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We study a fault-tolerant generalization of the
classical uncapacitated facility location problem. We
want to open a subset of facilities from a given set F
and assign each client j in a given set D to r; > 1
distinct open facilities so as to minimize the sum of the
facility opening costs and the client assignment costs.
We also consider the fault-tolerant k-median problem
where instead of facility costs we are given a number k
of facilities that may be opened, and the objective is to
minimize only the assignment cost. Multiple facilities
provide a safeguard against failures. If the facility
closest to a client ‘fails’, the other facilities assigned to
it could be used to serve it, e.g., in designing a network
involving the placement of caches or routers, one would
like to connect a client to multiple caches or routers
so as to be resistant under node or link failures. We
consider the case where the distances, ¢;;, form a metric.

THEOREM 1. There is a 2.076-approzximation algorithm
for fault-tolerant facility location.

This is currently the best known guarantee. If all
requirements are equal, we give a 1.52-approximation
algorithm by modifying the algorithm of [8, 13], which
matches the current best guarantee for uncapacitated
facility location. For the k-median version with uniform
requirements, we obtain a 4-approximation algorithm.

Related work. A variety of techniques have been used
for the design and analysis of approximation algorithms
for metric uncapacitated facility location over the past
several years. The first constant-factor approximation
algorithm for this problem was due to Shmoys, Tar-
dos & Aardal [14] who gave a 3.16-approximation algo-
rithm, using the filtering technique of Lin & Vitter [11]
to round the optimal solution of a linear program. Af-
ter an improvement by Guha & Khuller [6], Chudak
& Shmoys [4, 5] gave an LP rounding based (1 + %)—
approximation algorithm. They used information about
the structure of optimal primal and dual solutions, and
combined randomized rounding and the decomposition
results of [14] to get a variant that might be called clus-
tered randomized rounding. Sviridenko [15] improved
the ratio to 1.58. Jain & Vazirani [9] gave a combinato-
rial primal-dual 3-approximation algorithm. Mahdian,
Markakis, Saberi & Vazirani [12] showed that a greedy
set-cover type primal-dual algorithm has an approxima-
tion ratio of 1.861. This was improved in [8, 13] to 1.52,
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which is the best known guarantee. Charikar, Guha,
Tardos & Shmoys [3] gave the first constant-factor algo-
rithm for the k-median problem based on LP rounding.
This was improved in [9, 2, 8, 1] to (3+¢) [1].

The fault-tolerant facility location problem was

introduced by Jain & Vazirani [10] who gave an
O(log(maxr;))-approximation algorithm. Our algo-
rithm is based on LP rounding. We consider the fol-
lowing LP: minimize ), fiyrl-ZM CijTij 8.t Y, Ty >
rj, Vj, and 0 < z;; < y; < 1, Vi,j. The dual is:
maximize » . rja; — >,z st ap < iy + Bij, Vi, g,
> Bij < fi+ zi, Vi, and oy, Bij,2; > 0, Vi,j. Vari-
able y; indicates if facility ¢ is open, and z;; indicates if
client j is connected to facility ¢. An integral solution
to the LP corresponds to a solution to our problem.
Guha, Meyerson & Munagala [7] round the primal LP
using filtering and the decomposition technique of [14],
to obtain a 3.16-approximation. Subsequent greedy im-
provement, as in [6], reduces the ratio to 2.47.
Our Algorithm. Our algorithm does not use filtering,
but is based on the clustered randomized rounding tech-
nique of [5]. We exploit the complementary slackness
conditions to bound the cost of our solution in terms of
both the primal and dual optimal solutions: the primal
solution is «j-close, i.e., x;; > 0 = ¢;; < ;. One dif-
ficulty in using LP duality to prove an approximation
ratio is the presence of the — 3, 2; term in the dual:
bounding the cost in terms of ), r;a; is not enough.
This problem also crops up in designing approximation
algorithms for the k-median problem. In general this
is not an easy problem to tackle, and for the k-median
problem, the only known LP rounding algorithm [3] uses
just the optimal primal LP solution. For fault-tolerant
facility location, complementary slackness allows us to,
in effect, get rid of the negative z;s by a single pruning
phase. Since z; > 0 = y; = 1, we can open all such 14
and charge the opening cost to the LP.

