this in a minimal way, i.e., using a fixed point predicate. Negation
as failure is correctly handled by making sure that only those rules that would be
present in the GL-reduct can be used to motivate atoms.
In [Chandra and Harel 1982], Horn clauses were translated to FPL formulas and

in [Gottlob et al. 2002] reasoning with an extension of stratified Datalog is reduced
to FPL, but, to the best of our knowledge, this is the first encoding of an answer

1Note that answer sets for programs with (infinite) universes were also considered in [Schlipf 1995].

2

set semantics in FPL.
In [Lin and Zhao 2002; Lee and Lifschitz 2003], ASP with (finite) propositional

programs is reduced to propositional satisfiability checking. The translation makes
the loops in a program explicit and ensures that atoms p(x) are motivated by bodies
outside of these loops. Although this is an elegant characterization of answer sets
in the propositional case, the approach does not seem to hold for OASP, where
programs are not propositional but possibly ungrounded and with infinite universes.
Instead, we directly use the built-in “loop detection” mechanism of FPL, which
enables us to go beyond propositional programs.
Translating OASP to FPL is thus interesting in its own right, but it also enables

the analysis of decidability of OASP via decidability results of fragments of FPL.
Satisfiability checking of a predicate p w.r.t. a program, i.e., checking whether there
exists an open answer set containing some p(x), is undecidable. It is well-known
that satisfiability checking in FOL is undecidable, and thus the extension to FPL
is too[Moschovakis 1974]. However, expressive decidable fragments of FPL have
been identified [Grädel and Walukiewicz 1999]: (loosely) guarded fixed point logic
(µ(L)GF) extends the (loosely) guarded fragment (L)GF of FOL with fixed point
predicates.
GF is identified in [Andréka et al. 1998] as a fragment of FOL satisfying properties

such as decidability of reasoning and the tree model property, i.e., every model can
be rewritten as a tree model. The restriction of quantified variables by a guard, an
atom containing the variables in the formula, ensures decidability in GF. Guards are
responsible for the tree model property of GF (where the concept of tree is adapted
for predicates with arity larger than 2), which in turn enables tree-automata tech-
niques for showing decidability of satisfiability checking. In [Van Benthem 1997],
GF is extended to LGF where guards can be conjunctions of atoms and, roughly,
every pair of variables must be together in some atom in the guard. Satisfiability
checking in both GF and LGF is 2-exptime-complete [Grädel 1999], as are their
extensions with fixed point predicates µGF and µLGF [Grädel and Walukiewicz
1999].
We identify a syntactically restricted class of programs, (loosely) guarded pro-

grams ((L)GPs), for which the FPL translation falls in (alternation-free2) µ(L)GF,
making satisfiability checking w.r.t. (L)GPs decidable and in 2-exptime. In LGPs,
rules have a set of atoms, the guard, in the positive body, such that every pair of
variables in the rule appears together in an atom in that guard. GPs are the
restriction of LGPs where guards must consist of exactly one atom.
Programs under the normal answer set semantics can be rewritten as LGPs under

the open answer set semantics by guarding all variables with atoms that can only
introduce constants from the original program. Besides the desirable property that
OASP with LGPs is thus a proper decidable extension of normal ASP, this yields
that satisfiability checking w.r.t. LGPs is, at least, nexptime-hard.
Datalog lite [Gottlob et al. 2002] is a language based on stratified Datalog with

input predicates where rules are monadic or guarded and may have generalized
literals in the body, i.e., literals of the form ∀Y · a ⇒ b for atoms a and b. It
has an appropriately adapted bottom-up fixed point semantics. Datalog lite is

2µ(L)GF without nested fixed point variables in alternating least and greatest fixed point formulas.

3

devised to ensure linear time model checking while being expressive enough to
capture computational tree logic [Emerson and Clarke 1982] and alternation-free
µ-calculus [Kozen 1983]. Moreover, it is shown to be equivalent to alternation-
free µGF. Our reduction of GPs to alternation-free µGF ensures that we have a
reduction from GPs to Datalog lite, and thus couples the answer set semantics to
a fixed point semantics based on stratified programs. Intuitively, the guess for an
interpretation in the answer set semantics corresponds to the input structure one
feeds to the stratified Datalog program. The translation from GPs to Datalog lite
needs only one stratum to subsequently perform the minimality check of answer set
programming.
The other way around, we reduce satisfiability checking in recursion-free Datalog

lite to satisfiability checking w.r.t. GPs. Recursion-free Datalog lite is equivalent
to GF [Gottlob et al. 2002], and, since satisfiability checking of GF formulas is 2-
exptime-hard [Grädel 1999], we obtain 2-exptime-completeness for satisfiability
checking w.r.t. (L)GPs.
We next extend programs with generalized literals, resulting in generalized pro-

grams (gPs). A generalized literal is a first-order formula of the form ∀Y · φ ⇒ ψ
where Y is a sequence of variables, φ is a finite boolean combination of atomic
formula and ψ is an atom. Intuitively, such a generalized literal is true in an open
interpretation (U,M) if for all substitutions3 [Y | y], y in U , such that φ[Y | y] is
true in M , ψ[Y | y] is true in M .
Generalized literals ∀Y · φ ⇒ ψ, with φ an atom instead of a finite boolean

combination of atomic formula, were introduced in Datalog4 with the language
Datalog lite. In open answer set programming (OASP), we define a reduct that
removes the generalized literals. E.g., a rule

r : ok ← ∀X · critical(X)⇒ work(X)

expresses that a system is OK if all critical devices are functioning: the GeLi-reduct
(generalized literal reduct) of such a rule for an open interpretation ({x0, . . .},M)
where M contains critical(xi) for even i, contains a rule

r′ : ok ← work(x0),work(x2), . . .

indicating that the system is OK if the critical devices x0, x2, . . . are working. The
GeLi-reduct does not contain generalized literals and one can apply the normal
answer set semantics, modified to take into account the infinite body.
Just as it is not feasible to introduce all relevant constants in a program to ensure

correct conceptual reasoning, it is not feasible, not even possible, to write knowledge
directly as in r′ for it has an infinite body. Furthermore, even in the presence
of a finite universe, generalized literals allow for a more robust representation of
knowledge than would be possible without them. E.g., with critical devices y1 and
y2, a rule s : ok ← work(y1),work(y2) does the job as well as r (and in fact s is the
GeLi-reduct of r), but adding new critical devices, implies revisiting s and replacing

3As usual, for a finite boolean combination of atomic formula ξ, we use ξ[Y | y] to denote the
formula ξ where all occurrences of Y are replaced by y.
4The extension of logic programming syntax with first-order formulas dates back to [Lloyd and
Topor 1984].

4

it by a rule that reflects the updated situation. Not only is this cumbersome, it
may well be impossible as s contains no explicit reference to critical devices, and
the knowledge engineer may not have a clue as to which rules to modify.
One can modify the aforementioned FPL translation of programs without gener-

alized literals to take into account generalized literals. With this FPL translation,
we then have again a mapping from one undecidable framework into another unde-
cidable framework. We restrict gPs, resulting in guarded gPs (GgPs), such that all
variables in a rule appear in an atom in the positive body and all generalized literals
are guarded, where a generalized literal is guarded if it can be written as a guarded
formula in µGF. The FPL translation of GgPs then falls into the µGF fragment,
yielding a 2-exptime upper complexity bound for satisfiability checking. Together
with the 2-exptime-completeness of guarded programs without generalized literals
this establishes 2-exptime-completeness for satisfiability checking w.r.t. GgPs. As
a consequence, adding generalized literals to a guarded program does not increase
the complexity of reasoning.
We further illustrate the expressiveness of (bound) GgPs by simulating reasoning

in computational tree logic (CTL) [Emerson 1990], a temporal logic. Temporal
logics [Emerson 1990] are widely used for expressing properties of nonterminating
programs. Transformation semantics, such as Hoare’s logic are not appropriate
here since they depend on the program having a final state that can be verified
to satisfy certain properties. Temporal logics on the other hand have a notion of
(infinite) time and may express properties of a program along a time line, without
the need for that program to terminate. E.g., formulas may express that from each
state a program should be able to reach its initial state: AGEFinitial .
Two well-known temporal logics are linear temporal logic (LTL) [Emerson 1990;

Sistla and Clarke 1985] and computation tree logic (CTL) [Emerson 1990; Emerson
and Halpern 1982; Clarke et al. 1986], which differ in their interpretation of time:
the former assumes that time is linear, i.e., for every state of the program there
is only one successor state, while time is branching for the latter, i.e., every state
may have different successor states, corresponding to nondeterministic choices for
the program.
Since CTL satisfiability checking is exptime-complete and satisfiability checking

w.r.t. GgPs is 2-exptime-complete, a reduction from CTL to GgPs does not seem
to be optimal. However, we can show that the particular translation has a special
form, i.e., it is bound, for which reasoning is exptime-complete and thus optimal.
Finally, we can reduce general Datalog lite reasoning, i.e., with recursion, to

reasoning with GgPs. In particular, we prove a generalization of the well-known
result from [Gelfond and Lifschitz 1988] that the unique answer set of a stratified
program coincides with its least fixed point model: for a universe U , the unique
open answer set (U,M) of a stratified Datalog program with generalized literals is
identical5 to its least fixed point model with input structure id(U), the identity re-
lation on U . Furthermore, the Datalog lite simulation, together with the reduction
of GgPs to alternation-free µGF, as well as the equivalence of alternation-free µGF
and Datalog lite [Gottlob et al. 2002], lead to the conclusion that alternation-free
µGF, Datalog lite, and OASP with GgPs, are equivalent, i.e., their satisfiability

5Modulo equality atoms, which are implicit in OASP, but explicit in Datalog lite.

5

checking problems can be effectively polynomially reduced to one another.
GgPs are thus just as expressive as Datalog lite, however, from a knowledge

representation viewpoint, GgPs allow for a compact expression of circular knowl-
edge. E.g., the omni-present construction with rules a(X)← not b(X) and b(X)←
not a(X) is not stratified and cannot be (directly) expressed in Datalog lite. The
reduction to Datalog lite does indicate that negation as failure under the (open)
answer set semantics is not that special, but can be regarded as convenient semantic
sugar.
The remainder of the paper starts with an introduction of the open answer set

semantics, fixed point logic, and computation tree logic. In Section 3, we reduce
satisfiability checking w.r.t. arbitrary logic programs to satisfiability checking of
alternation-free fixed point logic formulas. We identify in Section 4 syntactical
classes of programs for which this FPL translation falls into the decidable logic
µGF or µLGF, i.e., guarded or loosely guarded fixed point logic.
In Section 5, we introduce so-called generalized literals and modify the translation

to FPL in Section 6. Section 7 mirrors Section 4 and identifies classes of programs
with generalized literals that can be mapped to guarded FPL. In Section 8, we
relate the obtained languages under the open answer set semantics to Datalog lite
which has a least fixed point model semantics. Section 9 discusses a translation
from CTL to bound guarded programs. Finally, Section 10 contains conclusions
and directions for further research.

2. PRELIMINARIES

2.1 Open Answer Set Programming

We introduce open answer set programming (OASP) as in [Heymans et al. 2006b].
Constants, variables, terms, and atoms are defined as usual6. A literal is an atom
p(t) or a naf-atom not p(t).7 The positive part of a set of literals α is α+ = {p(t) |
p(t) ∈ α} and the negative part of α is α− = {p(t) | not p(t) ∈ α}. We assume the
existence of binary predicates = and 6=, where t = s is considered as an atom and
t 6= s as not t = s. E.g., for α = {X 6= Y, Y = Z}, we have α+ = {Y = Z} and
α− = {X = Y }. A regular atom is an atom that is not an equality atom. For a set
X of atoms, not X = {not l | l ∈ X}.
A program is a countable set of rules α ← β, where α and β are finite sets of

literals, |α+| ≤ 1, and ∀t, s · t = s 6∈ α+, i.e., α contains at most one positive atom,
and this atom cannot be an equality atom.8 The set α is the head of the rule
and represents a disjunction of literals, while β is called the body and represents
a conjunction of literals. If α = ∅, the rule is called a constraint. Free rules
are rules of the form q(t) ∨ not q(t) ← for a tuple t of terms; they enable a
choice for the inclusion of atoms. We call a predicate p free if there is a free
rule p(t) ∨ not p(t) ← . Atoms, literals, rules, and programs that do not contain
variables are ground.
For a program P , let cts(P) be the constants in P , vars(P) its variables, and

6Note that we do not allow function symbols.
7We have no classical negation ¬, however, programs with ¬ can be reduced to programs without
it, see e.g. [Lifschitz et al. 2001a].
8The condition |α+| ≤ 1 ensures that the GL-reduct is non-disjunctive.

6

preds(P) its predicates. A universe U for P is a non-empty countable9 superset of
the constants in P : cts(P) ⊆ U . We call PU the ground program obtained from P
by substituting every variable in P by every possible constant in U . Let BUP be the
set of ground regular atoms that can be formed from a ground program P and the
elements in U .
Let I be a subset of some BUP . For a ground regular atom p(t), we write I |= p(t)

if p(t) ∈ I; For an equality atom p(t) ≡ t = s, we have I |= p(t) if s and t are
equal constants. We have I |= not p(t) if I 6|= p(t). For a set of ground literals
X , I |= X if I |= l for every l ∈ X . A ground rule r : α ← β is satisfied w.r.t. I,
denoted I |= r, if I |= l for some l ∈ α whenever I |= β. A ground constraint ← β
is satisfied w.r.t. I if I 6|= β. For a ground program P without not, I is a model
of P if I satisfies every rule in P ; it is an answer set of P if it is a subset minimal
model of P . For ground programs P containing not, the GL-reduct [Gelfond and
Lifschitz 1988] w.r.t. I is defined as P I , where P I contains α+ ← β+ for α← β in
P , I |= not β− and I |= α−. I is an answer set of a ground P if I is an answer set
of P I .
In the following, a program is assumed to be a finite set of rules; infinite programs

only appear as byproducts of grounding a finite program with an infinite universe.
An open interpretation of a program P is a pair (U,M) where U is a universe for
P and M is a subset of BUP . An open answer set of P is an open interpretation
(U,M) of P with M an answer set of PU . An n-ary predicate p in P is satisfiable
if there is an open answer set (U,M) of P and a x ∈ Un such that p(x) ∈ M . We
assume that when satisfiability checking a predicate p, p is always non-free, i.e.,
there are no free rules with p in the head. Note that satisfiability checking of a free
n-ary predicate p w.r.t. P can always be reduced to satisfiability checking of a new
non-free n-ary predicate p′ w.r.t. P ∪ {p′(X) ← p(X)}. Note that this is a linear
reduction.

Example 2.1. Take the program

r1 : restore(X) ← crash(X), y(X ,Y), backSucc(Y)
r2 : backSucc(X) ← ¬crash(X), y(X ,Y), not backFail(Y)
r3 : backFail(X) ← not backSucc(X)
r4 : ← y(Y1 ,X), y(Y2 ,X),Y1 6= Y2

r5 : y(X ,Y) ∨ not y(X ,Y) ←
r6 : crash(X) ∨ not crash(X) ←
r7 : ¬crash(X) ∨ not ¬crash(X) ←

Rule r1 represents the knowledge that a system that has crashed on a particular day
X (crash(X)), can be restored on that day (restore(X)) if a backup of the system
on the day Y before (y(X ,Y) – y stands for yesterday) succeeded (backSucc(Y)).
Backups succeed, if the system does not crash and it cannot be established that
the backups at previous dates failed (r2) and a backup fails if it does not succeed
(r3). Rule r4 ensures that for a particular today there can be only one tomorrow.
Rules r5, r6, and r7 allow to freely introduce y, crash, and ¬crash literals. Indeed,
take, e.g., crash(x) in an interpretation; the GL-reduct w.r.t. that interpretation

9Note that U is countable, as later on, this is needed to be able to use a result from [Grädel 1999]
that indicates that the fixed point can be reached at the first ordinal ω.

7

contains then the rule crash(x)← which motivates the presence of the crash literal
in an (open) answer set. If there is no crash(x) in an interpretation then the GL-
reduct removes the rule r5 (more correctly, its grounded version with x). Below,
we formally define rules of such a form as free rules in correspondence with the
intuition that they allow for a free introduction of literals.
Every open answer set (U,M) of this program that makes restore satisfiable, i.e.,

such that there is a restore(x) ∈ M for some x ∈ U , must be infinite. An example
of such an open answer set M is (we omit U if it is clear from M)

{restore(x), crash(x), backFail(x), y(x, x1),

backSucc(x1),¬crash(x1), y(x1, x2)

backSucc(x2),¬crash(x2), y(x2, x3), . . .}

One sees that every backSucc literal with element xi enforces a new y-successor
xi+1 since none of the previously introduced universe elements can be used without
violating rule r4, thus enforcing an infinite open answer set.
Indeed, assume restore is satisfiable w.r.t. P . Then, there must be a x0 in the

universe U of some open answer set (U,M) such that restore(x0) ∈ M . With r1,
we must have that crash(x0) ∈ M , and there must be some x1 ∈ U such that
y(x0 , x1) ∈ M and backSucc(x1) ∈ M , and thus, with rule r2, ¬crash(x1) ∈ M ,
y(x1 , x2) ∈ M and backFail(x2) 6∈ M . With crash(x0) ∈ M and ¬crash(x1) ∈
M , we are sure that x1 6= x0. With r3, one must have that backSucc(x2) ∈ M
such that x2 6= x0 for the same reason. Furthermore, x2 6= x1, since otherwise
y(x0 , x1) ∈ M and y(x1 , x1) ∈ M : with x0 6= x1 this is a contradiction with r4.
Thus, summarizing, x2 6= x1 and x2 6= x0. One can continue this way, and one will
be obliged to introduce new xi’s ad infinitum.