One needs to overcome several obstacles to ex-
tend [5] to the fault-tolerant setting and prove a good
approximation guarantee. We now want every demand
J to have 7; open facilities ‘near’ it. Our algorithm also
clusters facilities around demand points, called cluster
centers, and opens at least one facility in each cluster.
Each facility ¢ is opened with probability proportional
to y;. The randomization step allows us to reduce the
service cost, since now there is a high probability that
for any j, a facility ¢ with x;; > 0 is open.

We ensure that demand j has r; nearby open



facilities by introducing a notion of backup requirement
which is initialized to ;. Whenever we create a cluster
we decrement the backup requirement of all j which
share a facility with the cluster created. The facility
opened within this cluster serves as a backup facility for
each such j and we argue that this facility is near j. As
long as the backup requirement of j is at least 1, it is
a candidate for being chosen as a cluster center. So j
will share facilities with r; clusters and these provide
the r; nearby facilities. To argue feasibility, we need
to open different facilities in different clusters. Also we
would like each cluster to use up a facility weight of
1. If the facility weight within a cluster is too small,
opening a facility within the cluster would incur a huge
cost; if the facility weight is more than 1, then we are
using up a fractional facility weight of more than 1 while
opening only one facility — so a demand j may not
have r; nearby facilities. Guha et al. [7] open facilities
deterministically within a cluster, possibly splitting a
facility across clusters. Splitting facilities allows them
to achieve a facility weight of 1, and the deterministic
choice allows them to argue that a facility is opened in at
most one cluster even if it is split across clusters. With
randomization however, any facility within a cluster
may be opened, so clusters have to be disjoint otherwise
the same facility could be opened in different clusters.
But once we require clusters to be disjoint, we cannot
expect a cluster to have a facility weight of exactly 1.
We tackle this problem by introducing another pruning
phase where we open all facilities ¢ with ‘large’ y;. This
allows us to pack a substantial facility weight within a
cluster without exceeding the limit of 1.

To analyze the algorithm, we view a demand j with
requirement 7; as being composed of r; copies which
have to be connected to distinct facilities. Instead of
assigning j to the r; nearest open facilities, we consider
a suboptimal assignment scheme. Each copy of j is
allotted a subset of facilities {i}, such that z;; > 0,
and a unique backup facility. A copy may only be
assigned to an allotted facility or to the backup facility
for that copy. For feasibility we have to ensure that
a facility is allotted to at most one copy. Due to the
pruning phase we can allot a substantial facility weight
to each copy, which increases the probability that some
facility allotted to the copy is open. If none of the
allotted facilities is open, we assign the copy to the
backup which we argued earlier was not too far from j.
Overall this gives an approximation guarantee of 2.12.
To do better, we allot facilities in a better way. We
use the pipage rounding technique [15] to derandomize
a hypothetical randomized process which allots a facility
probabilistically across different copies (if necessary), so
that each copy gets an equal allotment of facility weight.

This gives a 2.076-approximation algorithm.

Other Results. Mahdian et al. [12] gave a 1.861-
approximation algorithm for the uniform-requirement
case. We improve this to get a 1.52-approximation
algorithm, by extending the algorithm of Jain, Mahdian
& Saberi [8]. We analyze our algorithm using the dual
fitting approach and arrive at the same factor LP
as in [8], and hence obtain the same performance
guarantees. Combined with greedy improvement and
the analysis in [13], we get a 1.52-approximation
algorithm. Using Lagrangian relaxation [9] this also
gives a 4-approximation algorithm for the fault-tolerant
k-median problem with uniform requirements.
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