Rules α← β are such that |α+| ≤ 1. This restriction ensures that the GL-reduct
contains no disjunction in the head anymore, i.e., the head will be an atom or it
will be empty. This property of the GL-reduct allows us to define an immediate
consequence operator [van Emden and Kowalski 1976] T that computes the closure
of a set of literals w.r.t. a GL-reduct.
For a program P and an open interpretation (U,M) of P , T

(U,M)
P : BPU

→ BPU

is defined as T (B) = B ∪ {a | a ← β ∈ PMU ∧ B |= β}. Additionally, we define
T 0(B) = B, and T n+1(B) = T (T n(B)).10

Although we allow for infinite universes, we can motivate the presence of atoms
in open answer sets in a finite way, where the motivation of an atom is formally
expressed by the immediate consequence operator.

Theorem 2.2. Let P be a program and (U,M) an open answer set of P . Then,
∀a ∈M · ∃n <∞ · a ∈ T n.

For the relation of OASP with other logic programming paradigms that allow for
(some form of) opennes, we refer to [Heymans et al. 2006b].

10We omit the sub- and superscripts (U,M) and P from T
(U,M)
P

if they are clear from the context
and, furthermore, we will usually write T instead of T (∅).

8

2.2 Fixed Point Logic

Extensions of first-order logic (FOL) that allow for the expression of recursive
procedures are well-investigated in finite model theory, see e.g., [Moschovakis 1974;
Immerman 1986]. Also in the presence of infinite models, so-called fixed point logic
(FPL) proves to be an interesting logic [Flum 1999]. E.g., a decidable subclass
of FPL is the guarded fixed point logic [Grädel and Walukiewicz 1999], which lifts
propositional µ-calculus [Kozen 1983] to a first-order setting.
We assume FOL interpretations are represented as pairs (U,M) where M is an

interpretation over the domain U . Furthermore, we consider FOL with equality
such that equality is always interpreted as the identity relation over U .
We define fixed point logic (FPL) along the lines of [Grädel and Walukiewicz

1999], i.e., as an extension of first-order logic, where formulas may additionally be
fixed point formulas of the form

[LFP WX.ψ(W,X)](X) or [GFP WX.ψ(W,X)](X) , (1)

whereW is an n-ary predicate variable, X is an n-ary sequence of distinct variables,
ψ(W,X) is a (FPL) formula with all free variables contained in X and W appears
only positively in ψ(W,X).11

For an interpretation (U,M) and a valuation χ of the free predicate variables,
except W , in ψ, we define the operator ψ(U,M),χ : 2U

n

→ 2U
n

on sets S of n-ary
tuples

ψ(U,M),χ(S) ≡ {x ∈ Un | (U,M), χ ∪ {W → S} |= ψ(W,x)} , (2)

where χ ∪ {W → S} is the valuation χ extended such that the extension of W is
assigned to S. If ψ(W,X) contains only the predicate variable W , we often omit
the valuation χ and write just ψ(U,M). By definition, W appears only positively
in ψ such that ψ(U,M),χ is monotonic on sets of n-ary U -tuples and thus has a
least and greatest fixed point [Tarski 1955], which we denote by LFP(ψ(U,M),χ)
and GFP(ψ(U,M),χ) respectively. Finally, we have that

(U,M), χ |= [LFP WX.ψ(W,X)](x) ⇐⇒ x ∈ LFP(ψ(U,M),χ) , (3)

and similarly for greatest fixed point formulas. We call an FPL sentence (i.e., an
FPL formula without free variables) alternation-free if it does not contain subfor-
mulas ψ ≡ [LFP TX.ϕ](X) and θ ≡ [GFP SY.η](Y) such that T occurs in η and θ
is a subformula of ϕ, or S occurs in ϕ and ψ is a subformula of η. We can eliminate
greatest fixed point formulas from a formula, by the equivalence:

[GFP WX.ψ] ≡ ¬[LFP WX.¬ψ[W/¬W]] , (4)

where ¬ψ[W/¬W] is ¬ψ with W replaced by ¬W . If we thus remove greatest fixed
point predicates, and if negations appear only in front of atoms or least fixed point
formulas, then a formula is alternation-free iff no fixed point variable W appears in
the scope of a negation.

11A formula ψ is in negation-normal form if the only used connectives are ∧, ∨, and ¬, and ¬ only
appears in front of atoms. Let ψ be a formula in negation-normal form. A predicate p appears
then only positively in ψ if there is no ¬p in ψ.

9

As in [Grädel 2002a], we define

ψ(U,M) ↑ 0 ≡ ∅

ψ(U,M) ↑ α+ 1 ≡ ψ(U,M)(ψ(U,M) ↑ α) for ordinals α

ψ(U,M) ↑ β ≡
⋃

α<β

(ψ(U,M) ↑ α) for limit ordinals β

Furthermore, since ψ(U,M) is monotone, we have that ψ(U,M) ↑ 0 ⊆ ψ(U,M) ↑ 1 ⊆ . . .
and there exists a (limit) ordinal α such that ψ(U,M) ↑ α = LFP(ψ(U,M)).

Example 2.3. Take the conjunction of the following formulas, i.e., the infinity
axiom12 from [Grädel and Walukiewicz 1999]:

∃X,Y · F (X,Y) (5)

∀X,Y · (F (X,Y)⇒ (∃Z · F (Y, Z))) (6)

∀X,Y · F (X,Y)⇒ [LFP WX.∀Y · F (Y,X)⇒W (Y)](X) (7)

A model of these formulas contains at least one F (x, y) (by formula (5)), which
then leads to a F -chain by formula (6). Formula (7) ensures that each element x is
on a well-founded chain (and thus formula (6) actually generates an infinite chain).

2.3 Computation Tree Logic

We introduce in this subsection the temporal logic computation tree logic (CTL)
[Emerson 1990; Emerson and Halpern 1982; Clarke et al. 1986]. Let AP be the
finite set of available proposition symbols. CTL formulas are defined as follows:

—every proposition symbol P ∈ AP is a formula,

—if p and q are formulas, so are p ∧ q and ¬p,

—if p and q are formulas, then EXp, E(p U q), AXp, and A(p U q) are formulas.

The semantics of a CTL formula is given by (temporal) structures . A structure K
is a tuple (S,R, L) with S a countable set of states, R ⊆ S × S a total relation in
S, i.e., ∀s ∈ S · ∃t ∈ S · (s, t) ∈ R, and L : S → 2AP a function labeling states with
propositions. Intuitively, S is a set of states, R indicates the permitted transitions
between states, and L indicates which propositions are true at certain states.
A path π in K is an infinite sequence of states (s0, s1, . . .) such that (si−1, si) ∈ R

for each i > 0. For a path π = (s0, s1, . . .), we denote the element si with πi. For a
structure K = (S,R, L), a state s ∈ S, and a formula p, we inductively define when
K is a model of p at s, denoted K, s |= p:

—K, s |= P iff P ∈ L(s) for P ∈ AP ,

—K, s |= ¬p iff not K, s |= p,

—K, s |= p ∧ q iff K, s |= p and K, s |= q,

—K, s |= EXp iff there is a (s, t) ∈ R and K, t |= p,

—K, s |= AXp iff for all (s, t) ∈ R, K, t |= p,

12An infinity axiom is a formula that has only infinite models (if it has models).

10

—K, s |= E(p U q) iff there exists a path π in K with π0 = s and ∃k ≥ 0 · (K,πk |=
q ∧ ∀j < k ·K,πj |= p),

—K, s |= A(p U q) iff for all paths π in K with π0 = s we have ∃k ≥ 0 · (K,πk |=
q ∧ ∀j < k ·K,πj |= p).

Intuitively,K, s |= EXp (K, s |= AXp) can be read as “there is some neXt state where
p holds” (“p holds in all next states”), and K, s |= E(p U q) (K, s |= A(p U q)) as
“there is some path from s along which p holds Until q holds (and q eventually
holds)” (“for all paths from s, p holds until q holds (and q eventually holds)”).
Some common abbreviations for CTL formulas are EFp = E(true U p) (there is

some path on which p will eventually hold), AFp = A(true U p) (p will eventually
hold on all paths), EGp = ¬AF¬p (there is some path on which p holds globally),
and AGp = ¬EF¬p (p holds everywhere on all paths). Furthermore, we have the
standard propositional abbreviations p ∨ q = ¬(¬p ∧ ¬q), p ⇒ q = ¬p ∨ q, and
p⇔ q = (p⇒ q) ∧ (q ⇒ p).
A structure K = (S,R, L) satisfies a CTL formula p if there is a state s ∈ S such

that K, s |= p; we also call K a model of p. A CTL formula p is satisfiable iff there
is a model of p.

Example 2.4. Consider the expression of absence of starvation t⇒ AFc [Clarke
et al. 1986] for a process in a mutual exclusion problem13 . The formula demands
that if a process tries (t) to enter a critical region, it will eventually succeed in
doing so (c) for all possible future execution paths.
We will usually represent structures by diagrams as in Figure 1, where states are

nodes, transitions between nodes define R, and the labels of the nodes contain the
propositions true at the corresponding states. E.g., take the structureK = (S,R, L)
with

—S = {s0, s1, s2},

—R = {(s0, s0), (s0, s1), (s1, s2), (s2, s0)}, and

—L(s0) = L(s1) = t, L(s2) = c,

which is represented by Figure 1. This structure does not satisfy t ⇒ AFc at s0
since on the path (s0, s0, . . .) the proposition c never holds. We have, however,
K, s1 |= t ⇒ AFc: t holds at s1 such that we must have that on all paths from
s1 the proposition c must eventually hold; since the only path from s1 leads to s2
where c holds, t⇒ AFc holds at s1. We also have K, s2 |= t⇒ AFc, since t 6∈ L(s2).

Theorem 2.5 [Emerson 1990]. The problem of testing satisfiability for CTL
is complete for deterministic exponential time.

13In the mutual exclusion problem, we have two or more processes that want to access a critical
section of code, but cannot do this at the same time. The problem is then how to model the
behavior of the processes (or the concurrent program in general), such that this mutual exclusion
is never violated. For more details, we refer to, e.g., [Emerson and Clarke 1982; Emerson 1990;
Clarke et al. 1986; Attie and Emerson 2001; Huth and Ryan 2000; Manna and Wolper 1984].

11

t t c

s0 s1 s2

Fig. 1. Example Structure t⇒ AFc

3. OPEN ANSWER SET PROGRAMMING VIA FIXED POINT LOGIC

In this section, we will show how the external manipulations to define the (open)
answer set semantics can be compiled into fixed point logic, so allowing in the next
sections to analyse the decidability of OASP via the various decidability results of
fragments of FPL.
We assume, without loss of generality, that the predicates in a program P are

differently named than the constants in P and that each predicate q in P has one
associated arity, e.g., q(x) and q(x, y) are not allowed.

Definition 3.1. A program P is a p-program if the only predicate in P different
from the (in)equality predicate is p.

For a program P , let in(Y) ≡ {Y 6= a | a ∈ preds(P)∪{0}}, i.e., a set of inequalities
between the variable Y and the predicates in P as well as a new constant 0. For a
sequence of variables Y, we have in(Y) ≡ ∪Y ∈Yin(Y).
For a predicate name p not appearing in an arbitrary program P , we can rewrite

P as an equivalent p-program Pp by replacing every regular m-ary atom q(t) in P
by p(t,0, q) where p has arity n, with n the maximum of the arities of predicates in
P augmented by 1, 0 is a sequence of new constants 0 of length n−m−1, and q is a
new constant with the same name as the original predicate. Furthermore, in order
to avoid grounding with the new constants, we add for every variable X in a non-
free rule r ∈ P and for every newly added constant a in Pp, X 6= a to the body. The
rule in Pp corresponding to r : α ← β ∈ P is denoted as rp : αp ← βp , in(X) ∈ Pp
for vars(r) = X.

Example 3.2. Take a program P :

h(a, b) ← q(X)
q(X) ∨ not q(X) ←

← q(a)
← q(b)

For a universe U = {x, a, b} of P , we have the open answer sets M1 = (U, ∅) and
M2 = (U, {q(x), h(a, b)}). The translation Pp is

p(a, b, h) ← p(X , 0 , q),X 6= 0 ,X 6= h,X 6= q
p(X , 0 , q) ∨ not p(X , 0 , q) ←

← p(a, 0 , q)
← p(b, 0 , q)

The open answer sets of this program can then be rewritten as open answer sets of
the original program (by leaving out all “wrong” literals p(q, 0, q), p(0, 0, q), p(h, 0, q)
that can be generated by the free rule).

12

Theorem 3.3. Let P be a program, p a predicate not in P , and q a predicate in
P . q is satisfiable w.r.t. P iff there is an open answer set (U ′,M ′) of the p-program
Pp with p(x,0, q) ∈M ′.

Proof. For the “only if” direction, assume (U,M) is an open answer set of
P that satisfies q, i.e., there is a q(x) ∈ M . Let U ′ = U ∪ preds(P) ∪ {0} and
M ′ = {p(x,0, q) | q(x) ∈ M}). Then (U ′,M ′) is an open interpretation of Pp and
p(x,0, q) ∈M ′. One can show that (U ′,M ′) is an open answer set of Pp.
For the “if” direction, assume (U ′,M ′) is an open answer set of Pp with p(x,0, q) ∈

M ′. Define U ≡ U ′ \ (preds(P) ∪ {0}) and M ≡ {q(x) | p(x,0, q) ∈ M ′ ∧ x ∩
(preds(P) ∪ {0}) = ∅}.
We can assume that q is a non-free predicate (and we assume this throughout

the rest of this paper). Then there are no free rules with a q(t) in the head such
that there are no free rules with a p(t,0, q) in the head in Pp. Since there is
a p(x,0, q) ∈ M ′, and (U ′,M ′) is an open answer set, there must be a rule r[]
in (Pp)

M ′

U ′

14 such that M ′ |= in(Y)[] for Y the variables in the corresponding
ungrounded rule r. Thus x ∩ (preds(P) ∪ {0}) = ∅, such that q(x) ∈ M , by
definition of M .
One can show that (U,M) is an open answer set of P .

The translation of a program to a p-program does not influence the complexity of
reasoning.

Theorem 3.4. Let P be a program and p a predicate not in P . The size15 of
Pp is polynomial in the size of P .

Proof. The size of a rule r ∈ P is of the order v + k, with v the number of
variables and k the number of predicate names in r. The corresponding rp then
contains an extra v × n inequality atoms for n ≡ |preds(P) ∪ {0}|, and the size of
rp is thus in general quadratic in the size of r.

By Theorems 3.3 and 3.4, we can focus, without loss of generality, on p-programs
only. Since p-programs have open answer sets consisting of one predicate p, fixed
points calculated w.r.t. p yield minimal models of the program as we will show in
Theorem 3.8.
In [Chandra and Harel 1982], a similar motivation drives the reduction of Horn

clauses16 to clauses consisting of only one defined predicate. Their encoding does
not introduce new constants to identify old predicates and depends entirely on
the use of (in)equality. However, to account for databases consisting of only one
element, [Chandra and Harel 1982] needs an additional transformation that unfolds
bodies of clauses.

14For objects o (rules, (sets of) literals, . . .), we denote with o[Y1|y1, . . . , Yd|yd], the grounding of o
where each variable Yi is substituted with yi. Equivalently, we may write o[Y|y] forY = Y1, . . . , Yd
and y = y1, . . . , yd, or o[] if the grounding substitution is clear from the context, or if it does not
matter what the substitution exactly looks like.
15In the rest of the paper we use n× s for the size of a program P , where n is the number of rules
in P and s is the maximum size of the rules in P .
16Horn clauses are rules of the form a← β where β is a finite set of atoms (i.e., negation as failure
is not allowed).

13

We can reduce a p-program P to equivalent formulas comp(P) in fixed point
logic. The completion comp(P) of a program P consists of formulas that demand
that different constants in P are interpreted as different elements:

a 6= b (8)

for every pair of different constants a and b in P , and where a 6= b ≡ ¬(a = b).
comp(P) contains formulas ensuring the existence of at least one element in the
domain of an interpretation:

∃X · true . (9)

Besides these technical requirements matching FOL interpretations with open in-
terpretations, comp(P) contains the formulas in fix(P) ≡ sat(P)∪gl(P)∪fpf(P),
which can be intuitively categorized as follows:

—sat(P) ensures that a model of fix(P) satisfies all rules in P ,

—gl(P) is an auxiliary component defining atoms that indicate when a rule in P
belongs to the GL-reduct of P , and

—fpf(P) ensures that every model of fix(P) is a minimal model of the GL-reduct
in P ; it uses the atoms defined in gl(P) to select, for the calculation of the fixed
point, only those rules in P that are in the GL-reduct of P .

We interpret a naf-atom not a in a FOL formula as the literal ¬a. Moreover, we
assume that, if a set X is empty,

∧

X = true and
∨

X = false. In the following,
we assume that the arity of p, the only predicate in a p-program is n.

Definition 3.5. Let P be a p-program. The fixed point translation of P is
fix(P) ≡ sat(P) ∪ gl(P) ∪ fpf(P), where

(1) sat(P) contains formulas

∀Y ·
∧

β ⇒
∨

α (10)

for rules α← β ∈ P with variables Y,

(2) gl(P) contains the formulas

∀Y · r(Y)⇔
∧

α− ∧
∧

¬β− (11)

for rules r : α← β ∈ P 17 with variables Y,

(3) fpf(P) contains the formula

∀X · p(X)⇒ [LFP WX.φ(W ,X)](X) (12)

with

φ(W,X) ≡W (X) ∨
∨

r:p(t)∨α←β∈P

E(r) (13)

and

E(r) ≡ ∃Y ·X1 = t1 ∧ . . . ∧Xn = tn ∧
∧

β+[p|W] ∧ r(Y) (14)

where X = X1, . . . , Xn are n new variables, Y are the variables in r, W is a
new (second-order) variable and β+[p|W] is β+ with p replaced by W .

17We assume that rules are uniquely named.

14

The completion of P is comp(P) ≡ fix(P) ∪ {(8), (9)}.

The predicate W appears only positively in φ(W,X) such that the fixed point
formula in (12) is well-defined. By the first disjunct in (13), we have that applying
the operator φ(U,M) (see pp. 9) to an arbitrary set S ⊆ Un does not lose information
from S.

Theorem 3.6. Let P be a p-program and (U,M) an interpretation with S ⊆ Un.
Then

S ⊆ φ(U,M)(S) .

Proof. Take x ∈ S, then (U,M),W → S |= W (x), such that, by (13), we have
(U,M),W → S |= φ(W,x). Thus, by (2), we have that x ∈ φ(U,M)(S).

Example 3.7. Take a p-program P

r : p(X) ← p(X)

The completion comp(P) contains the formulas ∃X · true, together with fix(P) ≡
sat(P) ∪ gl(P) ∪ fpf(P), where

sat(P) = {∀X · p(X)⇒ p(X)} ,

ensuring that r is satisfied, and

gl(P) = {∀X · r(X)⇔ true} ,

saying that r belongs to every GL-reduct since there are no naf-atoms. Finally,

fpf(P) = {∀X1 · p(X1)⇒ [LFP WX1 .φ(W ,X1)](X1)} ,

with

φ(W,X1) ≡W (X1) ∨ ∃X ·X1 = X ∧W (X) ∧ r(X) .

The formula fpf(P) ensures that every atom in a FOL interpretation is motivated
by a fixed point construction, using the available rule p(X)← p(X).

Theorem 3.8. Let P be a p-program. Then, (U,M) is an open answer set of P
iff (U,M ∪R) is a model of

∧

comp(P), where

R ≡ {r(y) | r[Y | y] : α[]← β[] ∈ PU ,M |= α[]
− ∪ not β[]−, vars(r) = Y} .

Proof. Denote M ∪R as M ′.
⇒ For the “only if” direction, assume (U,M) is an open answer set of P . We
show that (U,M ′) is a model of comp(P). It is not too difficult to show that (U,M ′)
is a model of (8), (9), sat(P), and gl(P). We also have that (U,M ′) is a model
of fpf(P). Indeed, take x for X and assume p(x) ∈ M ′. Thus, p(x) ∈ M . Since
(U,M) is an open answer set we have that p(x) ∈ T n for some n <∞.

Claim 3.9. x ∈ φ(U,M
′) ↑ n, n <∞.

We prove the claim by induction on n.

n = 1 (Base step). If p(x) ∈ T 1 there is some r′ : p(x)← β+[] ∈ PMU originating
from r : p(t) ∨ α ← β ∈ P with variables Y = Y1, . . . , Yd such that for [Y|y],
r[] = r′ (and thus ti[] = xi for 1 ≤ i ≤ n). Furthermore, we have

15

—∅ |= β+[]18,
—M |= α−[], and
—M |= not β−[].
Thus

∧

α−[] and
∧

¬β−[] are true inM ′, such that, by definition ofM ′, r(y) ∈M ′.
It follows immediately that E(r) is true in M ′. Since ∅ |= β+[] we do not use W to
deduce the latter, such that (U,M ′),W → ∅ |= φ(W,x), and thus x ∈ φ(U,M

′)(∅) =
φ(U,M

′) ↑ 1.

(Induction). Assume for every p(u) ∈ T n−1 that u ∈ φ(U,M
′) ↑ n− 1, n− 1 <∞.

From p(x) ∈ T n, we have some r′ : p(x) ← β+[Y|y] ∈ PMU originating from
r : p(t) ∨ α ← β ∈ P with variables Y = Y1, . . . , Yd and such that for [Y|y],
r[] = r′ (and thus ti[] = xi for 1 ≤ i ≤ n). Furthermore, we have
—T n−1 |= β+[],
—M |= α−[], and
—M |= not β−[].
Thus

∧

α−[] and
∧

¬β−[] are true inM ′, such that, by definition ofM ′, r(y) ∈M ′.
Since P is a p-program β contains only p-literals and (in)equalities. Furthermore,
the equalities in β+[] are true in M ′. For every regular p(u) ∈ β+[], we have that
p(u) ∈ T n−1, and thus, by induction, that u ∈ φ(U,M

′) ↑ n − 1. We have that
(U,M ′),W → φ(U,M

′) ↑ n − 1 |= E(r)[X|x], such that (U,M ′),W → φ(U,M
′) ↑

n− 1 |= φ(W,x). Thus x ∈ φ(U,M
′) ↑ n.

From x ∈ φ(U,M
′) ↑ n, n < ∞, we have that x ∈ φ(U,M

′) ↑ n ⊆ φ(U,M
′) ↑ α,

for a limit ordinal α such that φ(U,M
′) ↑ α = LFP(φ(U,M

′)). Then, we have that
x ∈ LFP(φ(U,M

′)), and consequently, [LFPWX.φ(W,X)](x) is true in (U,M ′) such
that (12) is satisfied.
⇐ For the “if” direction, assume (U,M ′) is a model of comp(P). We show that

(U,M) is an open answer set of P . Denote {x | p(x) ∈M} as M .

(1) From (8) and (9), we have that U is non-empty and interprets different con-
stants as different elements. We assume that the elements that interpret the
constants in U have the same name as those constants.

(2) M = LFP(φ(U,M
′)).

—M = φ(U,M
′)(M).

—M ⊆ φ(U,M
′)(M). Immediate, with Theorem 3.6.

—M ⊇ φ(U,M
′)(M). Assume x ∈ φ(U,M

′)(M). Then by (2), we have that
(U,M ′),W → M |= φ(W,x). Thus, by (13), we have either that x ∈ M ,
which means we are done, or there is a r : p(t) ∨ α ← β ∈ P such that
(U,M ′),W →M |= E(r)[X|x].
Then, there exist [Y|y] with
—x = t[],
—(U,M ′),W →M |= β+[p|W][], such that M ′ |= β+[], and
—r(y) ∈ M ′, from which, since M ′ is a model of gl(P), we have that
M ′ |=

∧

α−[] and M ′ |=
∧

¬β−[].
Since M ′ is a model of sat(P) we then have that p(t)[] ∈ M ′ and thus
p(x) ∈M , such that x ∈M .

18β+ may contain equalities but no regular atoms.

16

—M is a least fixed point. Assume there is a Y ⊆ Un such that Y = φ(U,M
′)(Y).

We prove that M ⊆ Y . Take x ∈ M , then p(x) ∈ M ′. Since M ′ is a model
of fpf(P), we have that x ∈ LFP(φ(U,M

′)). And since LFP(φ(U,M
′)) ⊆ Y ,

we have that x ∈ Y .

(3) M is a model of PMU . Take a rule r′ : p(x)← β+[Y|y] ∈ PMU originating from
r : p(t) ∨ α ← β ∈ P with variables Y = Y1, . . . , Yd and such that for [Y|y],
r[] = r′ (and thus ti[] = xi for 1 ≤ i ≤ n). Furthermore, we have

—M |= α−[],

—M |= not β−[].

Assume M |= β+[], we then have that

—M ′ |= α−[],

—M ′ |= not β−[],

—M ′ |= β+[].

Since M ′ is a model of sat(P), we then have that p(x) ∈M ′, and thus p(x) ∈
M .

(4) M is a minimal model of PMU . Assume not, then there is a N ⊂M , N a model
of PMU . Take N = {x | p(x) ∈ N}, one can then show that N is a fixed point of

φ(U,M
′), i.e., N = φ(U,M

′)(N). Since M = LFP(φ(U,M
′)), we have thatM ⊆ N ,

which is a contradiction with N ⊂ M , and M is indeed a minimal model of
PMU .

Example 3.10. For a universe U = {x} we have the unique open answer set
(U, ∅) of P in Example 3.7. Since U is non-empty, every open answer set with a
universe U satisfies ∃X · true. Both (U,M1 = {p(x), r(x)}) and (U,M2 = {r(x)})
satisfy sat(P) ∪ gl(P). However, LFP(φ(U,M1)) = LFP(φ(U,M2)) = ∅, such that
only (U,M2) satisfies fpf(P); (U,M2) corresponds exactly to the open answer set
(U, ∅) of P .

The completion in Definition 3.5 differs from Clark’s completion [Clark 1987] both in
the presence of the fixed point construct in (12) and atoms representing membership
of the GL-reduct. For p-programs P Clark’s Completion ccomp(P) does not contain
gl(P) and fpf(P) is replaced by a formula that ensures support for every atom by
an applied rule

∀X · p(X)⇒
∨

r :p(t)∨α←β∈P

D(r)

with

D(r) ≡ ∃Y ·X1 = t1 ∧ . . . ∧Xn = tn ∧
∧

β ∧
∧

α− .

Program P in Example 3.7 is the open ASP version of the classical example p ← p
[Lee and Lifschitz 2003]. There are FOL models of ccomp(P) that do not correspond
to any open answer sets: both ({x}, {p(x)}) and ({x}, ∅) are FOL models while only
the latter is an open answer set of P . The next example shows the translation to
FPL in detail.

17

Example 3.11. Take the p-program P corresponding to the program consisting
of the rules a ← not b and b ← not a, i.e.

r1 : p(X , a) ← not p(X , b),X 6= a,X 6= b
r2 : p(X , b) ← not p(X , a),X 6= a,X 6= b

which has, for a universe U = {x, a, b}, two open answer sets M1 = {p(x, a)} and
M2 = {p(x, b)}. sat(P) contains the formulas

∀X · ¬p(X , b) ∧ X 6= a ∧X 6= b ⇒ p(X , a) ,

and

∀X · ¬p(X , a) ∧ X 6= a ∧ X 6= b ⇒ p(X , b) .

gl(P) is defined by the formulas ∀X · r1 (X) ⇔ ¬p(X , b) ∧ X 6= a ∧X 6= b and
∀X · r2 (X)⇔ ¬p(X , a) ∧ X 6= a ∧ X 6= b. Finally, fpf(P) is

∀X1, X2 · p(X1 ,X2)⇒ [LFP WX1 ,X2 .φ(W ,X1 ,X2)](X1 ,X2)

with

φ(W,X1, X2) ≡ W (X1, X2)

∨ ∃X ·X1 = X ∧X2 = a ∧ r1(X)

∨ ∃X ·X1 = X ∧X2 = b ∧ r2(X) .

To satisfy sat(P) a model must contain p(x, a) or p(x, b). Taking into account
gl(P), we then distinguish three different classes of models, represented by

M ′1 |= {p(x, a),¬p(x, b), r1(x),¬r2(x)} ,

M ′2 |= {¬p(x, a), p(x, b),¬r1(x), r2(x)} ,

M ′3 |= {p(x, a), p(x, b),¬r1(x),¬r2(x)} .

Now, we have that LFP(φ(U,M
′

3
)) = ∅, such that fpf(P) is not satisfied by M ′3.

Furthermore, LFP(φ(U,M
′

1
)) = {(x, a)} and LFP(φ(U,M

′

2
)) = {(x, b)}. Thus, in order

to satisfy fpf(P), we have that M ′1 = {p(x, a), r1(x)} and M ′2 = {p(x, b), r2(x)},
which correspond to the open answer sets of P .
Note that this example also shows that writing knowledge down in Logic Pro-

gramming style is easier and more intuitive than the corresponding FPL translation.

Theorem 3.12. Let P be a p-program. The size of
∧

comp(P) is quadratic in
the size of P .

Proof. If the number of constants in a program P is c, then the number of
formulas (8) is 1

2c(c− 1), which yields the quadratic bound. The size of sat(P) is
linear in the size of P , as is the size of gl(P) (with |P | new predicates). Finally,
each E(r) in fpf(P) is linear in the size of r, such that fpf(P) is linear in the size
of P .

Theorem 3.13. Let P be a program, p a predicate not appearing in P , and q
an n-ary predicate in P . q is satisfiable w.r.t. P iff p(X,0, q) ∧

∧

comp(Pp) is
satisfiable. Moreover, this reduction is polynomial in the size of P .

18

Proof. Assume q is satisfiable w.r.t. P . By Theorem 3.3, we have that p(x,0, q)
is in an open answer set of Pp, such that, with Theorem 3.8, p(x,0, q) is in a model
of comp(Pp).
For the opposite direction, assume p(X,0, q) ∧

∧

comp(Pp) is satisfiable. Then
there is a model (U,M ′) of

∧

comp(P) with p(x,0, q) ∈ M ′. We have that M ′ =
M ∪ R as in Theorem 3.8, such that (U,M) is an open answer set of Pp and
p(x,0, q) ∈M . From Theorem 3.3, we then have that q is satisfiable w.r.t. P .
By Theorem 3.12, the size of

∧

comp(Pp) is quadratic in the size of Pp. Since
the size of the latter is polynomial in the size of P by Theorem 3.4, the size of
∧

comp(Pp) is polynomial in the size of P .

4. GUARDED OPEN ANSWER SET PROGRAMMING

In this section, we will identify a syntactically restricted class of programs such that
the translation to FPL falls within a decidable fragment of FPL and which enables
us to devise some complexity result for satisfiability checking. Intuitively, rules will
be equipped with a guard, i.e. a set of atoms, in the positive body, such that every
pair of variables in the rule appears together in an atom in that guard.
We repeat the definitions of the loosely guarded fragment [Van Benthem 1997]

of first-order logic as in [Grädel and Walukiewicz 1999]: The loosely guarded
fragment LGF of first-order logic is defined inductively as follows:

(1) Every relational atomic formula belongs to LGF.

(2) LGF is closed under propositional connectives ¬, ∧, ∨, ⇒, and ⇔.

(3) If ψ(X,Y)19 is in LGF, and α(X,Y) = α1 ∧ . . . ∧ αm is a conjunction of
atoms, then the formulas

∃Y · α(X,Y) ∧ ψ(X,Y)
∀Y · α(X,Y)⇒ ψ(X,Y)

belong to LGF (and α(X,Y) is the guard of the formula), provided that free(ψ) ⊆
free(α) = X ∪ Y and for every quantified variable Y ∈ Y and every variable
Z ∈ X ∪ Y there is at least one atom αj that contains both Y and Z (where
free(ψ) are the free variables of ψ).

The loosely guarded fixed point logic µLGF is LGF extended with fixed point formu-
las (1) where ψ(W,X) is a µLGF formula such that W does not appear in guards.
The guarded fragment GF is defined as LGF but with the guards α(X,Y) atoms
instead of a conjunction of atoms. The guarded fixed point logic µGF is GF ex-
tended with fixed point formulas where ψ(W,X) is a µGF formula such that W
does not appear in guards.

Example 4.1. The infinity axiom in Example 2.3 (pp. 10) is a µGF formula
where all the formulas are guarded by F (X,Y).

Example 4.2 [Grädel and Walukiewicz 1999]. Take the formula

∃Y ·X ≤ Y ∧ ϕ(Y) ∧ (∀Z · (X ≤ Z ∧ Z < Y)⇒ ψ(Z)) .

19Recall that ψ(X,Y) denotes a formula whose free variables are all among X∪Y ([Andréka et al.
1998], pp. 236).

19

This formula is not guarded as the formula ∀Z · (X ≤ Z ∧ Z < Y)⇒ ψ(Z) has no
atom as guard. It is however loosely guarded.

Definition 4.3. A rule r : α ← β is loosely guarded if there is a γb ⊆ β+ such
that every two variables X and Y from r appear together in an atom from γb; we
call γb a body guard of r. It is fully loosely guarded if it is loosely guarded and there
is a γh ⊆ α− such that every two variables X and Y from r appear together in an
atom from γh; γh is called a head guard of r.
A program P is a (fully) loosely guarded program ((F)LGP) if every non-free rule

in P is (fully) loosely guarded.

Example 4.4. The rule in Example 3.7 is loosely guarded but not fully loosely
guarded. The program in Example 3.11 is neither fully loosely guarded nor loosely
guarded. A rule

a(X) ∨ not g(X ,Y ,Z)← not b(X ,Y), f (X ,Y), f (X ,Z), h(Y ,Z), not c(Y)

has a body guard {f(X,Y), f(X,Z), h(Y, Z)} and a head guard {g(X,Y, Z)}.

Definition 4.5. A rule r : α ← β is guarded if it is loosely guarded with a
singleton body guard. It is fully guarded if it is fully loosely guarded with body
and head guards singleton sets.
A program P is a (fully) guarded program ((F)GP) if every non-free rule in P is

(fully) guarded.

In [Grädel et al. 2002] it is noted that a singleton set {b} ⊆ U for a universe U
is always guarded by an atom b = b. With a similar reasoning one sees that rules
with only one variable X can be made guarded by adding the guard X = X to the
body. E.g., a(X)← not b(X) is equivalent to a(X)← X = X , not b(X).
Every F(L)GP is a (L)GP, and we can rewrite every (L)GP as a F(L)GP.

Example 4.6. The rule p(X) ← p(X) can be rewritten as p(X) ∨ not p(X) ←
p(X) where the body guard is added to the negative part of the head to function
as the head guard. Both programs are equivalent: for a universe U , both have the
unique open answer set (U, ∅).

Formally, we can rewrite every (L)GP P as an equivalent F(L)GP P f , where P f is
P with every α← β replaced by α ∪ not β+ ← β.
One can consider the body guard of a rule in a loosely guarded program P as

the head guard such that P f is indeed a fully (loosely) guarded program.

Theorem 4.7. Let P a (L)GP. Then, P f is a F(L)GP.

Proof. Let P be a (L)GP. We show that every non-free rule r : α ∪ not β+ ←
β ∈ P f is fully (loosely) guarded. Since α ← β is a non-free rule of P , we have
that there is a body guard γb ⊆ β+, and thus r is (loosely) guarded. Furthermore,

γb ⊆ (α ∪ not β+)
−

such that γb is a head guard of r and r is fully (loosely)
guarded.

A rule is vacuously satisfied if the body of a rule in P f is false and consequently the
head does not matter; if the body is true then the newly added part in the head
becomes false and the rule in P f reduces to its corresponding rule in P .

20

Theorem 4.8. Let P be any program (not necessarily guarded). An open inter-
pretation (U,M) of P is an open answer set of P iff (U,M) is an open answer set
of P f .

Since we only copy (a part of) the bodies to the heads, the size of P f only increases
linearly in the size of P .

Theorem 4.9. Let P be any program (not necessarily guarded). The size of P f

is linear in the size of P .

We have that the construction of a p-program retains the guardedness properties.

Theorem 4.10. Let P be any program (not necessarily guarded). Then, P is a
(F)LGP iff Pp is a (F)LGP. And similarly for (F)GPs.

Proof. We only prove the LGP case, the cases for FLGPs and (F)GPs are
similar.
For the “only if” direction, take a non-free rule rp : αp ← βp , in(X) ∈ Pp and

two variables X and Y in rp. We have that r : α← β is a non-free rule in P by the
construction of Pp and X and Y are two variables in r, such that there is a γ ⊆ β+

with either a regular atom q(t) that contains X and Y or an equality atom X = Y
in γ. In the former case, we have that p(t,0, q) ∈ γp ⊆ βp

+ such that rp is loosely
guarded. In the latter case, X = Y ∈ γp such that again rp is loosely guarded.
For the “if” direction, take a non-free r : α ← β ∈ P and two variables X and

Y in r. Then rp : αp ← βp , in(X) is non-free in Pp and X and Y are variables in

rp. Thus, there is a γp ⊆ (βp ∪ in(X))+ = βp
+ with an atom containing the two

variables X and Y . Then γ ⊆ β+ with an atom in γ containing X and Y .

For a fully (loosely) guarded p-program P , we can rewrite comp(P) as the equivalent
µ(L)GF formulas gcomp(P). gcomp(P) is comp(P) with the following modifications.

—Formula (9) is replaced by

∃X ·X = X , (15)

such that it is guarded by X = X .

—Formula (10) is removed if r : α← β is free or otherwise replaced by

∀Y ·
∧

γb ⇒
∨

α ∨
∨

¬(β+\γb) ∨
∨

β− , (16)

where γb is a body guard of r, thus we have logically rewritten the formula such
that it is (loosely) guarded. If r is a free rule of the form q(t) ∨ not q(t)← we
have ∀Y · true ⇒ q(t) ∨ ¬q(t) which is always true and can thus be removed
from comp(P).

—Formula (11) is replaced by the formulas

∀Y · r(Y)⇒
∧

α− ∧
∧

¬β− (17)

and

∀Y ·
∧

γh ⇒ r(Y) ∨
∨

β− ∨
∨

¬(α−\γh) (18)

where γh is a head guard of α ← β. We thus rewrite an equivalence as two
implications where the first implication is guarded by r(Y) and the second one

21

is (loosely) guarded by the head guard of the rule – hence the need for a fully
(loosely) guarded program, instead of just a (loosely) guarded one.

—For every E(r) in (12), replace E(r) by

E′(r) ≡
∧

ti 6∈Y

Xi = ti ∧ ∃Z · (
∧

β+[p|W] ∧ r(Y))[ti ∈ Y|Xi] , (19)

with Z = Y\{ti | ti ∈ Y}, i.e., move all Xi = ti where ti is constant out of
the scope of the quantifier, and remove the others by substituting each ti in
∧

β+[p|W] ∧ r(Y) by Xi. This rewriting makes sure that every variable in the
quantified part of E′(R) is guarded by r(Y)[ti ∈ Y|Xi].

Example 4.11. For the fully guarded p-program P containing a rule

p(X) ∨ not p(X)← p(X)

with body and head guard {p(X)}, sat(P) = {∀X · p(X) ⇒ p(X) ∨ ¬p(X)},
gl(P) = {∀X · r(X)⇔ p(X)} and the formula φ(W,X1) in fpf(P) is φ(W,X1) ≡
W (X1)∨∃X ·X1 = X ∧W (X)∧ r(X). gcomp(P) translates sat(P) identically and
rewrites the equivalence of gl(P) as two implications resulting in guarded rules.
The rewritten φ(W,X1) is W (X1) ∨ (W (X1) ∧ r(X1)). There is no quantification
anymore in this formula since X was substituted by X1. Clearly, for a universe {x},
we have that the open answer set of the program is ({x}, ∅), which corresponds with
the unique model of gcomp(P) for a universe {x}.

The translation gcomp(P) is logically equivalent to comp(P) and, moreover, it con-
tains only formulas in (loosely) guarded fixed point logic.

Theorem 4.12. Let P be a fully (loosely) guarded p-program. (U,M) is a model
of

∧

comp(P) iff (U,M) is a model of
∧

gcomp(P).

Proof. This can be shown by using standard logical equivalences.

Theorem 4.13. Let P be a fully (loosely) guarded p-program. Then, the formula
∧

gcomp(P) is a µ(L)GF formula.

Proof. We first show that [LFPWX.φ′(W,X)](X) is a valid fixed point formula,
with φ′(W,X) equal to φ(W,X) with E′(r) instead of E(r). We have that all free
variables are still in X, since only Xi = ti where ti is constant is moved out of the
scope of the quantifier in E(r) and all other ti where substituted by Xi such that Z
in E(r) bounds all other variables than X. Furthermore, p appears only positively
in φ′.
We next show that

∧

gcomp(P) is a µLGF formula if P is fully loosely guarded;
the treatment for µGF formulas if P is fully guarded is similar.

—Formula (15) is guarded with guard X = X .

—Formula (16) corresponds with a non-free rule α← β with a body guard γb; thus
vars(α← β) ⊆ vars(γb).
—free(

∨

α ∨
∨

¬(β+\γb) ∨
∨

β−) ⊆ Y = vars(α← β) = vars(γb) = free(
∧

γb).
—Take two variables Yi and Yj from Y, then Yi ∈ vars(α ← β) and Yj ∈
vars(α← β), such that Yi and Yj are in an atom from γb.

—Formula (17) is guarded with guard r(Y).

22

—Formula (18):

—For a non-free rule α ← β with a head guard γh. Can be done similarly as
formula (16).

—If α← β is free, i.e., of the form q(t) ∨ not q(t)← , we have that γh = {q(t)},
and formula (18) is of the form ∀Y · q(t)⇒ r(Y).

—free(r(Y)) = Y = vars(α← β) = vars(q(t)) = free(
∧

γh).
—Take two variables Yi and Yj from Y, then Yi ∈ vars(α ← β) and Yj ∈
vars(α← β), such that Yi and Yj are in vars(q(t)) = free(γh).

—For the last case, we need to show that φ′(X) is a µLGF formula whereW does not
appear as a guard. We show that for each r : α← β, ∃Z ·(

∧

β+[p|W]∧r(Y))[ti ∈
Y|Xi] is a guarded formula with guard r(Y)[]. Thus W does not appear as a
guard.

—free((
∧

β+[p|W] ∧ r(Y))[ti ∈ Y|Xi]) = Y\{ti | ti ∈ Y} ∪ {Xi | ti ∈ Y} =
free(r(Y)[]).

—Take a quantified variable Z ∈ Y\{ti | ti ∈ Y} and U from Y\{ti | ti ∈
Y} ∪ {Xi | ti ∈ Y}, then Z and U appear in r(Y)[].

Since gcomp(P) is just a logical rewriting of comp(P) its size is linear in the size of
comp(P).

Theorem 4.14. Let P be a fully (loosely) guarded p-program. The size of the
formula gcomp(P) is linear in the size of comp(P).

Proof. The size of formula (15) is linear in the size of (9). Formula (16) is just
a shuffling of (10). Every formula (11) is replaced by two shuffled formulas. Finally,
E′(r) is E(r) with the movement of some atoms and applying a substitution, thus
the size of E′(r) is linear in the size of E(r).

Theorem 4.15. Let P be a (L)GP and q an n-ary predicate in P . q is satisfiable
w.r.t. P iff p(X,0, q) ∧

∧

gcomp((P f)p) is satisfiable. Moreover, this reduction is
polynomial in the size of P .

Proof. By Theorem 4.7 and 4.10, we have that (P f)p is a fully (loosely) guarded

p-program, thus the formula
∧

gcomp((P f)p) is defined. By Theorem 4.8, we have

that q is satisfiable w.r.t. P iff q is satisfiable w.r.t. P f . By Theorem 3.13, we
have that q is satisfiable w.r.t. P f iff p(X,0, q)∧comp((P f)p) is satisfiable. Finally,

Theorem 4.12 yields that q is satisfiable w.r.t. P iff p(X,0, q) ∧
∧

gcomp((P f)p) is
satisfiable.
Theorem 4.9, Theorem 3.13, and Theorem 4.14 yield that this reduction is poly-

nomial.

For a (L)GP P , we have, by Theorem 4.13, that
∧

gcomp((P f)p) is a µ(L)GF

formula such that the formula p(X,0, q) ∧
∧

gcomp((P f)p) is as well. Since satisfi-
ability checking for µ(L)GF is 2-exptime-complete (Theorem [1.1] in [Grädel and
Walukiewicz 1999]), satisfiability checking w.r.t. P is in 2-exptime.

Theorem 4.16. Satisfiability checking w.r.t. (L)GPs is in 2-exptime.

23

An answer set of a program P (in contrast with an open answer set) is defined as
an answer set of the grounding of P with its constants, i.e., M is an answer set of
P if it is a minimal model of PM

cts(P). As is common in literature, we assume P
contains at least one constant.
We can make any program loosely guarded and reduce the answer set semantics

for programs to the open answer set semantics for loosely guarded programs. For
a program P , let P g be the program P , such that for each rule r in P and for each
pair of variables X and Y in r, g(X,Y) is added to the body of r. Furthermore, add
g(a, b)← for every a, b ∈ cts(P). Note that we assume, without loss of generality,
that P does not contain a predicate g.

Example 4.17. Take a program P

q(X) ← f (X ,Y)
f (a,Y) ∨ not f (a,Y) ←

such that cts(P) = {a}, and P has answer sets {f(a, a), q(a)} and ∅. The loosely
guarded program P g is

q(X) ← g(X ,X), g(Y ,Y), g(X ,Y), f (X ,Y)
f (a,Y) ∨ not f (a,Y) ← g(Y ,Y)

g(a, a) ←

For a universe U , we have the open answer sets (U, {f(a, a), q(a), g(a, a)} and
(U, {g(a, a)}).

The newly added guards in the bodies of rules together with the definition of those
guards for constants only ensure a correspondence between (normal) answer sets
and open answer sets where the universe of the latter equals the constants in the
program.

Theorem 4.18. Let P be a program. M is an answer set of P iff (cts(P),M ∪
{g(a, b) | a, b ∈ cts(P)}) is an open answer set of P g.

Note that one can use Theorem 4.18 as a definition of answer set of programs
with generalized literals, in case one is only interested in answer sets and not in the
open answer sets.

Theorem 4.19. Let P be a program. The size of P g is quadratic in the size of
P .

Proof. If there are c constants in P , we add c2 rules g(a, b) ← to P g. Fur-
thermore, the size of each rule grows also grows quadratically, since for a rule with
n variables we add n2 atoms g(X,Y) to the body of r.

By construction, P g is loosely guarded.

Theorem 4.20. Let P be a program. P g is a LGP.

We can reduce checking whether there exists an answer set containing a literal
to satisfiability checking w.r.t. the open answer set semantics for loosely guarded
programs.

24

Theorem 4.21. Let P be a program and q an n-ary predicate in P . There is
an answer set M of P with q(a) ∈ M iff q is satisfiable w.r.t. P g. Moreover, this
reduction is quadratic.

Theorem 4.22. Satisfiability checking w.r.t. LGPs is nexptime-hard.

Proof. By [Dantsin et al. 2001; Baral 2003] and the disjunction-freeness of the
GL-reduct of the programs we consider, we have that checking whether there exists
an answer set M of P containing a q(a) is nexptime-complete. Thus, by Theorem
4.21, satisfiability checking w.r.t. a LGP is nexptime-hard.

A similar approach to show nexptime-hardness of GPs instead of LGPs does
not seem to be directly applicable. E.g., a naive approach is to add to the body of
every rule r in a program P , an n-ary guarding atom g(X1, . . . , Xk, . . . Xk), k ≤ n,
with n the maximum number of different variables in rules of P and X1, . . . , Xk

the pairwise different variables in r. Furthermore, one need to enforce that for
an open answer set and n constants a1, . . . , an, g(a1, . . . , an) is in the answer set,
and vice versa, if g(x1, . . . , xn) is in the open answer set then x1, . . . , xn ∈ cts(P).
This amounts to adding cn rules g(a1 , . . . , an)← for constants a1, . . . , an ∈ cts(P)
where c is the number of constants in P . Since n is not bounded, this transformation
is, however, not polynomial.
In Section 8, we improve20 on Theorem 4.22 and show that both satisfiability

checking w.r.t. GPs and w.r.t. LGPs is 2-exptime-hard.

5. OPEN ANSWER SET PROGRAMMING WITH GENERALIZED LITERALS

In this section, we extend the language of logic programs with generalized literals
and modify the open answer set semantics to accommodate for those generalized
literals. As already argued in the introduction, generalized literals allow for a more
robust representation of knowledge than is possible without them.
E.g., in [Balduccini and Gelfond 2003] a mapping is given from an action de-

scription into an answer set program. In this mapping, a predicate prec h(D,T)
needs to be computed, intuitively meaning that all preconditions of D hold at time
T . As the authors did not have generalized literals at their disposal, they needed a
ternary relation pred(D,N,C) which encodes that C is the N -th precondition of D
and a special predicate denoting the number of preconditions for D, i.e. an explicit
linear order among the preconditions has to be established. Next, using this linear
order, they had to introduce some additional ternary predicate all h that checks if
all preconditions hold and than use this predicate to compute prec h(D,T). How-
ever, with generalized literals no linear order needs to be established to compute
prec h(D,T), i.e. it suffices to have predicates prec(D,C) encoding that D is a
precondition of C. Than, we can use, with h(C, T) meaning that condition C holds
at time T , the rule

prec h(D ,T)← [∀C · prec(D ,C)⇒ h(C ,T)]

to compute the correct meaning of prec h.

20Note that p ⊆ np ⊆ exptime ⊆ nexptime ⊆ 2-exptime ⊆ . . . where p ⊂ exptime, exptime ⊂
2-exptime, . . ., and np ⊂ nexptime, nexptime ⊂ 2-nexptime, . . ., see, e.g., [Papadimitriou 1994;
Tobies 2001].

25

Formally, a generalized literal is a first-order formula of the form

∀Y · φ⇒ ψ ,

where φ is a finite boolean combination of atoms (i.e., using ¬, ∨, and ∧) and ψ is
an atom; we call φ the antecedent and ψ the consequent. We refer to literals (i.e.,
atoms and naf-atoms since we assume the absence of ¬) and generalized literals
as g-literals. For a set of g-literals α, αx ≡ {l | l generalized literal in α}, the
set of generalized literals in α. We extend α+ and α− for g-literals as follows:
α+ = (α\αx)+ and α− = (α\αx)−; thus α = α+ ∪ not α− ∪ αx.
A generalized program (gP) is a countable set of rules α← β, where α is a finite

set of literals, |α+| ≤ 1, β is a countable21 set of g-literals, and ∀t, s·t = s 6∈ α+, i.e.,
α contains at most one positive atom, and this atom cannot be an equality atom.
Furthermore, generalized literals are ground if they do not contain free variables,
and rules and gPs are ground if all g-literals in it are ground.
For a g-literal l, we define vars(l) as the (free) variables in l. For a rule r, we

define vars(r) ≡ ∪{vars(l) | l g-literal in r}. For a set of atoms I, we extend the
|= relation for interpretations I, by induction, for any boolean formula of ground
atoms. For such ground boolean formulas φ and ψ, we have

(1) I |= φ ∧ ψ iff I |= φ and I |= ψ,

(2) I |= φ ∨ ψ iff I |= φ or I |= ψ, and

(3) I |= ¬φ iff I 6|= φ.

Similarly as for programs without generalized literals, call a pair (U, I) where U is
a universe for P and I a subset of BUP an open interpretation of P . For a ground gP
P and an open interpretation (U, I) of P , we define the GeLi-reduct P x(U,I) which
removes the generalized literals from the program: P x(U,I) contains the rules

α← β\βx, (βx)x(U ,I) , (20)

for α← β in P , where

(βx)x(U,I) ≡
⋃

∀Y·φ⇒ψ∈βx

{ψ[Y|y] | y ⊆ U, I |= φ[Y|y]} .

Intuitively, a generalized literal ∀Y · φ ⇒ ψ is replaced by those ψ[Y|y] for which
φ[Y|y] is true, such that22, e.g., p(a) ← [∀X · q(X)⇒ r(X)] means that in order
to deduce p(a) one needs to deduce r(x) for all x where q(x) holds. If only q(x1)
and q(x2) hold, then the GeLi-reduct contains p(a) ← r(x1), r(x2). With an in-
finite universe and a condition φ that holds for an infinite number of elements in
the universe, one can thus have a rule with an infinite body in the GeLi-reduct.

Note that ((βx)x(U,I))
−

is always empty by definition of generalized literals: the
consequent is always an atom.
Also note that ∀Y · φ⇒ ψ cannot be seen as ∀Y · ¬φ ∨ ψ, where the forall is an

abbreviation of the conjunction with respect to a given domain and where we use

21Thus the rules may have an infinite body.
22We put square brackets around generalized literals for clarity.

26

an extended reduction for nested programs [Lifschitz et al. 1999]. Consider e.g. the
rules

p(X) ← [∀Y · ¬b(Y) ∧ ¬c(Y)⇒ d(Y)]
b(a) ←

and consider the open interpretation I = ({a}, {b(a)}). The GeLi reduct of P
w.r.t. I is (note that I |= ¬b(a) ∧ ¬c(a))

p(a) ← d(a)
b(a) ←

which will have I as an open answer set according to Definition 5.1 below. However,
if we apply the suggested transformation to P , we get

p(X) ← [∀Y · b(Y) ∨ c(Y) ∨ d(Y)]
b(a) ←

which would have the following ”GL reduct for nested programs” wrt I:

p(a) ← b(a) ∨ c(a) ∨ d(a)
b(a) ←

But, since I |= b(a), the first rule becomes applicable and thus any answer set
containing b(a) must also contain p(a). Hence I is not an answer set using this
transformation.

Definition 5.1. An open answer set of P is an open interpretation (U,M) of P

where M is an answer set of (PU)
x(U,M)

.

In the following, a gP is assumed to be a finite set of finite rules; infinite gPs only
appear as byproducts of grounding a finite program with an infinite universe, or, by
taking the GeLi-reduct w.r.t. an infinite universe. Satisfiability checking remains
defined as before.

Example 5.2. Take a gP P

p(X) ← [∀Y · q(Y)⇒ r(Y)]
r(X) ← q(X)

q(X) ∨ not q(X) ←

Intuitively, the first rule says that p(X) holds if for every Y where q(Y) holds,
r(Y) holds (thus p(X) also holds if q(Y) does not hold for any Y). Take an open
interpretation ({x, y}, {p(x), r(x), q(x), p(y)}). Then, the GeLi-reduct of P{x,y} is

p(x) ← r(x)
p(y) ← r(x)
r(x) ← q(x)
r(y) ← q(y)

q(x) ∨ not q(x) ←
q(y) ∨ not q(y) ←

{p(x), r(x), q(x), p(y)} is an answer set such that the open interpretation is an open
answer set.

27

Example 5.3. Take the following program P , i.e., the open answer set vari-
ant of the classical infinity axiom in guarded fixed point logic from [Grädel and
Walukiewicz 1999] (see also Example 2.3, pp. 10), where we use well to denote
well founded :

r1 : q(X) ← f (X ,Y)
r2 : ← f (X ,Y), not q(Y)
r3 : ← f (X ,Y), not well(Y)
r4 : well(Y) ← q(Y), [∀X · f (X ,Y)⇒ well(X)]
r5 : f (X ,Y) ∨ not f (X ,Y) ←

Intuitively, in order to satisfy q with some x, one needs to apply r1, which enforces
an f -successor y. Moreover, the second rule ensures that also for this y an f -
successor must exist, etc. The third rule makes sure that every f -successor is on a
well-founded f -chain. The well-foundedness itself is defined by r4 which says that
y is on a well-founded chain of elements where q holds if all f -predecessors of y
satisfy the same property.
E.g., take an infinite open interpretation (U,M) with U = {x0, x1, . . .} and

M = {q(x0),well(x0), f(x0, x1), q(x1),well(x1), f(x1, x2), . . .}). PU contains the
following grounding of r4:

r04 : well(x0) ← q(x0), [∀X · f (X , x0)⇒ well(X)]
r14 : well(x1) ← q(x1), [∀X · f (X , x1)⇒ well(X)]

...

Since, for r04 , there is no f(y, x0) in M , the body of the corresponding rule in the
GeLi-reduct w.r.t. (U,M) contains only q(x0). For r

1
4 , we have that f(x0, x1) ∈M

such that we include well(x0) in the body:

well(x0) ← q(x0)
well(x1) ← q(x1),well(x0)

...

One can check that (U,M) is indeed an open answer set of the gP, satisfying q.
Moreover, no finite open answer set can satisfy q. First, note that an open answer

set (U,M) of P cannot contain loops, i.e., {f(x0, x1), . . . , f(xn, x0)} ⊆ M is not
possible. Assume otherwise. By rule r3, we need well(x0) ∈ M . However, the
GeLi-reduct of PU contains rules:

well(x0) ← q(x0),well(xn), . . .
well(xn) ← q(xn),well(xn−1), . . .

...
well(x1) ← q(x1),well(x0), . . .

such that well(x0) cannot be in any open answer set: we have a circular dependency
and cannot use these rules to motivate well(x0), i.e., well(x0) is unfounded. Thus,
an open answer set of P cannot contain loops.
Assume that q is satisfied in an open answer set (U,M) with q(x0) ∈ M . Then,

by rule r1, we need some X such that f(x0, X) ∈M . SinceM cannot contain loops

28

X must be different from x0 and we need some new x1. By rule r2, q(x1) ∈ M ,
such that by rule r1, we again need an X such that f(x1, X). Using x0 or x1 for
X results in a loop, such that we need a new x2. This process continues infinitely,
such that there are only infinite open answer sets that make q satisfiable w.r.t. P .

We defined the open answer set semantics for gPs in function of the answer set
semantics for programs without generalized literals. We can, however, also define a
GL-reduct PM directly for a ground gP P by treating generalized literals as positive,
such that α+ ← β+, βx ∈ PM iff α ← β ∈ P and M |= α− and M |= not β− for
a ground gP P . Applying the GL-reduct transformation after the GeLi-reduct
transformation (like we defined it), is then equivalent to first applying the GL-
reduct transformation to a gP and subsequently computing the GeLi-reduct.

Example 5.4. Take a program F∪{r} with F ≡ {q(x)←, b(x)←, b(y)←, c(x)←
} and r : a(X) ← [∀X · ¬q(X)⇒ b(X)], not c(X). For a universe U = {x, y},
(F ∪ {r})U is F ∪ {rx, ry} where

rx : a(x)← [∀X · ¬q(X)⇒ b(X)], not c(x)

and

ry : a(y)← [∀X · ¬q(X)⇒ b(X)], not c(y)

Applying the GeLi-reduct transformation w.r.t.

(U,M = {q(x), b(x), b(y), c(x), a(y)})

yields

(F ∪ {rx, ry})
x(U,M) ≡ F ∪ {a(x)← b(y), not c(x); a(y)← b(y), not c(y)} .

The GL-reduct of the latter is F ∪ {a(y) ← b(y)}, such that (U,M) is a (unique)
open answer set of F ∪ {r} for U = {x, y}.
First applying the GL-reduct transformation to F ∪{rx, ry} yields F ∪{ry}, and,

subsequently, the GeLi-reduct again gives F ∪ {a(y)← b(y)}. Thus

((F ∪ {rx, ry})
x(U,M))M = ((F ∪ {rx, ry})

M)x(U,M) .

Since the GeLi-reduct transformation never removes rules or naf-atoms from rules,
while the GL-reduct transformation may remove rules (and thus generalized liter-
als), calculating the GL-reduct before the GeLi-reduct is likely to be more efficient
in practice. We opted, however, for the “GeLi-reduct before GL-reduct” transfor-
mation as the standard definition, as it is theoretically more robust against changes
in the definition of generalized literals. E.g., if naf were allowed in the consequent
of generalized literals, the “GL-reduct before GeLi-reduct” approach does not work
since the GeLi-reduct (as currently defined) could introduce naf again in the pro-
gram, making another application of the GL-reduct transformation necessary.

Theorem 5.5. Let P be a ground gP with an open interpretation (U,M). Then,

(P x(U,M))M = (PM)x(U,M) .

We have a similar result as in Theorem 2.2 regarding the finite motivation of
literals in possibly infinite open answer sets. We again express the motivation

29

of a literal more formally by means of the immediate consequence operator [van
Emden and Kowalski 1976] T that computes the closure of a set of literals w.r.t. a
GL-reduct of a GeLi-reduct.
For a gP P and an open interpretation (U,M) of P , T

(U,M)
P : BUP → BUP is

defined as T (B) = B ∪ {a|a ← β ∈
(

P
x(U,M)
U

)M

∧B |= β}. Additionally, we have

T 0(B) = B23, and T n+1(B) = T (T n(B)).

Theorem 5.6. Let P be a gP and (U,M) an open answer set of P . Then,
∀a ∈M · ∃n <∞ · a ∈ T n.

Finally, the next example illustrates that their is a difference between our answer
set semantics for generalized literals and the answer set semantics introduced in
[Lifschitz et al. 2001b; Osorio et al. 2004; Osorio and Ortiz 2004] for propositional
theories, which is based on intuistionistic logic.

Example 5.7. Consider the program

a(X) ← [∀X · c(X)⇒ b(X)]
a(X) ← b(X)
b(X) ← c(X)
c(X) ← a(X)

and consider the open interpretation I = ({a}, {a(a), b(a), c(a)}). Applying the
GeLi-reduct on this program w.r.t. I yields the program

a(a) ← b(a)
a(a) ← b(a)
b(a) ← c(a)
c(a) ← a(a)

which only has ∅ as an answer set, implying that I is not an open answer set for
this program.
However, one could expect the programs

a(a) ← [∀X · c(a)⇒ b(a)]
a(a) ← b(a)
b(a) ← c(a)
c(a) ← a(a)

and

a(a) ← c(a)⇒ b(a)
a(a) ← b(a)
b(a) ← c(a)
c(a) ← a(a)

to be equivalent, but, in the context of [Lifschitz et al. 2001b; Osorio et al. 2004;
Osorio and Ortiz 2004], we have {a(a), b(a), c(a)} as the unique answer set for the
last program, as c(a) ⇒ b(a) is true because of the third rule in that program.

23We omit the sub- and superscripts (U,M) and P from T
(U,M)
P

if they are clear from the context
and, furthermore, we will usually write T instead of T (∅).

30

Thus, this example illustrates that there is a difference between our semantics and
the one in [Lifschitz et al. 2001b; Osorio et al. 2004; Osorio and Ortiz 2004].

In [Leone and Perri 2003], so-called parametric connectives are introduced in the
context of disjunctive logic programs. The semantics of parametric connectives, e.g,
∧

{p(X) : a(X,Y), b(X)}, is essentially the same as the semantics of generalized
literals ∀X · a(X,Y) ∧ b(X)⇒ p(X). Note that [Leone and Perri 2003] also allows
for a disjunction in the body (indicated by a

∨

instead of
∧

), however, since we
allow for arbitrary boolean formulas in the antecedent of our generalized literals,
the latter are more flexible.

6. OPEN ANSWER SET PROGRAMMING WITH GPS VIA FIXED POINT LOGIC

We reduce satisfiability checking w.r.t. gPs to satisfiability checking of FPL for-
mulas. Note that the exposition in this section is along the lines of Section 3, such
that we will skip the details of some of the proofs.
First, we rewrite an arbitrary gP as a gP containing only one designated predicate

p and (in)equality. A gP P is a p-gP if p is the only predicate in P different from
the (in)equality predicate. For a set of g-literals α, we construct αp in two stages:

(1) replace every regular m-ary atom q(t) appearing in α (either in atoms, naf-
atoms, or generalized literals) by p(t,0, q) where p has arity n, with n the
maximum of the arities of predicates in P augmented by 1, 0 a sequence of new
constants 0 of length n−m− 1, and q a new constant with the same name as
the original predicate,

(2) in the set thus obtained, replace every generalized literal ∀Y · φ ⇒ ψ by ∀Y ·
φ ∧

∧

in(Y) ⇒ ψ, where Y 6= t in in(Y) stands for ¬(Y = t) (we defined
generalized literals in function of boolean formulas of atoms).

The p-gP Pp is then the program P with all non-free rules r : α ← β replaced by
rp : αp ← βp , in(X) where vars(r) = X. Note that P and Pp have the same free
rules.

Example 6.1. Let P be the gP:

q(X) ← [∀Y · r(Y)⇒ s(X)]
r(a) ←

s(X) ∨ not s(X) ←

Then q is satisfiable by an open answer set ({a, x}, {s(x), r(a), q(x)}). The p-gP
Pp is

p(X , q) ← [∀Y · p(Y , r) ∧
∧

in(Y)⇒ p(X , s)], in(X)
p(a, r) ←

p(X , s) ∨ not p(X , s) ←

where in(X) = {X 6= s,X 6= q,X 6= r,X 6= 0}. The corresponding open answer
set for this program is ({a, x, s, r, q}, {p(x, s), p(a, r), p(x, q)}).

Theorem 6.2. Let P be a gP, p a predicate not in P , and q a predicate in P . q
is satisfiable w.r.t. P iff there is an open answer set (U ′,M ′) of the p-gP Pp with
p(x,0, q) ∈M ′. Furthermore, the size of Pp is polynomial in the size of P .

31

Proof. The proof is analogous to the proof of Theorem 3.3.

The completion compgl(P) of a gP P consists of formulas that demand that different
constants in P are interpreted as different elements:

a 6= b . (21)

For every pair of different constants a and b in P , compgl(P) contains formulas
ensuring the existence of at least one element in the domain of an interpretation:

∃X · true . (22)

Besides these technical requirements matching FOL interpretations with open in-
terpretations, compgl(P) contains the formulas in fix(P) = sat(P) ∪ gl(P) ∪
gli(P) ∪ fpf(P), which can be intuitively categorized as follows:

—sat(P) ensures that a model of fix(P) satisfies all rules in P ,

—gl(P) is an auxiliary component defining atoms that indicate when a rule in P
belongs to the GL-reduct,

—gli(P) indicates when the antecedents of generalized literals are true, and

—fpf(P) ensures that every model of fix(P) is a minimal model of the GL-reduct
of the GeLi-reduct of P ; it uses the atoms defined in gl(P) to select, for the
calculation of the fixed point, only those rules in P that are in the GL-reduct of
the GeLi-reduct of P ; the atoms defined in gli(P) ensure that the generalized
literals are interpreted correctly.

In the following, we assume that the arity of p, the only predicate in a p-gP is n.

Definition 6.3. Let P be a p-gP. The fixed point translation of P is
fix(P) ≡ sat(P) ∪ gli(P) ∪ gl(P) ∪ fpf(P), where

(1) sat(P) contains formulas

∀Y ·
∧

β ⇒
∨

α (23)

for rules r : α← β ∈ P with vars(r) = Y,

(2) gl(P) contains the formulas

∀Y · r(Y)⇔
∧

α− ∧
∧

¬β− (24)

for rules r : α← β ∈ P with vars(r) = Y,

(3) gli(P) contains the formulas

∀Z · g(Z)⇔ φ (25)

for generalized literals g : ∀Y · φ⇒ ψ ∈ P 24 where φ contains the variables Z,

(4) fpf(P) contains the formula

∀X · p(X)⇒ [LFP WX.φ(W ,X)](X) (26)

24We assume that generalized literals are named.

32

with

φ(W,X) ≡W (X) ∨
∨

r:p(t)∨α←β∈P

E(r) (27)

and

E(r) ≡ ∃Y ·X1 = t1 ∧ . . . ∧Xn = tn ∧
∧

β+[p |W] ∧
∧

γ ∧ r(Y) (28)

where X = X1, . . . , Xn are n new variables, vars(r) = Y, W is a new (second-
order) variable, β+[p |W] is β+ with p replaced by W , and γ is βx with
—every generalized literal g : ∀Y · φ ⇒ ψ replaced by ∀Y · g(Z) ⇒ ψ, Z the
variables of φ, and, subsequently,

—every p replaced by W .

The completion of P is compgl(P) ≡ fix(P) ∪ {(21), (22)}.

The predicate W appears only positively in φ(W,X) such that the fixed point
formula in (26) is well-defined. Note that the predicate p is replaced by the fixed
point variable W in E(r) except in the antecedents of generalized literals, which
were replaced by atoms g(Z), and the negative part of r, which were replaced by
atoms r(Y), thus respectively encoding the GeLi-reduct and the GL-reduct.25

By the first disjunct in (27), we have that applying φ(U,M) to a set S ⊆ Un does
not lose information from S.

Theorem 6.4. Let P be a p-gP and (U,M) an open interpretation with S ⊆ Un.
Then

S ⊆ φ(U,M)(S) .

Proof. Similar to the proof of Theorem 3.6.

Example 6.5. We rewrite the program from Example 5.3 as the p-gP P :

r1 : p(X ,0 , q) ← p(X ,Y , f), in(X), in(Y)
r2 : ← p(X ,Y , f),not p(Y , 0 , q), in(X), in(Y)
r3 : ← p(X ,Y , f),not p(Y , 0 ,well), in(X), in(Y)
r4 : p(Y , 0 ,well) ← p(Y , 0 , q), in(Y),

[∀X · p(X,Y, f) ∧
V

in(X)⇒ p(X, 0, well)]
r5 : p(X ,Y , f) ∨ not p(X ,Y , f) ←

where in(X) and in(Y) are shorthand for the inequalities with the new constants.
sat(P) consists of the sentences

—∀X,Y · p(X,Y, f) ∧
∧

in(X) ∧
∧

in(Y)⇒ p(X, 0, q),

—∀X,Y · p(X,Y, f) ∧ ¬p(Y, 0, q) ∧
∧

in(X) ∧
∧

in(Y)⇒ false,

—∀X,Y · p(X,Y, f) ∧ ¬p(Y, 0,well) ∧
∧

in(X) ∧
∧

in(Y)⇒ false,

—∀Y · p(Y, 0, q) ∧
∧

in(Y) ∧ (∀X · p(X,Y, f) ∧
∧

in(X)⇒ p(X, 0,well))
⇒ p(Y, 0,well), and

—∀X,Y · true⇒ p(X,Y, f) ∨ ¬p(X,Y, f).

25Note that we apply the GeLi-reduct and the GL-reduct “at the same time”, while the open
answer set semantics is defined such that first the GeLi-reduct is constructed and then the GL-
reduct. However, as indicated by Theorem 5.5, the order of applying the reducts does not matter.

33

gl(P) contains the sentences

—∀X,Y · r1 (X ,Y)⇔
∧

in(X) ∧
∧

in(Y),

—∀X,Y · r2 (X ,Y)⇔ ¬p(Y , 0 , q) ∧
∧

in(X) ∧
∧

in(Y),

—∀X,Y · r3 (X ,Y)⇔ ¬p(Y , 0 ,well) ∧
∧

in(X) ∧
∧

in(Y),

—∀Y · r4 (Y)⇔
∧

in(Y), and

—∀X,Y · r5 (X ,Y)⇔ p(X ,Y , f).

gli(P) contains the sentence ∀X,Y ·g(X ,Y)⇔ p(X ,Y , f) ∧
∧

in(X), and fpf(P)
is constructed with

—E(r1) ≡ ∃X,Y ·X1 = X ∧X2 = 0 ∧X3 = q ∧W (X,Y, f) ∧ r1(X,Y),

—E(r4) ≡ ∃Y ·X1 = Y ∧X2 = 0 ∧X3 = well ∧W (Y, 0, q)∧
(∀X · g(X,Y)⇒W (X, 0,well)) ∧ r4(Y), and

—E(r5) ≡ ∃X,Y ·X1 = X ∧X2 = Y ∧X3 = f ∧ r5(X,Y).

Take an infinite FOL interpretation (U,M) with U = {q, f,well , 0, x0, x1, . . .} and26

M = {p(x0, 0, q), p(x0 , 0 ,well), p(x0, x1, f),

p(x1, 0, q), p(x1 , 0 ,well), p(x1, x2, f), . . .

r1(x0, x0), r1(x0, x1), . . . , r1(x1, x0), . . . , r4(x0), r4(x1), . . .

r5(x0, x1), r5(x1, x2), . . . , g(x0, x1), g(x1, x2), . . .}) .

sat(P), gl(P), and gli(P) are satisfied. We check that fpf(P) is satisfied by M .
We construct the fixed point of φ(U,M) where φ(W,X1, X2, X3) ≡W (X1, X2, X3)∨
E(r1) ∨ E(r4) ∨ E(R5) as in [Grädel 2002a], i.e., in stages starting from W 0 = ∅.
We have that

—W 1 = φ(U,M)(W 0) = {(x0, x1, f), (x1, x2, f), . . .}, where the (xi, xi+1, f) are in-
troduced by E(r5),

—W 2 = φ(U,M)(W 1) = W 1 ∪ {(x0, 0, q), (x1, 0, q), . . .}, where the (xi, 0, q) are in-
troduced by E(r1),

—W 3 = φ(U,M)(W 2) = W 2 ∪ {(x0, 0,well)}, where (x0, 0,well) is introduced by
E(r4),

—W 4 = φ(U,M)(W 3) =W 3 ∪ {(x1, 0,well)},

—. . .

The least fixed point LFP(φ(U,M)) is then ∪α<∞Wα [Grädel 2002a]. The sentence
fpf(P) is then satisfied since every p-literal in M is also in this least fixed point.
(U,M) is thus a model of compgl(P), and it corresponds to an open answer set of
P .

Theorem 6.6. Let P be a p-gP. Then, (U,M) is an open answer set of P iff
(U,M ∪R ∪G) is a model of

∧

compgl(P), where

R ≡ {r(y) | r[Y | y] : α[]← β[] ∈ PU ,M |= α[]
− ∪ not β[]−, vars(r) = Y} ,

26We interpret the constants in compgl(P) by universe elements of the same name.

34

i.e., the atoms corresponding to rules for which the GeLi-reduct version will be in
the GL-reduct, and

G ≡ {g(z) | g : ∀Y · φ⇒ ψ ∈ P, vars(φ) = Z,M |= φ[Z | z]} ,

i.e., the atoms corresponding to true antecedents of generalized literals in P .

Proof. Similar to the proof of Theorem 3.8.

Using Theorems 6.2 and 6.6, we can reduce satisfiability checking w.r.t. gPs to
satisfiability checking in FPL. Moreover, since

∧

compgl(P) contains only one fixed
point predicate, the translation falls in the alternation-free fragment of FPL.

Theorem 6.7. Let P be a gP, p a predicate not appearing in P , and q an n-
ary predicate in P . q is satisfiable w.r.t. P iff ∃X · p(X,0, q) ∧

∧

compgl(Pp) is
satisfiable. Moreover, this reduction is polynomial.

Proof. Assume q is satisfiable w.r.t. P . By Theorem 6.2, we have that p(x,0, q)
is in an open answer set of Pp, such that with Theorem 6.6, p(x,0, q) is in a model
of

∧

compgl(Pp).
For the opposite direction, assume ∃X · p(X,0, q) ∧

∧

compgl(Pp) is satisfiable.
Then there is a model (U,M ′) of

∧

compgl(P) with p(x,0, q) ∈M ′. We have that
M ′ = M ∪ R ∪ G as in Theorem 6.6, such that (U,M) is an open answer set of
Pp and p(x,0, q) ∈ M . From Theorem 6.2, we then have an open answer set of P
satisfying q.
The size of

∧

compgl(Pp) is polynomial in the size of Pp. Since the size of the
latter is also polynomial in the size of P , the size of

∧

compgl(Pp) is polynomial in
the size of P .

7. OPEN ANSWER SET PROGRAMMING WITH GUARDED GENERALIZED PRO-
GRAMS

As we did in Section 4 for programs, we introduce in this section a notion of
guardedness such that the FPL translation of guarded gPs falls in µGF. We do
not, however, consider their loosely guarded counterpart like we did in Section 4,
but leave this as an exercise to the reader.

Definition 7.1. A generalized literal ∀Y · φ ⇒ ψ is guarded if φ is of the form
γ ∧ φ′ with γ an atom, and vars(Y) ∪ vars(φ′) ∪ vars(ψ) ⊆ vars(γ); we call γ the
guard of the generalized literal. A rule r : α ← β is guarded if every generalized
literal in r is guarded, and there is an atom γb ∈ β+ such that vars(r) ⊆ vars(γb);
we call γb a body guard of r. It is fully guarded if it is guarded and there is a
γh ⊆ α

− such that vars(r) ⊆ vars(γh); γh is called a head guard of r.
A gP P is a (fully) guarded gP ((F)GgP) if every non-free rule in P is (fully)

guarded.

Example 7.2. Reconsider the gP from Example 5.3. r1, r2, and r3 are guarded
with guard f(X,Y). The generalized literal in r4 is guarded by f(X,Y), and r4
itself is guarded by q(Y). Note that r5 does not influence the guardedness as it is
a free rule.

Every fully guarded gP is guarded. Vice versa, we can transform every guarded gP
into an equivalent fully guarded one. For a GgP P , P f is defined as in Section 4

35

(pp. 35), i.e., as P with the rules α← β replaced by α ∪ not β+ ← β for the body
guard γb of α ← β. For a GgP P , we have that P f is a FGgP, where the head
guard of each non-free rule is equal to the body guard. Moreover, the size of P f is
linear in the size of P .

Theorem 7.3. Let P be a GgP. An open interpretation (U,M) of P is an open
answer set of P iff (U,M) is an open answer set of P f .

Proof. The proof is analogous to the proof of Theorem 4.8 (pp. 21).

We have that the construction of a p-gP retains the guardedness properties.

Theorem 7.4. Let P be a gP. Then, P is a (F)GgP iff Pp is a (F)GgP.

Proof. The proof is analogous to the proof of Theorem 4.10 (pp. 21).

For a fully guarded p-gP P , we can rewrite compgl(P) as the equivalent µGF
formulas gcompgl(P). For a guarded generalized literal ξ ≡ ∀Y · φ⇒ ψ, define

ξg ≡ ∀Y · γ ⇒ ψ ∨ ¬φ′ ,

where, since the generalized literal is guarded, φ = γ ∧φ′, and vars(Y)∪ vars(φ′)∪
vars(ψ) ⊆ vars(γ), making formula ξg a guarded formula. The extension of this
operator ·g for sets (or boolean formulas) of generalized literals is as usual.
gcompgl(P) is compgl(P) with the following modifications.

—Formula ∃X · true is replaced by

∃X ·X = X , (29)

such that it is guarded by X = X .

—Formula (23) is removed if r : α← β is free or otherwise replaced by

∀Y · γb ⇒
∨

α ∨
∨

¬(β+\{γb}) ∨
∨

β− ∨
∨

¬(βx)g , (30)

where γb is a body guard of r, thus we have logically rewritten the formula such
that it is guarded. If r is a free rule of the form q(t) ∨ not q(t) ← we have
∀Y · true ⇒ q(t) ∨ ¬q(t) which is always true and can thus be removed from
compgl(P).

—Formula (24) is replaced by the formulas

∀Y · r(Y)⇒
∧

α− ∧
∧

¬β− (31)

and

∀Y · γh ⇒ r(Y) ∨
∨

β− ∨
∨

¬(α−\{γh}) , (32)

where γh is a head guard of α ← β. We thus rewrite an equivalence as two
implications where the first implication is guarded by r(Y) and the second one
is guarded by the head guard of the rule.

—Formula (25) is replaced by the formulas

∀Z · g(Z)⇒ φ (33)

and

∀Z · γ ⇒ g(Z) ∨ ¬φ′ (34)

36

where φ = γ ∧ ψ by the guardedness of the generalized literal ∀Y · φ ⇒ ψ. We
thus rewrite an equivalence as two implications where the first one is guarded
by g(Z) (vars(φ) = Z by definition of g), and the second one is guarded by γ
(vars(g(Z) ∨ ¬φ′) = vars(Z) = vars(γ)).

—For every E(r) in (26), replace E(r) by

E′(r) ≡
∧

ti 6∈Y

Xi = ti ∧ ∃Z · (
∧

β+[p|W] ∧
∧

γ ∧ r(Y))[ti ∈ Y|Xi] , (35)

with Z = Y \ {ti | ti ∈ Y}, i.e., move all Xi = ti where ti is constant out
of the scope of the quantifier, and remove the others by substituting each ti
in

∧

β+[p|W] ∧
∧

γ ∧ r(Y) by Xi. This rewriting makes sure that every (free)
variable in the quantified part of E′(R) is guarded by r(Y)[ti ∈ Y|Xi].

Example 7.5. The rule

r : p(X) ∨ not p(X)← p(X), [∀Y · p(Y) ∧ p(b)⇒ p(a)]

constitutes a fully guarded p-gP P . The generalized literal is guarded by p(Y) and
the rule by head and body guard p(X). sat(P) contains the formula ∀X · p(X) ∧
(∀Y · p(Y) ∧ p(b)⇒ p(a)) ⇒ p(X) ∨ ¬p(X), gl(P) consists of ∀X · r(X)⇔ p(X),
gli(P) is the formula ∀Y ·g(Y)⇔ p(Y) ∧ p(b) and E(r) ≡ ∃X ·X1 = X∧W (X)∧
(∀Y · g(Y)⇒W (a)) ∧ r(X).
gcompgl(P) consists then of the corresponding guarded formulas:

—∀X · p(X)⇒ p(X) ∨ ¬p(X) ∨ ¬(∀Y · p(Y)⇒ p(a) ∨ ¬p(b)),

—∀X · r(X)⇒ p(X),

—∀X · p(X)⇒ r(X),

—∀Y · g(Y)⇒ p(Y) ∧ p(b),

—∀Y · p(Y)⇒ g(Y) ∨ ¬p(b), and

—E′(r) ≡W (X1) ∧ (∀Y · g(Y)⇒W (a)) ∧ r(X1).

As gcompgl(P) is basically a linear logical rewriting of compgl(P), they are equiv-
alent. Moreover,

∧

gcompgl(P) is an alternation-free µGF formula.

Theorem 7.6. Let P be a fully guarded p-gP. (U,M) is a model of
∧

compgl(P) iff (U,M) is a model of
∧

gcompgl(P).

Proof. The only notable difference from the proof of Theorem 4.12 is the pres-
ence of generalized literals, which are handled by the observation that (U,M) |=
ξ ⇐⇒ (U,M) |= ξg for a generalized literal ξ.

Theorem 7.7. Let P be a fully guarded p-gP.
∧

gcompgl(P) is an alternation-
free µGF formula.

Proof. The proof is analogous to the proof of Theorem 4.13.

Theorem 7.8. Let P be a GgP and q an n-ary predicate in P . q is satisfiable
w.r.t. P iff ∃X·p(X,0, q)∧

∧

gcompgl((P f)p) is satisfiable. Moreover, this reduction
is polynomial.

37

Proof. We have that P f is a FGgP. By Theorem 7.4, we have that (P f)p is

a fully guarded p-gP, thus the formula
∧

gcompgl((P f)p) is defined. By Theorem

7.3, we have that q is satisfiable w.r.t. P iff q is satisfiable w.r.t. P f . By Theorem
6.7, we have that q is satisfiable w.r.t. P f iff ∃X · p(X,0, q) ∧

∧

compgl((P f)p)
is satisfiable. Finally, Theorem 7.6 yields that q is satisfiable w.r.t. P iff ∃X ·
p(X,0, q) ∧

∧

gcompgl((P f)p) is satisfiable.

Corollary 7.9. Satisfiability checking w.r.t. GgPs can be polynomially reduced
to satisfiability checking of alternation-free µGF-formulas.

Proof. For a GgP P , we have, by Theorem 7.7, that
∧

gcomp((P f)p) is an
alternation-free µGF, which yields with Theorem 7.8, the required result.

Corollary 7.10. Satisfiability checking w.r.t. GgPs is in 2-exptime.

Proof. Since satisfiability checking of µGF formulas is 2-exptime-complete
(Theorem [1.1] in [Grädel and Walukiewicz 1999]), satisfiability checking w.r.t.
GgPs is, by Corollary 7.9, in 2-exptime.

Thus, adding generalized literals to guarded programs does not come at the cost of
increased complexity of reasoning, as also for guarded programs without generalized
literals, reasoning is in 2-exptime, see Theorem 4.16.
In [Syrjänen 2004], ω-restricted programs allow for cardinality constraints and

conditional literals. Conditional literals have the form X.L : A where X is a set of
variables, A is an atom (the condition) and L is an atom or a naf-atom. Intuitively,
conditional literals correspond to generalized literals ∀X · A ⇒ L, i.e., the de-
fined reducts add instantiations of L to the body if the corresponding instantiation
of A is true. However, conditional literals appear only in cardinality constraints
Card(b, S)27 where S is a set of literals (possibly conditional), such that a for all
effect such as with generalized literals cannot be obtained with conditional literals.
Take, for example, the rule q ← [∀X · b(X) ⇒ a(X)] and a universe U =
{x1, x2} with an interpretation containing b(x1) and b(x2). The reduct will con-
tain a rule q ← a(x1), a(x2) such that, effectively, q holds only if a holds ev-
erywhere where b holds. The equivalent rule rewritten with a conditional literal
would be something like q ← Card(n, {X.a(X) : b(X)}), resulting28 in a rule
q ← Card(n, {a(x1), a(x2)}). In order to have the for all effect, we have that
n must be 2. However, we cannot know this n in advance, making it impossible to
express a for all restriction.

8. RELATIONSHIP WITH DATALOG LITE

We define Datalog lite as in [Gottlob et al. 2002]. A Datalog rule is a rule α← β
where α = {a} for some atom a and β does not contain generalized literals. A
basic Datalog program is a finite set of Datalog rules such that no head predicate
appears in negative bodies of rules. Predicates that appear only in the body of
rules are extensional or input predicates. Note that equality is, by the definition of
rules, never a head predicate and thus always extensional. The semantics of a basic

27Card(b, S) is true if at least b elements from S are true.
28Assume we again have a universe {x1, x2}.

38

Datalog program P , given a relational input structure U defined over extensional
predicates of P 29, is given by the unique (subset) minimal model of ΣP whose
restriction to the extensional predicates yields U (ΣP are the first-order clauses
corresponding to P , see [Abiteboul et al. 1995]).
For a query (P, q), where P is a basic Datalog program and q is an n-ary predicate,

we write a ∈ (P, q)(U) if the minimal model M of ΣP with input U contains q(a).
We call (P, q) satisfiable if there exists a U and an a such that a ∈ (P, q)(U).
A program P is a stratified Datalog program if it can be written as a union of

basic Datalog programs (P1, . . . , Pn), so-called strata, such that each of the head
predicates in P is a head predicate in exactly one stratum Pi. Furthermore, if a
head predicate in Pi is an extensional predicate in Pj , then i < j. This definition
entails that head predicates in the positive body of rules are head predicates in
the same or a lower stratum, and head predicates in the negative body are head
predicates in a lower stratum. The semantics of stratified Datalog programs is
defined stratum per stratum, starting from the lowest stratum and defining the
extensional predicates on the way up. For an input structure U and a stratified
program P = (P1, . . . , Pn), define as in [Abiteboul et al. 1995]:

U0 ≡ U
Ui ≡ Ui−1 ∪ Pi(Ui−1|edb(Pi))

where Si ≡ Pi(Ui−1|edb(Pi)) is the minimal model of ΣPi
among those models of

ΣPi
whose restriction to the extensional predicates of Pi (i.e., edb(Pi)) is equal to

Ui−1|edb(Pi). The least fixed point model with input U of P is per definition Un.
A Datalog lite generalized literal is a generalized literal ∀Y · a ⇒ b where a

and b are atoms and vars(b) ⊆ vars(a). Note that Datalog lite generalized literals
∀Y · a ⇒ b can be replaced by the equivalent ∀Z · a ⇒ b where Z ≡ Y\{Y | Y 6∈
vars(a)}, i.e., with the variables that are not present in the formula a⇒ b removed
from the quantifier. After such a rewriting, Datalog lite generalized literals are
guarded according to Definition 4.5.
A Datalog lite program is a stratified Datalog program, possibly containing

Datalog lite generalized literals in the positive body, where each rule is monadic
or guarded. A rule is monadic if each of its (generalized) literals contains only
one (free) variable; it is guarded if there exists an atom in the positive body that
contains all variables (free variables in the case of generalized literals) of the rule.
The definition of stratified is adapted for generalized literals: for a ∀Y · a ⇒ b in
the body of a rule where the underlying predicate of a is a head predicate, this
head predicate must be a head predicate in a lower stratum (i.e., a is treated as
a naf-atom) and a head predicate underlying b must be in the same or a lower
stratum (i.e., b is treated as an atom). The semantics can be adapted accordingly
since a is completely defined in a lower stratum, as in [Gottlob et al. 2002]: every
generalized literal ∀Y ·a ⇒ b is instantiated (for any x grounding the free variables
X in the generalized literal) by

∧

{b[X | x][Y | y] | a[X | x][Y | y] is true}, which is
well-defined since a is defined in a lower stratum than the rule where the generalized
literal appears.

29We assume that an input structure always defines equality, and that it does so as the identity
relation.

39

8.1 Reduction from GgPs to Datalog LITE

In [Gottlob et al. 2002], Theorem 8.5., a Datalog lite query (πϕ, qϕ) was defined
for an alternation-free µGF sentence ϕ such that

(U,M) |= ϕ ⇐⇒ (πϕ, qϕ)(M ∪ id(U)) evaluates to true ,

where the latter means that qϕ is in the fixed point model of πϕ with inputM∪id(U)
and id(U) ≡ {x = x | x ∈ U}.

Example 8.1. Take the µGF sentence gcomp(P) ≡ ϕ1∧ϕ2∧ϕ3∧ϕ4 from Example
4.11, i.e., with

ϕ1 ≡ ∀X · p(X)⇒ p(X) ∨ ¬p(X)

ϕ2 ≡ ∀X · r(X)⇒ p(X)

ϕ3 ≡ ∀X · p(X)⇒ r(X)

ϕ4 ≡ ∀X · p(X)⇒ [LFP WX .φ(W ,X)](X)

and φ(W,X) ≡W (X) ∨ (W (X) ∧ r(X)). The query (πgcomp(P), qgcomp(P)) considers
atoms and negated atoms as extensional predicates and introduces rules

Hp,ϕ1
(X) ← p(X)

H¬p,ϕ1
(X) ← p(X),¬p(X)

for ϕ1 where both rules are guarded by the guard p(X) of ϕ1 (or, in general, the
guard in the most closely encompassing scope). Disjunction is defined as usual:

Hp∨¬p,ϕ1
(X) ← p(X),Hp,ϕ1

(X)
Hp∨¬p,ϕ1

(X) ← p(X),H¬p,ϕ1
(X)

where p(X) serves again as guard.30 The sentence ϕ1 itself is translated into

Hϕ1
← (∀X · p(X)⇒ Hp∨¬p,ϕ1

(X))

Formulas ϕ2 and ϕ3 can be translated similarly. For ϕ4, we translate, as an
intermediate step, φ(W,X) as

Hφ(X) ← p(X),HW (X)
Hφ(X) ← p(X),HW∧r (X)

HW∧r (X) ← p(X),HW (X),Hr (X)
HW (X) ← p(X),W (X)
Hr (X) ← p(X), r(X)

from which the translation for [LFPWX.φ(W,X)](X) can be obtained by replacing
Hφ(X) and W (X) by H[LFP WX.φ(W,X)](X), i.e.,

H[LFP WX .φ(W ,X)](X) ← p(X),HW (X)
H[LFP WX .φ(W ,X)](X) ← p(X),HW∧r (X)

HW∧r (X) ← p(X),HW (X),Hr (X)
HW (X) ← p(X),H[LFP WX .φ(W ,X)](X)
Hr (X) ← p(X), r(X)

30Actually, in this particular case, the rules would already be guarded without the guard of ϕ1,
but we include it, as this is not true in general.

40

The sentence ϕ4 is translated to

Hϕ4
← (∀X · p(X)⇒ H[LFP WX .φ(W ,X)](X))

Finally, we compile the results in the rule qgcomp(P) ← Hϕ1
,Hϕ2

,Hϕ3
,Hϕ4

.
In Example 4.11, we had, for a universe {x}, the unique model ({x}, ∅) of

gcomp(P). Accordingly, we have that {x = x} is the only relational input structure
on the extensional predicates of πgcomp(P), r and p, that contains the term x and
results in a least fixed point model of πgcomp(P) containing qgcomp(P).

For the formal details of this reduction, we refer to [Gottlob et al. 2002]. Satisfiabil-
ity checking w.r.t. GgPs can be polynomially reduced, using the above reduction,
to satisfiability checking in Datalog lite.

Theorem 8.2. Let P be a GgP, q an n-ary predicate in P , and ϕ the µGF
sentence ∃X · p(X,0, q) ∧

∧

gcomp((P f)p). q is satisfiable w.r.t. P iff (πϕ, qϕ) is
satisfiable. Moreover, this reduction is polynomial.

Proof. By Theorem 7.8, we have that q is satisfiable w.r.t. P iff ϕ is satisfiable.
Since ϕ is a µGF sentence, we have that ϕ is satisfiable, i.e., there exists a (U,M)
such that (U,M) |= ϕ, iff (πϕ, qϕ)(M ∪ id(U)) evaluates to true, i.e., (πϕ, qϕ) is
satisfiable.
Since, by Theorem 7.8, the translation of P to ϕ is polynomial in the size of P and

the query (πϕ, qϕ) is polynomial in ϕ [Gottlob et al. 2002], we have a polynomial
reduction.

8.2 Reduction from Datalog LITE to GgPs

For stratified Datalog programs, possibly with generalized literals, least fixed point
models with as input the identity relation on a universe U coincide with open answer
sets with universe U .

Lemma 8.3. Let P = (P1, . . . , Pn) be a stratified Datalog program, possibly with
generalized literals, and U an input structure for P . If p(x) ∈ Sj, then p is a head
predicate in Pj or p ∈ Uj−1|edb(Pj).

Proof. Either p ∈ edb(Pj) or not. In the former case, we have that p(x) ∈
Sj |edb(Pj) such that, by the definition of Sj , p(x) ∈ Uj−1|edb(Pj). In the latter
case, we have that, since p does not appear in the body of Pj , but nevertheless p(x)
is in Sj , a minimal model of Pj , p must be a head predicate in Pj .

Lemma 8.4. Let P = (P1, . . . , Pn) be a stratified Datalog program, possibly with
generalized literals, U an input structure for P . If p is a head predicate in some Pj,
1 ≤ j ≤ n, then

p(x) ∈ Sj ⇐⇒ p(x) ∈ Un . (36)

If p ∈ edb(Pj) and p(x) 6∈ Uj−1, then p(x) 6∈ Un.

Proof. The “only if” direction of Equation (36) is immediate. For the “if”
direction: assume p is a head predicate in Pj and p(x) ∈ Un. Since p(x) ∈ Un,
there must be a k, such that p(x) ∈ Sk, 1 ≤ k ≤ n.
If k = j, we are finished, otherwise, by Lemma 8.3, p(x) ∈ Uk−1|edb(Pk) and thus

p(x) ∈ Uk−1. Again, we have that there is a 1 ≤ k1 ≤ k − 1, such that p(x) ∈ Sk1 .

41

If k1 = j, we are finished, otherwise, we continue as before. After at most n steps,
we must find a kn = j, otherwise we have a contradiction (p(x) ∈ U is not possible
since p is a head predicate and input structures are defined on extensional predicates
only).
Take p extensional in Pj , p(x) 6∈ Uj−1, and p(x) ∈ Un. We show that this leads

to a contradiction. From p(x) ∈ Un, we have that p(x) ∈ Un−1 or p(x) ∈ Sn. For
the latter, one would have, with Lemma 8.3, that p(x) ∈ Un−1|edb(Pn) or p is a
head predicate in Sn. The latter is impossible since p ∈ edb(Pj) and j ≤ n. Thus,
we have that p(x) ∈ Un−1.
Continuing this way, we eventually have that p(x) ∈ Uj−1, a contradiction.

Theorem 8.5. Let P = (P1, . . . , Pn) be a stratified Datalog program, possibly
with generalized literals, U a universe for P , and l a literal. For the least fixed
point model Un of P with input U = {id(U)}, we have Un |= l iff there exists an
open answer set (U,M) of P such that M |= l.
Moreover, for any open answer set (U,M) of P , we have that M = Un\id(U).

Proof. For the “only if” direction, assume Un |= l. Define

M ≡ Un\id(U) .

Clearly, M |= l, such that remains to show that (U,M) is an open answer set of P .

(1) M is a model of R ≡ (P
x(U,M)
U)M .

Take a rule r : a[X | x]← β[X | x]+, (β[X | x]x)x(U,M) ∈ R, thusM |= not β[]
−
,

originating from a← β ∈ P . Assume M |= body(r). We have that ∀X ·
∧

β ⇒
a ∈ ΣPi

for some stratum Pi. Take x as in r.
We verify that Un |=

∧

β[]. We have that Un |=
∧

β[]
+ ∧

∧

¬β[]−. Take a
generalized literal ∀Y · c ⇒ b in

∧

β[] and Un |= c[Y | y]. Then M |= c[] such
that b[] ∈ (β[X | x]x)x(U,M), and thus, with M |= b[], that Un |= b[].
With Theorem 15.2.11 in [Abiteboul et al. 1995], we have that Un is a model
of ΣP , such that a[] ∈ Un, and thus M |= a[].

(2) M is a minimal model of R ≡ (P
x(U,M)
U)M .

Assume not, then there is a N ⊂ M , model of R. Define N ′ ≡ N ∪ id(U).
Since M \N 6= ∅, we have that Un \N ′ 6= ∅. Since U = id(U), we have
Un = id(U) ∪ S1 ∪ . . . ∪ Sn, such that there is a 1 ≤ j ≤ n, where Sj \N ′ 6= ∅
and Uj−1 ⊆ N ′. Define Nj ≡ Sj \ (Sj \N ′). One can show that Nj ⊂ Sj ,
Nj|edb(Pj) = Uj−1|edb(Pj), and Nj is a model of ΣPj

, which is a contradiction
with the minimality of Sj .

For the “if” direction, assume (U,M) is an open answer set of P with M |= l.
Assume Un 6|= l. Define M ′ ≡ Un\id(U). By the previous direction, we know that
(U,M ′) is an open answer set of P with M ′ 6|= l, such that M |= l and M ′ 6|= l.
Note that M |= p(x) ⇐⇒ M ′ |= p(x) for extensional predicates p in P . Indeed,
assume M |= p(x), then p(x) must be in the head of an applied rule since M is
an answer set, contradicting that p is extensional, unless p is an equality, and then
∅ |= p(x) such that M ′ |= p(x). The other direction is similar.
One can show per induction on k, that for a head predicate p in Pk, M |= p(x)

iff M ′ |= p(x), resulting in M =M ′, and thus in particular we have a contradiction
for l, such that l ∈ Un.

42

In particular, we have M = M ′ = Un\id(U), which proves the last part of the
Theorem.

From Theorem 8.5, we obtain a generalization of Corollary 2 in [Gelfond and Lif-
schitz 1988] (If Π is stratified, then its unique stable model is identical to its fixed
point model.) for stratified Datalog programs with generalized literals and an open
answer set semantics.

Corollary 8.6. Let P be a stratified Datalog program, possibly with generalized
literals, and U a universe for P . The unique open answer set (U,M) of P is
identical to its least fixed point model (minus the equality atoms) with input structure
id(U).

We generalize Theorem 8.5, to take into account arbitrary input structures U . For
a stratified Datalog program P , possibly with generalized literals, define FP ≡
{q(X) ∨ not q(X)←| q extensional (but not =) in P}.

Theorem 8.7. Let P = (P1, . . . , Pn) be a stratified Datalog program, possibly
with generalized literals, and l a literal. There exists an input structure U for P
with least fixed point model Un such that Un |= l iff there exists an open answer set
(U,M) of P ∪ FP such that M |= l.

Proof. For the “only if” direction, assume Un |= l. Define U ≡ cts(P ∪ U) and

M ≡ Un\id(U) .

Clearly, M |= l, and one can show, similarly to the proof of Theorem 8.5, that
(U,M) is an open answer set of P .
For the “if” direction, assume (U,M) is an open answer set of P ∪FP withM |= l.

Define

U ≡ id(U) ∪ {q(x) | q(x) ∈M ∧ q extensional (but not equality) in P} .

Take Un the least fixed point model with input U . Assume Un 6|= l. Define M ′ ≡
Un\id(U). By the previous direction, we know that (cts(U ∪ P)(= U),M ′) is an
open answer set of P with M ′ 6|= l, such that M |= l and M ′ 6|= l. The rest of the
proof is along the lines of the proof of Theorem 8.5.

The set of free rules FP ensures a free choice for extensional predicates, a behavior
that corresponds to the free choice of an input structure for a Datalog program P .
Note that P ∪FP is not a Datalog program anymore, due to the presence of naf in
the heads of FP .
Define a Datalog litem program as a Datalog lite program where all rules

are guarded (instead of guarded or monadic). As we will see below this is not a
restriction. As FP contains only free rules, P ∪FP is a GgP if P is a Datalog litem
program. Furthermore, the size of the GgP P ∪ FP is linear in the size of P .

Theorem 8.8. Let P be a Datalog litem program. Then, P ∪ FP is a GgP
whose size is linear in the size of P .

Proof. Immediate by the Definition of Datalog litem (note also the remark at
pp. 39) and the fact that FP is a set of free rules and thus has no influence on the
guardedness of P .

43

Satisfiability checking of Datalog litem queries can be reduced to satisfiability
checking w.r.t. GgPs.

Theorem 8.9. Let (P, q) be a Datalog litem query. Then, (P, q) is satisfiable
iff q is satisfiable w.r.t. the GgP P ∪ FP . Moreover, this reduction is linear.

Proof. Immediate by Theorems 8.7 and 8.8.

Theorems 8.2 and 8.9 lead to the conclusion that Datalog litem and open ASP
with GgPs are equivalent (i.e., satisfiability checking in either one of the formalisms
can be polynomially reduced to satisfiability checking in the other).31 Furthermore,
since Datalog litem, Datalog lite, and alternation-free µGF are equivalent as well
[Gottlob et al. 2002], we have the following result.

Theorem 8.10. Datalog lite, alternation-free µGF, and open ASP with GgPs
are equivalent.

Satisfiability checking in both GF and LGF is 2-exptime-complete [Grädel 1999],
as are their (alternation-free) extensions with fixed point predicates µGF and µLGF
[Grädel and Walukiewicz 1999]. Theorem 8.10 gives us then immediately the fol-
lowing complexity result.

Theorem 8.11. Satisfiability checking w.r.t. GgPs is 2-exptime-complete.

Some extra terminology is needed to show that satisfiability checking w.r.t. (L)GPs
(i.e., without generalized literals) is 2-exptime-complete as well.
Recursion-free stratified Datalog is stratified Datalog where the head predicates

in the positive bodies of rules must be head predicates in a lower stratum. We call
recursion-free Datalog litem, Datalog liter, where the definition of recursion-free
is appropriately extended to take into account the generalized literals.
For a Datalog liter program P , let ¬¬P be the program P with all generalized

literals replaced by a double negation. E.g.,

q(X)← f (X), ∀Y · r(X ,Y)⇒ s(Y)

is rewritten as the rules

q(X)← f (X), not q ′(X)

and

q ′(X)← r(X ,Y), not s(Y) .

As indicated in [Gottlob et al. 2002], this yields an equivalent program ¬¬P , where
the recursion-freeness ensures that ¬¬P is stratified.32

Theorem 8.12. Let P be a Datalog liter program. Then ¬¬P ∪ F¬¬P is a
GP.

31Note that (πϕ, qϕ) is a Datalog litem query [Gottlob et al. 2002].
32Note that this translation cannot work for arbitrary generalized programs as the antecedent of
generalized literals can be an arbitrary boolean formula, which cannot appear in bodies of rules.
Replace, e.g., r(X, Y) by r(X, Y) ∨ d(X, Y).

44

Proof. Every rule in P is guarded, and thus every rule in ¬¬P is too. Since
¬¬P ∪ F¬¬P adds but free rules to ¬¬P , all non-free rules of ¬¬P ∪ F¬¬P are
guarded.

Satisfiability checking of Datalog liter queries can be linearly reduced to satisfia-
bility checking w.r.t. GPs.

Theorem 8.13. Let (P, q) be a Datalog liter query. (P, q) is satisfiable iff q is
satisfiable w.r.t. the GP ¬¬P ∪ F¬¬P . Moreover, this reduction is linear.

Proof. For a Datalog liter query (P, q), (¬¬P, q) is an equivalent stratified
Datalog query. Hence, by Theorem 8.7, (¬¬P, q) is satisfiable iff q is satisfiable
w.r.t. ¬¬P ∪ F¬¬P . This reduction is linear since ¬¬P is linear in the size of P
and so is ¬¬P ∪ F¬¬P .

Theorem 8.14. Satisfiability checking w.r.t. (L)GPs is 2-exptime-complete.

Proof. The reduction from alternation-free µGF sentences ϕ to Datalog lite
queries (πϕ, qϕ) specializes, as noted in [Gottlob et al. 2002], to a reduction from GF
sentences to recursion-free Datalog lite queries. Moreover, the reduction contains
only guarded rules such that GF sentences ϕ are actually translated to Datalog
liter queries (πϕ, qϕ).
Satisfiability checking in the guarded fragment GF is 2-exptime-complete [Grädel

1999], such that, using Theorem 8.13 and the intermediate Datalog liter trans-
lation, we have that satisfiability checking w.r.t. GPs is 2-exptime-hard. The
2-exptime membership was shown in Theorem 4.16, such that the completeness
readily follows.
Every GP is a LGP and satisfiability checking w.r.t. to the former is 2-exptime-

complete, thus we have 2-exptime-hardness for satisfiability checking w.r.t. LGPs.
Completeness follows again from Theorem 4.16.

9. CTL REASONING USING GUARDED GENERALIZED PROGRAMS

In this section, we show how to reduce CTL satisfiability checking to satisfiability
checking w.r.t. GgPs, i.e., guarded programs with generalized literals, thus arguing
the usability of OASP as a suitable formalism for different kinds of knowledge
representation.
In order to keep the treatment simple, we will assume that the only allowed

temporal constructs are AFq, E(p U q), and EXq, for formulas p and q. They are
actually adequate in the sense that other temporal constructs can be equivalently,
i.e., preserving satisfiability, rewritten using only those three [Huth and Ryan 2000].
For a CTL formula p, let clos(p) be the closure of p: the set of subformulas of p.

We construct a GgP G ∪Dp consisting of a generating part G and a defining part
Dp. The guarded program G contains free rules (g1) for every proposition P ∈ AP ,
free rules (g2) that allow for state transitions, and rules (g3) that ensure that the
transition relation is total:

[P](S) ∨ not [P](S)← (g1)

next(S ,N) ∨ not next(S ,N)← (g2)

succ(S)← next(S ,N) ← S = S , not succ(S) (g3)

45

where [P] is the predicate corresponding to the proposition P . The S = S is
necessary merely for having guarded rules; note that any rule containing only one
(free) variable can be made guarded by adding such an equality.
The GgP Dp introduces for every non-propositional CTL formula in clos(p) the

following rules (we write [q] for the predicate corresponding to the CTL formula
q ∈ clos(p)); as noted before we tacitly assume that rules containing only one (free)
variable S are guarded by S = S:

—For a formula ¬q in clos(p), we introduce in Dp the rule

[¬q](S)← not [q](S) (d1)

Thus, the negation of a CTL formula is simulated by negation as failure.

—For a formula q ∧ r in clos(p), we introduce in Dp the rule

[q ∧ r](S)← [q](S), [r](S) (d2)

Conjunction of CTL formulas thus corresponds to conjunction in the body.

—For a formula AFq in clos(p), we introduce in Dp the rules

[AFq](S)← [q](S) (d13)

[AFq](S)← ∀N · next(S ,N)⇒ [AFq](N) (d23)

We define AFq corresponding to the intuition that AFq holds if, either q holds at
the current state (d13) or for all successors, we have that AFq holds (d23). Note
that we use generalized literals to express the for all successors part. Moreover,
we explicitly use the minimal model semantics of (open) answer set programming
to ensure that eventually [q] holds on all paths: one cannot continue to use rule
(d23) to motivate satisfaction of AFq, at a certain finite point, one is obliged to
use rule (d13) to obtain a finite motivation.

—For a formula E(q U r) in clos(p), we introduce in Dp the rules

[E(q U r)](S)← [r](S) (d4)

[E(q U r)](S)← [q](S), next(S ,N), [E(q U r)](N) (d5)

based on the intuition that there is a path where q holds until r holds (and r
eventually holds) if either r holds at the current state (d4), or q holds at the
current state and there is some next state where again E(q U r) holds (d5). The
minimality will again make sure that we eventually must deduce r with rule (d4).

—For a formula EXq in clos(p), we introduce in Dp the rule

[EXq](S)← next(S ,N), [q](N) (d6)

saying that EXq holds if there is some successor where q holds.

Note that replacing the generalized literal in (d23) with a double negation has not
the intended effect:

[AFq](S) ← not q ′(S)
q ′(S) ← next(S ,N), not [AFq](N)

46

A (fragment) of an open answer set could then be

({s0, s1, . . .}, {next(s0, s1), next(s1, s2), . . . ,

[AFq](s0), [AFq](s1), . . .}) ,

such that one would conclude that [AFq] is satisfiable while there is a path s0, s1, . . .
where q never holds.

Example 9.1. Consider the absence of starvation formula t ⇒ AFc, i.e., if a
process tries (t) to access a critical section of code, it must eventually succeed in
doing so (c). We rewrite this such that it does not contain ⇒, i.e., we consider the
equivalent formula ¬(t∧¬AFc). For AP = {c, t}, the program G contains the rules

[t](S) ∨ not [t](S) ←
[c](S) ∨ not [c](S) ←

next(S ,N) ∨ not next(S ,N) ←
succ(S) ← next(S ,N)

← S = S , not succ(S)

The program Dp, with p ≡ ¬(t ∧ ¬AFc), contains the rules

[¬(t ∧ ¬AFc)](S) ← not [t ∧ ¬AFc](S)
[t ∧ ¬AFc](S) ← [t](S), [¬AFc](S)

[¬AFc](S) ← not [AFc](S)
[AFc](S) ← [c](S)
[AFc](S) ← ∀N · next(S ,N)⇒ [AFc](N)

One can see that p is (CTL) satisfiable iff [p] is satisfiable w.r.t. G ∪Dp.

Theorem 9.2. Let p be a CTL formula. p is satisfiable iff [p] is satisfiable w.r.t.
the GgP G ∪Dp.

Proof. For the “only if” direction, assume p is satisfiable. Then there exists a
model K = (S,R, L) of p such that K, s |= p, for a state s ∈ S. Define

M ≡ {next(s, t) | (s, t) ∈ R} ∪ {succ(s) | (s, t) ∈ R}

∪ {[q](s) | K, s |= q ∧ q ∈ clos(p)} .

Then [p](s) ∈M ; one can show that (S,M) is an open answer set of G ∪Dp.
For the “if” direction, assume (U,M) is an open answer set of G ∪Dp such that

[p](s) ∈M for some s, where p is a CTL formula. Define the model K = (U,R,L)
with R = {(s, t) | next(s, t) ∈ M}, and L(s) = {P | [P](s) ∈ M ∧ P ∈ AP}.
Remains to show that K is a structure and K, s |= p.
The relation R is total, indeed, assume not, then there is a t ∈ U , which has no

successors in R. Then, there is no next(t , t ′) ∈M , such that succ(t) 6∈M , and the
constraint (g3) gives a contradiction. One can prove per induction on the structure
of a CTL formula q, that

K, s |= q ⇐⇒ [q](s) ∈M .

47

Since CTL satisfiability checking is exptime-complete (see Theorem 2.5, pp. 11)
and satisfiability checking w.r.t. GgPs is 2-exptime-complete (see Theorem 8.11,
pp. 44), the reduction from CTL to GgPs does not seem to be optimal. However,
we can show that the particular GgP G ∪Dp is a bound GgP for which reasoning
is indeed exptime-complete and thus optimal.
The width of a formula ψ is the maximal number of free variables in its subfor-

mulas [Grädel 2002b]. We define bound programs by looking at their first-order
form and the arity of its predicates.

Definition 9.3. Let P be a gP. Then, P is bound if every formula in sat(P) is
of bounded width and the predicates in P have a bounded arity.

For a CTL formula p, one has that G ∪Dp is a bound GgP.

Theorem 9.4. Let p be a CTL formula. Then, G ∪Dp is a bound GgP.

Proof. Every subformula of formulas in sat(G ∪ Dp) contains at most 2 free
variables and the maximum arity of the predicates is 2 as well.

Theorem 9.5. Satisfiability checking w.r.t. bound GgPs is exptime-complete.

Proof. Let P be a bound GgP. We have that (P f)p is bound and one can check

that ∃X · p(X,0, q) ∧
∧

gcompgl((P f)p) is of bounded width. Note that formula
(26) on pp. 32 contains a p(X). The condition that each formula in sat(P) is of
bounded width is not enough to guarantee that p(X) has bounded width. Add,
e.g., ground rules r to P with increasing arities of predicates. Although the width
of formulas in sat(P) remains constant (no variables are added), the arity of p(X)
in Formula (26) increases, thus increasing the width. Hence, the restriction that
the arity of predicates in P should be bounded as well.
By Theorem 7.8 and 7.9, one can reduce satisfiability checking of a bound GgP

to satisfiability of a µGF-formula with bounded width. The latter can be done in
exptime by Theorem 1.2 in [Grädel and Walukiewicz 1999], such that satisfiability
checking w.r.t. bound GgPs is in exptime.
The exptime-hardness follows from Theorem 9.2 and the exptime-hardness of

CTL satisfiability checking (Theorem 2.5).

As indicated in [Gottlob et al. 2002], the objects in the database form the states
of the Kripke model. In the open domain case, one, intuitively, allows, of extra
states in the Kripke model, not explicitly listed in the database.

10. CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH

We embedded OASP in FPL and used this embedding to identify (loosely) guarded
OASP, a decidable fragment of OASP. Finite ASP was reduced to loosely guarded
OASP. Satisfiability checking w.r.t. (loosely) guarded OASP was shown to be 2-
exptime-complete. We defined GgPs, guarded programs with generalized literals,
under an open answer set semantics, and showed 2-exptime-completeness of sat-
isfiability checking by a reduction to µGF. Furthermore, we translated Datalog
litem programs to GgPs, and generalized the result that the unique answer set of
a stratified program is identical to its least fixed point. We showed how to optimally
simulate CTL in OASP.

48

We plan to extend GgPs to loosely guarded gPs, where a guard may be a set of
atoms; a reduction to the loosely guarded fixed point logic should then provide for
decidability. More liberal generalized literals, with the consequent a conjunction
of atoms and naf-atoms instead of just an atom, does not affect the definition of
the GeLi-reduct, but the FPL translation requires modification to ensure no fixed
point variable appears negatively.
We plan to look into the correspondence with Datalog and use decidability results

for Datalog satisfiability checking, as, e.g., in [Halevy et al. 2001], to search for
decidable fragments under an open answer set semantics.
Although adding generalized literals to guarded programs does not increase the

complexity of reasoning, it does seem to increase expressivity: one can, for example,
express infinity axioms. Given the close relation with Datalog lite and the fact that
Datalog lite without generalized literals cannot express well-founded statements,
it seems unlikely that guarded programs without generalized literals can express
infinity axioms; this is subject to further research.
We only considered generalized literals in the positive body. If the antecedents

in generalized literals are atoms, it seems intuitive to allow also generalized literals
in the negative body. E.g., take a rule α ← β, not [∀X · b(X) ⇒ a(X)]; it seems
natural to treat not [∀X · b(X) ⇒ a(X)] as ∃X · b(X) ∧ ¬a(X) such that the rule
becomes α ← β, b(X), not a(X). A rule like [∀X · b(X)⇒ a(X)] ∨ α ← β is more
involved and it seems that the generalized literal can only be intuitively removed
by a modified GeLi-reduct.
We established the equivalence of open ASP with GgPs, alternation-free µGF,

and Datalog lite. Intuitively, Datalog lite is not expressive enough to simulate
normal µGF since such µGF formulas could contain negated fixed point variables,
which would result in a non-stratified program when translating to Datalog lite
[Gottlob et al. 2002]. Open ASP with GgPs does not seem to be sufficiently expres-
sive either: fixed point predicates would need to appear under negation as failure,
however, the GL-reduct removes naf-literals, such that, intuitively, there is no real
recursion through naf-literals. Note that it is unlikely (but still open) whether
alternation-free µGF and normal µGF are equivalent, i.e., whether the alternation
hierarchy can always be collapsed.
In [Gottlob et al. 2002] one also discusses the data complexity which is simpler

than the combined complexity as studied here. For the future, we also investigate
the data complexity of reasoning in guarded Open Answer Set Programming.

REFERENCES

Abiteboul, S., Hull, R., and Vianu, V. 1995. Foundations of Databases. Addison-Wesley.

Andréka, H., Németi, I., and Van Benthem, J. 1998. Modal Languages and Bounded Fragments
of Predicate Logic. J. of Philosophical Logic 27, 3, 217–274.

Attie, P. C. and Emerson, E. A. 2001. Synthesis of Concurrent Programs for an Atomic
Read/Write Model of Computation. ACM Trans. Program. Lang. Syst. 23, 2, 187–242.

Balduccini, M. and Gelfond, M. 2003. Diagnostic reasoning with a-prolog. Theory and Practice
of Logic Programming (TPLP) 3, 4-5, 425–461.

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press.

Chandra, A. K. and Harel, D. 1982. Horn Clauses and the Fixpoint Query Hierarchy. In Proc.
of PODS ’82. ACM Press, 158–163.

49

Clark, K. L. 1987. Negation as Failure. In Readings in Nonmonotonic Reasoning. Kaufmann,

311–325.

Clarke, E. M., Emerson, E. A., and Sistla, A. P. 1986. Automatic Verification of Finite-
state Concurrent Systems using Temporal Logic Specifications. ACM Trans. Program. Lang.
Syst. 8, 2, 244–263.

Dantsin, E., Eiter, T., Gottlob, G., and Voronkov, A. 2001. Complexity and Expressive
Power of Logic Programming. ACM Computing Surveys 33, 3, 374–425.

Emerson, E. A. 1990. Temporal and Modal Logic. In Handbook of Theoretical Computer Science,
J. van Leeuwen, Ed. Elsevier Science Publishers B.V., 995–1072.

Emerson, E. A. and Clarke, E. M. 1982. Using Branching Time Temporal Logic to Synthesize
Synchronization Skeletons. Sciene of Computer Programming 2, 3, 241–266.

Emerson, E. A. and Halpern, J. Y. 1982. Decision Procedures and Expressiveness in the
Temporal Logic of Branching Time. In Proc. of the fourteenth annual ACM symposium on
Theory of Computing. ACM Press, 169–180.

Flum, J. 1999. On the (Infinite) Model Theory of Fixed-point Logics. Models, Algebras, and
Proofs, 67–75.

Gelfond, M. and Lifschitz, V. 1988. The Stable Model Semantics for Logic Programming. In
Proc. of International Conference on Logic Programming (ICLP 1988). MIT Press, 1070–1080.

Gelfond, M. and Przymusinska, H. 1993. Reasoning in Open Domains. In Logic Programming
and Non-Monotonic Reasoning. MIT Press, 397–413.

Gottlob, G., Grädel, E., and Veith, H. 2002. Datalog LITE: A deductive query language
with linear time model checking. ACM Transactions on Computational Logic 3, 1, 1–35.

Grädel, E. 1999. On the Restraining Power of Guards. Journal of Symbolic Logic 64, 4, 1719–
1742.

Grädel, E. 2002a. Guarded Fixed Point Logic and the Monadic Theory of Trees. Theoretical
Computer Science 288, 129–152.

Grädel, E. 2002b. Model Checking Games. In Proceedings of WOLLIC 02. Electronic Notes in
Theoretical Computer Science, vol. 67. Elsevier.

Grädel, E., Hirsch, C., and Otto, M. 2002. Back and Forth Between Guarded and Modal
Logics. ACM Transactions on Computational Logic 3, 418–463.

Grädel, E. and Walukiewicz, I. 1999. Guarded Fixed Point Logic. In Proc. of the 14th Annual
IEEE Symposium on Logic in Computer Science (LICS ’99). IEEE Computer Society, 45–54.

Halevy, A., Mumick, I., Sagiv, Y., and Shmueli, O. 2001. Static Analysis in Datalog Exten-
sions. Journal of the ACM 48, 5, 971–1012.

Halpin, T. 2001. Information Modeling and Relational Databases. Morgan Kaufmann Publishers.

Heymans, S., Van Nieuwenborgh, D., and Vermeir, D. 2005a. Guarded Open Answer Set

Programming. In 8th International Conference on Logic Programming and Non Monotonic
Reasoning (LPNMR 2005), C. Baral, G. Greco, N. Leone, and G. Terracina, Eds. Number
3662 in LNAI. Springer, Diamante, Italy, 92–104.

Heymans, S., Van Nieuwenborgh, D., and Vermeir, D. 2005b. Nonmonotonic Ontological and
Rule-Based Reasoning with Extended Conceptual Logic Programs. In 2nd European Semantic
Web Conference (ESWC 2005), A. Goméz-Pérez and J. Euzenat, Eds. Number 3532 in LNCS.
Springer, Heraklion, Greece, 392–407.

Heymans, S., Van Nieuwenborgh, D., and Vermeir, D. 2006a. Guarded Open Answer Set
Programming with Generalized Literals. In Fourth International Symposium on Foundations
of Information and Knowledge Systems (FoIKS 2006), J. Dix and S. Hegner, Eds. Number
3861 in LNCS. Springer, 179–200.

Heymans, S., Van Nieuwenborgh, D., and Vermeir, D. 2006b. Open Answer Set Program-
ming for the Semantic Web. Journal of Applied Logic. To appear, also available from
http://tinf2.vub.ac.be/∼sheymans/tech/hvnv-jal2006.pdf.

Huth, M. R. A. and Ryan, M. 2000. Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press.

50

Immerman, N. 1986. Relational queries computable in polynomial time. Information and Con-

trol 68, 1-3, 86–104.

Kozen, D. 1983. Results on the Propositional µ-calculus. Theor. Comput. Sci. 27, 333–354.

Lee, J. and Lifschitz, V. 2003. Loop Formulas for Disjunctive Logic Programs. In Proc. of
ICLP 2003. LNCS, vol. 2916. Springer, 451–465.

Leone, N. and Perri, S. 2003. Parametric connectives in disjunctive logic programming. In
Answer Set Programming. CEUR Workshop Proceedings, vol. 78.

Lifschitz, V., Pearce, D., and Valverde, A. 2001a. Strongly Equivalent Logic Programs. ACM
Transactions on Computational Logic 2, 4, 526–541.

Lifschitz, V., Pearce, D., and Valverde, A. 2001b. Strongly equivalent logic programs. ACM
Trans. Comput. Log. 2, 4, 526–541.

Lifschitz, V., Tang, L. R., and Turner, H. 1999. Nested expressions in logic programs. Annals
of Mathematics and Artificial Intelligence 25, 3-4, 369–389.

Lin, F. and Zhao, Y. 2002. ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers.
In Proc. of 18th National Conference on Artificial Intelligence. AAAI, 112–117.

Lloyd, J. and Topor, R. 1984. Making Prolog More Expressive. J. Log. Program. 1, 3, 225–240.

Manna, Z. and Wolper, P. 1984. Synthesis of Communicating Processes from Temporal Logic
Specifications. ACM Trans. Program. Lang. Syst. 6, 1, 68–93.

Moschovakis, Y. 1974. Elementary Induction on Abstract Structures. North Holland.

Osorio, M., Navarro, J. A., and Arrazola, J. 2004. Applications of intuitionistic logic in
answer set programming. TPLP 4, 3, 325–354.

Osorio, M. and Ortiz, M. 2004. Embedded implications and minimality in asp. In In Proc. of
the 15th International Conference on Applications of Declarative Programming and Knowledge
Management and 18th Workshop on Logic programming. 241–254.

Papadimitriou, C. H. 1994. Computational Complexity. Addison Wesley.

Schlipf, J. 1993. Some Remarks on Computability and Open Domain Semantics. In Proc. of the
Workshop on Structural Complexity and Recursion-Theoretic Methods in Logic Programming.

Schlipf, J. 1995. Complexity and Undecidability Results for Logic Programming. Annals of
Mathematics and Artificial Intelligence 15, 3-4, 257–288.

Sistla, A. P. and Clarke, E. M. 1985. The Complexity of Propositional Linear Temporal
Logics. J. ACM 32, 3, 733–749.

Syrjänen, T. 2004. Cardinality Constraint Programs. In Proc. of JELIA’04. Springer, 187–200.

Tarski, A. 1955. A Lattice-Theoretical Fixpoint Theorem and its Applications. Pacific Journal
of Mathematics 5, 285–309.

Tobies, S. 2001. Complexity Results and Practical Algorithms for Logics in Knowledge Repre-
sentation. Ph.D. thesis, LuFG Theoretical Computer Science, RWTH-Aachen, Germany.

Van Benthem, J. 1997. Dynamic Bits and Pieces. In ILLC research report. University of Ams-
terdam.

van Emden, M. H. and Kowalski, R. A. 1976. The Semantics of Predicate Logic as a Program-
ming Language. Journal of the Association for Computing Machinery 23, 4, 733–742.

Received March 2006; accepted September 2006

51

